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Abstract. We place Schwartz’s work on the real dynamics of the projective heat map H
into the complex perspective by computing its first dynamical degree and gleaning some
corollaries about the dynamics of H.

1. Introduction

Let PN denote the space of projective equivalence classes of N -gons in RP2. The pro-
jective heat map is a self-mapping of PN that was introduced by R. Schwartz in the mono-
graph [16]. Suppose AB, BC, and CD are three consecutive edges of a polygon P . The

projective midpoint of BC (with respect to the polygon P ) is defined as S :=
←→
BC ∩

←→
QR,

where Q =
←→
AB ∩

←→
CD and R =

←→
AC ∩

←→
BD. This is illustrated in Figure 1.
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Figure 1. S is the projective midpoint of BC

The projective midpoint of BC typically does not coincide with the Euclidean midpoint of
BC, however the construction is invariant under projective transformations. Remark also
that the projective midpoint may not be defined for certain degenerate configurations of
A,B,C, and D.

For any N -gon P let H(P ) be the N -gon whose vertices are the projective midpoints of
the edges of P . Because the construction is invariant under projective transformations, H
descends to a mapping H : PN 99K PN called the projective heat map. (We used a broken
arrow to denote that H may not be defined at certain polygons for which a sequence of four
consecutive vertices A,B,C, and D are not in general position.)

In the case of pentagons, the space of projective equivalence classes of polygons P5 is
parameterized by a pair of real numbers (x, y) called the flag invariants of the (equivalence
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Figure 2. The region (x, y) ∈ [−9, φ−1]2, where φ is the golden ratio.
Points in the basin of attractionWs((φ−1, φ−1)) of the attracting fixed point
(φ−1, φ−1) are colored yellow. The “Julia Set” J := R2 \ Ws((φ−1, φ−1)) is
visible in red.

class) of the polygon; see [16, Section 3.6]. In these flag coordinates, the projective heat
mapping becomes a rational mapping H : R2 99K R2 given by (x′, y′) = H(x, y), where

x′ =

(
xy2 + 2xy − 3

) (
x2y2 − 6xy − x+ 6

)
(xy2 + 4xy + x− y − 5) (x2y2 − 6xy − y + 6)

, and(1)

y′ =

(
x2y + 2xy − 3

) (
x2y2 − 6xy − y + 6

)
(x2y + 4xy − x+ y − 5) (x2y2 − 6xy − x+ 6)

.

This mapping has an obvious symmetry under the reflection R(x, y) = (y, x). It also
has a less-obvious symmetry under an action of the dihedral group D5, corresponding to
relabeling the vertices of the pentagon under rotations and reflections. Expressed as a group
of birational mappings of the flag coordinates (x, y) ∈ R2 this action of D5 is called the
Gauss Group Γ; see [16, Section 3.8].

In the monograph [16] Schwartz uses computer-assisted proofs to provide a nearly com-
plete description of the dynamics of H : R2 99K R2. Highlights of his work include proofs
that

(1) Almost any projective equivalence class of a pentagon has orbit under H converging
to the class of the regular pentagon. (In flag coordinates, this attracting fixed point
is represented by (φ−1, φ−1), where φ is the golden ratio.)

(2) There is a repelling invariant Cantor set J C for H on which the dynamics of H is
conjugate to the one-sided shift σ : Σ6 → Σ6 on six symbols.

(3) H does not have an invariant fibration.

Moreover, much of Schwartz’s work is dedicated to giving a topological description of the
“Julia set” of H defined by J := R2 \Ws((φ−1, φ−1)). A computer generated image of this
Julia set is shown in Figure 2.

Schwartz often extends H to the compactification RP1×RP1 and sometimes to the surface
SR obtained by blowing up RP1 × RP1 at the three points (1, 1), (∞, 0), and (0,∞). The
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surface SR is well-adapted to the symmetries of H under the Gauss Group Γ, since Γ acts
on SR by diffeomorphisms; See [16, Section 10.5].

The formula for H naturally extends to a rational map H : CP1×CP1 99K CP1×CP1 or
even as a rational self-mapH : S 99K S, where S is the blow-up of CP1×CP1 at (1, 1), (∞, 0),
and (0,∞). Starting in the 1990s, Briend-Duval, Fornaess-Sibony, Hubbard-Oberst-Vorth,
Hubbard-Papadapol, Ueda, and many others used powerful tools from complex analysis
and algebraic geometry to prove strong results about the dynamics of such mappings. The
purpose of this note is to place Schwartz’s work on the real dynamics of the projective
heat mapping H into this complex perspective and to glean some corollaries both about the
dynamics of H.

