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Abstract

In 1970, E. M. Andreev published a classification of all three-dimensional compact hy-
perbolic polyhedra (other than tetrahedra) having non-obtuse dihedral angles [4, 5].
Given a combinatorial description of a polyhedron, C, Andreev’s Theorem provides
five classes of linear inequalities, depending on C, for the dihedral angles, which are
necessary and sufficient conditions for the existence of a hyperbolic polyhedron real-
izing C with the assigned dihedral angles. Andreev’s Theorem also shows that the
resulting polyhedron is unique, up to hyperbolic isometry.

Andreev’s Theorem is both an interesting statement about the geometry of hy-
perbolic 3-dimensional space, as well as a fundamental tool used in the proof for
Thurston’s Hyperbolization Theorem for 3-dimensional Haken manifolds. It is also
remarkable to what level the proof of Andreev’s Theorem resembles (in a simpler way)
the proof of Thurston.

We correct a fundamental error in Andreev’s proof of existence and also provide

a readable new proof of the other parts of the proof of Andreev’s Theorem, because

Andreev’s paper has the reputation of being “unreadable”.

Résumé

E. M. Andreev a publié en 1970 une classification des polyèdres hyperboliques com-
pacts de dimension trois (autrement que les tétraèdres) dont les angles dièdres sont
non-obtus [4, 5]. Etant donné une description combinatoire d’un polyèdre C, le
Théorème d’Andreev dit que les angles dièdres possibles sont exactement décrits par
cinq classes d’inégalités linéaires. Le Théorème d’Andreev démontre également que le
polyèdre résultant est alors unique à isométrie hyperbolique près.

D’une part, le Théorème de Andreev est évidemment un énoncé intéressant de la
géométrie de l’espace hyperbolique en dimension 3; d’autre part c’est un outil essentiel
dans la preuve du Théorème d’Hyperbolization de Thurston pour les variétés Haken
de dimension 3. Il est d’ailleurs remarquable à quel point la démonstration d’Andreev
rappelle (en plus simple) la démonstration de Thurston.

La démonstration d’Andreev contient une erreur importante. Nous corrigeons ici

cette erreur et nous fournissons aussi une nouvelle preuve lisible des autres parties de

la preuve, car le papier d’Andreev a la réputation d’être “illisible”.
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NSF Integrative Graduate Research and Training (IGERT) Fellowship.
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1 Statement of Andreev’s Theorem

Andreev’s Theorem provides a complete characterization of compact hyperbolic
polyhedra having non-obtuse dihedral angles. This classification is essential
for proving Thurston’s Hyperbolization theorem for Haken 3-manifolds and is
also a particularly beautiful and interesting result in its own right. Complete
and detailed proofs of Thurston’s Hyperbolization for Haken 3-manifolds are
available written in English by Jean-Pierre Otal [20] and in French by Michel
Boileau [7].

In this paper, we prove Andreev’s Theorem based on the main ideas from
his original proof [4]. However, there is an error in Andreev’s proof of existence.
We explain this error in Section 6 and provide a correction. Although the other
parts of the proof are proven in much the same way as Andreev proved them, we
have re-proven them and re-written them to verify them as well as to make the
overall proof of Andreev’s Theorem clearer. This paper is based on the doctoral
thesis of the first author [25], although certain proofs have been streamlined,
especially in Sections 4 and 5.

The reader may also wish to consider the similar results of Rivin and Hodg-
son [21, 16], Thurston [30, Chapter 13], Marden and Rodin [19], Bowers and
Stephenson [9], Rivin [23, 22, 24], and Bao and Bonahon [6]. In [21], the authors
prove a more general statement than Andreev’s Theorem and in [16] Hodgson
deduces Andreev’s Theorem as a consequence of their previous work. The proof
in [21] is similar to the one presented here, except that the conditions classifying
the polyhedra are written in terms of measurements in the De Sitter space, the
space dual to the hyperboloid model of hyperbolic space. Although a beautiful
result, the main drawback of this proof is that the last sections of the paper,
which are necessary for their proof that such polyhedra exist, are particularly
hard to follow.

Marden and Rodin [19] and Thurston [30, Chapter 13] consider configura-
tions of circles with assigned overlap angles on the Riemann Sphere and on
surfaces of genus g with g > 0. Such a configuration on the Riemann Sphere
corresponds to a configuration of hyperbolic planes in the Poincaré ball model
of hyperbolic space. Thus, there is a direct connection between circle patterns
and hyperbolic polyhedra. The proof of Thurston provides a classification of
configurations of circles on surfaces of genus g > 0. The proof of Marden and
Rodin [19] is an adaptation of Thurston’s circle packing theorem to the Rie-
mann Sphere, resulting in a theorem similar to Andreev’s Theorem. Although
Thurston’s statement has analogous conditions to Andreev’s classical condi-
tions, Marden and Rodin require that the sum of angles be less than π for every
triple of circles for which each pair intersects. This prevents the patterns of
overlapping circles considered in their theorem from corresponding to compact
hyperbolic polyhedra.

Bowers and Stephenson [9] prove a “branched version” of Andreev’s The-
orem, also in terms of circle patterns on the Riemann Sphere. Instead of the
continuity method used by Thurston and Marden-Rodin, Bowers and Stephen-
son use ideas intrinsic to the famous Uniformization Theorem from complex
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analysis. The unbranched version of their theorem provides a complete proof of
Andreev’s Theorem, which provides an alternative to the proof presented here.

Rivin has proven beautiful results on ideal hyperbolic polyhedra having ar-
bitrary dihedral angles [23, 22] (see also Guéritaud [15] for an alternative view-
point, with exceptionally clear exposition.) Similar nice results are proven for
hyperideal polyhedra by Bao and Bonahon [6]. Finally, the papers of Vinberg on
discrete groups of reflections in hyperbolic space [3, 32, 33, 34, 35] are also closely
related, as well as the work of Bennett and Luo [10] and Schlenker [27, 28, 29].

Let E3,1 be R4 with the indefinite metric ‖x‖2 = −x2
0 + x2

1 + x2
2 + x2

3. The
space of x for which this indefinite metric vanishes is typically referred to as the
lightcone, which we denote by C.

In this paper, we work in the hyperbolic space H3 given by the component
of the subset of E3,1 given by

‖x‖2 = −x2
0 + x2

1 + x2
2 + x2

3 = −1

having x0 > 0, with the Riemannian metric induced by the indefinite metric

−dx2
0 + dx2

1 + dx2
2 + dx2

3.

Hyperbolic space H3 can be compactified by adding the set of rays in {x ∈
C : x0 ≥ 0}, which clearly form a topological space ∂H3 homeomorphic to the
sphere S2. We will refer to points in ∂H3 as points at infinity and refer to the
compactification as H3. For more details, see [31, p. 66].

