LEE-YANG-FISHER ZEROS FOR THE DHL AND 2D RATIONAL DYNAMICS,

II. GLOBAL PLURIPOTENTIAL INTERPRETATION.

PAVEL BLEHER, MIKHAIL LYUBICH, AND ROLAND ROEDER ${ }^{\dagger}$

Abstract

In a classical work of the 1950 's, Lee and Yang proved that for fixed nonnegative temperature, the zeros of the partition functions of a ferromagnetic Ising model always lie on the unit circle in the complex magnetic field. Zeros of the partition function in the complex temperature were then considered by Fisher, when the magnetic field is set to zero. Limiting distributions of Lee-Yang and of Fisher zeros are physically important as they control phase transitions in the model. One can also consider the zeros of the partition function simultaneously in both complex magnetic field and complex temperature. They form an algebraic curve called the Lee-Yang-Fisher (LYF) zeros. In this paper we continue studying their limiting distribution for the Diamond Hierarchical Lattice (DHL). In this case, it can be described in terms of the dynamics of an explicit rational function R in two variables (the Migdal-Kadanoff renormalization transformation). We study properties of the Fatou and Julia sets of this transformation and then we prove that the Lee-Yang-Fisher zeros are equidistributed with respect to a dynamical $(1,1)$-current in the projective space. The free energy of the lattice gets interpreted as the pluripotential of this current. We also prove a more general equidistribution theorem which applies to rational mappings having indeterminate points, including the Migdal-Kadanoff renormalization transformation of various other hierarchical lattices.

Contents

1. Introduction 2
2. Description of the model 9
3. Global properties of the RG transformation in $\mathbb{C P}^{2}$ 12
4. Fatou and Julia sets and the measure of maximal entropy 16
5. Volume Estimates 22
6. Proof of the Equidistribution Theorem for the DHL 25
7. Proof of the Equidistribution Theorem 28
8. Applications of the Equidistribution Theorem to other hierarchical lattices 35
Appendix A. Elements of Complex Geometry 38
Appendix B. Green Current 43
Appendix C. Open Problems 44
References from dynamics and complex geometry 45
References from mathematical physics 46
[^0]
1. Introduction

1.1. Lee-Yang-Fisher zeros. We will begin with providing a brief background on the Lee-Yang-Fisher zeros that continues the discussion in Part I [BLR].

We consider the Ising model on a finite graph Γ and its partition function Z_{Γ}, which is a Laurent polynomial in two variables (z, t), where $z=e^{-h / T}$ is a "field-like" variable and $t=e^{-2 J / T}$ is "temperature-like" one. They are expressed in terms of the externally applied magnetic field h, the temperature T, and the coupling constant $J>0$; see [BLR, Section 2.1] for more details.

For a fixed $t \in[0,1]$, the complex zeros of $\mathbf{Z}(z, t)$ in z are called the Lee-Yang zeros. The Lee-Yang Theorem [YL, LY] asserts that for the ferromagnetic Ising model on any graph, the zeros of the partition function lie on the unit circle \mathbb{T} in the complex plane.

If we have a hierarchy of graphs Γ_{n} of increasing size, then under fairly general conditions, zeros of the partition functions $Z_{n}=Z_{\Gamma_{n}}$ will have a limiting distribution μ_{t} on the unit circle. This distribution captures phase transitions in the model.

Instead of freezing temperature, one can freeze the external field, and study zeros of $\mathbf{Z}(z, t)$ in the t-variable. They are called Fisher zeros as they were first studied by Fisher for the regular two-dimensional lattice, see [F, BK]. Similarly to the Lee-Yang zeros, asymptotic distribution of the Fisher zeros is supported on the singularities of the magnetic observables, and is thus related to phase transitions in the model. However, Fisher zeros do not lie on the unit circle any more. For instance, for the regular 2D lattice at zero field (corresponding to $z=1$), the asymptotic distribution lies on the union of two Fisher circles depicted on Figure 1.1.

Figure 1.1. The Fisher circles: $|t \pm 1|=\sqrt{2}$.
We can also consider the zeros of $Z_{n}(z, t)$ as a single object in \mathbb{C}^{2}. While $\left\{Z_{n}(z, t)=0\right\}$ is an algebraic curve in \mathbb{C}^{2}, we want to keep track of the multiplicities to which $Z_{n}(z, t)$ vanishes along each irreducible component of this curve. We will do this using the notion of divisor, which is a sum of finitely many irreducible algebraic curves, each with integer multiplicities (see [BLR, Appendix A.3]). Thus, the way $Z_{n}(z, t)$ vanishes in \mathbb{C}^{2} defines a divisor ${ }^{1} \mathcal{S}_{n}^{c}$ on \mathbb{C}^{2} which we call the Lee-Yang-Fisher (LYF) zeros.

In order to study the limiting distribution of the LYF zeros \mathcal{S}_{n}^{c}, as n tends to infinity, we will use the theory of currents; see [dR, Le]. A $(1,1)$-current ν on \mathbb{C}^{2} is a linear functional on the space of $(1,1)$-forms that have compact support (see Appendix A.3). A basic example is

[^1]

Figure 1.2. Diamond hierarchical lattice.
the current $[X]$ of integration over an irreducible algebraic curve X. Meanwhile, the current of integration $[D]$ over a divisor D is the weighted sum of currents of integration over each of irreducible components, weighted according to the multiplicities. A plurisubharmonic function G is called a pluripotential of ν if $\frac{i}{\pi} \partial \bar{\partial} G=\nu$, in the sense of distributions. (Informally, this means that $\left.\frac{1}{2 \pi} \Delta(G \mid L)=\nu \right\rvert\, L$ for almost any complex line L, so $G \mid L$ is the electrostatic potential of the charge distribution $\nu \mid L$.)

Let d_{n} be the degree of divisor \mathcal{S}_{n}^{c}. It is natural to ask whether there exists a $(1,1)$-current \mathcal{S}^{c} so that

$$
\begin{equation*}
\frac{1}{d_{n}}\left[\mathcal{S}_{n}^{c}\right] \rightarrow \mathcal{S}^{c} \tag{1.1}
\end{equation*}
$$

It would describe the limiting distribution of Lee-Yang-Fisher zeros. Within almost any complex line L, the limiting distribution of zeros can be obtained as the restriction $\mathcal{S}^{c} \mid L$.

In order to justify existence of \mathcal{S}^{c}, one considers the sequence of "free energies"

$$
F_{n}^{\#}(z, t):=\log \left|\check{Z}_{n}(z, t)\right|
$$

where $\check{Z}_{n}(z, t)$ is the polynomial obtained by clearing the denominators of Z_{n}. We will say that the sequence of graphs Γ_{n} has a global thermodynamic limit if

$$
\frac{1}{d_{n}} F_{n}^{\#}(z, t) \rightarrow F^{\#}(z, t)
$$

in $L_{\text {loc }}^{1}\left(\mathbb{C}^{2}\right)$. In Proposition 2.2 we will show that this is sufficient for the limiting current \mathcal{S}^{c} to exist and convergence (1.1) to hold.

The support of \mathcal{S}^{c} consists of the singularities of the magnetic observables of the model, thus describing "global phase transitions" in \mathbb{C}^{2}. Connected components of $\mathbb{C}^{2} \backslash \operatorname{supp} \mathcal{S}^{c}$ describe the distinct "complex phases" of the system.
1.2. Diamond hierarchical model. The diamond hierarchical lattice (DHL) is a sequence of graphs Γ_{n} illustrated on Figure 1.2. Part I [BLR] and much of the present paper are both devoted to study of this lattice.

The Migdal-Kadanoff renorm-group RG equations for the DHL have the form:

$$
\begin{equation*}
\left(z_{n+1}, t_{n+1}\right)=\left(\frac{z_{n}^{2}+t_{n}^{2}}{z_{n}^{-2}+t_{n}^{2}}, \frac{z_{n}^{2}+z_{n}^{-2}+2}{z_{n}^{2}+z_{n}^{-2}+t_{n}^{2}+t_{n}^{-2}}\right):=\mathcal{R}\left(z_{n}, t_{n}\right) \tag{1.2}
\end{equation*}
$$

where z_{n} and t_{n} are the renormalized field-like and temperature-like variables on Γ_{n}. The map \mathcal{R} that relates these quantities is also called the renormalization transformation.

To study the Fisher zeros, we consider the line $\mathcal{L}_{\text {inv }}=\{z=1\}$ in \mathbb{C}^{2}. This line is invariant under \mathcal{R}, and $\mathcal{R}: \mathcal{L}_{\text {inv }} \rightarrow \mathcal{L}_{\text {inv }}$ reduces to a fairly simple one-dimensional rational map

$$
\mathcal{R}: t \mapsto\left(\frac{2 t}{t^{2}+1}\right)^{2}
$$

The Fisher zeros at level n are obtained by pulling back the point $t=-1$ under \mathcal{R}^{n}. As shown in [BL], the limiting distribution of the Fisher zeros in this case exists and it coincides with the measure of maximal entropy (see $[\mathrm{Br}, \mathrm{Ly} 1, \mathrm{Ly} 2, \mathrm{FLM}]$) of $\mathcal{R} \mid L$. The limiting support for this measure is the Julia set for $\mathcal{R} \mid \mathcal{L}_{\text {inv }}$, which is shown in Figure 1.3. It was studied by [DDI, DIL, BL, Ish] and others.

Figure 1.3. On the left is the Julia set for $\mathcal{R} \mid \mathcal{L}_{\text {inv }}$. On the right is a zoomed-in view of a boxed region around the critical point t_{c}. The invariant interval $[0,1]$ corresponds to the states with real temperatures $T \in[0, \infty]$ and vanishing field $h=0$.

In this paper, we will use the Migdal-Kadanoff RG equations to study the global limiting distribution of Lee-Yang-Fisher zeros for the DHL in the complex projective plane $\mathbb{C P}^{2}$. (The divisors \mathcal{S}_{n}^{c} are extended to $\mathbb{C P}^{2}$ in the natural way.) The first main result of this paper is:

Global Lee-Yang-Fisher Current Theorem. For the DHL, the currents $\frac{1}{2 \cdot 4^{n}}\left[\mathcal{S}_{n}^{c}\right]$ converge distributionally to some $(1,1)$-current \mathcal{S}^{c} on $\mathbb{C P}^{2}$ whose pluripotential coincides with the free energy $F^{\#}$ of the system.

It would seem natural to prove this theorem by extending \mathcal{R} as a rational map $\mathcal{R}: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ and then considering the normalized pullbacks $\frac{1}{2 \cdot 4^{n}}\left(\mathcal{R}^{n}\right)^{*} \mathcal{S}_{0}^{c}$. However, an important subtlety arises because the degrees of \mathcal{R} do not behave properly under iteration:

$$
4^{n}<\operatorname{deg}\left(\mathcal{R}^{n}\right)<(\operatorname{deg}(\mathcal{R}))^{n}=6^{n}
$$

This algebraic instability ${ }^{2}$ of \mathcal{R} has the consequence that

$$
\mathcal{S}_{n}^{c} \neq\left(\mathcal{R}^{n}\right)^{*} \mathcal{S}_{0}^{c}
$$

The issue is resolved by working with another rational mapping $R: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ coming directly from the Migdal-Kadanoff RG Equations, without passing to the "physical" (z, t) coordinates. This map is semi-conjugate to \mathcal{R} by a degree two rational map $\Psi: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$.

[^2]Moreover, R is algebraically stable, satisfying $\operatorname{deg}\left(R^{n}\right)=(\operatorname{deg}(R))^{n}=4^{n}$. For each $n \geq 0$, we have:

$$
\mathcal{S}_{n}^{c}=\Psi^{-1}\left(R^{-n} S_{0}^{c}\right),
$$

where S_{0}^{c} is an appropriate projective line.
Note that even though R is algebraically stable, it is still not well-defined at two indeterminate points $a_{ \pm}$which strongly influence the global dynamics.
1.3. Equidistribution of curves to the Green Current. Associated to any (dominant, algebraically stable) rational mapping $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ is a canonically defined invariant current S, called the Green current ${ }^{3}$ of f. It satisfies $f^{*} S=d \cdot S$, where $d=\operatorname{deg} f$. Such invariant currents are a powerful tool of higher-dimensional holomorphic dynamics: see Bedford-Smillie [BS], Fornaess-Sibony [FS1], Hubbard-Papadapol [HP], and others (see [DS3, Si] for surveys of this subject).

Let $A \subset \mathbb{C P}^{2}$ be an algebraic curve of degree $\operatorname{deg}(A)$. Since the early 1990 's there has been extensive research proving that

$$
\begin{equation*}
\frac{1}{d^{n} \operatorname{deg}(A)}\left(f^{n}\right)^{*}[A] \rightarrow S \tag{1.3}
\end{equation*}
$$

under certain hypotheses on f and A. See [BS, FS1, RuSh, Dil, FaGu, Fa, FaJ, Gu1, Gu2, DS2, DDG, T, Pr] for a sample of papers on the subject. Note also the recent survey [DS3].

If (1.3) holds for $f=R$ (the Migdal-Kadanoff RG mapping for the DHL) and $A=S_{0}^{c}$ (the principal LYF zeros), then we obtain the Global Lee-Yang-Fisher Theorem by pulling everything back under Ψ. In this way, the classical Lee-Yang-Fisher theory gets linked to the contemporary Dynamical Pluripotential Theory.

However, the majority of the papers studying (1.3) focus on the case that either

1) f is birational (f has a rational "inverse"), or
2) f is a holomorphic endomorphism (no indeterminate points),
in order to obtain the sharpest possible results. Otherwise, they either assume A is generic, or they work with a more "diffused" current in place of A. In any case, because $I(R) \neq \emptyset$ and $d_{\text {top }}(R)>1$, there does not seem to be an existing result that applies to our setting:

Equidistribution Theorem for the DHL. Convergence (1.3) holds for the Migdal-Kadanoff Renormalization mapping $R: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ and any algebraic curve $A \subset \mathbb{C P}^{2}$.

Remark 1.1. The dynamical approach to studying the limiting distribution of Lee-YangFisher zeros for hierarchical lattices has independently been considered in [DeSMa] and studied numerically in $[\mathrm{DeS}]$.

The strategy of the proof of the Equistribution Theorem for the DHL can be adapted to prove a more general Equidistribution Theorem, also suitable for rational maps whose indeterminacy locus satisfies certain properties.

Let $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ be a dominant algebraically stable rational mapping of algebraic degree d. Denote the indeterminacy set of f by $I(f)$. For any $Y \subset \mathbb{C P}^{2}$ we define $f(Y)$ and $f^{-1}(Y)$ using a resolution of $I(f)$; see Appendix A.1.

[^3]We say that an algebraic curve A is backward invariant ${ }^{4}$ if $f^{-1}(A)=A$ and we say that A is collapsed by f if $f(A \backslash I(f))$ is a single point. Let

$$
I^{-}(f):=\{f(A \backslash I(f)): A \text { is a collapsed curve of } f\}
$$

Since each collapsed curve is critical for $f, I^{-}(f)$ is finite.
Choose a volume form on $\mathbb{C P}^{2}$ normalized so that $\operatorname{vol}\left(\mathbb{C P}^{2}\right)=1$. For any $z \in \mathbb{C P}^{2}$ we define the volume exponent $\sigma(z, f)$ to be the smallest positive number so that for any $\gamma>\sigma(z, f)$ there is a constant $K>0$ and a neighborhood N of z such that for any measurable set $Y \subset \mathbb{C P}^{2}$ we have

$$
\begin{equation*}
\operatorname{vol}\left(f^{-1}(Y) \cap N\right) \leq K(\operatorname{vol} Y)^{1 / \gamma} \tag{1.4}
\end{equation*}
$$

In $\S 5$ we will give two estimates on $\sigma(z, f)$ in terms of how the complex Jacobian Jac $f:=$ $\operatorname{det} D f$ vanishes at z. One of them is simply in terms of the order of vanishing $\mu(z, f)$ of $\operatorname{Jac} f$ at z, while the second is stronger, but requires a more detailed assumption on $\operatorname{Jac} f$ near z.

A sequence of points $\left\{z_{n}\right\} \subset \mathbb{C P}^{2}$ is an orbit of f if $z_{n+1} \in f\left(\left\{z_{n}\right\}\right)$ for each $n \geq 0$. (If $z_{n} \in I(f), z_{n+1}$ can be any point on the algebraic curve $f\left(\left\{z_{n}\right\}\right)$.) If $z_{n} \notin I(f)$ for every n, we will refer to the orbit as a regular orbit. Otherwise, we will refer to it as an indeterminate orbit.

If f^{n} is holomorphic in a neighborhood of $z \in \mathbb{C P}^{2}$ let $c\left(z, f^{n}\right)$ denote the order of vanishing of the power series expansion for f^{n} expressed in local coordinates centered at z and $f^{n}(z)$, respectively. If z_{0}, \ldots, z_{k-1} is a regular periodic orbit of period k for f then

$$
c_{\infty}\left(z_{0}, f\right):=\lim _{n \rightarrow \infty} c\left(z_{0}, f^{n k}\right)^{1 / n k}
$$

exists and satisfies $c_{\infty}\left(z_{0}, f\right) \leq d$; see $\S 7.2$. We say that a regular periodic point z_{0} is superattracting if $c_{\infty}\left(z_{0}, f\right)>1$ and is maximally superattracting if $c_{\infty}\left(z_{0}, f\right)=d$. In these cases, the orbit of z_{0} is attracting at superexponential rate in all directions.

Let \mathcal{E} be the finite set containing all
(a) maximally superattracting periodic points, and
(b) superattracting periodic points z_{0} of period k for which there is an algebraic curve C that is backward invariant under f^{k}, collapsed to z_{0} under some iterate of f^{k}, and for which z_{0} is a singular point of C.
Denote the respective subsets of \mathcal{E} where (a) or (b) holds as $\mathcal{E}(a)$ and $\mathcal{E}(b)$. We will call \mathcal{E} the exceptional set for f.
Equidistribution Theorem. Let $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ be a dominant algebraically stable rational map of degree $d \geq 2$ and let S denote the Green Current of f. Assume that
(i) $I(f) \neq \emptyset$,
(ii) $\sigma(z, f)<d$ for every $z \in I(f)$, and
(iii) no periodic orbit passes through both the finite set $D_{>d}:=\left\{z \in \mathbb{C P}^{2}: \sigma(z, f)>d\right\}$ and $I(f) \cup I^{-}(f)$.
Then for any algebraic curve A that does not pass through the exceptional set \mathcal{E} we have

$$
\frac{1}{d^{n} \operatorname{deg} A}\left(f^{n}\right)^{*}[A] \rightarrow S
$$

[^4]Note that Hypotheses (i) and (ii) are verifiable algebraic conditions on the map f itself. The last Hypothesis (iii) is more problematic as it is dynamical; still it is amenable to verification under favorable circumstances as it requires that a certain finite set of points (specified algebraically) is aperiodic. We illustrate application of the Equidistribution Theorem to a few examples in $\S 8$.

Let us also compare ${ }^{5}$ our result to the cases of birational maps and endomorphisms:
Equidistribution for Birational Mappings [FaGu, Fa, Dil]. Let $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ be an algebraically stable birational mapping of degree $d \geq 2$ and let S denote the Green Current of f. Let $A \subset \mathbb{C P}^{2}$ be an algebraic curve. Then, there is a exceptional set \mathcal{E} consisting of at most one point such that

$$
\frac{1}{d^{n} \operatorname{deg} A}\left(f^{n}\right)^{*}[A] \rightarrow S \quad \text { if and only if } \quad \text { A does not pass through } \mathcal{E} .
$$

The exceptional set \mathcal{E} consists of a maximally superattracting fixed point through which there passes a backward invariant curve. In the special case that f is a Hénon mapping,

$$
f[x: y: z]=\left[x^{2}+a y z: x z: z^{2}\right]
$$

we have that $\mathcal{E}=[1: 0: 0]$ is the superattracting fixed point at infinity, with the totally invariant curve corresponding to the line at infinity $\{z=0\}$ [BS, FS2].

Equidistribution for Endomorphisms [FaJ, DS2]. Let $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ be a holomorphic endomorphism of degree $d \geq 2$ and let S denote the Green Current of f. Then there is a totally invariant algebraic set \mathcal{E}_{1} consisting of at most three projective complex lines and a finite totally invariant set \mathcal{E}_{2} with the following property: If A is an algebraic curve such that
(i) $A \not \subset \mathcal{E}_{1}$, and
(ii) $A \cap \mathcal{E}_{2}=\emptyset$,
then

$$
\frac{1}{d^{n} \operatorname{deg} A}\left(f^{n}\right)^{*}[A] \rightarrow S
$$

The exceptional set \mathcal{E}_{1} corresponds to curves on which the order of vanishing of the Jacobian grows at rate $\geq d^{n}$ under iteration, and hence the volume exponent $\sigma\left(z, f^{n}\right)$ growing at rate $\geq d^{n}$ as well. Meanwhile the set \mathcal{E}_{2} consists of maximally superattracting periodic points.

Our general strategy is similar to that in the above mentioned works: We prove the $L_{\text {loc }}^{1}{ }^{-}$ convergence of the potentials of the currents under consideration, which requires estimates on the volume growth under the iterated pullbacks. (For the latter, we have especially profited from the techniques developed by Favre and Jonsson [FaJ]). However, in our setting there is a possibility that the orbit of a point z recurs to $I(f)$, while also having bad growth of the volume exponent. In the case of birational maps, this is eliminated since the only critical points are on collapsed curves, whose orbits stay away from $I(f)$ (by the algebraic stability assumption). In our case, Hypotheses (i)-(iii) allow us to rule out the problematic scenario.

The final punch line of our argument is an application of the Borel-Cantelli Lemma, which makes it quite elementary and general.

[^5]

Figure 1.4. Generating graphs for some other hierarchical lattices.
1.4. Other hierarchical lattices. The Diamond Hierarchical Lattice has the merit of being one of the simplest non-trivial hierarchical lattices. Instead of using the diamond to generate our sequence of graphs $\left\{\Gamma_{n}\right\}_{n=0}^{\infty}$ (as shown in Figure 1.2) we can use any finite graph Γ with two marked vertices a and b that is symmetric under interchange of a and b. One obtains Γ_{n+1} by replacing each edge of Γ_{n} with a copy of Γ, using the marked vertices a and b as "endpoints". We will call the sequence of graphs the hierarchical lattice generated by Γ.

Associated to each generating graph Γ is a Migdal-Kadanoff renormalization mapping, which is a rational map $R_{\Gamma}: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$. In $\S 8$ we discuss the Migdal Kadanoff renormalization mappings associated to the five different hierarchical lattices whose generating graphs are shown in Figure 1.4. We will see that the Equidistribution Theorem applies to the Migdal Kadanoff renormalization mappings associated to the k-fold DHL ($k \geq 2$), the Triangle, and the Split Diamond thus proving the Global LYF Theorem for each of those lattices. We find that the Equidistribution Theorem does not apply to the Migdal Kadanoff renormalization mappings for the Linear Chain or the Tripod, however an easy argument directly shows that the Global LYF Theorem holds for the Linear Chain. We do not know if it holds for the Tripod.

Problem 1.2. Does the Global LYF Theorem hold for every hierarchical lattice?
Several additional open problems are listed in Appendix C.
1.5. Structure of the paper. We begin in $\S 2$ by recalling the definitions of free energy and the classical notion of thermodynamic limit for the Ising model. We then discuss the notion of global thermodynamic limit, which is sufficient in order to guarantee that some lattice have a $(1,1)$-current \mathcal{S}^{c} describing its limiting distribution of LYF zeros in \mathbb{C}^{2}. We also give an alternative interpretation of the partition function as a section of (an appropriate tensor power of) the hyperplane bundle over $\mathbb{C P}^{2}$ that will be central to the proof of the Global LYF Current Theorem. We conclude $\S 2$ by summarizing material on the Migdal-Kadanoff RG equations, including the details for reducing the proof of the Global LYF Theorem to proof of (1.3) for $A=\mathcal{S}_{n}^{c}$ and $f=R$.

In $\S 3$ we summarize the global features of the mappings \mathcal{R} and R on the complex projective space $\mathbb{C P}^{2}$ that were studied in $[B L R]$, including their critical and indeterminacy loci, superattracting fixed points and their separatrices.