The coarsest invariants of the dynamics of a rational self-mapping f : X 99K X of
a (complex) projective surface X are the dynamical degrees λ1(f) and λ2(f). The first
dynamical degree λ1(f) is defined by

λ1(f) := lim
n→∞

∥∥(fn)∗ : H1,1(X;C)→ H1,1(X;C)
∥∥1/n ,

where H1,1(X;C) denotes the Dolbeault cohomology of bidegree (1, 1). (In the case consid-
ered in this note, the reader can replace it with singular cohomology H2(X;C).) There are
many subtleties to this definition, including the fact that the rational map f may not be
continuous at a finite set of indeterminate points. Nevertheless, there is still a well-defined
notion of pullback on cohomology. The caveat is that, unlike for continuous mappings, this
pullback may not be functorial—one may have (fn)∗ 6= (f∗)n. This often makes calculation
of λ1(f) rather technical.

Since we are working in complex dimension two, the second dynamical degree is much
simpler: λ2(f) = degtop(f) is the the number of preimages of a generic point under f . We
refer the reader to [1, 11, 15, 4, 10, 9] for further background on dynamical degrees. The
facts we will need about them will be summarized in Section 2.

The two cases λ2(f) > λ1(f) and λ1(f) > λ2(f) correspond to quite different types
of dynamics. Building on work of Briend-Duval [2, 3], Guedj and Dinh-Truong-Nguyen
[13, 8] proved that the case λ2(f) > λ1(f) corresponds to “predominantly repelling dynam-
ics.” Meanwhile, building from work of Bedford-Lyubich-Smillie, Diller-Dujardin-Guedj [5]
proved that the case λ1(f) > λ2(f) corresponds to “predominantly saddle-type dynamics.”
We refer the reader to the cited papers for details.

It was proved by Schwartz [16, Section 8] that λ2(H) = 6. Our main technical result is

Theorem 1.1. λ1(H) = 4.

Therefore, the projective heat map H has “large topological degree” and the work of
Guedj and Dinh-Truong-Nguyen [13, 8] implies that H : CP1 × CP1 99K CP1 × CP1 has a
unique measure µ of maximal entropy, whose entropy is equal to log λ2(H) = log 6. It also
provides a lower bound on the Lyapunov exponents χ1,2 of µ by

χ1,2 ≥
1

2
log

λ2(H)

λ1(H)
=

1

2
log

3

2
.

Meanwhile, the Bernoulli measure on Σ6 is an invariant measure of entropy log 6 for the
one-sided full shift on six symbols σ : Σ6 → Σ6. Pulling it back under the the conjugacy
between H : J C → JC and σ : Σ6 → Σ6 results in an invariant measure β for H : J C → JC
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which also has entropy log 6. We will call β the “Bernoulli measure on J C.” We conclude
that:

Corollary 1.2. The Bernoulli measure β on J C ⊂ RP1 × RP1 is the unique measure of
maximal entropy for H : CP1 × CP1 99K CP1 × CP1. Its Lyapunov exponents are bounded
from below by 1

2 log 3
2 .

The dynamical degrees of rational maps having an invariant fibration were studied by
Dinh-Nguyen and Dinh-Nguyen-Truong in [6, 7]. Their work implies that if a rational self-
map of a surface has an invariant fibration, then λ1(f) divides λ2(f); see Lemma 2.4, below.
We therefore also conclude that:

Corollary 1.3. The projective heat map H : CP1 × CP1 99K CP1 × CP1 has no invariant
fibration.

In particular, H : RP1 × RP1 99K RP1 × RP1 does not have an invariant fibration, thus
giving a cohomological re-proof of one of Schwartz’s results.

Remark 1.4. Computation of the first dynamical degree of a planar rational map is rela-
tively standard for specialists in several variable complex dynamics. However, the purpose
of this note is to relate the dynamical consequences of this calculation to Schwartz’s work.

Acknowledgments: The second author was supported by NSF grant DMS-1348589.

2. Background on dynamical degrees and algebraic stability

In this section we will give the background needed for computing λ1(H). Let us focus
on a somewhat restricted context suitable for this paper. Suppose X and Y are complex
projective algebraic surfaces (e.g. a blow-up of CP1 × CP1 at finitely many points) and
f : X 99K Y is a rational map. We denote the indeterminacy locus of f by I(f), which is
a finite set of points. Throughout the section we will suppose f is dominant, meaning that
f(X \ I(f)) is not contained in an algebraic hypersurface of Y .