The hyperplane orthogonal to a vector v ∈ E3,1 intersects H3 if and only if
〈v,v〉 > 0. Let v ∈ E3,1 be a vector with 〈v,v〉 > 0, and define

Pv = {w ∈ H
3|〈w,v〉 = 0} and Hv = {w ∈ H

3|〈w,v〉 ≤ 0}

to be the hyperbolic plane orthogonal to v and the corresponding closed half
space, oriented so that v is the outward pointing normal.

If one normalizes 〈v,v〉 = 1 and 〈w,w〉 = 1 the planes Pv and Pw in H3

intersect in a line if and only if 〈v,w〉2 < 1, in which case their dihedral angle
is arccos(−〈v,w〉). They intersect in a single point at infinity if and only if
〈v,w〉2 = 1; in this case their dihedral angle is 0.

A hyperbolic polyhedron is an intersection

P =
N⋂

i=0

Hvi

having non-empty interior. Throughout this paper we will make the assumption
that v1, · · · ,vN form a minimal set of vectors specifying P . That is, we assume
that none of the half-spaces Hvi

contains the intersection of all the others.
It is not hard to verify that if Hvi

, Hvj
, Hvk

are three distinct halfspaces
appearing in the definition of the polyhedron P , then the three vectors vi, vj,
and vk will always be linearly independent. For example, if vi = vj + vk, then
Hvi

would be a subset of Hvj
∩ Hvk

, contradicting minimality.
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We will often use the Poincaré ball model of hyperbolic space, given by the
open unit ball in R3 with the metric

4
dx2

1 + dx2
2 + dx2

3

(1 − ‖x‖2)2

and the upper half-space model of hyperbolic space, given by the subset of R3

with x3 > 0 equipped with the metric

dx2
1 + dx2

2 + dx2
3

x2
3

.

Both of these models are isomorphic to H
3.

Hyperbolic planes in these models correspond to Euclidean hemispheres and
Euclidean planes that intersect the boundary perpendicularly. Furthermore,
these models are conformally correct, that is, the hyperbolic angle between a
pair of such intersecting hyperbolic planes is exactly the Euclidean angle between
the corresponding spheres or planes.

Below is an image of a hyperbolic polyhedron depicted in the Poincaré ball
model with the sphere at infinity shown for reference. It was displayed in the
excellent computer program Geomview [1].

Abstract polyhedra and Andreev’s Theorem

Some elementary combinatorial facts about hyperbolic polyhedra are essential
before we can state Andreev’s Theorem. Notice that a compact hyperbolic
polyhedron P is topologically a 3-dimensional ball, and its boundary a 2-sphere
S

2. The face structure of P gives S
2 the structure of a cell complex C whose

faces correspond to the faces of P , and so forth.
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Considering only hyperbolic polyhedra with non-obtuse dihedral angles sim-
plifies the combinatorics of any such C:

Proposition 1.1 (a) A vertex of a non-obtuse hyperbolic polyhedron P is the
intersection of exactly 3 faces.
(b) For such a P , we can compute the angles of the faces in terms of the dihedral
angles; these angles are also ≤ π/2.

Proof: Let v be a finite vertex where n faces of P meet. After an appropriate
isometry, we can assume that v is the origin in the Poincaré ball model, so that
the faces at v are subsets of Euclidean planes through the origin. A small sphere
centered at the origin will intersect P in a spherical n-gon Q whose angles are
the dihedral angles between faces. Call these angles α1, ..., αn. Re-scale Q so
that it lies on the sphere of unit radius, then the Gauss-Bonnet formula gives
α1 + · · · + αn = π(n − 2) + Area(Q). The restriction to αi ≤ π/2 for all i gives
nπ/2 ≥ π(n − 2) + Area(Q). Hence, nπ/2 < 2π. We conclude that n = 3.

The edge lengths of Q are precisely the angles in the faces at the origin.
Supposing that Q has angles (αi, αj , αk) and edge lengths (βi, βj, βk) with the
edge βl opposite of angle αl for each l, The law of cosines in spherical geometry
states that:

cos(βi) =
cos(αi) + cos(αj) cos(αk)

sin(αj) sin(αk)
. (1)

Hence, the face angles are calculable from the dihedral angles. They are non-
obtuse, since the right-hand side of the equation is positive for αi, αj , αk non-
obtuse. (Equation (1) will be used frequently throughout this paper.) �

The fundamental axioms of incidence place the following, obvious, further
restrictions on the complex C:

• Every edge of C belongs to exactly two faces.

• A non-empty intersection of two faces is either an edge or a vertex.

• Every face contains not fewer than three edges.

We will call any trivalent cell complex C on S2 that satisfies the three con-
ditions above an abstract polyhedron. Notice that since C must be a trivalent
cell complex on S2, its dual, C∗, has only triangular faces. The three other con-
ditions above ensure that the dual complex C∗ is a simplicial complex, which
we embed in the same S2 so that the vertex corresponding to any face of C is
an element of the face, etc. (Andreev refers to this dual complex as the scheme
of the polyhedron.) The figure below shows an abstract polyhedron C drawn in
the plane (i.e. with one of the faces corresponding to the region outside of the
figure.) The dual complex is also shown, in dashed lines.
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We call a simple closed curve Γ formed of k edges of C∗ a k-circuit and
if all of the endpoints of the edges of C intersected by Γ are distinct, we call
such a circuit a prismatic k-circuit. The figure below shows the same abstract
polyhedron as above, except this time the prismatic 3-circuits are dashed, the
prismatic 4-circuits are dotted, and the dual complex is not shown.

Before stating Andreev’s Theorem, we prove two basic lemmas about ab-
stract polyhedra:

Lemma 1.2 If γ is a 3-circuit that is not prismatic in an abstract polyhedron
C intersecting edges e1, e2, and e3, then edges e1, e2, and e3 meet at a vertex.

Proof: Since γ is 3-circuit that is not prismatic, a pair of the edges meet at a
vertex. We suppose that e1 and e2 meet at this vertex, which we label v1. Since
the vertices of C are trivalent, there is some edge e′ meeting e1 and e2 at v1.
We suppose that e′ is not the edge e3 to obtain a contradiction. Moving γ past
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the vertex v1, we can obtain a new circuit γ′ intersecting only the two edges e3

and e′.

e2

e1

v1
e′

γ
Properties of abstract

polyhedra imply

e2

e1

v1

γ

e3 e3

γ′
γ′

The curve γ′ intersects only two edges, hence it only crosses two faces of C.
However, this implies that these two faces of C intersect along the two distinct
edges e′ and e3, contrary to fact that two faces of an abstract polyhedron which
intersect do so along a single edge. �

Lemma 1.3 Let C be an abstract polyhedron having no prismatic 3-circuits. If
γ is a 4-circuit which is not prismatic, then γ separates exactly two vertices of
C from the remaining vertices of C.