In the next section, $\S 4$, we define the Fatou and Julia sets for \mathcal{R} and show that the Julia set coincides with the closure of preimages of the invariant complex line $\{z=1\}$ (corresponding to the vanishing external field). It is based on M. Green's criteria for Kobayashi hyperbolicity of the complements of several algebraic curves in $\mathbb{C P}^{2}$ [G1, G2] that generalize the classical

Montel Theorem. We then use this result to prove that points in the interior of the solid cylinder $\mathbb{D} \times I$ are attracted to a superattracting fixed point $\eta=(0,1)$ of \mathcal{R}.

The proofs of the equidistribution theorems require estimates on the volume of a tubular neighborhood of an algebraic curve and estimates on how volume is transformed under a rational map. These estimates are presented in §5.
$\S 6$ is devoted to proving the Equidistribution Theorem for the DHL. In $\S 7$ we then show how to adapt its proof to prove the Equidistribution Theorem. In $\S 8$ we discuss applications of the Equidistribution Theorem to other hierarchical lattices.

Like Part I, this paper is written for readers from both complex dynamics and statistical physics, so we provide background material in two appendices. To minimize overlap, we will refer the reader to appendices of Part I when possible. In Appendix A we collect needed background in complex geometry (line bundles over $\mathbb{C P}^{2}$, currents and their pluri-potentials, Kobayashi hyperbolicity, and normal families). In Appendix B we provide information on the Green current. In Appendix C we collect several open problems.
1.6. Basic notation and terminology. $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}, \mathbb{T}=\{|z|=1\}, \mathbb{D}_{r}=\{|z|<r\}$, $\mathbb{D} \equiv \mathbb{D}_{1}$, and $\mathbb{N}=\{0,1,2 \ldots\}$. Given two variables x and $y, x \asymp y$ means that $c \leq|x / y| \leq C$ for some constants $C>c>0$.

Acknowledgments:

We thank Jeffrey Diller, Mattias Jonsson, Han Peters, Robert Shrock, and Dror Varolin for interesting discussions and comments. We also thank the referee for stimulating comments that motivated us to bring the original version of the results (see Stony Brook Preprint ims11-3 from 2011) to a more general form. The work of the first author has been supported in part by the NSF grants DMS-0652005, DMS-0969254, DMS-1265172, and DMS-1565602. The work of the second author has been supported in part by NSF, NSERC and CRC funds. The work of the third author has been supported in part by NSF grants DMS-1102597 and DMS-1348589, and by startup funds from the Department of Mathematics at IUPUI.

2. Description of the model

2.1. Free Energy and Thermodynamic Limit. The partition function of the Ising model on a graph Γ is a symmetric Laurent polynomial in (z, t) of the form

$$
\begin{equation*}
\mathrm{Z}_{\Gamma}=\sum_{n=0}^{d} a_{n}(t)\left(z^{n}+z^{-n}\right) \tag{2.1}
\end{equation*}
$$

of degree d equal to the the number of edges in Γ. (See [BLR, Section 2.1] for the definition.)
Remark 2.1. Setting $\check{Z}(z, t):=z^{d} t^{d / 2} Z(z, t)$ clears the denominators of $Z(z, t)$ and results in a polynomial in z and t of degree $2 d$ whose divisor of zeros is the same as that of $Z(z, t)$. It follows from the definition of $Z(z, t)$ that $\check{Z}(z, 0)=z^{2 d}+1$, each of whose zeros is simple. In particular the divisor of zeros assigns multiplicity one to each irreducible component of $\{Z(z, t)=0\}$.

The free energy of the system is defined as

$$
\begin{equation*}
F_{\Gamma}=-T \log \left|Z_{\Gamma}\right| \tag{2.2}
\end{equation*}
$$

where T is the temperature (related to the temperature-like variable by $t=e^{-J / T}$, where J is the coupling constant of the model).

It will be more convenient to consider the following variant of the free energy:

$$
F_{\Gamma}^{\#}(z, t):=-\frac{1}{T} F_{\Gamma}(z, t)+d\left(\log |z|+\frac{1}{2} \log |t|\right)=\log |\check{Z}(z, t)|
$$

The advantage of using $F_{\Gamma}^{\#}$, instead of F_{Γ}, is that it extends as a plurisubharmonic function on all of \mathbb{C}^{2}. We will also refer to $F_{\Gamma}^{\#}$ as the "free energy".

Assume that we have a lattice given by a hierarchy of graphs Γ_{n} with $d_{n} \rightarrow \infty$ edges. Let us consider its partition functions Z_{n} and free energies $F_{n}^{\#}$. To pass to the thermodynamic limit we normalize the free energy per bond. One says that the hierarchy of graphs has a (pointwise) thermodynamic limit if

$$
\begin{equation*}
\frac{1}{2 d_{n}} F_{n}^{\#}(z, t) \rightarrow F^{\#}(z, t) \quad \text { for any } z \in \mathbb{R}_{+}, t \in(0,1) \tag{2.3}
\end{equation*}
$$

In this case, the function $F^{\#}$ is called the (modified) free energy of the lattice. For many ${ }^{6}$ lattices (e.g. \mathbb{Z}^{d}), existence of the thermodynamic limit can be justified by van Hove's Theorem [$\mathrm{vH}, \mathrm{R} 2$]. If the classical thermodynamic limit exists, then one can justify existence of the limiting distribution of Lee-Yang zeros and relate it to the limiting free energy; see [BLR, Prop. 2.2].

In order to prove existence of a limiting distribution for the Fisher zeros, one needs to prove existence of the thermodynamic limit in the $L_{\text {loc }}^{1}(\mathbb{C})$-sense:

$$
\begin{equation*}
\frac{1}{2 d_{n}} F_{n}^{\#}(1, t) \rightarrow F^{\#}(1, t) \quad \text { in } L_{\mathrm{loc}}^{1}(\mathbb{C}) \tag{2.4}
\end{equation*}
$$

For the \mathbb{Z}^{2} lattice this is achieved by the Onsager solution, which provides an explicit formula for the limiting free energy; see, for example, [Ba]. Similar techniques apply to the triangular, hexagonal, and various homopolygonal lattices (see [MaSh1, MaSh2] for suitable references and an investigation of the distribution of Fisher zeros for these lattices). For various hierarchical lattices, (2.4) can be proved by dynamical means.

The situation is similar for the Lee-Yang-Fisher zeros:
Proposition 2.2. Let $\left(\Gamma_{n}\right)$ be a lattice for which the thermodynamic limit exists in the $L_{\text {loc }}^{1}\left(\mathbb{C}^{2}\right)$-sense:

$$
\begin{equation*}
\frac{1}{2 d_{n}} F_{n}^{\#}(z, t) \rightarrow F^{\#}(z, t) \quad \text { in } L_{\mathrm{loc}}^{1}\left(\mathbb{C}^{2}\right) \tag{2.5}
\end{equation*}
$$

Then there is a closed positive $(1,1)$-current \mathcal{S}^{c} on \mathbb{C}^{2} describing the limiting distribution of Lee-Yang-Fisher zeros. Its pluripotential coincides with the free energy $F^{\#}(z, t)$.

For the DHL, we will prove existence of the limit (2.5) in the Global LYF Current Theorem.
Remark 2.3. It is an open question whether the limit (2.5) exists for any classical lattice, including the \mathbb{Z}^{2} lattice. Moreover, it seems to also be an open question whether the limit (2.4) exists for the \mathbb{Z}^{d} lattice, when $d \geq 3$, and other classical three dimensional lattices. See Problem C.1.
Proof of Prop. 2.2: The locus of Lee-Yang-Fisher zeros \mathcal{S}_{n}^{c} are the zero set (counted with multiplicities) of the degree $2 d_{n}$ polynomial $\check{Z}_{n}(z, t)$. The Poincaré-Lelong Formula describes its current of integration:

$$
\left[\mathcal{S}_{n}^{c}\right]=\frac{i}{\pi} \partial \bar{\partial} \log \left|\check{Z}_{n}(z, t)\right|=\frac{i}{\pi} \partial \bar{\partial} F_{n}^{\#}(z, t)
$$

[^6]Hypothesis (2.5) implies

$$
\frac{1}{2 d_{n}}\left[\mathcal{S}_{n}^{c}\right]=\frac{i}{\pi} \partial \bar{\partial} \frac{1}{2 d_{n}} F_{n}^{\#}(z, t) \rightarrow \frac{i}{\pi} \partial \bar{\partial} F^{\#}(z, t)=: \mathcal{S}^{c}
$$

2.2. Global consideration of partition functions and free energy on $\mathbb{C P}^{2}$. It will be convenient for us to extend the partition functions Z_{n} and their associated free energies $F_{n}^{\#}$ from \mathbb{C}^{2} to $\mathbb{C P}^{2}$. We will use the homogeneous coordinates $[Z: T: Y]$ on $\mathbb{C P}^{2}$, with the copy of \mathbb{C}^{2} given by the affine coordinates $(z, t) \mapsto[z: t: 1]$.

For each n, we clear the denominators of $\mathbf{Z}_{n}(z, t)$, obtaining a polynomial $Z_{n}(z, t)$ of degree $d_{n}:=2\left|\mathcal{E}_{n}\right|$. It lifts to a unique homogeneous polynomial $\hat{\mathrm{Z}}_{n}(Z, T, Y)$ of the same degree that satisfies $\check{Z}_{n}(z, t)=\hat{Z}_{n}(z, t, 1)$. The associated free energy becomes a plurisubharmonic function

$$
\hat{F}_{n}^{\#}(Z, T, Y):=\log \left|\hat{Z}_{n}(Z, T, Y)\right|
$$

on \mathbb{C}^{3}. It is related by the Poincaré-Lelong Formula to the current of integration over the Lee-Yang-Fisher zeros: $\pi^{*}\left[\mathcal{S}_{n}^{c}\right]:=\frac{i}{\pi} \partial \bar{\partial} \hat{F}_{n}^{\#}(Z, T, Y)$.

Both of these extensions are defined on \mathbb{C}^{3}, rather than $\mathbb{C P}^{2}$. In the proof of the Global LYF Current Theorem, it will be useful for us to interpret the partition function as an object defined on $\mathbb{C P}^{2}$. Instead of being a function on $\mathbb{C P}^{2}$, it gets interpreted as a section $s_{Z_{n}}$ of an appropriate tensor power of the hyperplane bundle; See Appendix A.2. The Lee-Yang-Fisher zeros \mathcal{S}_{n}^{c} are described as the zero locus of this section.
2.3. Migdal-Kadanoff renormalization for the DHL. The renormalized field-like and temperature-like variables z_{n} and t_{n} that appear in the Migdal- Kadanoff RG equations (1.2) are defined through certain "conditional partition functions of level n " in the following way:

$$
\begin{equation*}
z_{n}^{2}=W_{n} / U_{n}, \quad t_{n}^{2}=\frac{V_{n}^{2}}{U_{n} W_{n}} \tag{2.6}
\end{equation*}
$$

In the (U, V, W)-coordinates the Migdal-Kadanoff RG equation assumes the homogeneous form

$$
U_{n+1}=\left(U_{n}^{2}+V_{n}^{2}\right)^{2}, \quad V_{n+1}=V_{n}^{2}\left(U_{n}+W_{n}\right)^{2}, \quad W_{n+1}=\left(V_{n}^{2}+W_{n}^{2}\right)^{2}
$$

and the total partition function becomes a linear form

$$
\mathrm{Z}_{n} \equiv \mathrm{Z}_{\Gamma_{n}}=U_{n}+2 V_{n}+W_{n}
$$

(See Part I [BLR] for the derivation of these equations.) This leads us to a homogeneous degree 4 polynomial map

$$
\begin{equation*}
\hat{R}:(U, V, W) \mapsto\left(\left(U^{2}+V^{2}\right)^{2}, V^{2}(U+W)^{2},\left(W^{2}+V^{2}\right)^{2}\right) \tag{2.7}
\end{equation*}
$$

called the Migdal Kadanoff Renormalization, such that $\left(U_{n}, V_{n}, W_{n}\right)=\hat{R}^{n}\left(U_{0}, V_{0}, W_{0}\right)$. (The corresponding map $R: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ will be referred to in the same way.) Moreover, letting $Y_{0}:=U+2 V+W$, we obtain:

$$
\begin{equation*}
\hat{\mathrm{Z}}_{n}=Y_{0} \circ \hat{R}^{n} \tag{2.8}
\end{equation*}
$$

so the partition functions \hat{Z}_{n} are obtained by pulling the linear form $Y_{0} \equiv \hat{Z}_{0}$ back by \hat{R}^{n}.
We will often write R in the system of local coordinates $u=U / V$ and $w=W / V$, in which it has the form

$$
\begin{equation*}
R:(u, w) \mapsto\left(\frac{u^{2}+1}{u+w}, \frac{w^{2}+1}{u+w}\right)^{2} \tag{2.9}
\end{equation*}
$$

Notice that the form Y_{0} is not a function on $\mathbb{C P}^{2}$ but rather a section $s_{Y_{0}}$ of the hyperplane line bundle over $\mathbb{C P}^{2}$, see Appendix A.2. Respectively, the partition functions \hat{Z}_{n} are sections of the tensor powers of this line bundle. Accordingly, the Lee-Yang-Fisher loci S_{n}^{c} are the zero divisors of these sections.

The free energy is also no longer a function on $\mathbb{C P}^{2}$, rather it is lifted to become a function on \mathbb{C}^{3}, given by

$$
\begin{equation*}
\hat{F}_{n}^{\#}:=\log \left|\hat{Z}_{n}\right| \tag{2.10}
\end{equation*}
$$

The above formulae express the partition functions and free energies in terms of the U, V, W coordinates. To re-express them in terms of the physical coordinates, we pull each of them back by

$$
\begin{equation*}
\Psi: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}, \quad(U: V: W)=\Psi(z, t)=\left(z^{-1} t^{-1 / 2}: t^{1 / 2}: z t^{-1 / 2}\right) \tag{2.11}
\end{equation*}
$$

This change of variables also semi-conjugates the map

$$
\begin{equation*}
\mathcal{R}:(z, t) \mapsto\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right) \tag{2.12}
\end{equation*}
$$

corresponding to RG equation (1.2), to R.

3. Global properties of the RG transformation in $\mathbb{C P}^{2}$

We will now summarize (typically without proofs) results from [BLR] about the global properties of the RG mappings.
3.1. Preliminaries. The renormalization mappings \mathcal{R} and R are semi-conjugate by the degree two rational mapping $\Psi: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ given by (2.6).

Both mappings have topological degree 8 (see Proposition 4.3 from Part I). However, as noted in the Introduction, their algebraic degrees behave differently: R is algebraically stable, while \mathcal{R} is not. Since $\operatorname{deg}\left(R^{n}\right)=4^{n}$, for any algebraic curve D of degree d, the pullback $\left(R^{n}\right)^{*} D$ is a divisor of degree $d \cdot 4^{n}$. (For background on divisors, see [BLR, Appendix A.3].) For this reason, we will focus most of our attention on the dynamics of R.

The semiconjugacy Ψ sends the Lee-Yang cylinder $\mathcal{C}:=\mathbb{T} \times[0,1]$ to a Mobius band C that is invariant under R. It is obtained as the closure in $\mathbb{C P}^{2}$ of the topological annulus

$$
\begin{equation*}
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\} \tag{3.1}
\end{equation*}
$$

Let $\mathrm{T}=\{(u, \bar{u}):|u|=1\}$ be the "top" circle of C, and let B be the slice of C at infinity. In fact, $\Psi: \mathcal{C} \rightarrow C$ is a conjugacy, except that it maps the bottom \mathcal{B} of \mathcal{C} by a 2 -to- 1 mapping to B (see Proposition 3.1 from Part I).
3.2. Indeterminacy points for R. In homogeneous coordinates on $\mathbb{C P}^{2}$, the map R has the form:

$$
\begin{equation*}
\left.R:[U: V: W] \mapsto\left[\left(U^{2}+V^{2}\right)^{2}: V^{2}(U+W)^{2}:\left(V^{2}+W^{2}\right)^{2}\right)\right] \tag{3.2}
\end{equation*}
$$

One can see that R has precisely two points of indeterminacy $a_{+}:=[i: 1:-i]$ and $a_{-}:=$ $[-i: 1: i]$. Resolving all of the indeterminacies of R by blowing-up the two points $a_{ \pm}$(see [BLR, Appendix A.2]), one obtains a holomorphic mapping $\widetilde{R}: \widetilde{\mathbb{C P}^{2}} \rightarrow \mathbb{C P}^{2}$.

In coordinates $\xi=u-i$ and $\chi=(w+i) /(u-i)$ near $a_{+}=(i,-i)$, we obtain the following expression for the map $\widetilde{R}: \widetilde{\mathbb{C P}}^{2} \rightarrow \mathbb{C P}^{2}$ near $L_{\text {exc }}\left(a_{+}\right)$:

$$
\begin{equation*}
u=\left(\frac{\xi+2 i}{1+\chi}\right)^{2}, \quad w=\left(\frac{\chi^{2} \xi-2 i \chi}{1+\chi}\right)^{2} \tag{3.3}
\end{equation*}
$$

(Similar formulas hold near $a_{-}=(-i, i)$.) The exceptional divisor $L_{\text {exc }}\left(a_{+}\right)$is mapped by \tilde{R} to the conic

$$
G:=\left\{(u-w)^{2}+8(u+w)+16=0\right\} .
$$

3.3. Superattracting fixed points and their separatrices. We will often refer to $L_{0}:=$ $\{V=0\} \subset \mathbb{C P}^{2}$ as the line at infinity. It contains two symmetric superattracting fixed points, $e=(1: 0: 0)$ and $e^{\prime}=(0: 0: 1)$. Let $\mathcal{W}^{s}(e)$ and $\mathcal{W}^{s}\left(e^{\prime}\right)$ stand for the attracting basins of these points. It will be useful to consider local coordinates ($\xi=W / U, \eta=V / U$) near e.

The line at infinity $L_{0}=\{\eta=0\}$ is R-invariant, and the restriction $R \mid L_{0}$ is the power map $\xi \mapsto \xi^{4}$. Thus, points in the disk $\{|\xi|<1\}$ in L_{0} are attracted to e, points in the disk $\{|\xi|>1\}$ are attracted to e^{\prime}, and these two basins are separated by the unit circle B. We will also call L_{0} the fast separatrix of e and e^{\prime}.

Let us also consider the conic

$$
\begin{equation*}
L_{1}=\left\{\xi=\eta^{2}\right\}=\left\{V^{2}=U W\right\} \tag{3.4}
\end{equation*}
$$

passing through points e and e^{\prime}. It is an embedded copy of $\mathbb{C P}{ }^{1}$ that is invariant under R, with $R \mid L_{1}(w)=w^{2}$, where $w=W / V=\xi / \eta$. Thus, points in the disk $\{|w|<1\}$ in L_{1} are attracted to e, points in the disk $\{|w|>1\}$ are attracted to e^{\prime}, and these two basins are separated by the unit circle T (see $\S 3.1$ from Part I). We will call L_{1} the slow separatrix of e and e^{\prime}.

If a point x near e (resp. e^{\prime}) does not belong to the fast separatrix L_{0}, then its orbit is "pulled" towards the slow separatrix L_{1} at rate $\rho^{4^{n}}$, with some $\rho<1$, and converges to e (resp. e^{\prime}) along L_{1} at rate $r^{2^{n}}$, with some $r<1$.

The strong separatrix L_{0} is transversally superattracting: all nearby points are pulled towards L_{0} uniformly at rate $r^{2^{n}}$. It follows that these points either converge to one of the fixed points, e or e^{\prime}, or converge to the circle B.

Given a neighborhood Ω of B , let

$$
\begin{equation*}
\mathcal{W}_{\mathbb{C}, \text { loc }}^{s}(\mathrm{~B})=\left\{x \in \mathbb{C P}^{2}: R^{n} x \in \Omega(n \in \mathbb{N}) \text { and } \mathbb{R}^{n} x \rightarrow \mathrm{~B} \text { as } n \rightarrow \infty\right\} \tag{3.5}
\end{equation*}
$$

(where Ω is implicit in the notation, and an assertion involving $\mathcal{W}_{\mathbb{C}, l o c}^{s}(\mathrm{~B})$ means that it holds for arbitrary small suitable neighborhoods of B). It is shown in Part I (§9.2) that $\mathcal{W}_{\mathbb{C}, \text { loc }}^{s}$ (B) has the topology of a 3 -manifold that is laminated by the union of holomorphic local stable manifolds $W_{\mathbb{C}, \text { loc }}^{s}(x)$ of points $x \in \mathrm{~B}$.

We conclude:
Lemma 3.1. $\mathcal{W}^{s}(e) \cup \mathcal{W}^{s}\left(e^{\prime}\right) \cup \mathcal{W}_{\mathbb{C}, \text { loc }}^{s}(\mathrm{~B})$ fills in some neighborhood of L_{0}.
3.4. Regularity of $\mathcal{W}_{\mathbb{C}, \text { loc }}^{s}(x)$. For a diffeomorphism the existence and regularity of the local stable manifold for a hyperbolic invariant manifold N has been studied extensively in [HPS]. In order to guarantee a C^{1} local stable manifold $\mathcal{W}_{\text {loc }}^{s}(N)$, a strong form of hyperbolicity known as normal hyperbolicity is assumed. Essentially, N is normally hyperbolic for f if the expansion of $D f$ in the transverse unstable direction dominates the maximal tangent expansion of $D\left(\left.f\right|_{N}\right)$ and the contraction of $D f$ in the transverse stable direction dominates the maximal tangent contraction of $D\left(\left.f\right|_{N}\right)$. See [HPS, Thm. 1.1]. If, furthermore, the expansion of $D f$ in the transverse unstable direction dominates the r-th power of the maximal tangent expansion of $D\left(\left.f\right|_{N}\right)$ and the contraction of $D f$ in the transverse stable direction dominates the r-th power of the maximal tangent contraction of $D\left(\left.f\right|_{N}\right)$, this guarantees that the stable manifold is of class C^{r}. The corresponding theory for endomorphisms is
less developed, although note that some aspects of [HPS], related to persistence of normally hyperbolic invariant laminations, have been generalized to endomorphisms in [Be].

In our situation, B is not normally hyperbolic because it lies within the invariant line L_{0} and R is holomorphic. This forces the expansion rates tangent to B and transverse to B (within this line) to coincide. Therefore, the following result does not seem to be part of the standard hyperbolic theory:
Lemma 3.2. $\mathcal{W}_{\mathbb{C}, l o c}^{s}(\mathrm{~B})$ is a C^{∞} manifold and the stable foliation is a C^{∞} foliation by complex analytic discs.
Proof. In Proposition 9.11 from Part I, we showed that within the cylinder \mathcal{C} the stable foliation of \mathcal{B} has C^{∞} regularity and that the stable curve of each point is real analytic. Mapping forward under Ψ, we obtain the same properties for the stable foliation of B within C.

Let us work in the local coordinates $\xi=W / U$ and $\eta=V / U$. In these coordinates, $\mathrm{B}=\{\eta=0,|\xi|=1\}$. The stable curve $W_{\mathbb{C}, \text { loc }}^{s}\left(\xi_{0}\right)$ of any $\xi_{0} \in \mathrm{~B}$ can be given by expressing ξ as a holomorphic function of η :

$$
\begin{equation*}
\xi=h\left(\eta, \xi_{0}\right)=\sum_{i=0}^{\infty} a_{i}\left(\xi_{0}\right) \eta^{i} \tag{3.6}
\end{equation*}
$$

The right hand side is a convergent power series with coefficients depending on ξ_{0}, having a uniform radius of convergence over every $\xi_{0} \in \mathcal{B}$. The series is uniquely determined by its values on the real slice C, in which the leaves depend with C^{∞} regularity on ξ_{0}. Therefore, each of the coefficients $a_{i}\left(\xi_{0}\right)$ is C^{∞} in ξ_{0}. This gives that each $W_{\mathbb{C}, \text { loc }}^{s}\left(\xi_{0}\right)$ depends with C^{∞} regularity on ξ_{0}, implying the stated result.
Remark 3.3. The technique from the proof of Lemma 3.2 applies to a more general situation: Suppose that M is a real analytic manifold and $f: M \rightarrow M$ is a real analytic map. Let $N \subset M$ be a compact real analytic invariant submanifold for f, with $f \mid N$ expanding and with N transversally attracting under f. Then N will have a stable foliation $\mathcal{W}_{\mathrm{loc}}^{s}(N)$ of regularity C^{r}, for some $r>0$ (see the beginning of this subsection), with the stable manifold of each point being real-analytic. The stable manifold $\mathcal{W}_{\mathbb{C}, \mathrm{loc}}^{s}(N)$ for the extension of f to the complexification $M_{\mathbb{C}}$ of M will then also have C^{r} regularity.
Remark 3.4. It has been shown by Kaschner and the third author that $\mathcal{W}_{\mathbb{C}, l o c}^{s}(\mathrm{~B})$ is not real analytic at any point $[\mathrm{KR}$, Thm. B].
3.5. Critical locus. The complex Jacobian of $\hat{R}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}(2.7)$ is equal to

$$
\begin{equation*}
\operatorname{Jac} \hat{R} \equiv \operatorname{det} D \hat{R}=32 V\left(U W-V^{2}\right)(U+W)^{2}\left(U^{2}+V^{2}\right)\left(W^{2}+V^{2}\right) \tag{3.7}
\end{equation*}
$$

and therefore the critical locus of R consists of 6 complex lines and one conic:

$$
\begin{aligned}
L_{0} & :=\{V=0\}=\text { line at infinity } \\
L_{1} & :=\left\{U W=V^{2}\right\}=\text { conic }\{u w=1\} \\
L_{2} & :=\{U=-W\}=\{u=-w\}=\text { the collapsing line } \\
L_{3}^{ \pm} & :=\{U= \pm i V\}=\{u= \pm i\} \\
L_{4}^{ \pm} & :=\{W= \pm i V\}=\{w= \pm i\}
\end{aligned}
$$

(Here the curves are written in the homogeneous coordinates $(U: V: W)$ and in the affine ones, $(u=U / V, w=W / V)$.) The critical locus is schematically depicted on Figure 3.1, while its image, the critical value locus, is depicted on Figure 3.2.