2.1. Pullback on cohomology. It is a well-known fact [17, Ch. IV, §3.3] there is a finite

sequence of blow-ups π : X̃ → X so that f lifts to a holomorphic map f̃ : X̃ → Y , making
the following diagram commute

X̃

π

��

f̃

��

X
f
// Y,

(2)

wherever f ◦ π is defined. Each of these blow-ups is done over a point of I(f).
One uses (2) to define f∗ : H1,1(Y ;C)→ H1,1(X;C) by

f∗(α) := π∗(f̃
∗α)(3)

for any α ∈ H1,1(Y ;C). Here, π∗ : H1,1(X̃;C)→ H1,1(X;C) is defined by

π∗ := PD−1X ◦ π# ◦ PD
X̃
,

with π# denoting the push forward on homology and PD denoting the Poincaré duality
isomorphism. The definition of the pullback f∗ is well-defined, independent of the choice of
resolution of indeterminacy (2); see, for example, [14, Lemma 3.1].
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If C ⊂ X is an irreducible algebraic curve, then, since C has real dimension two and
is singular at only finitely many points, it has a well-defined fundamental homology class
{C} and cohomology class [C] = PD−1X ({C}). From a more sophisticated point of view, C
defines a locally principal divisor (C) and [C] is its Chern class; [12]. The definition of f∗

simplifies in this case:

Lemma 2.1. Let f : X 99K Y be a dominant rational map between to projective surfaces.
Suppose C ⊂ Y is an irreducible algebraic curve. Then,

f∗[C] =
∑

D⊂f−1(C)

irreducible

mD[D],(4)

where f−1(C) =
(
f |X\I(f)

)−1
C and the multiplicity mD is the order of vanishing of ψ◦f at

any smooth point p ∈ D \ I(f), with ψ being a local defining equation for C at f(p) (chosen
to vanish to order 1 at smooth points of C).

Proof. For a holomorphic map h : X → Y the pullback action on locally principal divisors
and on cohomology are related by the commutative diagram:

H1(Y,O∗)

c
��

h∗
// H1(X,O∗)

c
��

H1(Y ;C)
h∗
// H1(X;C),

(5)

where O∗ denotes the sheaf of germs of non-vanishing holomorphic functions and the vertical
arrows denote taking the Chern class, see [12, p. 139]. Since (4) is a special case of the
definition of how one pulls back locally principal divisors, this diagram justifies (4) in the
case of a holomorphic map.

Now, suppose f : X 99K Y is rational, that we have the resolution of indeterminacy

f̃ : X̃ → Y as in (2), and let C ⊂ Y be an irreducible algebraic curve. By the discussion in

the previous paragraph, (4) applies to f̃ : X̃ → Y giving

f̃∗[C] =
∑

A⊂f̃−1(C)

irreducible

mA[A](6)

with mA being the order of vanishing of ψ ◦ f̃ at any smooth point of A. Therefore, we have

f∗[C] = π∗f̃
∗[C] =

∑
A⊂f̃−1(C)

irreducible

mAπ∗[A].(7)

If A is an irreducible component of f̃−1(C) with π(A) a single point, then by the definition
of push forward on homology we have π∗[A] = 0. Otherwise, π(A) is an irreducible algebraic
curve in X. In this case, A intersects the exceptional divisors of π in finitely many points, so
that π : A→ π(A) is one-to-one away from finitely many points and hence π∗[A] = [π(A)].
We conclude that

f∗[C] =
∑

A⊂f̃−1(C) irreducible
π(A) not a point

mA[π(A)].(8)
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Suppose p is any smooth point of π(A) \ I(f). Then, π is a biholomorphic map from a
neighborhood U of π−1(p) to a neighborhood V of p. Therefore, if ψ is a local defining

equation for C in a neighborhood of f(p) = f̃(π−1(p)) the order of vanishing of ψ ◦ f =

ψ ◦ f̃ ◦ (π|U )−1 at p is the same as that of ψ ◦ f̃ at π−1(p). This allows us to replace the
mA in (8) with mπ(A). We obtain

f∗[C] =
∑

D⊂π(f̃−1(C)) irreducible
D not a point

mD[D].(9)

Finally, note that each of the blow-ups done to achieve the resolution of indeterminacy (2)
occurs over a point of I(f). Therefore,

f−1(C) =
(
f |X\I(f)

)−1
C and π ◦ f̃−1(C)

differ by at most a subset of the finite set I(f), giving a bijection between irreducible

components of f−1(C) and irreducible components of π(f̃−1(C)) that are not a point. This
gives (4) from (9).