Proof: Suppose that γ crosses edges e1, e2, e3, and e4 of C. Because γ is not
a prismatic 4-circuit, a pair of these edges meet at a vertex. Without loss of
generality, we suppose that edges e1 and e2 meet at this vertex, which we denote
v1. Since C is trivalent, there is some edge e′ meeting e1 and e2 at v1. Let γ′

be the 3-circuit intersecting edges e3, e4 and e′, obtained by sliding γ past the
vertex v1. Since C has no prismatic 3-circuits, γ′ is not prismatic, so by Lemma
1.2, edges e3, e4, and e′ meet at another vertex v2. The entire configuration is
shown in the diagram below.

e′

e2

e1
e4

e3

γ
γ′

v23-circuits implies

No prismatic

v1

e2

e1
e4

e3

γ
γ′

v1
e′

Therefore, the 4-circuit γ separates the two vertices v1 and v2 from the remaining
vertices of C. �

Theorem 1.4 Andreev’s Theorem
Let C be an abstract polyhedron with more than 4 faces and suppose that non-
obtuse angles αi are given corresponding to each edge ei of C. There is a compact
hyperbolic polyhedron P whose faces realize C with dihedral angle αi at each edge
ei if and only if the following five conditions all hold:

1. For each edge ei, αi > 0.
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2. Whenever 3 distinct edges ei, ej, ek meet at a vertex, αi + αj + αk > π.

3. Whenever Γ is a prismatic 3-circuit intersecting edges ei, ej, ek, αi +αj +
αk < π.

4. Whenever Γ is a prismatic 4-circuit intersecting edges ei, ej , ek, el, then
αi + αj + αk + αl < 2π.

5. Whenever there is a four sided face bounded by edges e1, e2, e3, and e4,
enumerated successively, with edges e12, e23, e34, e41 entering the four ver-
tices (edge eij connects to the ends of ei and ej), then:

α1 + α3 + α12 + α23 + α34 + α41 < 3π, and

α2 + α4 + α12 + α23 + α34 + α41 < 3π.

Furthermore, this polyhedron is unique up to isometries of H
3.

In addition to the role that Andreev’s theorem plays, as a bootstrap in the
proof of Thurston’s hyperbolization theorem, it is worth noting that, in the
context of orbifolds, the former can be thought of as a very special case of
the latter (extended to Haken orbifolds as in [8, Chapter 8] or [11]). Consider
closed 3-orbifolds with underlying topological space a 3-ball, and with singular
set equal to the boundary sphere. That singular set will consist of a trivalent
graph, together with “mirrors” on the complementary regions. Each edge of
the graph is labeled with an integer k > 1, corresponding to a dihedral angle
of π/k. The definition of a 3-orbifold implies that the angle sum at each vertex
will satisfy condition (2) in Andreev’s theorem [17, sections 6.1 and 6.3].

Restrict the combinatorics of the singular set, slightly more than in the state-
ment of Andreev’s theorem: C must be an abstract polyhedron with more than
5 faces. Such an orbifold is Haken if and only if it is irreducible [30, Proposition
13.5.2]. Condition (3) in Andreev’s theorem guarantees irreducibility, and also,
together with condition (4), guarantees that every Euclidean 2-suborbifold is
compressible. Therefore, for Haken orbifolds of this topological type, Andreev’s
theorem says precisely that having no incompressible Euclidean 2-suborbifolds
is equivalent to the existence of a hyperbolic structure [30, Section 13.6]; see
also [17, Section 6.4].

For a given C let E be the number of edges of C. The subset of (0, π/2]E

satisfying these linear inequalities will be called the Andreev Polytope, AC . Since
AC is determined by linear inequalities, it is convex.

Andreev’s restriction to non-obtuse dihedral angles is emphatically necessary
to ensure that AC be convex. Without this restriction, the corresponding space
of dihedral angles, ∆C , of compact (or finite volume) hyperbolic polyhedra
realizing a given C is not convex [12]. In fact, the recent work by Dı́az [13]
provides a detailed analysis of this space of dihedral angles ∆C for the class of
abstract polyhedra C obtained from the tetrahedron by successively truncating
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vertices. Her work nicely illustrate the types of non-linear conditions that are
necessary in a complete analysis of the larger space of dihedral angles ∆C .

The work of Rivin [23, 22] shows that the space of dihedral angles for ideal
polyhedra forms a convex polytope, without the restriction to non-obtuse angles.
(See also [15].)

Notice also that the hypothesis that the number of faces is greater than four
is also necessary because the space of non-obtuse dihedral angles for compact
tetrahedra is not convex [26]. Conditions (1-5) remain necessary conditions for
compact tetrahedra, but they are no longer sufficient.

Proposition 1.5 If C is not the triangular prism, condition (5) of Andreev’s
Theorem is a consequence of conditions (3) and (4).

Proof: Given a quadrilateral face, if the four edges leading from it form a
prismatic 4-circuit, Γ1, as depicted on the left hand side of the figure below,
clearly condition (5) is a result of condition (4). Otherwise, at least one pair of
the edges leading from it meet at a vertex. If only one pair meets at a point, we
have the diagram below in the middle. In this case, the curve Γ2 can easily be
shown to be a prismatic 3-circuit, so that α34 + α41 + β < π, so that condition
(5) is satisfied because α34 and α41 cannot both be π/2.

β

e0Γ2

α4,1 α3,4

Γ1

α3,4

α2,3

α4,1

α1,2

Otherwise, if two pairs of the edges leaving the quadrilateral face meet at ver-
tices, we have the diagram on the right-hand side. The only way to complete
this diagram is with the edge labeled e0, resulting in the triangular prism. �

Hence, we need only check condition (5) for the triangular prism, which
corresponds to the only five-faced C.

Given some C, it may be a difficult problem to determine whether AC = ∅
and correspondingly, whether there are any hyperbolic polyhedra realizing C
with non-obtuse dihedral angles. In fact, for the abstract polyhedron in the
following figure, conditions (2) and (3) imply respectively that α1+· · ·+α12 > 4π
and α1 + · · · + α12 < 4π. So, for this C, we have AC = ∅. However, for more
complicated C, it can be significantly harder to determine whether AC = ∅.
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α10

α12

α9

α5

α3

α11

α8
α7

α6

α4

α2

α1

Luckily, there are special cases, including:

Corollary 1.6 If there are no prismatic 3-circuits in C, there exists a unique
hyperbolic polyhedron realizing C with dihedral angles 2π/5.