Figure 3.1. Critical locus for R shown with the separatrix L_{0} at infinity.

Figure 3.2. Critical values locus of R.

It will be helpful to also consider the critical locus for the lift $\tilde{R}: \widetilde{\mathbb{C P}}^{2} \rightarrow \mathbb{C P}^{2}$. Each of the critical curves L_{i} lifts by proper transform (see [BLR, Appendix A.2]) to a critical curve $\tilde{L}_{i} \subset \widetilde{\mathbb{C P}}^{2}$ for \tilde{R}. Moreover, any critical point for \tilde{R} belongs to either one of these proper transforms or to one of the exceptional divisors $L_{\text {exc }}\left(a_{ \pm}\right)$.

By symmetry, it is enough to consider the blow-up of a_{+}. We saw in Part I that there are four critical points on the exceptional divisor $L_{\text {exc }}\left(a_{+}\right)$occurring at $\chi=-1,1, \infty$, and 0 , where $\chi=(w+i) /(u-i)$. They correspond to intersections of $L_{\mathrm{exc}}\left(a_{+}\right)$with the collapsing line \tilde{L}_{2}, the \tilde{L}_{1}, and the critical lines \tilde{L}_{3}^{+}and \tilde{L}_{4}^{-}, respectively.
Remark 3.5. In Part I we showed that all of the critical points of \tilde{R} except the fixed points e, e^{\prime}, the collapsing line $\tilde{L_{2}}$, and two points $\{ \pm(i, i)\}={\tilde{L_{3}}}^{ \pm} \cap{\tilde{L_{4}}}^{ \pm}$, are degree two Whitney folds, i.e. they can be brought into the normal form $(x, y) \mapsto\left(x, y^{2}\right)$ in holomorphic coordinates. See [BLR, Appendix D.2] and also Lemma A.4.
3.6. Local study of the critical locus of R and \tilde{R}. In the proof of the Equidistribution Theorem for the DHL we will need details about how the Jacobian of R vanishes, when R is expressed in local coordinates; See Lemmas 5.2 and 5.5.

These details can be recovered from Formula (3.7) for Jac \hat{R} as follows: Suppose $z \in N \subset$ $\mathbb{C P}^{2} \backslash I(R)$, with N an open set admitting a local section $s: N \rightarrow \mathbb{C}^{3} \backslash\{0\}$ of the canonical projection $\pi: \mathbb{C}^{3} \backslash\{0\} \rightarrow \mathbb{C P}^{2}$. If we express R in local coordinates on N (in the domain) and on $R(N)$ (in the codomain), then the complex Jacobian of this local expression for R differs from Jac $\hat{R} \circ s$ by a non-vanishing analytic function.

For any $z \in \mathbb{C P}^{2} \backslash I(R)$ define $\mu(z, R)$ to be the order of vanishing at z for the complex Jacobian of any local coordinate expression for R. By the chain rule, the result is independent of the choice of charts. Moreover, by the discussion in the previous paragraph, $\mu(z, R)$ equals the order of vanishing of $\operatorname{Jac} \hat{R} \circ s$ at z.

Lemma 3.6. Let c be the point of intersection between L_{0} and L_{2}. We have
(a) $\mu(z, R) \leq 2$ for any $z \in \mathbb{C P}^{2} \backslash\left\{c, e, e^{\prime}, a_{ \pm}\right\}$,
(b) $\mu(c, R)=3$, moreover, there are local coordinates (x, y) centered at c in which Jac $R \asymp x y^{2}$, and
(c) $\mu(e, R)=\mu\left(e^{\prime}, R\right)=4$.

Proof. Any $z \in \mathbb{C P}^{2} \backslash\left\{ \pm(i, i), c, a_{ \pm}, e, e^{\prime}\right\}$ is either regular or is a smooth point of the critical locus; See Figure 3.1. Since each of the irreducible factors of Jac \hat{R} occurs to the first or second power, at any smooth point z of the critical locus we have $\mu(z, R) \leq 2$.

Since the lines $L_{3}^{ \pm}$and $L_{4}^{ \pm}$intersect transversally at $\pm(i, i)$, we can choose local coordinates (x, y) centered at $\pm(i, i)$ so that $L_{3}^{ \pm}$is given by $\{x=0\}$ and $L_{4}^{ \pm}$is given by $\{y=0\}$. As the irreducible factors of $\operatorname{Jac} \hat{R}$ corresponding to $L_{3}^{ \pm}$and $L_{4}^{ \pm}$occur to the first power, near the origin in these coordinates we have Jac $R \asymp x y$, giving that $\mu(\pm(i, i), R)=2$.

Similarly, we can choose local coordinates (x, y) centered at c with L_{0} corresponding to $\{x=0\}$ and L_{2} corresponding to $\{y=0\}$. As the irreducible factors of Jac \hat{R} corresponding to these two lines have have first and second powers, respectively, in the expression for Jac \hat{R} we have Jac $R \asymp x y^{2}$, implying $\mu(c, R)=3$.

The four separate critical lines L_{0}, L_{1}, L_{3}^{+}and L_{3}^{-}meet at e and Jac \hat{R} vanishes to order one along each of them, so that $\mu(e, R)=4$. The same result holds at e^{\prime}, by symmetry.

To deal with the indeterminate points $a_{ \pm}$we need the following:
Lemma 3.7. For every $\tilde{z} \in L_{\mathrm{exc}}\left(a_{+}\right) \cup L_{\mathrm{exc}}\left(a_{-}\right)$we have $\mu(\tilde{z}, \tilde{R}) \leq 2$.
Proof. By symmetry, we can focus on a_{+}. There is a neighborhood N of the exceptional divisor $L_{\text {exc }}\left(a_{+}\right)$in which the critical locus of \tilde{R} consists of the proper transforms $\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}^{+}$ and \tilde{L}_{4}^{-}and in which these curves are disjoint. As these four critical curves of \tilde{R} are smooth and disjoint in N, the order on vanishing of $\operatorname{Jac} \tilde{R}$ is locally constant on each of them. Since each of the defining equations for L_{1}, L_{3}^{+}, and L_{4}^{-}occur to the first power in Jac \hat{R}, we have $\mu(\tilde{z}, \tilde{R})=1$ for any $\tilde{z} \in N$ that is on $\tilde{L}_{1}, \tilde{L}_{3}^{+}$or \tilde{L}_{4}^{-}. Meanwhile, the defining equation for L_{2} occurs to the second power in $\operatorname{Jac} \hat{R}$, so that $\mu(\tilde{z}, \tilde{R})=2$ for any $\tilde{z} \in N \cap \tilde{L}_{2}$.

4. Fatou and Julia sets and the measure of maximal entropy

4.1. Julia set. For a rational map $R: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$, the Fatou set F_{R} is defined to be the maximal open set on which the iterates $\left\{R^{m}\right\}$ are well-defined and form a normal family. The complement of the Fatou set is the Julia set J_{R}.

If R is dominant and has no collapsing varieties, Lemma A. 1 from [BLR] gives that R is locally surjective (except at indeterminate points), so that the Fatou set is forward invariant and consequently, the Julia set is backward invariant.

If R has indeterminate points, then according to this definition they are in J_{R}. In this case, F_{R} and J_{R} are not typically totally invariant. One can see this by blowing up an indeterminate point and observing that the image of the resulting exceptional divisor typically intersects F_{R}. Note also that any algebraic curve A that is mapped by some iterate of R to an indeterminate point (such a curve exists iff R is not algebraically stable) is in J_{R}.

The Migdal-Kadinoff renormalization R is not locally surjective at any $x \in L_{2} \backslash L_{0}$. More specifically, if N is a small neighborhood of x that avoids L_{0}, then

$$
R(N) \cap L_{0}=b_{0}=R(x)
$$

where $b_{0}=[1: 0: 1]$, since any point of $L_{0} \backslash\left\{b_{0}\right\}$ has preimages only in L_{0}. However, we still have the desired invariance:

Lemma 4.1. The Migdal-Kadinoff renormalization R has forward invariant Fatou set and, consequently, backward invariant Julia set.

Proof. It suffices to show that $L_{2} \subset J_{R}$, since R is locally surjective at any other point, by Lemma A. 1 from $[\mathrm{BLR}]$. By definition, $\left\{a_{ \pm}\right\} \subset J_{R}$, so we consider $x \in L_{2} \backslash\left\{a_{ \pm}\right\}$. Let N be any small neighborhood of x. Note that $R(x)=b_{0}$ is a fixed point of saddle-type, with one-dimensional stable and unstable manifolds. Therefore, in order for the iterates to form a normal family on N, we must have $R(N) \subset \mathcal{W}^{s}\left(b_{0}\right)$. However, this is impossible, since there are plenty of regular points for R in N.

Lemmas 3.1 and 3.2 give a clear picture of J_{R} in a neighborhood of the line at infinity L_{0}.
Proposition 4.2. Within some neighborhood N of L_{0} we have that $J_{R} \cap N=\mathcal{W}_{\mathbb{C}, \text { loc }}^{s}(\mathrm{~B}) \cap N$. Within this neighborhood, J_{R} is a $C^{\infty} 3$-dimensional manifold.

Let us consider the locus $\{h=0\}$ of vanishing magnetic field in $\mathbb{C P}^{2}$ for the DHL. In the affine coordinates, it is an R-invariant line $L_{\mathrm{inv}}=\{u=w\}$; in the physical coordinates, it is an \mathcal{R}-invariant line $\mathcal{L}_{\text {inv }}=\{z=1\}$. The two maps are conjugate by the Möbius transformation $\mathcal{L}_{\mathrm{inv}} \rightarrow L_{\mathrm{inv}}, u=1 / t$. Dynamics of $\mathcal{R}: t \mapsto\left(\frac{2 t}{t^{2}+1}\right)^{2}$ on $\mathcal{L}_{\mathrm{inv}}$ was studied in [BL]. In particular, it is shown in that paper that the Fatou set for $\mathcal{R} \mid \mathcal{L}_{\text {inv }}$ consists entirely of the basins of attraction of the fixed points $\beta_{0}:=\{t=0\}$ and $\beta_{1}:=\{t=1\}$ which are superattracting within this line: see Figure 1.3. Under the conjugacy, the Fatou set for $R \mid L_{\mathrm{inv}}$ consists of the basins of attraction for the two fixed points

$$
b_{0}:=\{u=\infty\}=[1: 0: 1] \quad \text { and } \quad b_{1}:=\{u=1\}=[1: 1: 1] .
$$

Proposition 4.3. $J_{R}=\overline{\bigcup_{n} R^{-n}\left(L_{\mathrm{inv}}\right)}$.
Proof. Since every point in the Fatou set of $R \mid L_{\text {inv }}$ is in the basin of attraction of either b_{0} or b_{1} and since these points are of saddle-type in $\mathbb{C P}^{2}$, the family of iterates R^{n} cannot be normal in an open neighborhood of any point on L_{inv}. Thus $L_{\mathrm{inv}} \subset J_{R}$. It follows that $\overline{\bigcup_{n} R^{-n}\left(L_{\mathrm{inv}}\right)} \subset J_{R}$ since J_{R} is closed and backward invariant.

We will now show that $\bigcup_{n} R^{-n}\left(L_{\text {inv }}\right)$ is dense in J_{R}. Consider a configuration of five algebraic curves

$$
\begin{aligned}
X_{0} & :=\{V=0\}=\text { the separatrix } L_{0} \\
X_{1} & :=\{U=W\}=\text { the invariant line } L_{\text {inv }} \\
X_{2} & :=\{U=-W\}=\text { the collapsed line } L_{2} \subset R^{-1}\left(L_{\text {inv }}\right) \\
X_{3} & :=\left\{U^{2}+2 V^{2}+W^{2}=0\right\}=\text { a component of } R^{-1}\left(L_{\text {inv }}\right) \\
X_{4} & :=\left\{U^{4}+2 U^{2} V^{2}+2 V^{4}+2 W^{2} V^{2}+W^{4}=0\right\}=\text { a component of } R^{-1}\left(X_{3}\right)
\end{aligned}
$$

We will use the results of M. Green to check that the complement of these curves, $M:=$ $\mathbb{C P}^{2} \backslash \bigcup_{i} X_{i}$, is a complete Kobayashi hyperbolic manifold hyperbolically embedded in $\mathbb{C P}^{2}$ (see Appendix A.4). We will first check that M is Brody hyperbolic, i.e., there are no nonconstant holomorphic maps $f: \mathbb{C} \rightarrow M$. To this end we will apply Green's Theorem A.7. It implies that the image of f must lie in a line L that is tangent to the conic X_{3} at an intersection point with X_{i}, for one of the lines $X_{i}, i=0,1,2$, and contains the intersection point $X_{j} \cap X_{l}$ of the other two lines. It is a highly degenerate situation which does not occur for a generic configuration. However, this is exactly what happens in our case, as the lines X_{0}, X_{1}, X_{2} form a self-dual triangle with respect to the conic X_{3} (see \S A.5). However, one can check by direct calculation that the last curve, X_{4}, must intersect each of these tangent lines L in at least one point away from X_{0}, \ldots, X_{3}. Since any holomorphic map from \mathbb{C} to $L \backslash \bigcup_{i} X_{i}$ must then omit 3 points in L, it must be constant.

So, M is Brody hyperbolic. Moreover, for each $i=0, \ldots, 4$ the remaining curves $\bigcup_{j \neq i} X_{j}$ intersect X_{i} in at least three points so that there is no non-constant holomorphic map from \mathbb{C} to $X_{i} \backslash \bigcup_{j \neq i} X_{j}$. Therefore, another of Green's results (Thm. A.6) applies showing that M is complete hyperbolic and hyperbolically embedded. It then follows from Proposition A. 5 that the family $\left\{R^{n}\right\}$ is normal on any open set $N \subset \mathbb{C P}^{2}$ for which $R^{n}: N \rightarrow M$ for all n.

Given any $\zeta \in J_{R}$ and any neighborhood N of ζ, we'll show that some preimage $R^{-n}\left(L_{\text {inv }}\right)$ intersects N. Since $\zeta \in J_{R}$, the family of iterates R^{n} are not normal on N, hence $R^{n}(N)$ must intersect $\bigcup_{i} X_{i}$ for some n. If the intersection is with X_{i} for $i>0$ then $R^{n+2}(N)$ intersects L_{inv}.

So, some iterate $R^{n}(N)$ must intersect $X_{0}=L_{0}$. Suppose first that $\zeta \in L_{0}$. Then, by Lemma 3.1, $\zeta \subset \mathcal{W}^{s}(e) \cup \mathcal{W}^{s}\left(e^{\prime}\right) \cup \mathbb{T}$. Since the first two basins are contained in the Fatou set, $\zeta \in \mathbb{T}$, where preimages of the fixed point $b_{0} \in L_{\mathrm{inv}}$ are dense.

Finally, assume $\zeta \notin L_{0}$. By shrinking N if needed, we can make it disjoint from L_{0}. Hence there is $n>0$ such that $R^{n}(N)$ intersects L_{0}, while $R^{n-1}(N)$ is disjoint from L_{0}. But since $R^{-1}\left(L_{0}\right)=L_{0} \cup L_{2}$, we conclude that $R^{n-1}(N)$ must intersect L_{2}. But L_{2} collapses under R to the fixed point $b_{0} \in L_{\mathrm{inv}}$. Hence $R^{n}(N)$ intersects L_{inv}.
Remark 4.4. We thank the referee for pointing out that the above proof is similar to the one that Bonifant and Dabija use to show that if an endomorphism $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ of positive degree has an invariant elliptic curve Q then any point of Q has backward orbit under f that is dense in the Julia set J_{f}; see [BD, Thm. 5.4].

We will now relate J_{R} to the Green current S. (See Appendix B for the definition and basic properties of S.)
Proposition 4.5. $J_{R}=\operatorname{supp} S$.
Proof. The inclusion $\operatorname{supp} S \subset J_{R}$ follows immediately from Theorem B.3. We will use Proposition 4.3 to show that $J_{R} \subset \operatorname{supp} S$. Since $\operatorname{supp} S$ is a backward invariant closed set, it is sufficient for us to show that $L_{\mathrm{inv}} \subset \operatorname{supp} S$.

Note that $L_{\text {inv }}=\mathcal{W}^{s}\left(b_{0}\right) \cup \mathcal{W}^{s}\left(b_{1}\right) \cup J_{R \mid L_{\text {inv }}}$. The basin $\mathcal{W}^{s}\left(b_{0}\right)$ is open and contained within the normal set for R (see Appendix B for the definition of normal set). Therefore, $\mathcal{W}^{s}\left(b_{0}\right) \subset J_{R} \cap N \subset \operatorname{supp} S$, by Theorem B.3. Since $\operatorname{supp} S$ is closed, we also have that $J_{R \mid L_{\mathrm{inv}}} \subset \operatorname{supp} S$.

Consider the "top" unit circle $\mathrm{T}=\{(u, \bar{u}):|u|=1\}$ and note that $R \mid \mathrm{T}$ is the squaring map $u \mapsto u^{2}$. Since the fixed point b_{1} and indeterminate points $a_{ \pm}$are on T, we therefore have

$$
b_{1} \in \overline{\bigcup_{n \geq 0} R^{-n}\left\{a_{ \pm}\right\}}
$$

implying that none of the points of $\mathcal{W}^{s}\left(b_{1}\right)$ are normal. Hence we cannot directly use Theorem B. 3 to conclude that $\mathcal{W}^{s}\left(b_{1}\right) \subset \operatorname{supp} S$.

Notice that the points of $L_{2} \backslash\left\{a_{ \pm}\right\}$are normal, since they are in $\mathcal{W}^{s}\left(L_{0}\right)$. Theorem B. 3 gives that $L_{2} \backslash\left\{a_{ \pm}\right\} \subset \operatorname{supp} S$, since $L_{2} \subset J_{R}$. Because supp S is closed, $L_{2} \subset \operatorname{supp} S$. Let $D_{2} \subset L_{2}$ be a small disc centered around a_{+}. Preimages of D_{2} under appropriate branches of R^{n} will give discs intersecting L_{1} transversally at a sequence of points converging to b_{1}. By the Dynamical λ-Lemma (see [PM, pp. 80-84]), this sequence of discs will converge to $\mathcal{W}_{0}^{s}\left(b_{1}\right) \subset L_{\text {inv }}$, where $\mathcal{W}_{0}^{s}\left(b_{1}\right)$ is the immediate basin of b_{1}. Since each of the discs is in $\operatorname{supp} S$, and the latter is closed, we find that $\mathcal{W}_{0}^{s}\left(b_{1}\right) \subset \operatorname{supp} S$. Further preimages show that all of $\mathcal{W}^{s}\left(b_{1}\right) \subset \operatorname{supp} S$.
4.2. Fatou Set. Because $J_{R}=\operatorname{supp} S$, we immediately have:

Corollary 4.6. The Fatou set of R is pseudoconvex.
For the definition of pseudoconvexity, see [Kra].
Proof. It is well-known that in the complement in $\mathbb{C P}^{2}$ of the support of a closed positive $(1,1)$-current is pseudoconvex. See [C, Thm. 6.2] or [U, Lem. 2.4].
Remark 4.7. We thank the referee for pointing out that Corollary 4.6 can also be obtained directly from Proposition 4.3. Suppose that $L_{\mathrm{inv}}=\left\{l_{\mathrm{inv}}=0\right\}$ and $L_{0}=\left\{l_{0}=0\right\}$. For any $N \geq 0$ one can define a holomorphic function which does not extend to $\bigcup_{n=0}^{N} R^{-n} L_{\mathrm{inv}}$ by

$$
z \mapsto \frac{\left(l_{0}(\hat{z})\right)^{k}}{\left(\prod_{n=0}^{N} l_{\mathrm{inv}} \circ \hat{R}^{n}(\hat{z})\right)} \text {, where } \pi(\hat{z})=z \text { and } k=\sum_{n=0}^{N} 4^{n}
$$

Therefore, the Fatou set of R is the interior of the intersection of domains of holomorphy, so it is also a domain of holomorphy. Hence, it is pseudoconvex.

Computer experiments indicate that the Fatou set of R may be precisely the union of the basins of attraction $\mathcal{W}^{s}(e)$ and $\mathcal{W}^{s}\left(e^{\prime}\right)$ for the two superattracting fixed points e and e^{\prime}. See Problem C.4.

We can prove the following more modest statement. Consider the solid cylinders ${ }^{7}$

$$
\begin{aligned}
S C & :=\left\{[U: V: W]: \frac{V^{2}}{U W} \in[0,1] \text { and }\left|\frac{W}{U}\right|<1\right\} \text { and } \\
S C^{\prime} & :=\left\{[U: V: W]: \frac{V^{2}}{U W} \in[0,1] \text { and }\left|\frac{W}{U}\right|>1\right\} .
\end{aligned}
$$

[^7]Theorem 4.8. For the mapping R we have $S C \subset \mathcal{W}^{s}(e)$ and $S C^{\prime} \subset \mathcal{W}^{s}\left(e^{\prime}\right)$.
In the proof, we will need to use an important property of $R: C \rightarrow C$ that was proved in Part I. Recall from $\S 3.1$ that $C=\Psi(\mathcal{C})$ is the invariant real Möbius band and that $C_{0}=C \backslash \mathrm{~B}$ is the topological annulus obtained by removing the "core curve" B.

The key property is:
(P9 9^{\prime}) Every proper path γ in C_{0} lifts under R to at least 4 proper paths in C_{0}. If γ crosses G at a single point, then $R^{-1} \gamma=\cup \delta_{i}$.

Proof of Theorem 4.8: It suffices to prove the proposition for $S C$, since the statement for $S C^{\prime}$ follows from the symmetry ρ.

We will decompose $S C$ as a union of complex discs and show that each disc is in $\mathcal{W}^{s}(e)$. Let

$$
P_{c}:=\left\{[U: V: W]: \frac{V^{2}}{U W}=c \in[0,1]\right\},
$$

and

$$
P_{c}^{*}:=\left\{[U: V: W]: \frac{V^{2}}{U W}=c \in[0,1] \text { and }\left|\frac{W}{U}\right|<1\right\},
$$

so that $S C=\bigcup_{c \in[0,1]} P_{c}^{*}$.
The discs P_{0}^{*} and P_{1}^{*} are in $\mathcal{W}^{s}(e)$ because they are each within the forward invariant critical curves L_{0} and L_{1}, respectively, on which the dynamics is given by $(W / U) \rightarrow(W / U)^{4}$ and $(W / U) \rightarrow(W / U)^{2}$, respectively.

We now show that for any $c \in(0,1)$ we also have $P_{c}^{*} \subset \mathcal{W}^{s}(e)$. In fact $e \in P_{c}^{*}$, so it suffices to show that R^{n} forms a normal family on P_{c}^{*}. Consider any $x \in P_{c}^{*}$. If $x=e$, then $x \in \mathcal{W}^{s}(e)$ so that R^{n} is normal on some neighborhood of x in P_{c}^{*}.