�

2.2. Algebraic stability and strategy for computing λ1.

Proposition 2.2. (Diller-Favre [4, Thm. 1.14]) Let f : X 99K X by a rational self-map of
a projective surface. Then, (fn)∗ = (f∗)n for all n ≥ 1 if and only if there is no curve C
and no iterate m such that fm(C \ Ifm) ⊂ If .

When either of the two equivalent conditions stated in Proposition 2.2 hold, we will call
f : X 99K X algebraically stable. (Readers who prefer to see a proof of Proposition 2.2 that
is based on algebraic geometry instead of analysis can refer to [14, Prop. 1.4].)

If C is a curve such that f(C \ If ) is a point, we will say that C is collapsed by f . Since
If is a finite set of points, the second equivalent condition for algebraic stability (from
Proposition 2.2) asserts that there is no curve C that is collapsed by an iterate of f into If .
In particular, if f does not collapse any curve, then f is algebraically stable.

Proposition 2.3. (Dinh-Sibony [10, Cor. 7]) Suppose f : X 99K X and g : Y 99K Y
are rational maps of projective surfaces that are conjugate by means of a birational map
π : X 99K Y . Then, λ1(f) = λ1(g).

(Proposition 2.3 actually holds considerably greater generality, including in arbitrary di-
mensions, but we will only need the simplest form, as stated here.)

Based on these two propositions, there is a clear strategy for computing the first dynam-
ical degree of a rational map f : X 99K X. One should try to do a sequence of blow-ups

π : X̃ → X in order to make the lifted map f̃ : X̃ 99K X̃ satisfy the second equivalent
condition from Proposition 2.2, and hence be algebraically stable. Then

λ1(f) = λ1(f̃) = spectral radius
(
f̃∗ : H1,1(X̃)→ H1,1(X̃)

)
,(10)

where the first equality follows from applying Proposition 2.3 to the conjugacy π between

f and f̃ , and the second equality follows from Proposition 2.2. Finally, if the cohomology

H1,1(X̃) is generated by the fundamental classes of algebraic curves, one can use Proposi-
tion 2.1 to compute the spectral radius on the right hand side of (10).
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2.3. Ruling out invariant fibrations by means of dynamical degrees.

Lemma 2.4. Suppose f : X 99K X is a dominant rational map of a projective surface that
has an invariant fibration. Then, λ1(f) divides λ2(f).

Proof. Suppose that Y is a one-dimensional projective curve and that f : X 99K X is semi-
conjugate to a rational map g : Y 99K Y , by a rational mapping π : X 99K Y . The formula
from [6, 7] gives that:

λ1(f) = max
(
λ1(g)λ0(f |π), λ0(g)λ1(f |π)

)
, and

λ2(f) = λ1(g)λ1(f |π).

Here, the fiber-wise dynamical degrees are defined as

λi(f |π) := lim
n→∞

‖(fn)∗(ωiX) ∧ π∗(ωY )‖1/n(11)

for i = 0, 1, where ωX and ωY are the Fubini-Study forms on X and Y respectively and
‖ · ‖ denotes the mass of a current. (The exponent on ωY is 1 since dim(Y ) = 1.) It is
always true that the 0-th dynamical degree of a mapping is 1, so that λ0(g) = 1. (This is
why we didn’t mention 0-th dynamical degrees in the introduction). Meanwhile, it follows
immediately from (11) that λ0(f |π) = 1. Therefore, λ1(f) = max (λ1(g), λ1(f |π)). In either
case, the result follows from λ2(f) = λ1(g)λ1(f |π). �

Corollary 1.3 follows.

3. Algebraic stability on a suitable blow-up of CP1 × CP1.

We use multi-homogeneous coordinates ([X : U ], [Y : V ]) on CP1×CP1, where the affine
coordinates from (1) correspond to (x, y) = (X/U, Y/V ). There are three other “standard”
choices of local coordinates on CP1 × CP1 given by

(u, y) := (U/X, Y/V ), (x, v) := (X/U, V/Y ), and (u, v) := (U/X, V/Y ).

In the (x, y) local coordinates, the critical set of H : C2 99K C2 consists of the following five
irreducible curves:

C1 = {xy − 1 = 0},
C2 = {2xy + x + y − 4 = 0},

C3 = {x2y2 − 6xy − y + 6 = 0},

C4 = {x2y2 − 6xy − x + 6 = 0}, and

C5 = {x6y6 − 10x5y5 − x6y3 + 2x5y4 + 2x4y5 − x3y6 − 4x5y3 + 39x4y4 − 4x3y5 + 3x5y2 − 12x4y3

− 12x3y4 + 3x2y5 + 10x4y2 − 47x3y3 + 10x2y4 − 3x4y2 + 22x3y2 + 22x2y3 − 3xy4 − 12x3y − 2x2y2

− 12xy3 − 6x2y − 6xy2 + 9x2 + 21xy + 9y2 − 9x− 9y = 0}.