Proof: Since there are no prismatic 3-circuits in C, condition (3) of the theorem
is vacuous and clearly αi = 2π/5 satisfy conditions (1), (2), (4), and (5). �

2 Setup of the Proof

Let C be a trivalent abstract polyhedron with N faces. We say that a hyperbolic
polyhedron P ⊂ H3 realizes C if there is a cellular homeomorphism from C to
∂P (i.e., a homeomorphism mapping faces of C to faces of P , edges of C to
edges of P , and vertices of C to vertices of P ). We will call each isotopy class
of cellular homeomorphisms φ : C → ∂P a marking on P .

We will define PC to be the set of pairs (P, φ) so that φ is a marking with
the equivalence relation that (P, φ) ∼ (P ′, φ′) if there exists an isomorphism
α : H3 → H3 such that α(P ) = P ′ and both φ′ and α ◦ φ represent the same
marking on P ′.

Proposition 2.1 The space PC is a manifold of dimension 3N − 6 (perhaps
empty).

Proof: Let H be the space of closed half-spaces of H3; clearly H is a 3-
dimensional manifold. Let OC be the set of marked hyperbolic polyhedra re-
alizing C. Using the marking to number the faces from 1 to N , an element of
OC is an N -tuple of half-spaces that intersect in a polyhedron realizing C. This
induces a mapping from OC to HN whose image is an open set. We give OC

the topology that makes this mapping from OC into HN a local homeomor-
phism. Since HN is a 3N -dimensional manifold, OC must be a 3N -dimensional
manifold as well.

If α(P, φ) = (P, φ), we have that α ◦ φ is isotopic to φ through cellular
homeomorphisms. Hence, the isomorphism α must fix all vertices of P , and
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consequently restricts to the identity on all edges and faces. However, an isomor-
phism of H3 which fixes four non-coplanar points must be the identity. Therefore
Isom(H3) acts freely on OC . This quotient space of this action is PC , hence PC

is a manifold with dimension equal to dim(OC)−dim(Isom(H3)) = 3N −6. �

An m-sided polygon Q ⊂ H
2 with sides si supported by lines li for i =

1, . . . , m is called a parallelogram if, after adjoining any ideal endpoints in ∂H2

to these sides and lines, si ∩ sj = ∅ implies li ∩ lj = ∅. In other words, if

two sides of Q don’t meet in H2, then their supporting lines have a common
perpendicular. We then define P1

C to be the subset of PC consisting of those
polyhedra all of whose faces are parallelograms.

Let’s check that P1
C is an open subset of PC . If Pvi

, i = 1, 2, 3 are three planes
carrying faces of P ∈ PC , then {vi, i = 1, 2, 3} will be a linearly independent set
spanning a subspace V . Such a triple of planes has no common intersection point
in H3 if and only if the metric is indefinite when restricted to V , or equivalently,
if and only if every vector orthogonal to V has positive inner product with
itself. This is an open condition on triples of half-spaces; hence, it is an open
condition on PC to require that the planes supporting three fixed faces of P
have no intersection in H3.

Requiring that a single face of P be a parallelogram is a finite intersection
of such open conditions, for triples formed of that face and two faces whose
intersections with that face form non-adjacent edges. For P to lie in P1

C is a
further finite intersection over its faces, so P1

C is an open subset of PC , and
hence P1

C is a manifold of dimension 3N − 6, as well.
In fact, we be most interested in the subset P0

C of polyhedra with non-obtuse
dihedral angles. Notice that P0

C is not, a priori, a manifold or even a manifold
with boundary. However, as a consequence of Proposition 1.1 (b) and the fact
that polygons with non-obtuse interior angles are parallelograms, we have the
inclusion P0

C ⊂ P1
C .

Using the fact that the edge graph of C is trivalent, one can check that E, the
number of edges of C, is the same as the dimension of P1

C . Since exactly three
edges enter each vertex and each edge enters exactly two vertices, 3V = 2E.
The Euler characteristic gives 2 = N − E + V = N − E + 2E/3 implying
E = 3(N − 2), the dimension of PC and P1

C .
Given any P ∈ PC , let α(P ) = (α1, α2, α3, ...) be the E-tuple consisting of

the dihedral angles of P at each edge (according to some fixed numbering of the
edges of C). This map α is obviously continuous with respect to the topology
on PC , which it inherits from its manifold structure.

Our goal is to prove the following theorem, of which Andreev’s Theorem is
a consequence:

Theorem 2.2 For every abstract polyhedron C having more than four faces,
the mapping α : P0

C → AC is a homeomorphism.

We will say that Andreev’s Theorem holds for C if α : P0
C → AC is a

homeomorphism for a specific abstract polyhedron C.
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We begin the proof of Theorem 2.2 by checking that α(P0
C) ⊂ AC in Section

3. In Section 4, we prove that α restricted to P1
C is injective, and in Section

5, we prove that α restricted to P0
C is proper. In the beginning of Section 6

we combine these results to show that α : P0
C → AC is a homeomorphism onto

its image and that this image is a component of AC . The remaining, and most
substantial part of Section 6, is to show that AC 6= ∅ implies P0

C 6= ∅.

3 The inequalities are satisfied.

Proposition 3.1 Given P ∈ P0
C, the dihedral angles α(P ) satisfy conditions

(1-5).

We will need the following two lemmas about the basic properties of hyper-
bolic geometry.

Lemma 3.2 Suppose that three planes Pv1
, Pv2

, Pv3
intersect pairwise in H3

with non-obtuse dihedral angles α, β, and γ. Then, Pv1
, Pv2

, Pv3
intersect at a

vertex in H3 if and only if α+β +γ ≥ π. The planes intersect in H3 if and only
if the inequality is strict.

Proof: The planes intersect in a point of H3 if and only if the inner product is
either positive definite or semi-definite on the subspace V spanned by {vi, i =
1, 2, 3}. In the former case the intersection point is in H3, and in the latter case
it is in ∂H

3; in both cases the point is determined by the orthogonal complement
of V . The matrix describing the inner product on V is




1 〈v1,v2〉 〈v1,v3〉
〈v1,v2〉 1 〈v2,v3〉
〈v1,v3〉 〈v2,v3〉 1


 =




1 − cosα − cosβ
− cosα 1 − cosγ
− cosβ − cos γ 1




where α, β, and γ are the dihedral angles between the pairs of faces (Pv1
, Pv2

),
(Pv1

, Pv3
), and (Pv2

, Pv3
), respectively.

Since the principal minor is positive definite for 0 < α ≤ π/2, it is enough
to find out when the determinant

1 − 2 cosα cosβ cos γ − cos2 α − cos2 β − cos2 γ

is non-negative.
A bit of trigonometric trickery (we used complex exponentials) shows that

the expression above is equal to

−4 cos

(
α + β + γ

2

)
cos

(
α − β + γ

2

)
cos

(
α + β − γ

2

)
cos

(
−α + β + γ

2

)
(2)

Let δ = α + β + γ. When δ < π, (2) is strictly negative; when δ = π, (2) is
clearly zero; and when δ > π, (2) is strictly positive. Hence the inner product
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on the space spanned by v1,v2,v3 is positive semidefinite if and only if δ ≥ π.
It is positive definite if and only if δ > π.