Now consider any $x \in P_{c}^{*} \backslash\{e\}$. There is a neighborhood of $N \subset P_{c}^{*}$ of x with $e \notin N$, on which we will show that R^{n} forms a normal family. Recall the family of curves X_{0}, \ldots, X_{4} from the proof of Proposition 4.3 , where we showed that $\mathbb{C P}^{2} \backslash \bigcup_{i} X_{i}$ is complete hyperbolic and hyperbolically embedded. We will show for every n that $R^{n}(N)$ is in $\mathbb{C P}^{2} \backslash \bigcup_{i} X_{i}$, so that R^{n} is normal on N.

Since $P_{c}^{*} \cap X_{0}=\{e\}$, and $e \notin N$, we have that $N \cap X_{0}=\emptyset$. Therefore, by reasoning identical to that in the proof of Proposition 4.3, if $R^{n}(N)$ intersects X_{i} for any $i=0, \ldots, 4$ we must have that some iterate $R^{m}(N)$ intersects $X_{1}=L_{\text {inv }}$.

We will check that forward iterates of $R^{n}\left(P_{c}^{*}\right)$ are disjoint from $L_{\text {inv }}$, which is sufficient since $N \subset P_{c}^{*}$. The line $L_{\text {inv }}$ intersects the invariant annulus C_{0} in two properly embedded radial curves, so Property ($\mathrm{P} 9^{\prime}$) gives that $\left(R^{n}\right)^{*} L_{\text {inv }}$ intersects C in at least $2 \cdot 4^{n}$ properly embedded radial curves.

One can check that P_{c} intersects the invariant annulus C in the horizontal curve

$$
\left\{[U: V: W]: \frac{V^{2}}{U W}=c \in[0,1] \text { and }\left|\frac{W}{U}\right|=1\right\}
$$

which corresponds to $|u|=1 / \sqrt{c}>1$ in the u coordinate for C. Therefore, the $2 \cdot 4^{n}$ radial curves in C from $\left(R^{n}\right)^{*} L_{\text {inv }}$ intersect P_{c} in at least $2 \cdot 4^{n}$ distinct points within C.

We will now show that these are the only intersection points between $\left(R^{n}\right)^{*} L_{\text {inv }}$ and P_{c} in all of $\mathbb{C P}^{2}$. Since R is algebraically stable, Bezout's Theorem gives $\operatorname{deg}\left(P_{c}\right) \cdot \operatorname{deg}\left(\left(R^{n}\right)^{*} L_{\text {inv }}\right)=2 \cdot 4^{n}$ intersection points, counted with multiplicities, in all of $\mathbb{C P}^{2}$. Therefore $P_{c} \cap\left(R^{n}\right)^{*} L_{\text {inv }} \subset C$.

Since $P_{c}^{*} \subset P_{c}$ with $P_{c}^{*} \cap C=\emptyset$, we conclude that $P_{c}^{*} \cap\left(R^{n}\right)^{*} L_{\text {inv }}=\emptyset$ for ever n. In other words, $R^{n}\left(P_{c}^{*}\right) \cap L_{\text {inv }}=\emptyset$ for ever n. Thus, the same holds for $N \subset P_{c}^{*}$, implying that R^{n} is a normal family on N.

Theorem 4.8 has an interesting consequence for \mathcal{R}. The fixed point e^{\prime} for R has a single preimage $\eta^{\prime}=\Psi^{-1}\left(e^{\prime}\right)$, which is a superattracting fixed point for \mathcal{R}. However, e has the entire collapsing line $Z=0$ as preimage under Ψ. Within this line is another superattracting fixed point $\eta=[0: 1: 1]$ for \mathcal{R} and every point in $\{Z=0\} \backslash\{\mathbf{0}, \gamma\}$ is collapsed by \mathcal{R} to η.

We obtain:
Corollary 4.9. For the mapping \mathcal{R}, the solid cylinder $\{(z, t):|z|<1, t \in(0,1]\}$ is in $\mathcal{W}^{s}(\eta)$ and, symmetrically, the solid cylinder $\{(z, t):|z|>1, t \in[0,1]\}$ is in $\mathcal{W}^{s}\left(\eta^{\prime}\right)$.

Notice that we had to omit the "bottom", $t=0$, of the solid cylinder in $\mathcal{W}^{s}(\eta)$ because points on it are forward asymptotic to the indeterminate point $\mathbf{0}$.
4.3. Measure of Maximal Entropy. There is a conjecture specifying the expected ergodic properties of a dominant rational map of a projective manifold ${ }^{8}$ in terms of the relationship between various dynamical degrees of the map; see [Gu4].

Since the Migdal-Kadanoff renormalization R is an algebraically stable map of $\mathbb{C P}^{2}$, there are only two relevant dynamical degrees, the topological degree $\operatorname{deg}_{t o p} R$ and the algebraic degree $\operatorname{deg} R$, which satisfy

$$
\operatorname{deg}_{t o p} R=8>4=\operatorname{deg} R
$$

This case of high topological degree was studied by Guedj [Gu3], who made use of a bound on topological entropy obtained by Dinh and Sibony [DS1]. In our situation, his results give

Proposition 4.10. R has a unique measure ν of maximal entropy $\log 8$ with the following properties
(i) ν is mixing;
(ii) The Lyapunov exponents of ν are bounded below by $\log \sqrt{2}$;
(iii) If θ is any probability measure that does not charge the postcritical set ${ }^{9}$ of R, then $8^{-n}\left(R^{n}\right)^{*} \theta \rightarrow \nu$
(iv) If P_{n} is the set of repelling periodic points of R of period n then

$$
8^{-n} \sum_{a \in P_{n}} \delta_{a} \rightarrow \nu
$$

(In fact, it suffices to take just the repelling periodic points in $\operatorname{supp} \nu$.)
The measure ν satisfies the backwards invariance $R^{*} \nu=8 \nu$, hence its support is totally invariant. In our situation, $\operatorname{supp} \nu \subsetneq J_{R}$ because (for example) the points in $\mathcal{W}^{s}(\mathcal{B})$ are not in $\operatorname{supp} \nu$. It can be thought of as the "little Julia set" within J_{R} on which the "most chaotic" dynamics occurs.

Remark 4.11. The statement of (iv) in [Gu3, Thm. 3.1] does not emphasize that one can restrict his or her attention to the periodic points within $\operatorname{supp} \nu$, but it follows from the proof in [Gu3] and the fact that $\operatorname{supp} \nu$ is totally invariant. See [DS3, Thm. 1.4.13] for the analogous argument for holomorphic $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$.

Remark 4.12. We know very little about the support of ν. See Problem C.3.

[^8]
5. Volume Estimates

This section is devoted to estimating the volume exponent $\sigma(z, f)$ in terms of the Jacobian $J f$ and to studying the sets

$$
\begin{equation*}
D_{\geq a}:=\left\{z \in \mathbb{C P}^{2}: \sigma(z, f) \geq a\right\} \quad \text { and } \quad D_{>a}:=\left\{z \in \mathbb{C P}^{2}: \sigma(z, f)>a\right\} \tag{5.1}
\end{equation*}
$$

for various values of $a>0$.
Lemma 5.1. Let $h(x, y)$ be a non-constant holomorphic function vanishing with multiplicity ℓ at $(0,0)$. Then there is a neighborhood N of $(0,0)$ in \mathbb{C}^{2} and a constant $K>0$ such that for any $s>0$ we have

$$
\operatorname{vol}(\{|h(x, y)|<s\} \cap N) \leq K s^{2 / \ell}
$$

Proof. We can suppose that the coordinates (x, y) satisfy $h(0, y) \not \equiv 0$. The Weierstrass Preparation Theorem then gives that there is a sufficiently small bidisc $\mathbb{D}_{\epsilon}^{2}$ centered at $(0,0)$ in which

$$
h(x, y)=\alpha(x, y)\left(y^{\ell}+\beta_{\ell-1}(x) y^{\ell-1}+\cdots+\beta_{0}(x)\right)
$$

where $\alpha(x, y)$ is a non-vanishing holomorphic function and the coefficients $\beta_{j}(x)$ are holomorphic in \mathbb{D}_{ϵ}.

Up to a multiplicative constant, we can suppose $\alpha(x, y)=1$. Then in each vertical slice we have

$$
\left\{x=x_{0}\right\} \cap\left\{\left|h\left(x_{0}, y\right)\right|<s\right\} \subset\left\{x=x_{0}\right\} \times \bigcup_{i=1}^{\ell} \mathbb{D}_{s^{1 / \ell}}\left(r_{i}\right)
$$

where r_{1}, \ldots, r_{ℓ} are the roots of $h\left(x_{0}, y\right)$, listed with multiplicities. In particular,

$$
\operatorname{area}\left(\left\{x=x_{0}\right\} \cap\left\{\left|h\left(x_{0}, y\right)\right|<s\right\}\right) \leq K_{1} s^{2 / \ell}
$$

for some constant K_{1}. The result then follows by Fubini's Theorem, after integrating over all $x_{0} \in \mathbb{D}_{\epsilon}$.

We now estimate the volume exponent $\sigma(z, f)$ in terms of the order of vanishing $\mu(z, f)$ of the complex Jacobian Jac f at z (see p. 6).
Lemma 5.2 (Favre-Jonsson [FaJ, Prop. 6.3]). Let $U, V \subset \mathbb{C}^{2}$ and $f: U \rightarrow V$ be holomorphic and at most $d_{\mathrm{top}}-$ to-one off of a measure zero subset of U. Then for any $z \in U$ we have

$$
\begin{equation*}
\sigma(z, f) \leq \mu(z, f)+1 \tag{5.2}
\end{equation*}
$$

Proof. Lemma 5.1 gives a neighborhood N of z and constant $K_{0}>0$ for which

$$
\operatorname{vol}\left(\left\{|\operatorname{Jac} f(x, y)|^{2}<s\right\} \cap N\right) \leq K_{0} s^{1 / \mu}
$$

where $\mu \equiv \mu(z, f)$. Let X be a measurable subset of N and choose s so that $K_{0} s^{1 / \mu}=\frac{1}{2} \operatorname{vol}(X)$. The Chebyshev Inequality gives

$$
\begin{aligned}
\operatorname{vol} f(X) & \geq \frac{1}{d_{\mathrm{top}}} \int_{X}|\operatorname{Jac} f|^{2} d \operatorname{vol} \geq \frac{s}{d_{\mathrm{top}}}\left(\operatorname{vol} X-\operatorname{vol}\left(\left\{|\operatorname{Jac} f|^{2}<s\right\}\right)\right) \\
& \geq \frac{s}{2 d_{\mathrm{top}}} \operatorname{vol} X \geq K(\operatorname{vol} X)^{1+\mu}
\end{aligned}
$$

for an appropriate constant $K>0$.

Lemma 5.3. Suppose $f: U \rightarrow V$ satisfies the hypotheses of Lemma 5.2. If z is a smooth point of the critical locus of f, then $\sigma(z, f)=\mu(z, f)+1$, i.e. the estimate from Lemma 5.2 is sharp at such points.

Proof. It suffices to prove that $\sigma(z, f) \geq \mu(z, f)+1$. We will do this by showing that in any neighborhood N of z there is a constant $C>0$ such that there are measurable sets $X \subset N$ of arbitrarily small measure for which $\operatorname{vol} f(X) \leq C(\operatorname{vol} X)^{\mu+1}$.

Since z is a smooth point of the critical locus, one can choose local coordinates (x, y) centered at z so that $\operatorname{Jac} f(x, y) \asymp y^{\mu}$. Given any neighborhood N of z we can apply a linear rescaling to our coordinates in order to assume that the unit bidisc \mathbb{D}^{2} is contained in N. For any $0<\epsilon<1$ let $X:=\mathbb{D} \times \mathbb{D}_{\epsilon} \subset N$. We have

$$
\operatorname{vol} f(X) \leq \int_{X}|y|^{2 \mu} d \operatorname{vol}=\pi \int_{0}^{2 \pi} \int_{0}^{\epsilon} r^{2 \mu} r d r d \theta=2 \pi^{2} \frac{\epsilon^{2 \mu+2}}{2 \mu+2} \asymp(\operatorname{vol} X)^{\mu+1}
$$

Remark 5.4. Unlike in one-dimensional dynamics, one can have points with $\sigma(z, f)>d$. Consider $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ given by $f(x, y)=\left(x y^{2}, y^{3}\right)$. One has Jac $=3 y^{4}$ so that $\sigma(\mathbf{0}, f)=5$, by Lemma 5.3.

If the zero set of Jac f has a normal crossing singularity at z, then one has the following stronger estimate:

Lemma 5.5. Let $U, V \subset \mathbb{C}^{2}$ and $f: U \rightarrow V$ be holomorphic and at most d_{top}-to-one off of a measure zero subset of U. If Jac $f \asymp x^{a} y^{b}$ in suitable local coordinates (x, y) centered at $z \in U$. Then

$$
\begin{equation*}
\sigma(z, f) \leq \max (a, b)+1 \tag{5.3}
\end{equation*}
$$

The proof of Lemma 5.5 will use:
Lemma 5.6. Let $Q: w \mapsto w^{d}$. For any measurable set $Y \subset \mathbb{C}$,

$$
\operatorname{area}\left(Q^{-1} Y\right) \leq(\operatorname{area} Y)^{1 / d}
$$

Proof. We can assume that area $Y>0$. Let us take the radius $r>0$ such that $\pi r^{2}=$ area Y. Let $Y_{-}=Y \cap \mathbb{D}_{r}, Y_{+}=Y \backslash Y_{-}, Y_{c}=\mathbb{D}_{r} \backslash Y_{-}$. Then

$$
\begin{aligned}
(\operatorname{area} Y)^{1 / d} & =\left(\operatorname{area} \mathbb{D}_{r}\right)^{1 / d}=\operatorname{area}\left(Q^{-1} \mathbb{D}_{r}\right)=\operatorname{area}\left(Q^{-1} Y_{-}\right)+\operatorname{area}\left(Q^{-1} Y_{c}\right) \geq \\
\operatorname{area}\left(Q^{-1} Y_{-}\right) & +d \operatorname{Jac} Q^{-1}(r) \operatorname{area} Y_{c} \geq \operatorname{area}\left(Q^{-1} Y_{-}\right)+\operatorname{area}\left(Q^{-1} Y_{+}\right)=\operatorname{area}\left(Q^{-1} Y\right)
\end{aligned}
$$

Proof of Lemma 5.5: Let $\gamma>\max (a, b)+1$ and let $N=\{|x|<\epsilon\} \times\{|y|<\epsilon\}$. For any measurable set $X \subset N$ we have:

$$
\operatorname{vol} f(X) \geq \frac{1}{d_{\mathrm{top}}} \int_{X}|\operatorname{Jac} f|^{2} d \operatorname{vol} \asymp \int_{X^{v}}|y|^{2 b} \int_{X_{y}^{h}}|x|^{2 a} d \operatorname{area}(x) d \operatorname{area}(y)
$$

where X^{v} is the projection of X onto the y-axis and X_{y}^{h} are the slices of X by horizontal lines. The inner integral above is exactly area $\left(Q_{a+1}\left(X_{y}^{h}\right)\right) /(a+1)^{2}$, where $Q_{a+1}(x)=x^{a+1}$. By Lemma 5.6, it is bounded below by (area $\left.X_{y}^{h}\right)^{a+1} /(a+1)^{2}$. Using the Hölder inequality,
with $p=\gamma /(\gamma-1)$ and $q=\gamma$, we find

$$
\begin{array}{r}
\left(\int_{X_{v}} 1 /|y|^{2 b /(\gamma-1)} d \operatorname{area}(y)\right)^{\gamma-1} \int_{X^{v}}|y|^{2 b}\left(\operatorname{area} X_{y}^{h}\right)^{a+1} d \operatorname{area}(y) \\
\geq\left(\int_{X^{v}}\left(\operatorname{area} X_{y}^{h}\right)^{(a+1) / \gamma} d \operatorname{area}(y)\right)^{\gamma} \geq(\operatorname{vol} X)^{\gamma}
\end{array}
$$

The conclusion follows since $b<\gamma-1$ implies that $1 /|y|^{2 b /(\gamma-1)}$ is locally integrable.
Remark 5.7. Favre and Jonsson prove a similar volume estimate within their study of the the exceptional set \mathcal{E}_{1}; see [FaJ, Prop. 7.1 and Lem. 7.2].

Let us return to the case that $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ is a rational map. For any $z \in I(f)$ we can estimate $\sigma(z, f)$ by applying either Lemma 5.2 or Lemma 5.5 at each point of the exceptional divisor $\pi^{-1}(z)$:

Proposition 5.8. Consider the resolution of indeterminacy (A.1) for f. For any $z \in \mathbb{C P}^{2}$ the exponent $\sigma(z, f)$ exists and satisfies

$$
\begin{equation*}
\sigma(z, f) \leq \max _{\tilde{z} \in \pi^{-1}(\{z\})} \sigma(\tilde{z}, \tilde{f}) \tag{5.4}
\end{equation*}
$$

Proof. Note that $\pi: \widetilde{\mathbb{C P}^{2}} \rightarrow \mathbb{C P}^{2}$ decreases volumes. Therefore, for any $z \in \mathbb{C P}^{2}$ and any $\gamma>\max _{\tilde{z} \in \pi^{-1}(\{z\})} \sigma(\tilde{z}, \tilde{f})$ it suffices for us to find a neighborhood \tilde{N} of $\pi^{-1}(\{z\})$ and a constant $K>0$ so that for any measurable set $Y \subset \mathbb{C P}^{2}$ we have

$$
\begin{equation*}
\operatorname{vol}_{\widetilde{\mathbb{C P}^{2}}}\left(\tilde{N} \cap \tilde{f}^{-1}(Y)\right) \leq K(\operatorname{vol} Y)^{1 / \gamma} \tag{5.5}
\end{equation*}
$$

This follows by applying the definition of $\sigma(\tilde{z}, \tilde{f})$ at each point of $\pi^{-1}(\{z\})$ and using that $\pi^{-1}(\{z\})$ is compact.
Lemma 5.9. The volume exponent σ satisfies:
(i) $\sigma(z, f)$ is an integer away from $I(f)$ and singular points of $\operatorname{Crit}(f)$,
(ii) $\sigma(z, f)$ assumes finitely many values as z varies over $\mathbb{C P}^{2}$, and
(iii) for any $a>1$ the set $D_{\geq a}$ and $D_{>a}$ (see Equation 5.1) is algebraic, consisting of finitely many algebraic curves together with finitely many isolated points.

Proof. Property (i) is a consequence of Lemma 5.3 and Property (ii) follows because $I(f)$ and the set of singular points of $\operatorname{Crit}(f)$ are finite. Property (iii) follows from Lemma 5.3 and upper semicontinuity of σ :

$$
\limsup _{z \rightarrow z_{0}} \sigma(z, f) \leq \sigma\left(z_{0}, f\right)
$$

which is a consequence of the definition of σ.
Proposition 5.10. Suppose that C is an irreducible algebraic curve contained in $D_{>d}$. Then C is collapsed by f.
Proof. Suppose for contradiction that C is not collapsed by f. Then Lemma A. 4 gives that C is a Whitney Fold of f, i.e. there exists $r \in \mathbb{Z}_{+}$and a finite $S \subset C$ such that for any $p \in C \backslash S$ there are systems of holomorphic coordinates (x, y) centered at p and (z, w) centered at $f(p)$ in which

$$
\begin{equation*}
(z, w)=f(x, y)=\left(x, y^{r}\right) \tag{5.6}
\end{equation*}
$$

Moreover, for all $p \in C \backslash S$ we have $\sigma(p, f)=r>d$, since we suppose $C \subset D_{>d}$.

In these coordinates, for any $w_{0} \neq 0$ we have that $f^{-1}\left(\left\{w=w_{0}\right\}\right)$ intersects the y-axis transversally in $r>d$ points. Let $L \subset \mathbb{C P}^{2}$ be a projective line through p that is tangent to the y-axis in these local coordinates. If we let Λ be a complex projective line in $\mathbb{C P}^{2}$ that is tangent to $\left\{w=w_{0}\right\}$ at $\left(0, w_{0}\right)$ and take $\left|w_{0}\right|$ sufficiently small, then $f^{-1}(\Lambda)$ will be an algebraic curve of degree d that intersects L transversally in $r>d$ points, by the stability of transverse intersections between analytic curves under small perturbations. This contradicts the Bezout Theorem.

6. Proof of the Equidistribution Theorem for the DHL

6.1. Transformation of volume by R.

Proposition 6.1. There exist constants $K>0$ and $1<\tau<\operatorname{deg}\left(R^{2}\right)=4^{2}$ such that

$$
\operatorname{vol}\left(R^{-2}(Y)\right) \leq K(\operatorname{vol} Y)^{1 / \tau}
$$

for any measurable $Y \subset \mathbb{C P}^{2}$.
Proof. Let Ω be any forward invariant neighborhood of the two superattracting fixed points e and e^{\prime}. We will first prove that there exists $K^{\prime}>0$ such that

$$
\begin{equation*}
\operatorname{vol}\left(R^{-1}(Y)\right) \leq K^{\prime}(\operatorname{vol} Y)^{1 / 3} \tag{6.1}
\end{equation*}
$$

for any measurable $Y \subset \mathbb{C P}^{2} \backslash \Omega$. By compactness, it suffices to prove that every $z \in \mathbb{C P}^{2} \backslash \Omega$ has volume exponent $\sigma(z, R) \leq 3$.

Lemma 3.6(a) gives that for any $z \in \mathbb{C P}^{2} \backslash\left\{c, e, e^{\prime}, a_{ \pm}\right\}$we have $\mu(z, R) \leq 2$ and hence $\sigma(z, R) \leq 3$, by Lemma 5.2. Meanwhile, Lemma 3.6(b) gives local coordinates (x, y) centered at $\{c\}=L_{0} \cap L_{2}$ in which Jac $R \asymp x y^{2}$, so that Lemma 5.5 gives $\sigma(c, R) \leq 3$.

We now use Proposition 5.8 to check that the indeterminate points $a_{ \pm}$satisfy $\sigma\left(a_{ \pm}, R\right) \leq 3$. By Lemmas 3.7 and 5.5 we have $\sigma(\tilde{z}, \tilde{R}) \leq 3$ for every $\tilde{z} \in L_{\mathrm{exc}}\left(a_{+}\right) \cup L_{\mathrm{exc}}\left(a_{-}\right)$. This completes the proof of (6.1).

A calculation ${ }^{10}$ shows that $\mu\left(e, D R^{2}\right)=14$ and hence Lemma 5.2 gives $\sigma\left(e, R^{2}\right) \leq 15$. By symmetry, the same holds at e^{\prime}. Combined with (6.1), this completes the proof of Proposition 6.1.

Remark 6.2. In Lemma 3.6(c) we saw that $\mu(e, R)=4$, so that Lemma 5.2 gives $\sigma(e, R) \leq 5$, which is insufficient for our purposes. Meanwhile, the four separate critical curves L_{0}, L_{1}, L_{3}^{+} and L_{3}^{-}meeting at e imply that $\operatorname{det} D R$ does not have the form needed to apply Lemma 5.5. (The same holds at the symmetric fixed point e^{\prime}.) This is why we needed to pass to the second iterate of R in the proof of Proposition 6.1.
6.2. Completing the proof of the Equidistribution Theorem for the DHL. Let $g:=R^{2}$ and $d:=16=\operatorname{deg}(g)$. It suffices to prove that

$$
\begin{equation*}
\frac{1}{d^{n} \operatorname{deg}(A)}\left(g^{n}\right)^{*}[A] \rightarrow S \tag{6.2}
\end{equation*}
$$

for any algebraic curve $A \subset \mathbb{C P}^{2}$ because the Green current S for R is also the Green current for $g=R^{2}$ and because the normalized pullback $\frac{1}{4} R^{*}$ acts continuously on the space of closed positive $(1,1)$ currents and has S as a fixed point.