Lemma 3.1. The only curves collapsed by H : CP1 × CP1 99K CP1 × CP1 are C1, . . . , C4.

• C1 and C2 are collapsed by H to p1 := {(x, y) = (1, 1)},
• C3 is collapsed by H to p2 := {(x, y) = (∞, 0)} = {(u, y) = (0, 0)}, and
• C4 is collapsed by H to p3 := {(x, y) = (0,∞)} = {(x, v) = (0, 0)}.

The curve C5 is not collapsed by H.
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Proof. Any curve that is collapsed by H is in the critical set, and it is also easy to verify in
(u, v) coordinates that the lines at infinity, {u = 0} and {v = 0}, are not collapsed. Thus,
we need only consider C1, . . . , C5.

The variable x occurs at most linearly in the defining equations for C1 and C2. One can
therefore solve for x as a function of y. Substituting into the defining equation for H (1)
yields that each curve C1 and C2 collapses to p1.

To see that C3 is collapsed to p2, we use (x, y) coordinates in the domain and (u, y) =
(1/x, y) in codomain:

u′ = 1/x′ =

(
xy2 + 4xy + x− y − 5

) (
x2y2 − 6xy − y + 6

)
(xy2 + 2xy − 3) (x2y2 − 6xy − x+ 6)

, and(12)

y′ =

(
x2y + 2xy − 3

) (
x2y2 − 6xy − y + 6

)
(x2y + 4xy − x+ y − 5) (x2y2 − 6xy − x+ 6)

.

Since the defining equation of C3 appears in the numerator of both u′ and y′, it follows
that C3 collapses to (u, y) = (0, 0). The fact that C4 is collapsed by H to p3 follows by
symmetry under R, or by using a similar calculation.

Meanwhile, (x, y) = (0, 0) and (x, y) = (0, 1) are on C5 and they map by H to different
points. �

Let X be the blow-up of CP1×CP1 at p1, p2, and p3, let E1, E2, and E3 be the resulting
exceptional divisors, respectively, and let π : X → CP1 × CP1 be the canonical projection.
We let H : X 99K X be the lift of H to this space such that the following diagram commutes:

X H
//

π
��

X

π
��

CP1 × CP1 H
// CP1 × CP1.

(13)

For any algebraic curve C ⊂ CP1 × CP1 let

C̃ = π−1(C \ {p1, p2, p3})
denote the proper transform of C under π.

The local coordinates (x, y), (u, y), (x, v) and (u, v) on P1 × P1 continue to serve as local
coordinates on X away from the exceptional divisors E1, E2, and E3. We now set up some
standard choices of local coordinates on X near these exceptional divisors. Consider the
local coordinates (a, b) = (x − 1, y − 1) on P1 × P1 centered at p1. One can describe a
neighborhood of E1 in X using two systems of local coordinates. The local coordinates
(a,m1) = (a, b/a) describe all directions of approach to p1, except along the line {x = 1},
which corresponds to m1 =∞. (We actually won’t need to other system of coordinates in
this paper.) Similarly, the local coordinates (u,m2) = (u, y/u) describe a neighborhood of
all but one point of the exceptional divisor E2, and the local coordinates (v,m3) = (v, x/v)
describe a neighborhood of all but one point of the exceptional divisor E3. See Figure 3.

Lemma 3.2. H : X 99K X does not collapse any curves and is therefore algebraically stable.
In particular,

• H maps C̃1 and C̃2 onto all of E1

• H maps C̃3 onto all of E2, and

• H maps C̃4 onto all of E3.
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E1

E3

E2
Lx

m1

m2

m3

v

Ly

π

x u

ux

p1

p2

p3

x

y

a

u

v

u

v

y y

v

Figure 3. On the bottom is CP1 × CP1, with the four sets of local coor-
dinates labeled. On the top is X , the blow-up of CP1 × CP1 at p1, p2, and
p3, with the respective exceptional divisors E1, E2, and E3.