Then it is easy to see that the three planes Pv1
, Pv2

, Pv3
⊂ H3 intersect at

a point in H3 if and only if they intersect pairwise in H3 and the sum of the
dihedral angles δ ≥ π. It is also clear that they intersect at a finite point if and
only if the inequality is strict. �

Lemma 3.3 Let P1, P2, P3 ⊂ H
3 be planes carrying faces of a polyhedron P

that has all dihedral angles ≤ π/2.
(a) If P1, P2, P3 intersect at a point in H3, then the point p = P1 ∩ P2 ∩ P3 is a
vertex of P .
(b) If P1, P2, P3 intersect at a point in ∂H3, then P is not compact, and the
point of intersection is in the closure of P .

Proof: (a) Consider what we see in the plane P1. Let Hi be the half-space
bounded by Pi which contains the interior of P , and let Q = P1 ∩ H2 ∩ H3. If
p /∈ P , then let U be the component of Q − P that contains p in its closure.
This is a non-convex polygon; let p, p1, ..., pk be its vertices. The exterior angles
of U at p1, ..., pk are the angles of the face of P carried by P1, hence ≤ π/2 by
part (b) of Proposition 1.1. See the following figure:

p1

P

U

p2

p

pk−1

pk

Suppose that α1, ...αk are the angles of P at p1, ..., pk, and let α be the angle
at p. Then the Gauss-Bonnet formula tells us that:

(π − α) + α1 − ((π − α2) + · · · + (π − αk−1)) + αk − Area(U) = 2π,

which can be rearranged to read

(α1 + αk − π) − α −
k−1∑

j=2

(π − αj) = Area(U).

This is clearly a contradiction. All of the terms on the left are non-positive,
and Area(U) > 0. If p is at infinity (i.e., α = 0), this expression is still a
contradiction, proving part (b). �
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Proof of Proposition 3.1: For condition (1), notice that if two adjacent faces
intersect at dihedral angle 0, they intersect at a point at infinity. If this were
the case, P would be non-compact.

For condition (2), let x be a vertex of P . Since P is compact, x ∈ H3 and by
Lemma 3.2, the sum of the dihedral angles between the three planes intersecting
at x must be > π.

For condition (3), note first that by Lemma 3.2 if three faces forming a 3-
circuit have dihedral angles summing to a number ≥ π, then they meet in H3. If
they meet at a point in H3, by Lemma 3.3(a) this point is a vertex of P , so these
three faces do not form a prismatic 3-circuit. Alternatively, if the three planes
meet in ∂H3 by Lemma 3.3(b), then P is non-compact, contrary to assumption.
Hence, any three faces forming a prismatic 3-circuit in P must have dihedral
angles summing to < π.

For condition (4), let Hv1
, Hv2

, Hv3
, Hv4

be half spaces corresponding to the
faces which form a prismatic 4-circuit; obviously condition (4) is satisfied unless
all of the dihedral angles are π/2, so we suppose that they are. We will assume
the normalization 〈vi,vi〉 = 1 for each i. The Gram matrix Q = [〈vi,vj〉]i,j =

2

6

6

4

1 0 〈v1,v3〉 0
0 1 0 〈v2,v4〉

〈v3,v1〉 0 1 0
0 〈v4,v2〉 0 1

3

7

7

5

has determinant 0 if the v’s are linearly dependent, and otherwise represents
the inner product of E3,1 and hence has negative determinant. In both cases
we have

detQ = (1 − 〈v1,v3〉
2)(1 − 〈v2,v4〉

2) ≤ 0.

So 〈v1,v3〉2 ≤ 1 and 〈v2,v4〉2 ≥ 1 or vice versa (perhaps one or both are
equalities). This means that one of the opposite pairs of faces of the 4-circuit
intersect, perhaps at a point at infinity. We can suppose that this pair is Hv1

and Hv3
.

If Hv1
and Hv3

intersect in H3, they do so with positive dihedral angle.
Since Hv2

intersects each Hv1
and Hv3

orthogonally, the three faces pairwise
intersect and have dihedral angle sum > π. By Lemmas 3.2 and 3.3 these three
faces intersect at a point in H3 which is a vertex of P . In this case, the 4-circuit
Hv1

, Hv2
, Hv3

, Hv4
is not prismatic.

Otherwise, Hv1
and Hv3

intersect at a point at infinity. In this case, since
Hv2

intersects each Hv1
and Hv3

with dihedral angle π/2 the three faces inter-
sect at this point at infinity by Lemma 3.2 and then by Lemma 3.3 P is not
compact, contrary to assumption.

Hence, if Hv1
, Hv2

, Hv3
, Hv4

forms a prismatic 4-circuit, the sum of the
dihedral angles cannot be 2π.

For condition (5), suppose that the quadrilateral is formed by edges e1, e2, e3, e4.
Violation of one of the inequalities would give that the dihedral angles at each of
the edges eij leading to the quadrilateral is π/2 and that the dihedral angles at
two of the opposite edges of the quadrilateral are π/2. See the diagram below:
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π/2

γ

β

π/2

π/2

π/2 π/2
π/2

Each vertex of this quadrilateral had three incident edges labeled ei, ej , and
eij . Violation of the inequality gives that αij = π/2 and either αi = π/2 or
αj = π/2. Using Equation (1) from section 1, we see that each face angle in
the quadrilateral must be π/2. So, we have that each of the face angles of the
quadrilateral is π/2, which is a contradiction to the Gauss-Bonnet Theorem.
Hence both of the inequalities in condition (5) must be satisfied.

This was the last step in proving Proposition 3.1. �

4 The mapping α : P1
C → R

E is injective.

Recall from section 2 an m-sided polygon Q ⊂ H2 with sides si supported by
lines li for i = 1, . . . , m is called a parallelogram if, after adjoining any ideal
endpoints in ∂H2 to these sides and lines, si ∩ sj = ∅ implies li ∩ lj = ∅.

In section 2 that we defined P1
C to be the space of polyhedra realizing C

whose faces are parallelograms. We then checked that P1
C is an open subset of

PC and that P0
C ⊂ P1

C . The goal of this section is to prove:

Proposition 4.1 The mapping α : P1
C → R

E is injective.

Proof: Suppose that P, P ′ ∈ P1
C are two polyhedra such that α(P ) = α(P ′).

We can label each edge e of C by −, 0, or + depending on whether the length
of e in P ′ is less than, equal to, or greater than the length of e in P .