[^9]Let $\pi: \mathbb{C}^{3} \backslash\{0\} \rightarrow \mathbb{C P}^{2}$ denote the canonical projection. For any $z \in \mathbb{C P}^{2}$ we will denote by $\hat{z} \in \mathbb{C}^{3} \backslash\{0\}$ any choice of a point of $\pi^{-1}(z)$. Let

$$
A=\left\{z \in \mathbb{C P}^{2}: P(\hat{z})=0\right\}
$$

with P a homogeneous polynomial of degree $a=\operatorname{deg}(A)$. We must show that the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{a d^{n}} \log \left|P \circ \hat{g}^{n}(\hat{z})\right| \tag{6.3}
\end{equation*}
$$

exists in $L_{\mathrm{loc}}^{1}\left(\mathbb{C}^{3}\right)$ and is equal to the Green Potential

$$
\begin{equation*}
G(\hat{z}):=\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log \left\|\hat{g}^{n} \hat{z}\right\| \tag{6.4}
\end{equation*}
$$

of g.
The homogeneous polynomial P determines a section s_{P} of the a-th tensor power of the hyperplane bundle; see Appendix A.2. For each $n \geq 0$ we will consider the function

$$
\phi_{n}: \mathbb{C P}^{2} \rightarrow[-\infty, \infty) \quad \text { where } \quad \phi_{n}(z):=\frac{1}{a d^{n}} \log \left\|s_{P}\left(g^{n}(z)\right)\right\|
$$

with $\|\cdot\|$ denoting the Hermitian norm on this bundle. By definition of the norm,

$$
\phi_{n}(z)=\frac{1}{a d^{n}} \log \frac{\left|P \circ \hat{g}^{n}(\hat{z})\right|}{\left\|\hat{g}^{n} \hat{z}\right\|^{a}}=\frac{1}{a d^{n}} \log \left|P \circ \hat{g}^{n}(\hat{z})\right|-\frac{1}{d^{n}} \log \left\|\hat{g}^{n} \hat{z}\right\| .
$$

The limit in (6.4) exists by the hypothesis that R (and hence g) is algebraically stable; see Theorem B.1. Therefore, the desired convergence of currents (6.2) will follow from:

Theorem 6.3. $\phi_{n} \rightarrow 0$ in $L_{\text {loc }}^{1}\left(\mathbb{C P}^{2}\right)$ as $n \rightarrow \infty$.
Proof. We will use the following general convergence criterion:
Lemma 6.4. Let ϕ_{n} be a sequence of L^{2} functions on a finite measure space (X, m) with bounded L^{2}-norms. If $\phi_{n} \rightarrow 0$ a.e. then $\phi_{n} \rightarrow 0$ in L^{1}.

Proof. Take any $\epsilon>0$ and $\delta>0$. By Egorov's Lemma, there exists a set $X^{\prime} \subset X$ with $m\left(X \backslash X^{\prime}\right)<\epsilon$ such that $\phi_{n} \rightarrow 0$ uniformly on X^{\prime}. So, eventually the sup-norms of the ϕ_{n} on X^{\prime} are bounded by δ. Hence

$$
\int\left|\phi_{n}\right| d m=\int_{X^{\prime}}\left|\phi_{n}\right| d m+\int_{X \backslash X^{\prime}}\left|\phi_{n}\right| d m \leq \delta \cdot m(X)+B \sqrt{\epsilon}
$$

where the last estimate follows from the Cauchy-Schwarz Inequality (with B the L^{2}-bound on the ϕ_{n}). The conclusion follows.

Lemma 6.5. There exists $K>0$ such that for any $s<0$ we have

$$
\operatorname{vol}\left(\left\{\phi_{0}<s\right\}\right) \leq K e^{2 s}
$$

Proof. Since A is compact, it suffices to work in a neighborhood of any point $z \in A$. Without loss of generality, we can suppose $z=[0: 0: 1]$ so that it is the origin in the affine coordinates $(x, y) \mapsto[x: y: 1]$. In these coordinates,

$$
\frac{|P(x, y, 1)|}{\|(x, y, 1)\|^{a}} \asymp|P(x, y, 1)|
$$

The local multiplicity of $P(x, y, 1)$ at $(0,0)$ is less than or equal to $a=\operatorname{deg}(P)$. The estimate then follows in a neighborhood of z from Lemma 5.1.

Lemma 6.6. For any measurable set $Y \subset \mathbb{C P}^{2}$ there exists $1<\tau<d$ and $K>0$ such that for any $n \geq 0$ we have

$$
\begin{equation*}
\operatorname{vol} g^{-n} Y \leq K(\operatorname{vol} Y)^{1 / \tau^{n}} \tag{6.5}
\end{equation*}
$$

Proof. The estimate for a single iterate of $g=R^{2}$ is Proposition 6.1. The result then follows inductively if we let $K:=K_{0}^{s}$, where $s=\sum_{n=0}^{\infty} \frac{1}{\tau^{n}}$ and K_{0} is the constant given by Proposition 6.1.

We will estimate the distribution of the tails of the random variables ϕ_{n} :
Lemma 6.7. Let $M=\sup \phi_{0}(z)$. Then there exists $K>0$ so that

$$
\operatorname{vol}\left\{\left|\phi_{n}\right|>r\right\} \leq K \exp \left(-2 r\left(\frac{d}{\tau}\right)^{n}\right) \quad \text { for any } r>M d^{-n}
$$

Proof. We have:

$$
\begin{aligned}
X_{n}(r) & :=\left\{\left|\phi_{n}\right|>r\right\}=\left\{\phi_{0} \circ g^{n}>r d^{n}\right\} \cup\left\{\phi_{0} \circ g^{n}<-r d^{n}\right\} \\
& =\left\{\phi_{0} \circ g^{n}<-r d^{n}\right\}=g^{-n}\left\{\phi_{0}<-r d^{n}\right\} .
\end{aligned}
$$

We have used that $\phi_{0}<r d^{n}$ to see that the first term in the union is empty. According to Lemma 6.5 there is a constant $K_{1}>0$ such that

$$
\operatorname{vol}\left\{\phi_{0}<-r d^{n}\right\} \leq K_{1} \exp \left(-2 r d^{n}\right)
$$

The result then follows from Lemma 6.6.
We can now show that the functions ϕ_{n} satisfy the conditions of Lemma 6.4.
Lemma 6.8. Assuming (6.5) holds for some $1 \leq \tau \leq d$, the sequence ϕ_{n} is L^{2}-bounded.
Proof. We have:

$$
\left\|\phi_{n}\right\|^{2} \leq \sum_{\ell=0}^{\infty}(\ell+1)^{2} \operatorname{vol}\left\{\left|\phi_{n}\right| \geq \ell\right\}
$$

By Lemma 6.7, this sum is bounded by

$$
\begin{aligned}
& \sum_{\ell=0}^{M+1}(\ell+1)^{2}+K \sum_{\ell>M}(\ell+1)^{2} \exp \left(-2 \ell\left(\frac{d}{\tau}\right)^{n}\right) \\
& \leq K_{0}+K \sum_{\ell=0}^{\infty}(\ell+1)^{2} \exp (-2 \ell)<\infty
\end{aligned}
$$

Lemma 6.9. The sequence ϕ_{n} exponentially converges to 0 almost everywhere.
Proof. Fix any $\lambda \in(1, d / \tau)$. For sufficiently large n, we have $\lambda^{-n}>M d^{-n}$, hence Lemma 6.7 gives

$$
\operatorname{vol}\left\{\left|\phi_{n}\right|>\lambda^{-n}\right\} \leq K \exp \left(-2\left(\frac{d}{\tau \lambda}\right)^{n}\right)
$$

Since the sum of these volumes converges, the Borel-Cantelli Lemma gives that for a.e. $x \in \mathbb{C P}^{2}$, we eventually have $\left|\phi_{n}(x)\right| \leq \lambda^{-n}$.
This completes the proof of Theorem 6.3 and hence of the Equidistribution Theorem for the DHL.

7. Proof of the Equidistribution Theorem

This section is devoted to proving:
Proposition 7.1 (Finding a good iterate). Suppose that $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ is a dominant algebraically stable rational map with $\operatorname{deg} f=d$ that satisfies the hypotheses the Equidistribution Theorem (see p. 6). For any forward invariant neighborhood Ω of exceptional set \mathcal{E} there exists an iterate n_{0} and constants $K>0$ and $0<\tau<d^{n_{0}}$ such that

$$
\begin{equation*}
\operatorname{vol}\left(f^{-n_{0}}(Y)\right) \leq K(\operatorname{vol} Y)^{1 / \tau} . \tag{7.1}
\end{equation*}
$$

for any measurable $Y \subset \mathbb{C P}^{2} \backslash \Omega$.
Once this proposition is proved, the remainder of the proof of the Equidistribution Theorem follows in exactly the same way as the proof of the Equidistribution Theorem for the DHL (§6.2).

Throughout this section, we will supposed that $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ is a dominant algebraically stable rational map with $\operatorname{deg} f=d$. However, we will keep track of which specific Hypotheses (i)-(iii) of the Equidistribution Theorem are used.

7.1. No curves of maximal degeneracy.

Proposition 7.2. Suppose f satisfies Hypothesis (ii). Then $D_{>d}$ is a finite set.
Proof. By Corollary 5.9, $D_{>d}$ is algebraic, so if it were an infinite set it would contain some irreducible algebraic curve C. Then Proposition 5.10 implies that C is collapsed by f, which results in C containing an indeterminate point for f, by Lemma A.1. This violates Hypothesis (ii).

Proposition 7.3. Suppose f satisfies Hypotheses (i) and (ii) of the Equidistribution Theorem. Then there exists $N>0$ and a finite forward invariant "non-escaping set" $\mathcal{N}_{\geq d} \subset D_{\geq d}$ such that if $z \in D_{\geq d} \backslash \mathcal{N}_{\geq d}$ then there exists $0<n<N$ such that $f^{n}(z) \notin D_{\geq d}$.

The proof of Proposition 7.3 relies on several basic lemmas about the structure of one iterate of a rational map that are presented in Appendix A.1. We will also need the following definition. Suppose $p \in \mathbb{C P}^{2} \backslash I(f)$ is not on a collapsed curve. Then f induces a germ of an open mapping at p and the local topological degree $e(p, f)$ is the topological degree of that germ. It satisfies the chain rule

$$
\begin{equation*}
e\left(p, f^{2}\right)=e(p, f) \cdot e(f(p), f) \tag{7.2}
\end{equation*}
$$

so long as $e(p, f)$ and $e(f(p), f)$ are defined.
The key step in the proof of Proposition 7.3 is:
Lemma 7.4. Suppose that f satisfies Hypothesis (i). Then there is no irreducible algebraic curve C such that for some $k \geq 1$ we have $f^{k}(C) \subset C, C \cap I\left(f^{k}\right)=\emptyset$, and $\sigma\left(z, f^{k}\right) \geq d^{k}$ for all $z \in C$.

Proof. Suppose for contradiction that such a curve C exists. Then Lemma A. 1 implies that C is not collapsed by f^{k}. Lemma A. 4 then gives that C is a Whitney Fold and that there is a finite $S \subset C$ such that for every $p \in C \backslash S$ we have

$$
\begin{equation*}
e\left(p, f^{k}\right)=\sigma\left(p, f^{k}\right) \geq d^{k} \tag{7.3}
\end{equation*}
$$

Let us now consider the irreducible component C as a divisor (C), assigning it multiplicity one. (See [BLR, Appendix A] for basic background on divisors.) Since C is disjoint from $I\left(f^{k}\right)$, the pushfoward of (C) by f^{k} is defined by

$$
\left(f^{k}\right)_{*}(C):=\operatorname{deg}_{\mathrm{top}}\left(\left.f^{k}\right|_{C}: C \rightarrow f^{k}(C)\right)\left(f^{k}(C)\right)=\operatorname{deg}_{\mathrm{top}}\left(\left.f^{k}\right|_{C}: C \rightarrow C\right)(C)
$$

Meanwhile, we have that

$$
\operatorname{deg}\left(\left(f^{k}\right)_{*}(C)\right)=d^{k} \operatorname{deg}((C))
$$

see [BLR, Lem. A.5]. Therefore, we conclude that

$$
\begin{equation*}
\operatorname{deg}_{\text {top }}\left(\left.f^{k}\right|_{C}: C \rightarrow C\right)=d^{k} \tag{7.4}
\end{equation*}
$$

Equation (7.4) implies that a generic $z \in C$ will have d^{k} preimages under $\left.f^{k}\right|_{C}$ and Equation (7.3) then implies that a generic point z^{\prime} near z, but not on C, will have $d^{2 k}$ preimages under f^{k}. (There are d^{k} preimages of z^{\prime} near each preimage of z under $\left.f^{k}\right|_{C}$.) By Hypothesis (i) $I(f) \neq \emptyset$, so this violates the fact that $\operatorname{deg}_{\text {top }}(f)<d^{2 k}$; see Lemma A.2.

Proof of Proposition 7.3. By Lemma 5.9, the set $D_{\geq d}$ is algebraic. Moreover, none of the irreducible components of $D_{\geq d}$ is collapsed by f, using Hypothesis (ii) that $D_{\geq d}$ is disjoint from $I(f)$ and Lemma A.1.

It suffices to show that for each irreducible component $C \subset D_{\geq d}$ there is an iterate n such that $f^{n}(C) \not \subset D_{\geq d}$. In this case, the Bezout Theorem implies $\bar{f}^{n}(C) \cap D_{\geq d}$ is finite. This implies that all but finitely many points of C are mapped out of $D_{\geq d}$ by f^{n}, since f does not collapse any irreducible component of $D_{\geq d}$.

Suppose for the purpose of obtaining a contradiction that $C \subset D_{\geq d}$ is some irreducible component with $f^{n}(C) \subset D_{\geq d}$ for every $n \geq 1$. As $D_{\geq d}$ contains finitely many irreducible components, we conclude that some iterate $f^{n_{0}}(C)$ is periodic under f. Therefore, without loss of generality, we can suppose that C itself is periodic under f with some period $k \geq 1$.

Let $C_{n}:=f^{n}(C)$ for each $0 \leq n<k$. Lemma A. 4 gives that there is a finite set $S_{n} \subset C_{n}$ and an exponent r_{n} so that for each $p \in C_{n} \backslash S_{n}$ we have

$$
\sigma(p, f)=e(p, f)=r_{n} \geq d
$$

with the last inequality coming from the fact that $C_{n} \subset D_{\geq d}$. Meanwhile, applying Lemma A. 4 to f^{k} and C, together with the chain rule (7.2), we see that there is a finite $S \subset C$ so that for all $p \in C \backslash S$ we have

$$
\begin{equation*}
\sigma\left(p, f^{k}\right)=e\left(p, f^{k}\right)=e(p, f) \cdot e(f(p), f) \cdots e\left(f^{n-1}(p), f\right) \geq d^{k} \tag{7.5}
\end{equation*}
$$

Using Hypothesis (i), we can now apply Lemma 7.4 to conclude that C contains a point of $I\left(f^{k}\right)$. However, this contradicts that for each $0 \leq n<k$ the curve $C_{n} \subset D_{\geq d}$ and is therefore disjoint from $I(f)$ by Hypothesis (ii).
7.2. Superattracting Periodic Points. An important aspect of the work of Favre and Jonsson [FaJ] is to consider asymptotic versions of the multiplicities μ and c (defined in $\S 3.6$ and $\S 1.3$, respectively) along the orbit of any $z \in \mathbb{C P}^{2}$. In our paper, $I(f)$ is not assumed to be empty, so that a point for which an iterate lands on $I(f)$ will have uncountably many different forward orbits, causing such an asymptotic multiplicity not to exist. However, we can apply the results of $[\mathrm{FaJ}]$ at regular periodic points, as we will now summarize.

Let $g:\left(\mathbb{C}^{2}, \mathbf{0}\right) \rightarrow\left(\mathbb{C}^{2}, \mathbf{0}\right)$ be a dominant holomorphic germ. Then $\hat{\mu}\left(z, g^{n}\right):=3+2 \mu\left(z, g^{n}\right)$ is submultiplicative:

$$
\hat{\mu}\left(z, g^{n+m}\right) \leq \hat{\mu}\left(z, g^{n}\right) \hat{\mu}\left(g^{n}(z), g^{m}\right)
$$

In particular,

$$
\mu_{\infty}(z, g):=\lim \hat{\mu}\left(z, g^{n}\right)^{1 / n}
$$

exists.
For any $n \in \mathbb{N}$, let $c\left(z, g^{n}\right)$ be the order of the lowest order term in the power series for g^{n} centered at the origin. It follows directly from the definition that $c\left(z, g^{n+m}\right) \geq$ $c\left(z, g^{n}\right) c\left(g^{n}(z), g^{m}\right)$. Moreover, Favre and Jonsson proved that $c\left(z, g^{n}\right) \leq \frac{1}{2} \mu\left(z, g^{n}\right)+1$. Therefore, the limit

$$
c_{\infty}(z, g):=\lim c\left(z, g^{n}\right)^{1 / n}
$$

exists and satisfies

$$
\begin{equation*}
c_{\infty}(z, g) \leq \mu_{\infty}(z, g) \tag{7.6}
\end{equation*}
$$

Suppose z is a regular periodic point of period k for the dominant rational map f : $\mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$. Then, in suitable local coordinates, f^{k} defines a dominant holomorphic germ $f^{k}:\left(\mathbb{C}^{2}, \mathbf{0}\right) \rightarrow\left(\mathbb{C}^{2}, \mathbf{0}\right)$. By the discussion of the previous two paragraphs, we can define

$$
\mu_{\infty}(z, f):=\lim _{n \rightarrow \infty} \hat{\mu}\left(z, f^{n k}\right)^{1 / n k} \quad \text { and } \quad c_{\infty}(z, f):=\lim _{n \rightarrow \infty} c\left(z, f^{n k}\right)^{1 / n k}
$$

The total degree of the Jacobian divisor Jac f^{k} on $\mathbb{C P}^{2}$ is $3\left(d^{k}-1\right)$, so Jac f^{k} cannot vanish to more than this order at $\mathbf{0}$; see Remark A.3.. This implies that

$$
\begin{equation*}
c_{\infty}(z, f) \leq \mu_{\infty}(z, f) \leq d=\operatorname{deg}(f) \tag{7.7}
\end{equation*}
$$

In particular, this justifies the definition of maximally superattracting regular periodic point from the Introduction.

Theorem 7.5. (Favre-Jonsson [FaJ, Thm. 4.2]) Let $g:\left(\mathbb{C}^{2}, \mathbf{0}\right) \rightarrow\left(\mathbb{C}^{2}, \mathbf{0}\right)$ be a holomorphic germ. Let V_{1}, \ldots, V_{k} be the irreducible components of the critical set of g. Assume that $c_{\infty}(\mathbf{0}, g)<\mu_{\infty}(\mathbf{0}, g)$. Then there exists $a_{1}, \ldots, a_{k} \geq 0$ (not all zero) such that

$$
\begin{equation*}
g^{*}\left(\sum_{i} a_{i}\left[V_{i}\right]\right) \geq \mu_{\infty}(\mathbf{0}, g)\left(\sum_{i} a_{i}\left[V_{i}\right]\right) \tag{7.8}
\end{equation*}
$$

Inequality (7.8) means that if one subtracts the current on the right from the current on the left, then the result is a weighted sum of currents of integration over finitely many analytic curves, each assigned a non-negative weight.
Corollary 7.6. Suppose that $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ is a dominant algebraically stable rational map of degree d. If z is a regular periodic point of period k for f such that

$$
\begin{equation*}
c_{\infty}(z, f)<\mu_{\infty}(z, f)=d \tag{7.9}
\end{equation*}
$$

then f^{k} has a backward invariant curve C through z. Each of the irreducible components of C passes through z.

Proof. Taking the k-th iterate, we can suppose z is a regular fixed point for f. Theorem 7.5 implies that there exist weights $a_{1}, \ldots, a_{k} \geq 0$ (not all zero) such that (7.8) holds with $\mu_{\infty}(\mathbf{0}, f)=d$. Suppose two irreducible branches V_{i} and V_{j} of the critical locus of the germ $f:\left(\mathbb{C}^{2}, \mathbf{0}\right) \rightarrow\left(\mathbb{C}^{2}, \mathbf{0}\right)$ are obtained as the restriction of the same algebraic curve from the critical locus of $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$. In this case, it is straightforward to check the proof of Theorem 7.5 from $[\mathrm{FaJ}]$ the weights are equal: $a_{i}=a_{j}$. Therefore, the local current $\sum_{i} a_{i}\left[V_{i}\right]$ extends to a global closed positive $(1,1)$ current

$$
T=\sum \alpha_{k}\left[C_{k}\right]
$$

on $\mathbb{C P}^{2}$ which also satisfies $f^{*} T \geq d T$. Since the pullback under f multiplies the total mass of a closed positive $(1,1)$ current on $\mathbb{C P}^{2}$ by exactly d, we conclude that $f^{*} T=d T$ (see Appendix A.3). In particular, the support of T is a backward invariant curve for f passing through z.
7.3. Backward invariant curves. Because of Corollary 7.6 we need a better understanding of algebraic curves that are backward invariant under some iterate of f. This subsection is devoted to proving the following:

Proposition 7.7. Suppose that f satisfies Hypotheses (i)-(iii) of the Equidistribution Theorem and that z_{0} is a regular periodic point of period k for f. If C is a (possibly reducible) algebraic curve that is backward invariant under f^{k}, each of whose irreducible components passes through z_{0}, then $z_{0} \in \mathcal{E}(b)$ (see $p .6$ for the definition of $\mathcal{E}(b)$).
Proof. We will show that z_{0} is superattracting and that there is some algebraic curve $C^{\prime} \subset C$ (possibly also reducible) satisfying the conditions necessary for z_{0} to be in $\mathcal{E}(b)$.

Let C_{1}, \ldots, C_{m} denote the irreducible components of C and suppose for contradiction that none of them is collapsed under f^{k}. In this case, we claim that f^{-k} induces a permutation on $\left\{C_{1}, \ldots, C_{m}\right\}$. Consider an arbitrary $0 \leq i \leq m$ and notice that $f^{-k}\left(C_{i}\right)$ is not reduced to an indeterminate point. Indeed, by considering C_{i} as a divisor (C_{i}) of multiplicity one, the fact that $\left(f^{k}\right)^{*}\left(C_{i}\right)$ is a divisor of degree $d^{k} \operatorname{deg}\left(C_{i}\right)>0$ (see [BLR, Lem. A.5]) implies that $f^{-k}\left(C_{i}\right)$ is a non-trivial algebraic curve. Since C is backward invariant under f^{k}, this implies that there is at least one $1 \leq j \leq m$ such that $C_{j} \subset f^{-k}\left(C_{i}\right)$. Meanwhile, for each $1 \leq n \leq m$ the irreducible component C_{n} is not collapsed by f^{k} so that it can occur as a component of $f^{-k}\left(C_{p}\right)$ for at most one value of $1 \leq p \leq m$. We conclude that, for each $1 \leq i \leq m$ there exists a unique j such that $f^{-k}\left(C_{i}\right)=C_{j}$.

In particular, there exists $\ell \geq 1$ such that $B:=C_{1}$ is backward invariant under $f^{\ell k}$. If we consider B as a divisor (B) of multiplicity one, then this implies that

$$
\begin{equation*}
\left(f^{\ell k}\right)^{*}(B)=d^{\ell k}(B) \tag{7.10}
\end{equation*}
$$

(see again [BLR, Lem. A.5]).
Backwards invariance under $f^{\ell k}$ also implies $f^{\ell k}\left(B \backslash I\left(f^{\ell k}\right)\right) \subset B$. Moreover, since we are supposing that none of the irreducible components of C is collapsed by f^{k}, we can use (7.10) and the Whitney Fold normal form given by Lemma A. 4 to find that $\sigma\left(z, f^{\ell k}\right) \geq d^{\ell k}$ for all $z \in B$. Using Hypothesis (i), it follows from Lemma 7.4 that that B contains a point of $I\left(f^{\ell k}\right)$.

For each $0 \leq j<\ell k$ we let $B_{j}:=\overline{f^{j}\left(B \backslash I\left(f^{j}\right)\right)}$, which is a non-trivial irreducible algebraic curve that is not collapsed by f. Proposition 5.10 gives that at most finitely many points of B_{j} are in $D_{>d}$. Thus, in order to have $\sigma\left(z, f^{\ell k}\right)=d^{\ell k}$ for generic points of B, we must have that $B_{j} \subset D_{\geq d}$ for each $1 \leq j \leq \ell k$. Hypothesis (ii) implies that B_{j} is disjoint from $I(f)$ for each $0 \leq j<\ell k$, contradicting that B contains a point of $I\left(f^{\ell k}\right)$.

We can therefore let $C^{\prime} \subset C$ denote the (non-trivial) union of all irreducible components of C that are collapsed by some iterate of f^{k}. Since each of these components passes through the regular periodic point z_{0}, each of them collapses to z_{0}. Since C is backward invariant under f^{k}, C^{\prime} is also backward invariant under f^{k}.