Proof. If H collapses a curve A that is not one of the exceptional divisors Ei of π, then π(A)
is a curve that is collapsed by H. Therefore, since C1, . . . , C4 are the only curves collapsed

by H, it suffices to check that H does not collapse E1, E2, E3, C̃1, . . . , C̃3, or C̃4.
We will first check that H does not collapse the exceptional divisors E1, E2, and E3. If

we express H in using (a,m1) coordinates in the domain and (x, y) in the codomain, we
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find

x′ =

(
a2m1

2 + am1
2 + 4 am1 + 4m1 + 3

) (
a3m1

2 + 2 a2m1
2 + 2 a2m1 + am1

2 − 2 am1 + a− 4m1 − 5
)

(a2m1
2 + am1

2 + 6 am1 + 5m1 + 6) (a3m1
2 + 2 a2m1

2 + 2 a2m1 + am1
2 − 2 am1 + a− 5m1 − 4)

y′ =

(
a2m1 + 4 am1 + a + 3m1 + 4

) (
a3m1

2 + 2 a2m1
2 + 2 a2m1 + am1

2 − 2 am1 + a− 5m1 − 4
)

(a2m1 + 6 am1 + a + 6m1 + 5) (a3m1
2 + 2 a2m1

2 + 2 a2m1 + am1
2 − 2 am1 + a− 4m1 − 5)

The image of E1 is obtained by setting a = 0:

(x′, y′) =

(
(4m1 + 3) (4m1 + 5)

(5m1 + 6) (5m1 + 4)
,
(3m1 + 4) (5m1 + 4)

(6m1 + 5) (4m1 + 5)

)
.

Since these functions are not constant functions of m1, we conclude that H does not col-
lapse E1.

If we use the local coordinates (u,m2) in a neighborhood of generic points of E2 and
coordinates (x, y) in the codomain, we find

x′ =

(
m2

2u+ 2m2 − 3
) (
m2

2u− 6m2u+ 6u− 1
)

(m2
2u2 −m2u2 + 4m2u− 5u+ 1) (m2

2 −m2u− 6m2 + 6)
(14)

y′ =
u (2m2u+m2 − 3u)

(
m2

2 −m2u− 6m2 + 6
)

(m2u2 + 4m2u+m2 − 5u− 1) (m2
2u− 6m2u+ 6u− 1)

.

The image of E2 is obtained by setting u = 0:

(x′, y′) =

(
3− 2m2

m2
2 − 6m2 + 6

, 0

)
.(15)

Again, since these functions are not constant functions of m2, we conclude that H does not
collapse E2. The fact that H does not collapse E3 follows by symmetry under R.

It remains to show that the curves C̃1, C̃2, C̃3, and C̃4 whose projections by π were

collapsed by H are not collapsed by H. We check C̃1 and C̃2 by expressing H using the
local coordinates (x, y) in the domain and (a,m1) in the codomain:

a′ = − (2xy + x+ y − 4) (xy − y − 3) (xy − 1)

(xy2 + 4xy + x− y − 5) (x2y2 − 6xy − y + 6)
(16)

m1
′ =

(
x2y2 − 6xy − y + 6

) (
xy2 + 4xy + x− y − 5

)
(xy − x− 3)

(xy − y − 3) (x2y + 4xy − x+ y − 5) (x2y2 − 6xy − x+ 6)
.(17)

Recall that C̃1 = {xy−1 = 0}, and substituting y = 1/x into the equation for m1
′, we have

m1
′ =

x(x+ 2)

2x+ 1
,

a non-constant function. Thus, m1
′ varies while traversing C̃1, so H does not collapse C̃1.

Similarly for C̃2 = {2xy + x+ y − 4 = 0}, substituting y = 4−x
2x+1 into m1

′, we have

m1
′ =

9(x2 + x+ 1)

(x2 + x+ 7) (2x+ 1)
.

This is also non-constant, so H does not collapse C̃2. The defining equations for C̃1 and C̃2

appear in the numerator of a′ so that they are both mapped by H to E1 = {a = 0}. Since

they are not collpased by H and E1 is irreducible, we conclude that C̃1 and C̃2 are mapped
onto all of E1.
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To check that C̃3 is mapped onto all of E2, we use local coordinates (x, y) in the domain
and (u,m2) in the codomain:

u′ =

(
xy2 + 4xy + x− y − 5

) (
x2y2 − 6xy − y + 6

)
(xy2 + 2xy − 3) (x2y2 − 6xy − x+ 6)

m2
′ =

(
xy2 + 2xy − 3

) (
x2y + 2xy − 3

)
(xy2 + 4xy + x− y − 5) (x2y + 4xy − x+ y − 5)

.