We will prove that if α(P ′) = α(P ′) then each pair of corresponding edges
has the same length. This gives that the faces of P and P ′ are congruent since
the face angles are determined by the dihedral angles (Proposition 1.1). Then,
since P and P ′ have congruent faces and the same dihedral angles, they are
themselves congruent.

Each edge of C corresponds to a unique edge of the dual complex, C∗, which
we label with −, 0, or +, accordingly. Consider the graph G consisting of the
edges of C∗ labeled either + or −, but not 0, together with the vertices incident
to these edges. Since C∗ is a simplicial complex on S2, G is a simple planar
graph. (Here, simple means that there is at most one edge between any distinct
pair of vertices and no edges from a vertex to itself.) We assume that G is
non-empty, in order to find a contradiction.

Proposition 4.2 Let G be a simple planar graph whose edges are labeled with
+ and −. There is a vertex of G with at most two sign changes when following
the cyclic order of the edges meeting at that vertex.

15



Proposition 4.2 provides the global statement necessary for Cauchy’s rigidity
theorem on Euclidean polyhedra, see [2, Chapter 12], and also the global state-
ment necessary here. The proof, see [2, page 68], is a clever, yet elementary
counting argument, combined with Euler’s Formula.

Therefore, at some vertex of G, there are either zero or two changes of sign
when following the cyclic order of edges meeting at that vertex. In the case
that there are zero changes in sign, we may assume, without loss in generality
that all of the signs at this vertex are +’s, by switching the roles of P and P ′, if
necessary. Thus, in either case, there is a face F of C not marked entirely with
0’s so that, once the edges labeled − are removed from ∂F , the edges labeled +
all lie in the same component of what remains.

Let Q and Q′ be the faces in P and P ′ corresponding to F . By the assump-
tion that P, P ′ ∈ P1

C , Q and Q′ are parallelograms and because P and P ′ have
the same dihedral angles, Q and Q′ must have the same face angles. We will
now show that Q and Q′ cannot have side lengths differing according to the
distribution of +’s and −’s on ∂F that was deduced above.

The following lemma, from [4, page 422] but with a new proof, shows that
(roughly speaking) stretching edges in a piece of the boundary will pull apart
the two edges at the ends of that piece. It is important to keep in mind that the
parallelograms R and R′ need not be compact and need not have finite volume,
since there are no restrictions on whether the first and m-th sides intersect.

Lemma 4.3 (Andreev’s Auxiliary Lemma) Let R and R′ be m-sided par-
allelograms further assume that R and R′ have finite vertices Ai = si ∩si+1 and
A′

i = s′i ∩ s′i+1 for i = 1, · · ·m − 1. If

• The interior angle at vertex Ai and vertex A′

i are equal for i = 2, · · ·m−1,
and

• |sj | ≤ |s′j | for j = 2, · · · , m − 1,

with at least one of the inequalities strict. Then 〈v1,vm〉 > 〈v′
1,v

′
m〉, where

vi and v′
m are the outward pointing normal to the edge si of R and R′, respec-

tively.

Proof: We will prove the lemma first in the case where the side lengths differ
only at one side |sj | < |s′j | and then observe that the resulting polygon again
satisfies the hypotheses of the lemma so that one can repeat as necessary for
each pair of sides that differ in length.

We can situate side sj on the line x2 = 0 centered at (1, 0, 0) within the
upper sheet of the hyperboloid −x2

0 + x2
1 + x2

2 = −1 and assume that R is
entirely “above” this line, that is at points with x2 ≥ 0. We also assume that
the sides of R are labeled counterclockwise, i.e., si+1 is counterclockwise from
si for each i.

Applying the isometry:

I(t) =




cosh(t) sinh(t) 0
sinh(t) cosh(t) 0

0 0 1



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to the sides si with index i > j for t > 0 performs the desired deformation of R.
One can check that

d

dt
〈v1, I(t)vm〉 = sinh(t)(vm1v11 − vm0v10) − cosh(t)(vm1v10 − vm0v11),

if we write v1 = (v10, v11, v12) and vm = (vm0, vm1, vm2). Since (1, 0, 0) is in
the interior of sj we must have that 〈(1, 0, 0),v1〉 < 0, which is equivalent to
v10 > 0. For the same reason we also have vm0 > 0.

We will first check that this derivative d
dt〈v1, I(t)vm〉 is negative at t = 0,

or equivalently that:

0 < det




v10 0 vm0

v11 0 vm1

v12 −1 vm2


 = vm1v10 − vm0v11.

Imagine the three column vectors, in order, in a right-handed coordinate
system with the x0 axis pointing up, the x1 axis pointing forward and the x2

axis pointing to the right. Because of the choice of orientation made above, the
duals to the geodesics carrying s1, si, sm, when viewed from “above” and in that
order, will also turn counter-clockwise. Since these duals all have non-negative
x0 coordinates, and two of these are positive, they form a right-handed frame,
and the determinant is therefore positive.

We now check that d
dt 〈v1, I(t)vm〉 < 0 for an arbitrary t > 0. Because

vm1v10 − vm0v11 > 0 this is equivalent to:

vm1v11 − vm0v10

vm1v10 − vm0v11
<

cosh(t)

sinh(t)
. (3)

Furthermore, since cosh(t)
sinh(t) > 1 it is sufficient to show that vm1v11−vm0v10

vm1v10−vm0v11
≤ 1.

Since R is a parallelogram oriented counter-clockwise, l1 and lj cannot in-
tersect in H2 to the right of O, since only lj+1 can intersect lj there; nor can l1
and lj be asymptotic at the right ideal endpoint of lj (represented by the vector
(1, 1, 0) ∈ E2,1). This means that we never intersect the boundary of the half-
space in E2,1 corresponding to v1 when we move in a straight line from (1, 0, 0)
to (1, 1, 0), forcing the latter point to lie in the interior of that half-space. In
other words, 0 > 〈(1, 1, 0), (v10, v11, v12)〉 = −v10 + v11.

The following diagrams (radially projecting E2,1 to {x0 = 1}) illustrate
some of the ways l1, lj, and lm can be arranged, but are not intended to be a
comprehensive list. Configuration 1 is allowed (but will only occur if 2 < j <
m−1). Configuration 2 is only allowed when m = j+1. Configuration 3 is ruled
out by the intersection of l1 with lj to the right of O, violating the parallelogram
condition, and Configuration 4 is forbidden by the orientation condition.
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lm

Configuration 1

Configuration 3

lm

lj

Configuration 2

lm

lj

Configuration 4

O

l1

ljlj

l1

O

O O

l1

lm

l1

An analogous argument shows lj and lm cannot intersect in H2 to the left of
O and that they cannot be asymptotic at (1,−1, 0), so (1,−1, 0) is contained in
the interior of the half-space dual to (vm0, vm1, vm2), or in other words, −vm0−
vm1 < 0.