Suppose for contradiction that z_{0} is a smooth point of C^{\prime}. Since every irreducible component of C passes through z_{0}, this implies that C^{\prime} is itself irreducible. In particular, backward invariance of C^{\prime} under f^{k} implies that

$$
\begin{equation*}
\left(f^{k}\right)^{*}\left(C^{\prime}\right)=d^{k}\left(C^{\prime}\right) \tag{7.11}
\end{equation*}
$$

Then we can choose local coordinates (x, y) centered at z_{0} such that $C^{\prime}=\{x=0\}$. Write f^{k} in these local coordinates as

$$
\begin{equation*}
f^{k}(x, y)=\left(f_{1}^{k}(x, y), f_{2}^{k}(x, y)\right) \tag{7.12}
\end{equation*}
$$

Equation (7.11) implies that $f_{1}^{k}(x, y)=x^{d^{k}} g(x, y)$ for some non-vanishing holomorphic function g. From this, it is immediate that f^{k} contracts the volume of a small bidisc centered along C^{\prime} with exponent d^{k}, i.e. that for ever $z \in C^{\prime}$ we have $\sigma\left(z, f^{k}\right) \geq d^{k}$.

Let z_{0}, \ldots, z_{k-1} denote the periodic orbit of z_{0}. Moreover, let $1 \leq j_{0} \leq k$ be the smallest iterate for which C^{\prime} is collapsed by f^{j}. For each $0 \leq j<j_{0}$ we let

$$
C_{j}^{\prime}:=\overline{f^{j}\left(C^{\prime} \backslash I\left(f^{j}\right)\right)}
$$

Then $C_{j_{0}-1}^{\prime}$ is collapsed by f and $z_{j_{0}} \in I^{-}(f)$, by definition. By Hypothesis (iii), we have $\sigma\left(z_{j}, f\right) \leq d$ for each $0 \leq j \leq k-1$. Meanwhile, for each $0 \leq j \leq j_{0}-1$ the curve $C_{j}^{\prime} \not \subset D_{>d}$, by Proposition 7.2. Therefore, in order to have $\sigma\left(z, f^{k}\right) \geq d^{k}$ for every $z \in C^{\prime}$ we must have $C_{j_{0}-1}^{\prime} \subset D_{\geq d}$. This contradicts Hypothesis (ii) since $C_{j_{0}-1}^{\prime}$ contains a point of $I(f)$, by Lemma A.1.

Therefore, z_{0} is a singular point of C^{\prime}. We now use this to show that z_{0} is superattracting. Let (x, y) be local holomorphic coordinates centered at z_{0} and suppose that C^{\prime} is given in these coordinates as $C^{\prime}=\{q(x, y)=0\}$ for some holomorphic function q (more specifically, we choose q so that it defines the divisor $\left(C^{\prime}\right)$ with multiplicity one). Since z_{0} is a singular point of C^{\prime} we have

$$
\begin{equation*}
q(0,0)=\frac{\partial q}{\partial x}(0,0)=\frac{\partial q}{\partial y}(0,0)=0 \tag{7.13}
\end{equation*}
$$

Let $\ell \geq 1$ be chosen so that $f^{\ell k}\left(C^{\prime} \backslash I\left(f^{\ell k}\right)\right)=z_{0}$. Writing $f^{\ell k}(x, y)=\left(f_{1}^{\ell k}(x, y), f_{2}^{\ell k}(x, y)\right)$ in these local coordinates we have that

$$
\begin{equation*}
f_{1}^{\ell k}(x, y)=q(x, y) g_{1}(x, y) \quad \text { and } \quad f_{2}^{\ell k}(x, y)=q(x, y) g_{2}(x, y) \tag{7.14}
\end{equation*}
$$

for some holomorphic functions $g_{1}(x, y)$ and $g_{2}(x, y)$. Equations (7.13) and (7.14) imply that $D f^{\ell k}(0,0)=\mathbf{0}$, i.e. that z_{0} is a superattracting periodic point. We conclude that $z_{0} \in \mathcal{E}(b)$.
7.4. Behavior of the volume exponent σ under iteration. The exponents $\sigma(z, f)$ do not transform very well under iteration: if an iterate of z lands on $I(f)$, this leads to many different orbits of z, all of which we need to control. Let $Y \subset \mathbb{C P}^{2}$. Given a sequence of open sets $N_{0}, \ldots, N_{n-1} \subset \mathbb{C P}^{2}$ let

$$
\begin{aligned}
f_{N_{0}, N_{1}, \ldots, N_{n-1}}^{-n}(Y)= & \left\{z_{0} \in N_{0}: \text { there exists orbit } \boldsymbol{z}=\left(z_{0}, z_{1}, \ldots, z_{n}\right)\right. \\
& \text { with } \left.z_{i} \in N_{i} \text { for } 1 \leq i \leq n-1 \text { and } z_{n} \in Y\right\}
\end{aligned}
$$

If $\boldsymbol{z}=\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)$ is an orbit of f we let $\sigma\left(\boldsymbol{z}, f^{n}\right) \equiv \sigma\left(z_{0}, z_{1}, \ldots, z_{n-1}, f^{n}\right)$ be the smallest positive number such that for any $\gamma>\sigma\left(\boldsymbol{z}, f^{n}\right)$ there is an $K>0$ and neighborhoods N_{0}, \ldots, N_{n-1} of z_{0}, \ldots, z_{n-1} such that

$$
\begin{equation*}
\operatorname{vol}\left(f_{N_{0}, \cdots, N_{n-1}}^{-n} Y\right) \leq K(\operatorname{vol} Y)^{1 / \gamma} \tag{7.15}
\end{equation*}
$$

for any measurable $Y \subset \mathbb{C P}^{2}$.
It is clear from the definition that for any orbit z_{0}, \ldots, z_{n-1} and any $1 \leq k \leq n-1$

$$
\begin{aligned}
& \sigma\left(z_{0}, z_{1}, \ldots, z_{n-1}, f^{n}\right) \leq \sigma\left(z_{0}, \ldots, z_{k-1}, f^{k}\right) \sigma\left(z_{k}, \ldots, z_{n-1}, f^{n-k}\right) \quad \text { and } \\
& \sigma\left(z_{0}, z_{1}, \ldots, z_{n-1}, f^{n}\right) \leq \sigma\left(z_{0}, f^{n}\right)
\end{aligned}
$$

where the exponent on the right hand side of the second inequality is from (1.4).
Lemma 7.8. For any $z_{0} \in \mathbb{C P}^{2}$ we have

$$
\begin{equation*}
\sigma\left(z_{0}, f^{n}\right) \leq \sup _{z} \sigma\left(\boldsymbol{z}, f^{n}\right), \tag{7.16}
\end{equation*}
$$

where the supremum is taken over all orbits $\boldsymbol{z}=\left(z_{0}, \ldots, z_{n-1}\right)$.
Proof. Since the indeterminate points of f^{i} for each $1 \leq i \leq n$ are isolated, we can find a neighborhood V of z_{0} containing no indeterminate points for each f^{i} other than (potentially) z_{0}. We do a finite sequence of blow-ups over z_{0} forming $\pi: \widetilde{V} \rightarrow \mathbb{C P}^{2}$ so that for each $1 \leq i \leq n$ the iterate f^{i} lifts to a regular map \widetilde{f}^{i} making the diagram

commute wherever $f^{i} \circ \pi$ is defined.
Let γ be any exponent greater than $\sup _{\boldsymbol{z}} \sigma\left(\boldsymbol{z}, f^{n}\right)$. Any point $\tilde{z} \in \pi^{-1}(z)$ determines the following orbit of length n of z :

$$
\begin{equation*}
z \equiv\left(z_{0}, \ldots, z_{n-1}\right):=\left(z, \widetilde{f^{1}}(\tilde{z}), \ldots, \widetilde{f^{n-1}}(\tilde{z})\right) . \tag{7.17}
\end{equation*}
$$

By choice of γ, there is a is a sequence of neighborhoods $U_{0}(\boldsymbol{z}), \ldots, U_{n-1}(\boldsymbol{z})$ of z_{0}, \ldots, z_{n-1}, respectively, so that (7.15) holds. Associated to this sequence is a neighborhood $\widetilde{U}(\boldsymbol{z})$ of \tilde{z} such that for any $Y \subset \mathbb{C P}^{2}$ we have

$$
\begin{equation*}
f_{U_{0}(z), \ldots, U_{n-1}(\boldsymbol{z})}^{-n} Y=\pi\left(\left(\widetilde{f^{n}}\right)^{-1} Y \cap \widetilde{U}(\boldsymbol{z})\right) . \tag{7.18}
\end{equation*}
$$

Since $\pi^{-1}\left\{z_{0}\right\}$ is compact, there exist finitely many length n orbits $\boldsymbol{z}^{1}, \ldots, \boldsymbol{z}^{\ell}$ of z_{0} whose neighborhoods $\widetilde{U}\left(\boldsymbol{z}^{1}\right), \ldots, \widetilde{U}\left(\boldsymbol{z}^{1}\right)$ cover $\pi^{-1}\left(z_{0}\right)$. If we let $U=\bigcup_{i=1}^{\ell} \pi\left(\tilde{U}\left(\boldsymbol{z}^{i}\right)\right)$ then (7.18) implies that for any $Y \subset \mathbb{C P}^{2}$ we have

$$
f^{-n}(Y) \cap U \subset \bigcup_{i=1}^{\ell} f_{U_{0}\left(\boldsymbol{z}^{i}\right), \ldots, U_{n-1}\left(z^{i}\right)}^{-n} Y .
$$

The result follows since each $f_{U_{0}\left(z^{i}\right), \ldots, U_{n-1}\left(z^{i}\right)}^{-n} Y$ satisfies (7.15) with some suitable multiplicative constant.

We will also use a modified notation $\sigma(z, f, W)$ for the volume exponent in the case that we require that (1.4) only holds for measurable $Y \subset W$. A straightforward adaptation of the proof of Lemma 7.8 yields:
Lemma 7.9. Let $\Omega \subset \mathbb{C P}^{2}$ be a forward invariant open set. For any $z_{0} \in \mathbb{C P}^{2} \backslash \Omega$ we have

$$
\begin{equation*}
\sigma\left(z_{0}, f^{n}, \mathbb{C P}^{2} \backslash \Omega\right) \leq \sup _{z} \sigma\left(\boldsymbol{z}, f^{n}\right) \tag{7.19}
\end{equation*}
$$

where the supremum is taken over all orbits $\boldsymbol{z}=\left(z_{0}, \ldots, z_{n-1}\right) \subset \mathbb{C P}^{2} \backslash \Omega$.
7.5. Proof of Proposition 7.1. Let Ω be any forward invariant neighborhood of the exceptional set \mathcal{E}. We will prove that there exist $B>0$ and $1<\alpha<d$ such that for any $n \geq 0$ and any finite orbit z_{0}, \ldots, z_{n-1} remaining in $\mathbb{C P}^{2} \backslash \Omega$ we have

$$
\begin{equation*}
\sigma\left(z_{0}, \ldots, z_{n-1}, f^{n}\right) \leq B \alpha^{n} \tag{7.20}
\end{equation*}
$$

We can then let n_{0} be sufficiently large that $\tau:=B \alpha^{n_{0}}<d^{n_{0}}$. Then Lemma 7.9 will imply that $\sigma\left(z_{0}, f^{n_{0}}, \mathbb{C P}^{2} \backslash \Omega\right)<\tau$ for any $z_{0} \in \mathbb{C P}^{2} \backslash \Omega$. Since $\mathbb{C P}^{2} \backslash \Omega$ is compact, it is then covered by finitely many neighborhoods such that on each neighborhood N we have

$$
\operatorname{vol}\left(f^{-n_{0}} Y \cap N\right) \leq K_{N}(\operatorname{vol} Y)^{1 / \tau}
$$

which will therefore prove the proposition.
To prove (7.20), we consider three types of finite orbits.
Type I: Periodic orbits that pass through $D_{>d} \backslash \mathcal{E}$.
Let p be any point from such an orbit. We could ${ }^{11}$ have $\sigma\left(f^{n}(p), f\right) \geq d$ for every $n \geq 0$, but the hypothesis that $p \notin \mathcal{E}$ and the results of $\S 7.2$ and $\S 7.3$ will imply that $\sigma\left(p, f^{n}\right)$ decays sufficiently as we iterate and indeed grows at exponential rate slower than d.

By Hypothesis (iii), p is a regular periodic point, i.e. the orbit of p is disjoint from $I(f)$. Since $p \notin \mathcal{E}(a)$ it is not maximally superattracting, $c_{\infty}(p, f)<d$. Therefore, since $p \notin \mathcal{E}(b)$, Corollary 7.6 and Proposition 7.7 imply that $\mu_{\infty}(p, f)<d$. Using the volume estimate from Lemma 5.2, this implies that $\lim \sup \left(\sigma\left(p, f^{n}\right)\right)^{1 / n}<d$. Hence, (7.20) holds for such an orbit.
Type II: Periodic orbits contained in $\mathcal{N}_{\geq d} \backslash \mathcal{E}$.
Recall that $\mathcal{N}_{\geq d} \subset D_{\geq d}$ is finite and forward invariant by Proposition 7.3. It is disjoint from $I(f)$ by Hypothesis (ii). Inequality (7.20) holds for these orbits using exactly the same reasoning as for orbits of Type I.
Type III: Finite orbits $\boldsymbol{z}=\left(z_{0}, \ldots, z_{n-1}\right) \subset \mathbb{C P}^{2} \backslash \Omega$ that are disjoint from orbits of Type I and Type II.

Let k denote the number of elements of $\mathcal{N}_{\geq d}$, which is finite and forward invariant by Proposition 7.3. Since $\mathcal{N}_{\geq d}$ is forward invariant and orbit \boldsymbol{z} is disjoint from periodic orbits of Type II, we have $z_{0}, \ldots, z_{n-k-1} \notin \mathcal{N}_{\geq d}$. Moreover, Proposition 7.3 gives $N \in \mathbb{N}$ such that at least one out of every N points of z_{0}, \ldots, z_{n-k-1} is "good", landing in $\mathbb{C P}^{2} \backslash D_{\geq d}$. Moreover, Lemma 5.9 gives a uniform $1 \leq \sigma_{0}<d$ such that $\sigma(p, f) \leq \sigma_{0}$ for these "good" points.

Let ℓ denote the number of elements of $D_{>d}$, which is finite by Proposition 7.2. Since orbit \boldsymbol{z} is disjoint from periodic orbits of Type I, it can only meet $D_{>d}$ at most ℓ times. In other words, $\sigma\left(z_{i}, f\right)>d$ for at most ℓ values of $0 \leq i \leq n-1$. If we absorb the excess $\sigma\left(z_{i}, f\right) / d>1$ from these at most k points into the multiplicative constant B, then the previous paragraph implies that (7.20) holds for an orbit of Type III.

Let is now consider an arbitrary finite orbit $\boldsymbol{z}=\left(z_{0}, \ldots, z_{n-1}\right) \subset \mathbb{C P}^{2} \backslash \Omega$. If it is not of Type I, II, or III, then there is some $0<m<n-1$ such that $\left(z_{0}, \ldots, z_{m-1}\right)$ is of Type III and $\left(z_{m}, \ldots, z_{n-1}\right)$ is of either Type I or II. Inequality (7.20) holds for such an orbit using the submultiplicativity

$$
\sigma\left(z_{0}, \ldots, z_{n-1}, f^{n}\right) \leq \sigma\left(z_{0}, \ldots, z_{m-1}, f^{m}\right) \sigma\left(z_{m}, \ldots, z_{n-1}, f^{n-m}\right)
$$

This completes the proof of Proposition 7.1 and hence of the Equidistribution Theorem.

[^10]7.6. A useful proposition for determining \mathcal{E}. It is easy to detect collapsed curves by checking each irreducible component of the critical locus, so it is usually easy to determine $\mathcal{E}(b)$. The following proposition makes it easier to determine $\mathcal{E}(a)$.

Proposition 7.10. Let $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ satisfy the hypotheses of the Equidistribution Theorem. Then any maximally superattracting periodic orbit (i.e. any point of $\mathcal{E}(a))$ has orbit passing through $D_{\geq d}$. Moreover, it either
(i) passes through the finite set $D_{>d}$, or
(ii) is contained entirely in the finite non-escaping set $\mathcal{N}_{\geq d} \subset D_{\geq d}$.

Proof. Suppose z_{0} is a maximally superattracting periodic point so that $d=c_{\infty}\left(z_{0}, f\right)$, by definition. Iterating a round ball of small radius centered at z_{0}, this implies that $\lim \inf \left(\sigma\left(p, f^{n}\right)\right)^{1 / n}=d$. Using the submultiplicativity of the volume exponent σ, the only way this can happen is if (i) or (ii) holds.

8. Applications of the Equidistribution Theorem to OTHER HIERARCHICAL LATTICES

We now consider the Migdal-Kadanoff renormalization mappings associated to the five hierarchical lattices whose generating graphs are shown in Figure 1.4 (in the introduction).
8.1. Linear Chain. The hierarchical lattice generated by the double edge shown in Figure 1.4 is the same as the classical \mathbb{Z}^{1} lattice. The corresponding renormalization mapping is

$$
R[U: V: W]=\left[U^{2}+V^{2}: V(U+W): W^{2}+V^{2}\right]
$$

Its critical locus consists of the curves $C_{1}:=\{U+W=0\}$ and $C_{2}:=\left\{U W-V^{2}=0\right\}$. Generic points z on each of these curves have volume exponent $\sigma(z, R)=2=\operatorname{deg}(R)$. Since these two curves meet at the indeterminate points $a_{ \pm}:=[\pm i: 1: \mp i]$, this implies that $\sigma\left(a_{ \pm}, R\right)=\operatorname{deg}(R)$, violating Hypothesis (ii) of the Equidistribution Theorem.

Despite this, the Global LYF Theorem holds for this hierarchical lattice. Let \mathcal{F} denote the family of lines passing through the fixed point $[1: 0: 1]$. Each line $L \in \mathcal{F}$ is invariant under R and all but finitely many lines from \mathcal{F} intersect C_{2} at two distinct points, neither of which is the intersection of the Principal LYF Locus $S_{0}=\{U+2 V+W=0\}$ with C_{2}. For such generic lines L we have $\left.R\right|_{L}(z)=z^{2}$ in a suitable choice of local coordinate z. The exceptional points $z=0$ and $z=\infty$ correspond to the intersections of L with the conic C_{2} and $S_{0} \cap L$ corresponds to a non-exceptional point. Therefore, for all but finitely many $L \in \mathcal{F}$ we have that the (normalized) iterated preimages of $S_{0} \cap L$ equidistribute to the measure of maximal entropy for $\left.R\right|_{L}$, see [Ly1, Ly2, FLM], which is equal to the slice $\left.S\right|_{L}$, where S is the Green current for R. This is sufficient to prove that $\frac{1}{2^{n}}\left(R^{n}\right)^{*}\left[S_{0}\right] \rightarrow S$. Pulling everything back under Ψ one finds that the Global LYF Theorem holds for this hierarchical lattice.
8.2. k-fold DHL. One can consider a generalization of the DHL with the generating graph having valence $k \geq 2$ at the marked vertices a and b; see Figure 1.4. The renormalization mapping is

$$
R[U: V: W]=\left[\left(U^{2}+V^{2}\right)^{k}: V^{k}(U+W)^{k}:\left(W^{2}+V^{2}\right)^{k}\right]
$$

whose lift $\hat{R}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ has Jacobian

$$
\operatorname{det} D \hat{R}=2^{2} k^{3} V^{k-1}\left(U W-V^{2}\right)(U+W)^{k}\left(U^{2}+V^{2}\right)^{k-1}\left(W^{2}+V^{2}\right)^{k-1}
$$

In particular, the critical locus of R is the same as for the DHL (see $\S 3.5$). However, when considered as a divisor, the curves have higher multiplicities, depending on k.

This mapping has the same indeterminate points as for the DHL; $I(R)=\left\{a_{ \pm}\right\}$. Since $I(R) \neq \emptyset$, Hypothesis (i) is satisfied. The mapping R also has the same superattracting fixed points $\left\{e, e^{\prime}\right\}$. Just as in $\S 6.1$, one can check that for any $z \in \mathbb{C P}^{2} \backslash\left\{e, e^{\prime}\right\}$ one has $\sigma(z, R)<2 k=\operatorname{deg}(R)$. Therefore, $\sigma\left(a_{ \pm}\right)<\operatorname{deg}(R)$, giving that Hypothesis (ii) is satisfied. Meanwhile, the only curve collapsed by R is $\{U+W=0\}$, which is collapsed to the fixed point $b_{0}:=[1: 0: 1] \notin\left\{e, e^{\prime}\right\}$. Since $D_{>d} \subset\left\{e, e^{\prime}\right\}$ it is invariant under R and disjoint from $I(R) \cup I^{-}(R)=\left\{a_{ \pm}, b_{0}\right\}$, Hypothesis (iii) is also satisfied.

We now determine the exceptional set \mathcal{E}. Since $D_{\geq d} \subseteq\left\{e, e^{\prime}\right\}$ and since $\left\{e, e^{\prime}\right\}$ is invariant, Proposition 7.10 gives that any point of $\mathcal{E}(a)$ is from $\left\{e, e^{\prime}\right\}$. As for the DHL, the curve $\left\{U W-V^{2}=0\right\}$ is invariant and on it R is conjugate to $z \mapsto z^{k}$, with $z=0$ and $z=\infty$ corresponding to the superattracting fixed points e and e^{\prime}, respectively. Therefore, $c_{\infty}(e, R)=c_{\infty}\left(e^{\prime}, R\right)=k<2 k=\operatorname{deg} R$, giving that these points are not maximally superattracting. Therefore, $\mathcal{E}(a)=\emptyset$. Meanwhile, the fixed point $b_{0} \in I^{-}(R)$ is not superattracting, so $\mathcal{E}(b)=\emptyset$.

Therefore, the Equidistribution Theorem gives that the (normalized) iterated preimages of any algebraic curve $A \subset \mathbb{C P}^{2}$ equidistribute to the Green Current for R. In particular, the Global Lee-Yang-Fisher Current Theorem holds for the k-fold DHL.
8.3. Triangles. The renormalization mapping for the hierarchical lattice generated by the triangle shown in Figure 1.4 is:

$$
R[U: V: W]=\left[U^{3}+U V^{2}: U V^{2}+V^{2} W: V^{2} W+W^{3}\right]
$$

The lift $\hat{R}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ has Jacobian

$$
\operatorname{det} D \hat{R}=6 V(U+W)\left(U^{2} V^{2}+3 U^{2} W^{2}-V^{2} W U+V^{2} W^{2}\right)
$$

so that the critical locus is the union of two lines and a quartic:

$$
\begin{aligned}
L_{1} & :=\{V=0\} \\
L_{2} & :=\{U+W=0\}, \text { and } \\
Q & :=\left\{U^{2} V^{2}+3 U^{2} W^{2}-U V^{2} W+V^{2} W^{2}\right\},
\end{aligned}
$$

each with multiplicity one.
Hypothesis (i) is satisfied because the indeterminacy locus $I(R)$ is non-empty, consisting of three points: $p:=[0: 1: 0]$ and $q_{ \pm}:=[\pm i: 1: \mp i]$. Point p is resolved in one blow-up. In a neighborhood of $L_{\text {exc }}(p)$ the lifted map \tilde{R} has critical locus consisting of $L_{\text {exc }}(p)$ and the proper transforms $\tilde{L_{2}}$ and \tilde{Q}, each with multiplicity one. Moreover, $\tilde{L_{2}}$ and \tilde{Q} intersect $L_{\mathrm{exc}}(p)$ at three distinct points, each of which is a normal crossing singularity. Therefore, Lemma 5.5 gives that any point $z \in L_{\mathrm{exc}}(p)$ has $\sigma(z, \tilde{R})=2$. Proposition 5.8 then gives $\sigma(p, R)=2<\operatorname{deg}(R)$.

Both of the indeterminate points $q_{ \pm}$are also resolved with one blow-up. The lift \tilde{R} does not have $L_{\text {exc }}\left(q_{ \pm}\right)$as a critical curve. The proper transforms $\tilde{L_{2}}$ and \tilde{Q} become disjoint and smooth in a neighborhood of the exceptional divisor $L_{\text {exc }}\left(q_{ \pm}\right)$, so that $\operatorname{det} D \tilde{R}$ has multiplicity 0 or 1 at every point of $L_{\text {exc }}\left(q_{ \pm}\right)$. Lemma 5.2 and Proposition 5.8 then imply that $\sigma\left(q_{ \pm}, R\right)=2<\operatorname{deg}(R)$. We conclude that Hypothesis (ii) is satisfied.