Since (x, y) = (0, 6) and (x, y) = (1, 6) are on C̃3 and are mapped by H to different points

on E2, we conclude that C̃3 is not collapsed by H. Meanwhile, the defining equation for C̃3

is a factor of the numerator of the equation for u′, so we conclude that H maps C̃3 onto all
of E2 = {u = 0}. By the symmetry of H under R, or very similar calculations, one can also

show that C̃4 is mapped onto all of E3.
We conclude that H does not collapse any curve. Therefore, Proposition 2.2 gives that

H is algebraically stable. �

4. Pullback on cohomology and computation of λ1(H).

At this point we have completed all but the last step of the strategy for computing
λ1(H) that was presented in Section 2.2. We have proved in Lemma 3.2 that H : X 99K X
is algebraically stable so we have

λ1(H) = λ1(H) = spectral radius
(
H∗ : H1,1(X )→ H1,1(X )

)
.(18)

It remains to use Proposition 2.1 to compute H∗ : H1,1(X )→ H1,1(X ). The first step is to
choose a good basis. It is well-known that

H1,1(CP1 × CP1) ∼= Z2

and is generated by [Lx] = [{X = 0}] and [Ly] = [{Y = 0}]. Therefore, by [12, P. 474],[
L̃x

]
,
[
L̃y

]
, [E1] , [E2] , and [E3](19)

is an ordered basis for H1,1(X ), where L̃x and L̃y are the proper transforms of Lx and Ly
under π.

Lemma 4.1. Let C6 = {xy2 + 2xy − 3 = 0} and C7 = {x2y + 2xy − 3 = 0}. We have

H∗
[
L̃x

]
=
[
C̃6

]
+ [E3] ,(20)

H∗
[
L̃y

]
=
[
C̃7

]
+ [E2] ,(21)

H∗ [E1] =
[
C̃1

]
+
[
C̃2

]
,(22)

H∗ [E2] =
[
C̃3

]
, and(23)

H∗ [E3] =
[
C̃4

]
.(24)

Proof. We’ll start by computing H∗
[
L̃y

]
and then obtain H∗

[
L̃x

]
by symmetry under R.

One sees from (1) that the only curves mapped by H to Ly are C3 and C7. After

performing the blowups, we saw in Lemma 3.2 that H maps C̃3 onto E2. Therefore, C̃3

does not contribute toH∗
[
L̃y

]
. We also saw in (15) thatHmaps E2 onto L̃y. Thus,H∗

[
L̃y

]
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is a sum of
[
C̃7

]
and [E2] with suitable multiplicities. The defining equation for C7 occurs

with multiplicity one in the equation for y′ in (1), so that
[
C̃7

]
is assigned multiplicity one

in H∗
[
L̃y

]
. (Had the defining equation of C7 appeared with an exponent larger than one

in the expression for y′, the coefficient on homology would correspond to that exponent.)
Meanwhile, E2 is {u = 0} in the (u,m2) coordinates. Since u occurs with multiplicity one

in the equation for y′ in (14), we see that [E2] is also assigned multiplicity one in H∗
[
L̃y

]
.

This proves (21), and Equation (20) follows immediately under the symmetry R.
If we express H in local coordinates (x, y) in the domain and (a,m1) in the codomain,

as in (16), E1 is locally {a = 0}. We see that the defining equations for both C1 and C2

appear exactly once in the numerator of the expression for a′. The only additional term in
the product is xy− x− 3. However, this also appears in the denominator of the expression
for m1

′, so the curve {xy − x− 3 = 0} is mapped to a line at infinity. This proves (22).

The only curve mapping by H to E2 is C̃3. A calculation in local coordinates like above

shows that
[
C̃3

]
occurs with multiplicity one in H∗ [E2], proving (23). Again, we get (24)

by symmetry. �

We now need to re-express each of the cohomology classes on the right hand sides
of (20-24) in terms of the ordered basis (19). We first express the cohomology classes
[C1] , . . . , [C4],[C6] and [C7] in the basis [Lx] and [Ly] for H1,1(CP1 × CP1):

Lemma 4.2. In H1,1(CP2 × CP1) we have

[C1] = [Lx] + [Ly] ,(25)

[C2] = [Lx] + [Ly] ,(26)

[C3] = 2 [Lx] + 2 [Ly] ,(27)

[C4] = 2 [Lx] + 2 [Ly] ,(28)

[C6] = [Lx] + 2 [Ly] , and(29)

[C7] = 2 [Lx] + [Ly] .(30)

Proof. It is well-known that the intersection pairing on H1,1(CP1 × CP1) is given by the
matrix [

0 1
1 0

]
.

That is, [Lx] ∪ [Lx] = 0 = [Ly] ∪ [Ly] and [Lx] ∪ [Ly] = 1. We can express the fundamental

class of an algebraic curve C in CP1 × CP1 in terms of the basis {[Lx] , [Ly]} by taking the
cup products with [Lx] and [Ly]:

[C] ∪ [Lx] = (a [Lx] + b [Ly]) ∪ [Lx] = b
[
CP1 × CP1

]
, and

[C] ∪ [Ly] = (a [Lx] + b [Ly]) ∪ [Ly] = a
[
CP1 × CP1

]
.