Combining these two observations yields 0 > (vm1 + vm0)(v11 − v10) =
vm1v11 + vm0v11 − vm1v10 − vm0v10 which is equivalent to vm1v11 − vm0v10 <
vm1v10 − vm0v11. In combination with the fact that the right hand side of this
inequality is positive, this shows that Equation (3) holds.

For i = 1, · · ·m − 1 the adjacent sides si and si+1 of R continue to inter-
sect at finite vertices with the same interior angles as before this deformation.
Applying what we have just proved to an appropriate sub-polygon of R we can
see that 〈vk,vl〉 is non-increasing for pairs of sides of sk and sl that did not
intersect before this deformation. Because these sides satisfied 〈vk,vl〉 < 0 be-
fore the deformation, they continue to do so, and the resulting polygon satisfies
the hypotheses of Lemma 4.3. Hence, one can increase the lengths of sides sj

sequentially, in order to prove Lemma 4.3 in full generality.
�

We continue the proof of Proposition 4.1. Suppose that F has n sides. We
can renumber the sides of F so that the second through (m−1)-st sides of F are
labeled with +’s and 0’s and at least one of them is labeled with a +, so that the
first and m-th sides are arbitrarily labeled, and, if m < n, so that the remaining
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sides are all labeled with −’s and 0’s. There is usually more than one way to
do this (often with differing values of m), any of which will suffice. See the
diagrams below for examples. In the former, there are many alternate choices;
in the latter, there is essentially one choice, up to combinatorial symmetry.

m = n

+

+
+

+ +
2

3

4

5

+

1

m = n = 6

+
+

0

+

0

3

5

2
1

−

+

m = 6

n = 9

4

7

8
0

−

m < n

Because Q and Q′ are parallelograms, the (possibly non-compact) polygons
bounded by the union of sides s1, · · · , sm from Q and the union of the sides
s′1, · · · , s

′
m from Q′ satisfy the hypotheses of Lemma 4.3. Hence, if we denote

the outward pointing normals to s1 and sm in Q by v1 and vm and in Q′ by v′
1

and v′
m, the lemma guarantees that 〈v′

1,v
′
m〉 > 〈v1,vm〉.

However, either n = m so that the first and m-th sides of F meet at a
vertex giving 〈v′

1,v
′
m〉 = 〈v1,vm〉, or, if n > m all of the sides in F with

index greater than m are labeled 0 or −. Applying Lemma 4.3 to the polygons
bounded by the sides sm+1, · · · , sn from Q and s′m+1, · · · , s

′
n from Q′ we find

that 〈v′
1,v

′
m〉 ≤ 〈v1,vm〉. In both cases we obtain a contradiction.

We have not used any restriction on the dihedral angles, only the restriction
that P1 and P2 are have parallelogram faces, so we shown that α : P1

C → RE is
injective. � Proposition 4.1.

Because P0
C ⊂ P1

C , it follows immediately that:

Corollary 4.4 α : P0
C → AC is injective.

This gives the uniqueness part of Andreev’s Theorem.

5 The mapping α : P0
C → AC is proper.

In this section, we prove that the mapping α : P0
C → AC is a proper map. In

fact, we will prove a more general statement (Proposition 5.3) which will be
useful later in the paper.

Lemma 5.1 Let F be a face of a hyperbolic polyhedron P with non-obtuse di-
hedral angles. If a face angle of F equals π/2 at the vertex v, then the dihedral
angle of the edge opposite the face angle (the edge that enters v and is not in F )
is π/2 and the dihedral angle of one of the two edges in F that enters v is π/2.
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Proof: This will follow from Equation (1) in Proposition 1.1, which one can
use to calculate face angles from the dihedral angles at a vertex. In Equation
(1), if βi = π/2 we have:

0 =
cos(αi) + cos(αj) cos(αk)

sin(αj) sin(αk)
,

where αi is the dihedral angle opposite the face angle βi and αj , αk are the
dihedral angles of the other two edges entering v. Both cos(αi) ≥ 0 and
cos(αj) cos(αk) ≥ 0 for non-obtuse αi, αj , and αk, so that cos(αi) = 0 and
cos(αj) cos(αk) = 0. Hence αi = π/2 and either αj = π/2 or αk = π/2. �

Lemma 5.2 Given three points v1, v2, v3 that form a non-obtuse, non-degenerate
triangle in the Poincaré model of H3, there is a unique isometry taking v1 to
a positive point on the x-axis, v2 to a positive point on the y-axis, and v3 to a
positive point on the z-axis.

Proof: The points v1, v2, and v3 form a triangle T in a plane PT . It is sufficient
to show that there is a plane QT in the Poincaré ball model that intersects the
positive octant in a triangle isomorphic to T . The isomorphism taking v1, v2,
and v3 to the x, y, and z-axes will then be the one that takes the plane PT to
the plane QT and the triangle T to the intersection of QT with the positive
octant.

Let s1, s2, and s3 be the side lengths of T . The plane QT must intersect the
x, y, and z-axes distances a1, a2, and a3 satisfying the hyperbolic Pythagorean
theorem:

cosh(s1) = cosh(a2) cosh(a3)

cosh(s2) = cosh(a3) cosh(a1)

cosh(s3) = cosh(a1) cosh(a2)

These equations can be solved for
(
cosh2(a1), cosh2(a2), cosh2(a3)

)
, obtain-

ing (
cosh(s2) cosh(s3)

cosh(s1)
,
cosh(s3) cosh(s1)

cosh(s2)
,
cosh(s1) cosh(s2)

cosh(s3)

)
,

The only concern in solving for ai is that each of these expressions is ≥ 1.
However, this follows from the triangle T being non-obtuse, using the hyperbolic
law of cosines. �

All of the results in this chapter are corollaries to the following proposition:

Proposition 5.3 Given a sequence of compact polyhedra Pi realizing C with
α(Pi) = ai ∈ AC . If ai converges to a ∈ AC , satisfying conditions (1,3-5), then
there exists a polyhedron P0 realizing C with dihedral angles a.
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Proof: Throughout this proof, we will denote the vertices of Pi by vi
1, · · · , v

i
n.

Let vi
a, vi

b, and vi
c be three vertices on the same face of Pi, which will form a

triangle with non-obtuse angles for all i. According to Lemma 5.2, for each i
we can normalize Pi in the Poincaré ball model so that vi

a is on the x-axis, vi
b

is on the y-axis, and vi
c is on the z-axis.