We now check Hypothesis (iii). Since each of the critical curves has multiplicity one, Lemma 5.2 gives that $\sigma(z, R) \leq 2$ at every smooth point of the critical locus. Let $r:=[1: 0:-1]=L_{1} \cap L_{2}$. Then the singular points of the critical locus are $\left\{r, e, e^{\prime}\right\} \cup$
$I(R)$. Moreover, one can choose local coordinates (x, y) in a neighborhood of r such that $\operatorname{det} D R \asymp x y$. Hence Lemma 5.5 gives $\sigma(r, R)=2$, so that $r \notin D_{\geq d}$. Thus, $D_{\geq d} \subset\left\{e, e^{\prime}\right\}$ is therefore invariant under R.

Both L_{1} and Q go through two superattracting fixed points $e:=[1: 0: 0]$ and $e^{\prime}:=[0: 0: 1]$, so they are not collapsed by R. Meanwhile, a direct calculation shows that L_{2} is collapsed by R to $s:=[1: 0:-1] \in I^{-}(R)$, which is a fixed point of R. Since $D_{\geq d}$ is invariant under R and disjoint from $I(R) \cup I^{-}(R)=\left\{p, q_{ \pm}, s\right\}$, Hypothesis (iii) is satisfied.

By Proposition 7.10, any point of $\mathcal{E}(a)$ passes through $D_{\geq d} \subset\left\{e, e^{\prime}\right\}$, which is invariant under R. Moreover, the fixed points e and e^{\prime} are not maximally superattracting since the curve $\left\{U W-V^{2}=0\right\}$ is invariant for this renormalization mapping as well, and on it R is conjugate to $z \mapsto z^{2}$. Therefore, $\mathcal{E}(a)=\emptyset$. The only point of $I^{-}(R)$ is the fixed point s, which is not superattracting. Therefore, $\mathcal{E}(b)=\emptyset$.

Thus, the Equidistribution Theorem gives that the (normalized) iterated preimages of any algebraic curve A equidistribute to the Green current for R. In particular, the Global Lee-Yang-Fisher Current Theorem also holds for the hierarchical lattice generated by the triangle.
8.4. Tripod. The renormalization mapping for the hierarchical lattice generated by the tripod shown in Figure 1.4 is:

$$
\begin{aligned}
& R[U: V: W]= \\
& {\left[U^{3}+U^{2} V+V^{3}+V^{2} W: V\left(U^{2}+U V+V W+W^{2}\right): U V^{2}+V^{3}+V W^{2}+W^{3}\right]}
\end{aligned}
$$

which has indeterminacy set $I(R)=\left\{[\omega: 1: \bar{\omega}]: \omega^{3}=-1\right\}$.
One can resolve the indeterminacy point $p=[-1: 1:-1]$ by doing three blow-ups, each one on done on the previously created exceptional divisor. When one applies Lemmas 5.2, 5.5, and Proposition 5.8 one finds $\sigma(p, R) \geq 3=\operatorname{deg}(R)$. Therefore, Hypothesis (ii) of the Equidistribution Theorem fails for this mapping. In particular, we do not know if the Global Lee-Yang-Fisher Current Theorem holds for the hierarchical lattice generated by the tripod.
8.5. Split Diamond. The renormalization mapping for the hierarchical lattice generated by the split diamond shown in Figure 1.4 is:

$$
R[U: V: W]=\left[U^{5}+2 U^{2} V^{3}+V^{4} W: V^{2}\left(U^{3}+2 U V W+W^{3}\right): U V^{4}+2 V^{3} W^{2}+W^{5}\right] .
$$

The lift $\hat{R}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ has Jacobian

$$
\begin{align*}
\operatorname{det} D \hat{R}= & 10 V\left(U W-V^{2}\right) \tag{8.1}\\
& \left(4 V^{3} U^{6}+5 W^{3} U^{6}+5 V^{2} W^{2} U^{5}+5 V^{4} W U^{4}+15 V W^{4} U^{4}\right. \\
& +V^{6} U^{3}+5 V^{3} W^{3} U^{3}+5 W^{6} U^{3}+5 V^{5} W^{2} U^{2}+5 V^{2} W^{5} U^{2} \\
& \left.-V^{7} W U+5 V^{4} W^{4} U+V^{6} W^{3}+4 V^{3} W^{6}\right)
\end{align*}
$$

One can check that $I(R)=\left\{[0: 1: 0],[\omega: 1: \bar{\omega}]: \omega^{3}=-1\right\}$. Each of these indeterminate points requires three blow-ups to resolve. One can work through the details in Maple and check that the lifted mappings have Jacobian of the form $\operatorname{det} D \tilde{R} \asymp x^{a} y^{b}$ with $\max (a, b) \leq 3$ at each of the points on each of the exceptional divisors. Thus, Lemma 5.5 and Proposition 5.8 give $\sigma(p, R)=4<\operatorname{deg}(R)$ for each $p \in I(R)$. Therefore, Hypotheses (i) and (ii) are satisfied.

Let us check Hypothesis (iii). Since each of the critical curves has multiplicity 1, we have $\sigma(p, R) \leq 2$ for any point outside the singular locus of the critical set. Meanwhile, each of the intersections of any two of the three critical curves and each of the singular points of C_{3}
lie in $I(R) \cup\left\{e, e^{\prime}\right\}$. We conclude that $D_{\geq d} \subset\left\{e, e^{\prime}\right\}$ and is therefore invariant under R and disjoint from $I(R)$.

Each of the irreducible components of the critical locus (corresponding to the three factors of (8.1)) passes through the two superattracting fixed points $e=[1: 0: 0]$ and $e^{\prime}=[0: 1: 0]$ of R and therefore there are no curves collapsed by R. Therefore, $I^{-}(R)=\emptyset$. Since $D_{\geq d}$ is invariant under R and disjoint from $I(R) \cup I^{-}(R)$, Hypothesis (iii) is satisfied.

Since $I^{-}(R)=\emptyset$ we have that $\mathcal{E}(b)=\emptyset$. Meanwhile, the critical curve $\left\{U W-V^{2}=0\right\}$ is invariant under R and on it R is conjugate to $z \mapsto z^{2}$, with $z=0$ and $z=\infty$ corresponding to the superattracting fixed points e and e^{\prime}, respectively. Therefore, $c_{\infty}(e, R)=c_{\infty}\left(e^{\prime}, R\right)=$ $2<5=\operatorname{deg} R$, giving that these points are not maximally superattracting. Therefore, we also have that $\mathcal{E}(a)=\emptyset$ and the Equidistribution Theorem gives that the (normalized) iterated preimages of any algebraic curve $A \subset \mathbb{C P}^{2}$ equidistributes to the Green Current for R. In particular, the Global Lee-Yang-Fisher Current Theorem also holds for the hierarchical lattice generated by the split diamond.

Appendix A. Elements of Complex Geometry

This appendix presents background on the material from complex geometry that we need beyond what is described in [BLR, Appendix A]. We refer the reader there for background on rational maps, blow-ups, and divisors.
A.1. Structure of rational maps $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$. Throughout this subsection, we suppose $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ is a dominant rational map of degree $d \geq 2$.

There is a finite sequence of blow-ups $\pi: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ done over the points of the indeterminacy set $I(f)$ so that f lifts to a regular map $\tilde{f}: \widetilde{\mathbb{C P}^{2}} \rightarrow \mathbb{C P}^{2}$, making the following diagram commute

wherever $f \circ \pi$ is defined (see [Shaf, Ch. IV, $\S 3.3]$). We call such a commutative diagram a resolution of the indeterminacy of f.

For any $Y \subset \mathbb{C P}^{2}$ one can use the resolution of indeterminacy (A.1) to define

$$
\begin{equation*}
f(Y):=\tilde{f}\left(\pi^{-1}(Y)\right) \quad \text { and } \quad f^{-1}(Y):=\pi\left(\tilde{f}^{-1}(Y)\right) \tag{A.2}
\end{equation*}
$$

These definitions are independent of the choice of resolution.
The following two lemmas are well-known; see for example [FS1]:
Lemma A.1. Any curve that is collapsed by f passes through $I(f)$.
Let $\operatorname{Crit}(f)$ denote the critical locus of $\left.f\right|_{\mathbb{C P}^{2} \backslash I(f)}$ and let $V:=f(I(f) \cup \operatorname{Crit}(f))$. Then the mapping

$$
\left.f\right|_{\mathbb{C P}^{2} \backslash f f^{-1}(V)}: \mathbb{C P}^{2} \backslash f^{-1}(V) \rightarrow \mathbb{C P}^{2} \backslash V
$$

is a finite degree covering map. The topological degree $d_{\mathrm{top}}(f)$ is the degree of this cover.
Lemma A.2. If $I(f) \neq \emptyset$, then $\operatorname{deg}_{\text {top }}(f)<d^{2}$.

Remark A.3. Let $\hat{f}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ denote a homogeneous lift of f. Then the complex Jacobian $\operatorname{Jac}(\hat{f}):=\operatorname{det} D \hat{f}$ is a homogeneous polynomial of degree $3(d-1)$. It induces a divisor $\operatorname{Jac}(f)$ on $\mathbb{C P}^{2}$ of the same degree.

Lemma A. 4 (Whitney Fold Normal Form ${ }^{12}$). Suppose C is an irreducible component of the critical locus that is not collapsed by f. Then there is a finite set $S \subset C$ and $r \equiv r_{C} \in \mathbb{Z}_{+}$ such that for any $p \in C \backslash S$ there exist local holomorphic coordinates (x, y) in a neighborhood of p and (z, w) in a neighborhood of $f(p)$ in which

$$
(z, w)=f(x, y)=\left(x, y^{r}\right)
$$

In particular, at every $p \in C \backslash S$ we have $\sigma(p, f)=e(p, f)=r$ and for every $p \in C$ we have $\sigma(p, f) \geq r$.
(The volume exponent $\sigma(p, f)$ is defined in $\S 1.3$ and the local topological degree $e(p, f)$ in §7.1.)

Proof. We include the following points from C in S :
(i) singular points of the critical locus of f,
(ii) points $p \in C$ for which $T_{p} C \subset \operatorname{Ker} D f(p)$, and
(iii) points of $I(f)$.

Since C is not collapsed by f, the set S is finite and, since C is irreducible, $C \backslash S$ is connected. Essentially the same proof as the characterization of Whitney Folds presented in Lemma D. 2 of [BLR] gives that for each point p_{0} satisfying (i) - (iii) we can find local coordinates in some neighborhoods of p_{0} and $f\left(p_{0}\right)$ in which the map has the normal form $(z, w)=f(x, y)=$ $\left(x, y^{r}\right)$ for some integer $r \geq 2$. Moreover, as $C \backslash S$ is connected, we see that the exponent r is constant on $C \backslash S$. From the normal form and Lemma 5.2, we see that at every point of $C \backslash S$ we have $\sigma(p, f)=\mu(p, f)+1=e(p, f)=r$. The fact that $\sigma(p, f) \geq r$ for every $p \in \mathbb{C}$ is because $D_{\geq r}$ is algebraic, by Lemma 5.9.
A.2. Hyperplane bundle. The hyperplane bundle and its tensor powers provide a convenient way to work with divisors on $\mathbb{C P}^{k}$.

The fibers of $\pi: \mathbb{C}^{k+1} \backslash\{0\} \rightarrow \mathbb{C} \mathbb{P}^{k}$ are punctured complex lines \mathbb{C}^{*}. Compactifying each of these lines at infinity, we add to $\mathbb{C}^{k+1} \backslash\{0\}$ the line at infinity $L_{\infty} \approx \mathbb{C P}^{k}$ obtaining the total space

$$
\left(\mathbb{C}^{k+1}\right)^{*} \cup L_{\infty} \approx\left(\mathbb{C P}^{k+1}\right)^{*}:=\mathbb{C P}^{k+1} \backslash\{0\}
$$

The projection naturally extends to $\pi:\left(\mathbb{C P}^{k+1}\right)^{*} \rightarrow \mathbb{C P}^{k}$, whose fibers are complex lines \mathbb{C}. The resulting line bundle is called the hyperplane bundle over $\mathbb{C P}^{k}$.

In homogeneous coordinates $\left(z_{0}: \cdots: z_{k}: t\right)$ on $\mathbb{C P}^{k+1}$, this projection is just

$$
\begin{equation*}
\pi:\left(z_{0}: \cdots: z_{k}: t\right) \mapsto\left(z_{0}: \cdots: z_{k}\right) \tag{A.3}
\end{equation*}
$$

with $L_{\infty}=\{t=0\},\left(\mathbb{C}^{k+1}\right)^{*}=\{t=1\}$, and the map $(z: t) \mapsto t /\|z\|$ parameterizing the fibers (here $\|z\|$ stands for the Euclidean norm of $\left.z \in \mathbb{C}^{k+1} \backslash\{0\}\right)$. This line bundle is endowed with the natural Hermitian structure: $\|(z: t)\|=|t| /\|z\|$.

Any non-vanishing linear form Y on \mathbb{C}^{k+1} determines a section of the hyperplane bundle:

$$
\begin{equation*}
s_{Y}: z \mapsto(z: Y(z)), \quad z \in \mathbb{C}^{k+1} \tag{A.4}
\end{equation*}
$$

The divisor D_{Y} (a projective line counted with multiplicity 1) is precisely the zero divisor of s_{Y}.

[^11]The d th tensor power of the hyperplane bundle can be described as follows. Its total space X^{d} is the quotient of $\left(\mathbb{C}^{k+2}\right)^{*}$ by the \mathbb{C}^{*}-action

$$
\left(z_{0}, \ldots, z_{k}, t\right) \mapsto\left(\lambda z_{0}, \ldots, \lambda z_{k}, \lambda^{d} t\right), \quad \lambda \in \mathbb{C}^{*}
$$

We denote the equivalence class of (\hat{z}, t) using the "homogeneous" coordinates $(\hat{z}: t)$. The projection $X^{d} \rightarrow \mathbb{C P}^{k}$ is natural, as above (A.3). A non-vanishing homogeneous polynomial P on \mathbb{C}^{k+1} of degree d defines a holomorphic section s_{P} of this bundle given by $s_{P}(z)=(\hat{z}: P(\hat{z}))$. This bundle is endowed with the Hermitian structure:

$$
\begin{equation*}
\|(z: t)\|=|t| /\|z\|^{d} \tag{A.5}
\end{equation*}
$$

More generally, any divisor $D=D_{P}-D_{Q}$ defines a section s_{D} of the $\operatorname{deg}(D)$-th tensor power of the hyperplane bundle, defined by $s_{D}(z)=(\hat{z}: P(\hat{z}) / Q(\hat{z}))$. One can recover D from s_{D} by taking its zero divisor.
A.3. Currents. We will now give a brief background on currents; for more details see [dR, Le] and the appendices from [DS3, Si]. Currents are naturally defined on general complex (or even smooth) manifolds, however to continue our discussion of rational maps, divisors, etc, we restrict our attention to projective manifolds.

A $(1,1)$-current T on V is a continuous linear functional on $(k-1, k-1)$-forms with compact support. It can be also defined as a generalized differential (1, 1)-form $\sum T_{i j} d z_{i} d \bar{z}_{j}$ with distributional coefficients.

A basic example is the current $[A]$ of integration over the regular points $A_{\text {reg }}$ of an algebraic hypersurface A :

$$
\omega \mapsto \int_{A_{\mathrm{reg}}} \omega
$$

where ω is a test $(k-1, k-1)$-form. The current of integration over a divisor D is defined by extending linearly.

The space of currents is given the distributional topology: $T_{n} \rightarrow T$ if $T_{n}(\omega) \rightarrow T(\omega)$ for every test form ω.

A differential $(k-1, k-1)$-form ω is called positive if its integral over any complex subvariety is non-negative. A $(1,1)$-current T is called positive if $T(\omega) \geq 0$ for any positive (1,1)-form. A current T is called closed if $d T=0$, where the differential d is understood in the distributional sense.

In this paper, we focus on closed, positive (1,1)-currents. They have a simple description in terms of local potentials, rather analogous to the definition of divisors.

Recall that ∂ and $\bar{\partial}$ stand for the holomorphic and anti-holomorphic parts of the external differential $d=\partial+\bar{\partial}$. Their composition $\frac{i}{\pi} \partial \bar{\partial}$ can be ${ }^{13}$ thought of as a kind of "pluriLaplacian" because, given a C^{2}-function h, the restriction of $\frac{i}{\pi} \partial \bar{\partial} h$ to any non-singular complex curve X is equal to the form $\frac{1}{2 \pi} \Delta(h \mid X) d z \wedge d \bar{z}$, where z is a local coordinate on X and Δ is the usual Laplacian in this coordinate.

If U is an open subset of \mathbb{C}^{k} and $h: U \rightarrow[-\infty, \infty)$ is a plurisubharmonic (PSH) function, then $\frac{i}{\pi} \partial \bar{\partial} h$ is a closed $(1,1)$-current on U. Conversely, the $\partial \bar{\partial}$-Poincaré Lemma asserts that every closed, positive $(1,1)$-current on U is obtained this way.

Therefore, any closed positive $(1,1)$-current T on a manifold V can be described using an open cover $\left\{U_{i}\right\}$ of V together with PSH functions $h_{i}: U_{i} \rightarrow[-\infty, \infty)$ that are chosen so that $T=\frac{i}{\pi} \partial \bar{\partial} h_{i}$ in each U_{i}. The functions h_{i} are called local potentials for T and they are

[^12]required to satisfy the compatibility condition that $h_{i}-h_{j}$ is pluriharmonic (PH) on any non-empty intersection $U_{i} \cap U_{j} \neq \emptyset$. The support of T is defined by:
$$
\operatorname{supp} T:=\left\{z \in V: \text { if } z \in U_{j} \text { then } h_{j} \text { is not pluriharmonic at } z\right\} .
$$

The compatibility condition assures that that above set is well-defined.
The Poincaré-Lelong formula describes the current of integration over a divisor $D=\left\{U_{i}, g_{i}\right\}$ by the system of local potentials $h_{i}:=\log \left|g_{i}\right|$. I.e., on each U_{i} we have $[D]=\frac{i}{\pi} \partial \bar{\partial} \log \left|g_{i}\right|$. The result is a closed (1,1)-current, which is positive iff D is effective (i.e. the multiplicities k_{i}, \ldots, k_{r} are non-negative).

Suppose $R: V \rightarrow W$ is a dominant rational map and T is a closed-positive $(1,1)$-current on W. The pullback $R^{*} T$ is closed positive $(1,1)$-current on V, defined as follows. First, one obtains a closed positive $(1,1)$-current $R^{*} T$ defined on $V \backslash I(R)$ by pulling-back the system of local potentials defining T under $R: V \backslash I(R) \rightarrow W$. One then extends $R^{*} T$ trivially through $I(R)$, to obtain a closed, positive $(1,1)$-current defined on all of V. (By a result of Harvey and Polking [HaPo], this extension is closed.) See [Si, Appendix A.7] for further details. Pullback is continuous with respect to the distributional topology.

Similarly to divisors, there is a particularly convenient description of closed, positive $(1,1)$-currents on $\mathbb{C P}^{k}$. Associated to any PSH function $H: \mathbb{C}^{k+1} \rightarrow[-\infty, \infty)$, having the homogeneity

$$
\begin{equation*}
H(\lambda \hat{z})=m \log |\lambda|+H(\hat{z}) \tag{A.6}
\end{equation*}
$$

for some $m>0$, is a closed, positive $(1,1)$-current, denoted by $T_{H} \equiv \pi_{*}\left(\frac{i}{\pi} \partial \bar{\partial} H\right)$ that is defined as follows. For any open covering $\left\{U_{i}\right\}$ of $\mathbb{C} \mathbb{P}^{k}$ admitting local sections $s_{i}: U_{i} \rightarrow \mathbb{C}^{k+1} \backslash\{0\}$ of the canonical projection π, T_{H} is defined by the system of local potentials $\left\{U_{i}, H \circ s_{i}\right\}$. I.e., in each U_{i}, T_{H} is defined by $T_{H}=\frac{i}{\pi} \partial \bar{\partial} H \circ s_{i}$. Moreover, every closed positive (1,1)current on $\mathbb{C P}^{k}$ is described in this way; See [Si, Thm. A.5.1]. The function H is called the pluripotential of T_{H}.

The mass of the current T is defined to be

$$
\|T\|=\int_{\mathbb{C P}^{k}} T \wedge \omega_{\mathrm{FS}}^{k-1}
$$

where ω_{FS} is the Fubini-Study $(1,1)$ form on $\mathbb{C P}^{k}$ and $T \wedge \omega_{\mathrm{FS}}^{k-1}$ is the positive measure defined by $\left\langle T \wedge \omega_{\mathrm{FS}}^{k-1}, f\right\rangle:=\left\langle T, f \omega_{\mathrm{FS}}^{k-1}\right\rangle$. A calculation shows that the mass of T_{H} can be computed from the potential H as $\left\|T_{H}\right\|=m$, where m is the constant from (A.6).

If $R: \mathbb{C P}^{k} \rightarrow \mathbb{C P}^{k}$ is a rational map, the action of pull-back is described by

$$
\begin{equation*}
R^{*} T_{H}=T_{H \circ \hat{R}} \tag{A.7}
\end{equation*}
$$

If R has algebraic degree d, then the lift \hat{R} is a $k+1$-tuple of homogeneous polynomials of degree d. It follows that the mass satisfies

$$
\left\|R^{*} T_{H}\right\|=d\left\|T_{H}\right\|
$$

A.4. Kobayashi hyperbolicity and normal families. In $\S 4$ we use the Kobayashi metric in order to prove that the iterates R^{n} form a normal family on certain subspaces of $\mathbb{C P}^{2}$. Here we recall the relevant definitions and some important results that we use. The reader can consult the books [K, La] and the original papers by M. Green [G1, G2] for more details. For more dynamical applications, see e.g. [DS3, Si].

The Kobayashi pseudometric is a natural generalization of the Poincaré metric on Riemann surfaces. Let $\|\cdot\|$ stand for the Poincaré metric on the unit disk \mathbb{D}. Let M by a complex manifold. Pick a tangent vector $\xi \in T M$, and let $\mathcal{H}(\xi)$ be the family of holomorphic curves
$\gamma: \mathbb{D} \rightarrow M$ tangent to the line $\mathbb{C} \cdot \xi$ at $\gamma(0)$. Then $D f(v)=\xi$ for some $v \equiv v_{\gamma} \in T_{0} \mathbb{D}$, and the Kobayashi pseudometric is defined to be:

$$
\begin{equation*}
d s_{M}(\xi)=\inf _{\gamma \in \mathcal{H}(\xi)}\left\|v_{\gamma}\right\| \tag{A.8}
\end{equation*}
$$

The Kobayashi pseudometric is designed so that holomorphic maps are distance decreasing: if $f: U \rightarrow M$ is holomorphic then $d s_{M}(D f(\xi)) \leq d s_{U}(\xi)$.

The reason for "pseudo-" is that for certain complex manifolds $M, d s(\xi)$ can vanish for some non-vanishing tangent vectors $\xi \neq 0$. For example, $d s$ identically vanishes on \mathbb{C}^{k} or $\mathbb{C P}^{k}$. A complex manifold M is called Kobayashi hyperbolic if $d s$ is non-degenerate: $d s(\xi)>0$ for any non-vanishing $\xi \in T M$. Then it induces a (Finsler) metric on M.

Let N be a compact complex manifold. Endow it with some Hermitian metric $|\cdot|_{N}$. A complex submanifold $M \subset N$ is called hyperbolically embedded in N if the Kobayashi pseudometric on M dominates the Hermitian metric on N, i.e., there exists $c>0$ such that $d s_{M}(\xi) \geq c|\xi|_{N}$ for all $\xi \in T M$. Obviously, M is Kobayashi hyperbolic in this case.

A complex manifold M is called Brody hyperbolic if there are no non-constant holomorphic mappings $f: \mathbb{C} \rightarrow M$. If M is Kobayashi hyperbolic, it is also Brody hyperbolic, but the converse is generally not true unless M is compact.