Moreover, the coefficient b from computing [C] ∪ [Lx] is the sum of the intersection multi-
plicities at each point where C intersects Lx. After doing the analogous computation for a,
we have [C] = a [Lx] + b [Ly].
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Note that Lx is cohomologous to [{x = 1}], and C1 = {xy − 1 = 0} intersects {x = 1}
transversally at a single point, (1, 1). Thus,

[C1] ∪ [Lx] =
[
CP1 × CP1

]
,

and by symmetry under R,

[C1] ∪ [Ly] =
[
CP1 × CP1

]
.

Equation (25) follows.
We can intersect C2 = {2xy+x+y−4 = 0} with a line {x = x0} away from C2∩{v = 0}

(see Figure 3). Substituting x = x0 into the defining equation for C2, we can solve for a
unique y value (independent of the choice of x0). Since the equation for C2 is symmetric
under R, C2 also intersects a generic line {y = y0} in a single point. Equation (26) follows.

Note that C3 and {x = x0} (for a generic x0) will not intersect {v = 0} at the same
place, so we can count intersections in C2. Then substituting x0 into the defining equation
for C3, one can solve for exactly two values of y, both of which are simple zeros. Thus,

[C3] ∪ [Lx] = [C3] ∪ [{x = x0}] = 2
[
CP1 × CP1

]
.

Similar reasoning with horizontal lines yields that (27) follows. Meanwhile, (28) follows by
symmetry.

As with the other curves, we can intersect C6 with a line {x = x0} that intersects {v = 0}
at a different place than where C6 intersects {v = 0}. Substituting x = x0 into the defining
equation for C6, we can solve for a two y values. Then intersecting with a line {y = y0} that
intersects {u = 0} at a different place than where C6 intersects {u = 0} and substituting
y = y0 into the defining equation for C6, we can solve for a unique x value. Equation (29)
follows, and Equation (30) follows by symmetry under R.

�

We now lift the results of Lemma 4.2 to the blown-up space X :

Lemma 4.3. In H1,1(X ) we have[
C̃1

]
=
[
L̃x

]
+
[
L̃y

]
− [E1] ,(31) [

C̃2

]
=
[
L̃x

]
+
[
L̃y

]
− [E1] + [E2] + [E3] ,(32) [

C̃3

]
= 2

[
L̃x

]
+ 2

[
L̃y

]
− [E1] + [E3] ,(33) [

C̃4

]
= 2

[
L̃x

]
+ 2

[
L̃y

]
− [E1] + [E2] ,(34) [

C̃6

]
=
[
L̃x

]
+ 2

[
L̃y

]
− [E1] + [E2] , and(35) [

C̃7

]
= 2

[
L̃x

]
+
[
L̃y

]
− [E1] + [E3] .(36)

Proof. Since C1 has multiplicity 1 at p1, p2, and p3, and [C1] = [Lx] + [Ly] by Lemma 4.2,
we can pull back both sides of the equation by π to see that[

C̃1

]
+ [E1] + [E2] + [E3] =

[
L̃x

]
+ [E3] +

[
L̃y

]
+ [E2] .
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Equation (31) follows. Equations (32-36) follow by similar calculations. The only subtlety
is computing the local multiplicities, which we summarize here:

Curve mult. at p1 mult. at p2 mult. at p3

C2 1 0 0
C3 1 1 2
C4 1 2 1
C6 1 1 1
C7 1 1 1

�

Lemmas 4.1 and 4.3 make it easy to express H∗ : H1,1(X )→ H1,1(X ) in the ordered basis
(19). For example,

H∗
[
L̃x

]
=
[
C̃6

]
+ [E3] =

[
L̃x

]
+ 2

[
L̃y

]
− [E1] + [E2] + [E3] .(37)

Computing all of the others, we find

H∗ =



1 2 −1 1 1

2 1 −1 1 1

2 2 −2 1 1

2 2 −1 0 1

2 2 −1 1 0


This matrix has characteristic polynomial (4− λ) (1 + λ)4. The spectral radius is the largest
root, which is 4. Using (18) we have that λ1(H) = λ1(H) = 4. �(Theorem 1.1 ).

References

[1] Eric Bedford. The dynamical degrees of a mapping. In Proceedings of the International Workshop
Future Directions in Difference Equations, pages 3–14. Publicacións da Universidade de Vigo, Vigo,
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