An open subset of $\mathbb{C P}^{2}$ that is Kobayashi hyperbolic, but not hyperbolically embedded in $\mathbb{C P}^{2}$ is described in [K , Example 3.3.11] and an open subset of \mathbb{C}^{2} that is Brody hyperbolic but not Kobayashi hyperbolic is described in [K, Example 3.6.6].

A family \mathcal{F} of holomorphic mappings from a complex manifold U to a complex manifold M is called normal if every sequence in \mathcal{F} either has a subsequence converging locally uniformly or a subsequence that diverges locally uniformly to infinity in M. In the case that M is embedded into some compact manifold Z, a stronger condition is that \mathcal{F} is precompact in $\operatorname{Hol}(U, Z)$ (where $\operatorname{Hol}(U, Z)$ is the space of holomorphic mappings $U \rightarrow Z$ endowed with topology of uniform convergence on compact subsets of U).

Proposition A.5. Let M be a hyperbolically embedded complex submanifold of a compact complex manifold N. Then for any complex manifold U, the family $\operatorname{Hol}(U, M)$ is precompact in $\operatorname{Hol}(U, N)$.
See Theorem 5.1.11 from $[K]$.
The classical Montel's Theorem asserts that the family of holomorphic maps $\mathbb{D} \rightarrow \mathbb{C} \backslash\{0,1\}$ is normal (as $\mathbb{C} \backslash\{0,1\}$ is a hyperbolic Riemann surface). It is a foundation for the whole Fatou-Julia iteration theory. Several higher dimensional versions of Montel's Theorem, due to M. Green [G1, G2], are now available. Though their role in dynamics is not yet so prominent, they have found a number of interesting applications. Below we will formulate two particular results used in this paper (see §4). The following is Theorem 2 from [G1]:
Theorem A.6. Let X be a union of (possibly singular) hypersurfaces X_{1}, \ldots, X_{m} in a compact complex manifold N. Assume $N \backslash X$ is Brody hyperbolic and

$$
X_{i_{1}} \cap \cdots \cap X_{i_{k}} \backslash\left(X_{j_{1}} \cup \cdots X_{j_{l}}\right) \text { is Brody hyperbolic }
$$

for any choice of distinct multi-indices $\left\{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{l}\right\}=\{1, \ldots, m\}$. Then $N \backslash X$ is a complete hyperbolically embedded submanifold of N.

In the last section of [G1], the following result is proved:
Theorem A.7. Let $M=\mathbb{C P}^{2} \backslash\left(Q \cup X_{1} \cup X_{2} \cup X_{3}\right)$, where Q is a non-singular conic and X_{1}, X_{2}, X_{3} are lines. Then any non-constant holomorphic curve $f: \mathbb{C} \rightarrow M$ must lie in a line L that is tangent to Q at an intersection point with one of the lines, X_{i}, and that contains the intersection point $X_{j} \cap X_{l}$ of the other two lines.

The configurations that appear in this theorem are related to amusing projective triangles:
A.5. Self-dual triangles. Let $Q(z)=\sum q_{i j} z_{i} z_{j}$ be a non-degenerate quadratic form in $E \approx \mathbb{C}^{3}$, and $X=\{Q=0\}$ be the corresponding conic in $\mathbb{C P}^{2}$. The form Q makes the space E Euclidean, inducing duality between points and lines in $\mathbb{C P}^{2}$. Namely, to a point $z=\left(z_{0}: z_{1}: z_{2}\right)$ corresponds the line $L_{z}=\{\zeta: Q(z, \zeta)=0\}$ called the polar of z with respect to X (here we use the same notation for the quadratic form and the corresponding inner product). Geometrically, this duality looks as follows. Given a point $z \in \mathbb{C P}^{2}$, there are two tangent lines from z to X. Then L_{z} is the line passing through the corresponding tangency points. (In case $z \in X$, the polar is tangent to X at z).

Three points z_{i} in $\mathbb{C P}^{2}$ in general position are called a "triangle" Δ with vertices z_{i}. Equivalently, a triangle can be given by three lines L_{i} in general position, its "sides". Let us say that Δ is self-dual (with respect to the conic X) if its vertices are dual to the opposite sides.

Lemma A.8. A triangle Δ with vertices z_{i} is self-dual if and only if the corresponding vectors $\hat{z}_{i} \in E$ form an orthogonal basis with respect to the inner product Q.

All three sides of a self-dual triangle satisfy the condition of Theorem A.7, so they can give us exceptional holomorphic curves $\mathbb{C} \rightarrow \mathbb{C P}^{2} \backslash\left(Q \cup X_{1} \cup X_{2} \cup X_{3}\right)$.

Appendix B. Green Current

B.1. Green potential. A rational mapping $R: \mathbb{C P}^{m} \rightarrow \mathbb{C P}^{m}$ is called algebraically stable if there is no integer n and no collapsing hypersurface $V \subset \mathbb{C P}^{m}$ so that $R^{n}(V)$ is contained within the indeterminacy set of R, [Si, p. 109]. (See also [BLR, Appendix A4 and A5].)
Theorem B. 1 (see $[\mathrm{Si}], T h m .1 .6 .1$). Let $R: \mathbb{C P}^{m} \rightarrow \mathbb{C P}^{m}$ be an algebraically stable rational map of degree d. Then the limit

$$
G=\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log \left\|\hat{R}^{n}\right\|
$$

exists in $L_{\mathrm{loc}}^{1}\left(\mathbb{C}^{3}\right)$ and determines a plurisubharmonic function. This function satisfies the following equivariance properties:

$$
\begin{gather*}
G(\lambda z)=G(z)+\log |\lambda|, \quad \lambda \in \mathbb{C}^{*} \tag{B.1}\\
G \circ \hat{R}=d G .
\end{gather*}
$$

It is called the Green potential of R.
B.2. Green current. Applying $\frac{i}{\pi} \partial \bar{\partial}$ to the Green potential, we obtain:

Theorem B. 2 (see $[\mathrm{Si}], T h m .1 .6 .1$). Let $R: \mathbb{C P}^{m} \rightarrow \mathbb{C P}^{m}$ be an algebraically stable rational map of degree d. Then $S=\pi_{*}\left(\frac{i}{\pi} \partial \bar{\partial} G\right)$ is a closed positive $(1,1)$-current on $\mathbb{C P}^{m}$ satisfying the equivariance relation: $R^{*} S=d \cdot S$.

The current S is called the Green current of R.
The set of normal ${ }^{14}$ points for an algebraically stable rational map $R: \mathbb{C P}^{m} \rightarrow \mathbb{C P}^{m}$ is:

$$
N:=\left\{\begin{array}{cc}
x \in \mathbb{C P}^{m}: \quad \text { there exits neighborhoods } U \text { of } x \text { and } V \text { of } I(R) \\
\text { so that } f^{n}(U) \cap V=\emptyset \text { for every } n \in \mathbb{N} .
\end{array}\right\}
$$

The normal points form an open subset of $\mathbb{C P}{ }^{m}$.

[^13]One primary interest in the Green current S is the following connection between its support supp S and the Julia set J_{R}. (See $\S 4$ for the definitions of the Fatou and Julia sets.) Note that $\operatorname{supp} S$ is closed and backwards invariant, $R^{-1} \operatorname{supp} S \subset \operatorname{supp} S$, since $R^{*} S=d \cdot S$.

Theorem B. 3 (see $[\mathrm{Si}], T h m .1 .6 .5$). Let $f: \mathbb{C P}^{m} \rightarrow \mathbb{C P}^{m}$ be an algebraically stable rational map. Then:

$$
J_{R} \cap N \subset \operatorname{supp} S \subset J_{R}
$$

An algebraically stable rational map $R: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ for which $\operatorname{supp} S \subsetneq J_{R}$ is given in [FS1, Example 2.1].

Appendix C. Open Problems

Problem C. 1 (Existence of Fisher and Lee-Yang-Fisher distributions). For which classical lattices $\left(\mathbb{Z}^{d}\right.$ for $d \geq 2$, etc) does the limit (2.5) exist? As explained in Prop. 2.2, this would justify existence of the limiting distributions of Lee-Yang-Fisher zeros for these lattices.

Similarly, for which classical three and higher-dimensional lattices (\mathbb{Z}^{d} for $d \geq 3$, etc) does the limit (2.5) exist? It would justify the existence of a limiting distribution of Fisher zeros for these lattices.

Problem C. 2 (Geometric properties of the Lee-Yang-Fisher current). The theory of geometric currents has become increasingly useful in complex dynamics, see [RS, BLS, Du, Di, dT, DDG] as a sample.

The Green current S is strongly laminar in a neighborhood of B . The structure is given by the stable lamination of B (see §3.3) together with transverse measure obtained under holomomy from the Lebesgue measure on B. However, S is not strongly laminar in a neighborhood of the topless Lee-Yang "cylinder" C_{1}.

One can see this also follows: a disc within the invariant line L_{inv} centered at $L_{\mathrm{inv}} \cap \mathrm{B}$ is within the stable lamination of B . Therefore, an open neighborhood within L_{inv} of $L_{\mathrm{inv}} \cap C_{1}$ would have to be a leaf of the lamination. However, S restricts to L_{inv} in a highly non-trivial way, coinciding with the measure of maximal entropy for $R \mid L_{\mathrm{inv}}$. (It is supported on the Julia set shown in Fig. 1.3).

Does S have a weaker geometric structure? For example, is it non-uniformly laminar [BLS, Du] or woven [Di, dT, DDG]?

Problem C. 3 (Support for the measure of maximal entropy). What can be said about the support of the measure of maximal entropy ν that was discussed in §4.3? Is the critical fixed point $b_{c} \in L_{\text {inv }}$ within supp ν ? A positive answer to this question is actually equivalent to $C \cap \operatorname{supp} \nu \neq \emptyset$ and also to $\operatorname{supp} \nu \cap L_{\mathrm{inv}}=J_{R \mid L_{\mathrm{inv}}}$.
Problem C. 4 (Fatou Set). In Thm. 4.9 we showed that certain "solid cylinders" are in $\mathcal{W}^{s}(e)$ and $\mathcal{W}^{s}\left(e^{\prime}\right)$. Computer experiments suggest a much stronger result:

Conjecture. $\mathcal{W}^{s}(e) \cup \mathcal{W}^{s}\left(e^{\prime}\right)$ is the entire Fatou set for R.
Problem C. 5 (Julia Set). Prop. 4.2 gives that in a neighborhood of B, J_{R} is a C^{∞} 3-manifold. What can be said about the global topology of J_{R} ?

Remark C.6. Note that each of the above problems C.2 - C.5 has a natural counterpart for \mathcal{R}.

References from dynamics and complex geometry

[BLS] E. Bedford, M. Yu. Lyubich, and J. Smillie. Polynomial diffeomorphisms of C ${ }^{2}$. IV. The measure of maximal entropy and laminar currents. Invent. Math., 112(1):77-125, 1993.
[BS] E. Bedford and J. Smillie. Polynomial diffeomorphisms of \mathbf{C}^{2} : currents, equilibrium measure and hyperbolicity. Invent. Math., 103(1):69-99, 1991.
[Be] P. Berger. Persistence of laminations. Bull. Braz. Math. Soc. (N.S.), 41(2):259-319, 2010.
[BLR] Pavel Bleher, Mikhail Lyubich, and Roland Roeder. Lee-Yang zeros for the DHL and 2D rational dynamics, I. Foliation of the physical cylinder. J. Math. Pures Appl. (9), 107(5):491-590, 2017.
[BD] Araceli M. Bonifant and Marius Dabija. Self-maps of \mathbb{P}^{2} with invariant elliptic curves. In Complex manifolds and hyperbolic geometry (Guanajuato, 2001), volume 311 of Contemp. Math., pages 1-25. Amer. Math. Soc., Providence, RI, 2002.
[Br] H. Brolin. Invariant sets under iteration of rational functions. Ark. Mat., 6:103-144 (1965), 1965.
[C] U. Cegrell. Removable singularities for plurisubharmonic functions and related problems. Proc. London Math. Soc. (3), 36(2):310-336, 1978.
[DeSMa] J. De Simoi and S. Marmi. Potts models on hierarchical lattices and renormalization group dynamics. J. Phys. A, 42(9):095001, 21 pp., 2009.
[DeS] J. De Simoi Potts models on hierarchical lattices and renormalization group dynamics. II. Examples and numerical results. J. Phys. A, 42(9):095002, 16 pp., 2009.
[Dil] J. Diller Dynamics of birational maps of $\mathbb{C P}^{2}$ Indiana Univ. Math. J. 45 (1996), no. 3, 721772.
[DDG] J. Diller, R. Dujardin, and V. Guedj. Dynamics of meromorphic maps with small topological degree I: from cohomology to currents. Indiana Univ. Math. J., 59(2):521-561, 2010.
[Di] T.-C. Dinh. Suites d'applications méromorphes multivaluées et courants laminaires. J. Geom. Anal., 15(2):207-227, 2005.
[DS1] T.-C. Dinh and N. Sibony. Une borne supérieure pour l'entropie topologique d'une application rationnelle. Ann. of Math. (2), 161(3):1637-1644, 2005.
[DS2] T.-C. Dinh and N. Sibony. Equidistribution towards the Green current for holomorphic maps. Ann. Sci. Éc. Norm. Supér. (4), 41(2):307-336, 2008.
[DS3] T.-C. Dinh and N. Sibony. Equidistribution problems in complex dynamics of higher dimension. Internat. J. Math. 28 (2017), no. 7, 1750057
[DS3] T.-C. Dinh and N. Sibony. Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings. In Holomorphic dynamical systems, volume 1998 of Lecture Notes in Math., pages 165-294. Springer, Berlin, 2010.
[dT] H. de Thélin. Sur la construction de mesures selles. Ann. Inst. Fourier (Grenoble), 56(2):337-372, 2006.
[Du] R. Dujardin. Laminar currents and birational dynamics. Duke Math. J., 131(2):219-247, 2006.
[Fa] C. Favre. Dynamique des applications rationnelles. Ph.D. Thesis, Universit Paris-Sud XI, Orsay, 2000.
[FaGu] C. Favre and V. Guedj. Dynamique des applications rationnelles des espaces multiprojectifs. Indiana Univ. Math. J. 50 (2001), no. 2, 881934.
[FaJ] C. Favre and M. Jonsson. Brolin's theorem for curves in two complex dimensions. Ann. Inst. Fourier (Grenoble), 53(5):1461-1501, 2003.
[FS1] J. E. Fornaess and N. Sibony. Complex dynamics in higher dimension. II. In Modern methods in complex analysis (Princeton, NJ, 1992), v. 137 of Ann. of Math. Stud., pages 135-182. Princeton Univ. Press, Princeton, NJ, 1995.
[FS2] J. E. Fornaess and N. Sibony. Complex Hnon mappings in \mathbb{C}^{2} and Fatou-Bieberbach domains. Duke Math. J. 65 (1992), no. 2, 345380.
[FLM] A. Freire, A. Lopes, and R. Ma. An invariant measure for rational maps. Bol. Soc. Brasil. Mat. 14(1):4562, 1983.
[G1] M. L. Green. The hyperbolicity of the complement of $2 n+1$ hyperplanes in general position in P_{n} and related results. Proc. Amer. Math. Soc., 66(1):109-113, 1977.
[G2] M. L. Green. Some Picard theorems for holomorphic maps to algebraic varieties. Amer. J. Math., 97:43-75, 1975.
[Gu1] Vincent Guedj. Equidistribution towards the Green current. Bull. Soc. Math. France, 131(3):359-372, 2003.
[Gu2] Vincent Guedj. Decay of volumes under iteration of meromorphic mappings. Ann. Inst. Fourier (Grenoble), 54(7):2369-2386 (2005), 2004.
[Gu3] V. Guedj. Ergodic properties of rational mappings with large topological degree. Ann. of Math. (2), 161(3):1589-1607, 2005.
[Gu4] V. Guedj. Entropie topologique des applications méromorphes. Ergodic Theory Dynam. Systems, 25(6):1847-1855, 2005.
[HaPo] R. Harvey and J. Polking. Extending analytic objects. Comm. Pure Appl. Math., 28(6):701-727, 1975.
[HPS] M. Hirsch, C. Pugh, and M. Shub. Invariant Manifolds. Lecture notes in mathematics, Volume 583. Springer-Verlag, Berlin-New York 1977.
[HP] J.H. Hubbard and P. Papadapol. Superattractive fixed points in \mathbb{C}^{n}. Indiana Univ. Math. J., 43(1):321365, 1994.
[KR] S. Kaschner and R.K.W. Roeder. Superstable manifolds of invariant circles and codimension-one Böttcher functions. Ergodic Theory Dynam. Systems, 35(1):152-175, 2015.
[K] S. Kobayashi. Hyperbolic complex spaces, volume 318 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1998.
[Kra] S. G. Krantz. Function theory of several complex variables. AMS Chelsea Publishing, Providence, RI, 2001. Reprint of the 1992 edition.
[La] S. Lang. Introduction to complex hyperbolic spaces. Springer-Verlag, New York, 1987.
[Le] P. Lelong. Fonctions plurisousharmoniques et formes différentielles positives. Gordon \& Breach, Paris, 1968.
[Ly1] M. Ju. Lyubich. The measure of maximal entropy of a rational endomorphism of the Riemann sphere. Funct. Anal. and Appl., 16:78-79, 1982.
[Ly2] M. Ju. Lyubich. Entropy properties of rational endomorphisms of the Riemann sphere. Ergodic Theory Dynam. Systems, 3(3):351-385, 1983.
[PM] J. Palis, Jr. and W. de Melo. Geometric theory of dynamical systems. Springer-Verlag, New York, 1982. An introduction, Translated from the Portuguese by A. K. Manning.
[Pr] F. Protin quidistribution vers le courant de Green. Ann. Polon. Math. 115 (2015), no. 3, 201-218.
[dR] G. de Rham. Variétés différentiables. Formes, courants, formes harmoniques. Actualités Sci. Ind., no. $1222=$ Publ. Inst. Math. Univ. Nancago III. Hermann et Cie, Paris, 1955.
[RS] D. Ruelle and D. Sullivan. Currents, flows and diffeomorphisms. Topology, 14(4):319-327, 1975.
[RuSh] A. Russakovskii and B. Shiffman. Value distribution for sequences of rational mappings and complex dynamics. Indiana Univ. Math. J., 46(3):897-932, 1997.
[Shaf] I. R. Shafarevich. Basic algebraic geometry. 1. Springer-Verlag, Berlin, second edition, 1994. Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid.
[Si] N. Sibony. Dynamique des applications rationnelles de \mathbf{P}^{k}. In Dynamique et géométrie complexes (Lyon, 1997), volume 8 of Panor. Synthèses, pages ix-x, xi-xii, 97-185. Soc. Math. France, Paris, 1999.
[T] J. Taflin. Equidistribution speed towards the Green current for endomorphisms of \mathbb{P}^{k}. Adv. Math. 227 (2011), no. 5, 2059-2081.
[U] T. Ueda. Fatou sets in complex dynamics on projective spaces. J. Math. Soc. Japan, 46(3):545-555, 1994.

References from mathematical Physics

[Ba] R.J. Baxter. Exactly solvable models in statistical mechanics. Academic Press, London, 1982.
[BL] P. Bleher and M. Lyubich, The Julia sets and complex singularities in hierarchical Ising models, Commun. Math. Phys. 141 (1992), 453-474.
[BZ1] P. Bleher and E. Žalys, Existence of long-range order in the Migdal recursion equations, Commun. Math. Phys. 67 (1979), 17-42.
[BZ2] P. Bleher and E. Žalys, Limit Gibbs distributions for the Ising model on hierarchical lattices, Lithuanian Math. J. 28 (1989), 127-139.
[BZ3] P. Bleher and E. Žalys, Asymptotics of the susceptibility for the Ising model on the hierarchical lattices, Commun. Math. Phys. 120 (1989), 409-436.
[BK] H. J. Brascamp and H. Kunz, Zeros of the Partition Function for the Ising model in the complex temperature plane, J. Math. Phys. 15 (1974), 65-66.
[DDI] B. Derrida, L. De Seze, and C. Itzykson, Fractal structure of zeros in hierarchical models, J. Statist. Phys. 33 (1983), 559-569.
[DIL] B. Derrida, C. Itzykson, and J. M. Luck, Oscillatory critical amplitudes in hierarchical models, Commun. Math. Phys. 94 (1984), 115-132.
[F] M. E. Fisher, The Nature of Critical Points, In Lectures in Theoretical Physics, Volume 7c, (W. Brittin editor) pages 1-157, University of Colorado Press, Boulder, 1965.
[vH] L. Van-Hove, Quelques propiétés générales de l'intégral de configuration d'un systèm de particles avec interaction, Physica 15, (1949) 951-961.
[Ish] Y. Ishii, Ising models, Julia sets, and similarity of the maximal entropy measures, J. Statist. Phys. 78 (1995), 815-822.
[K] L. P. Kadanoff, Notes on Migdal's recursion formulae, Ann. Phys. 100 (1976), 359-394.
[KG1] M. Kaufman and R. B. Griffiths, Exactly soluble Ising models on hierarchical lattices, Phys. Rev. B 24 (1981), 496-498.
[LY] T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions: II. Lattice gas and Ising model. Phys. Rev. 87 (1952), 410-419.
[MaSh1] V. Matveev and R. Shrock, Complex-temperature singularities in the $d=2$ Ising model: triangular and honeycomb lattices, J. Phys. A: Math. Gen. 29 (1996) 803-823.
[MaSh2] V. Matveev and R. Shrock, Complex-temperature properties of the Ising model on 2D heteropolygonal lattices J. Phys. A: Math. Gen. 28 (1995) 5235-5256.
[R2] D. Ruelle. Statistical mechanics. Rigorous results. World Scientific Publishing Co. Inc., River Edge, NJ, 1999. Reprint of the 1989 edition.
[YL] C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions. I. Theory of condensation, Phys. Rev. 87 (1952), 404-409.

Pavel Bleher, IUPUI Department of Mathematical Sciences, 402 N. Blackford St., LD270, Indianapolis, IN 46202-3267.

E-mail address: pbleher@iupui.edu
Mikhail Lyubich, Mathematics Department and IMS, Stony Brook University, Stony Brook, NY 11794.

E-mail address: mlyubich@math.sunysb.edu
Roland Roeder, IUPUI Department of Mathematical Sciences, 402 N. Blackford St., LD270, Indianapolis, IN 46202-3267.

E-mail address: roederr@iupui.edu

[^0]: Date: February 25, 2019.
 ${ }^{\dagger}$ Corresponding Author. Email: roederr@iupui.edu.

[^1]: ${ }^{1}$ We will see in Remark 2.1 that each of these multiplicities is one, and hence there is no harm in thinking in terms of the algebraic curve.

[^2]: ${ }^{2}$ For the definition, see $[\mathrm{Si}, \S 1.4]$ or [BLR, Appendix A.6].

[^3]: ${ }^{3}$ It is common in the literature to denote the Green current by T, but we use S to avoid any confusion with the temperature.

[^4]: ${ }^{4}$ Note that such a curve is also forward invariant unless it contains an indeterminate point that blows-up to a different curve.

[^5]: ${ }^{5}$ We will specialize the following two results to the case of pulling back a curve, instead of pulling back an arbitrary closed positive $(1,1)$ current.

[^6]: ${ }^{6}$ Note that the DHL is not in this class-instead, dynamical techniques are used to justify its classical thermodynamic limit.

[^7]: ${ }^{7}$ They correspond to actual solid cylinders in the (z, t) coords; see Cor. 4.9.

[^8]: ${ }^{8}$ It is stated more generally in [Gu4], for meromorphic maps of compact Kähler manifolds.
 ${ }^{9}$ Here, the postcritical set is defined without taking the closure.

[^9]: ${ }^{10}$ We omit the calculation, but the reader can readily check it using Maple.

[^10]: ${ }^{11}$ For example, p could be a fixed point in $D_{>d}$.

[^11]: ${ }^{12}$ Here we are using a more general notion of "Whitney Fold" that was used in [BLR, Appendix D.2], where only exponent $r_{C}=2$ was considered.

[^12]: ${ }^{13}$ Many authors introduce real operators $d=\partial+\bar{\partial}$ and $d^{c}=\frac{i}{2 \pi}(\bar{\partial}-\partial)$ and write $d d^{c}$ instead of $\frac{i}{\pi} \partial \bar{\partial}$. We use $\frac{i}{\pi} \partial \bar{\partial}$ to avoid confusion between the operator d and the algebraic degree of a map.

[^13]: ${ }^{14}$ Not to be confused with the notion of normal families.