For each i, the vertices vi
1, · · · , v

i
n are in H3, which is a compact space under

the Euclidean metric. Therefore, by taking a subsequence, if necessary, we can
assume that each vertex of Pi converges to some point in H3. We denote the
collection of all of these limit points of vi

1, · · · , v
i
n by A1, · · · ,Aq ∈ H3. Let P0

be the convex hull of A1, · · · ,Aq. Since each Pi realizes C, if we can show that
each Am is the limit of a single vertex of Pi, then P0 will realize C and have
dihedral angles a.

In summary, we must show that no more than one vertex converges to each
Am, using that a satisfies conditions (1), (3), (4), and (5).

We first check that if Am ∈ ∂H3, then there is a single vertex of Pi

converging to Am:

Therefore, suppose that there are k > 1 vertices of Pi converging to Am to
find a contradiction to the fact that a satisfies conditions (1), and (3-5). Without
loss of generality, we assume that vi

1, · · · , v
i
k converge to Am and vi

k+1, · · · , v
i
n

converge to other points Aj for j 6= m.
Since Am is at infinity, our normalization (restricting vi

a, vi
b, and vi

c to the
x, y, and z-axes respectively) ensures that at least two of these vertices (vi

a, vi
b,

and vi
c) do not converge to Am. This fact will be essential throughout this part

of the proof.
Doing a Euclidean rotation of the entire Poincaré ball, we can assume that

Am is at the north pole of the sphere, without changing the fact that there are
at least two vertices of Pi that do not converge to Am.

We will do a sequence of normalizations of the position of Pi in the Poincaré
ball model to study the geometry of Pi near Am as i increases.

For all sufficiently large i, there is some hyperbolic plane Q, which is both
perpendicular to the z-axis and has Am and vi

1, · · · , v
i
k on one side of Q and the

remaining Aj (j 6= m) and all of the vertices vi
k+1, · · · , v

i
n that do not converge

to Am on the other side of Q. This is possible because A1, · · · ,Aq are distinct

points in H3, and because Am ∈ ∂H
3.

For each i, let Ri be the hyperbolic plane which intersects the z-axis perpen-
dicularly, and at the point farthest from the origin such that the closed half-space
toward Am contains all vertices which will converge to Am (see figure below).
Let Di denote the distance from Ri to Q along the z-axis; as i → ∞ and the
vertices vi

1, · · · , v
i
k tend to Am ∈ ∂H3, Di → ∞. Let Si be the hyperbolic plane

intersecting the z-axis perpendicularly, halfway between Ri and Q.
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Q

Am

vi

k+1

vi

k+4

RiSi
Q

vi

k+5

vi

k+2

vi

k+3

vi

n

Am

Si

Ri

For each i, we normalize the polyhedra Pi by translating the plane Si along
the z-axis to the equatorial plane, H = {z = 0}. We consider this a change of
viewpoint, so the translated points and planes retain their former names. Hence,
under this normalization, we have planes Ri and Q both perpendicular to the
z-axis, and hyperbolic distance Di/2 from the origin. Each vertex vi

1, · · · , v
i
k is

bounded above the plane Ri, and all of the vertices vi
k+1, · · · , v

i
n of Pi that do

not converge to Am are bounded below the plane Q.
As i tends to infinity, Ri and Q intersect the z-axis at arbitrarily large

hyperbolic distances from the origin. Denote by N and by S the half-spaces that
these planes bound away from the origin. Given arbitrarily small (Euclidean)
neighborhoods of the pole, for all sufficiently large i the half-spaces will be
contained in these neighborhoods. Hence, any edge running from N to S will
intersect H almost orthogonally, and close to the origin, as illustrated in the
figure below. Let ei

1, · · · , e
i
l denote the collection of such edges.

Pi ∩ H
H

S

N

By assumption, there are k ≥ 2 vertices in N and due to our normalization,
there are two or more vertices in S.

Thus the intersection Pi∩H will be almost a Euclidean polygon and its angles
will be almost the dihedral angles α(ei

1), ...α(ei
l); in particular, for i sufficiently
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large they will be at most only slightly larger than π/2. This implies that li, the
number of such edges, is 3 or 4 for i sufficiently large, as a Euclidean polygon
with at least 5 faces has at least one angle ≥ 3π/5.

If l = 3, the edges ei
1, e

i
2, e

i
3 intersecting H are a prismatic circuit because

there are two or more vertices in both N and in S. The sum α(ei
1)+α(ei

2)+α(ei
3)

tends to π as i tends to infinity, hence a cannot satisfy condition (3), contrary
to assumption.

Similarly, if li = 4, and if ei
1, e

i
2, e

i
3, e

i
4 to form a prismatic 4-circuit, then the

corresponding sum of dihedral angles tends to 2π violating condition (4).
So we are left with the possibility that l = 4, and that ei

1, e
i
2, e

i
3, e

i
4 do not

form a prismatic 4-circuit. In this case, a pair of these edges meet at a vertex
which may be in either N , as shown in the diagram below, or in S. Without
loss of generality, we assume that ei

1 and ei
2 meet at this vertex, which we call

xi and we assume that xi ∈ N . Because we assume that there are two or more
vertices converging to Am, there most be some edge ei

j (j 6= 1, 2, 3, 4) meeting

ei
1 and ei

2 at xi. We denote by f i the face of Pi containing ei
1, ei

2 and xi. An
example of this situation is drawn in the diagram below, although the general
situation can be more complicated.

f i

S

H

ei
1

ei
2

ei
j

xi

Since the sum of the dihedral angles along this 4-circuit limits to 2π, and
each dihedral angle is non-obtuse, each of the dihedral angles α(ei

1), · · · , α(ei
4)

limits to π/2. One can use Equation (1) to check that the dihedral angle α(ei
j)

will converge to the face angle βi in the face f i at vertex vi. This is because the
right-hand side of this equation limits to cos(α(ei

j)), while the right hand side
of the equation equals cos(βi). Then, as i goes to infinity, the neighborhood N
(containing xi

1) converges to the north pole while the neighborhood S (contain-
ing the other two vertices in f i which form the face angle βi at xi

1) converges
to the south pole. This forces the face angle βi to tend to zero, and hence the
dihedral angle α(ei

j) must tend to zero as well, contradicting the fact that all
coordinates of the limit point a are positive, by condition (1).

Therefore, we can conclude that any Am ∈ ∂H3 is the limit of a single vertex
of the Pi. Hence, the vertices of Pi that converge to points at infinity (in the
original normalization) converge to distinct points at infinity.
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It remains to show that if Am ∈ H3, then there is a single vertex of
Pi converging to Am:

First, we check that none of the faces of the Pi can degenerate to either a
point, a line segment, or a ray.

Because we have already proven that each of the vertices of Pi that converge
to points in ∂H3 converge to distinct points, any face Fi of Pi that degenerates
to a point, a line segment, or a ray, must have area that limits to zero. Hence,
by the Gauss-Bonnet formula, the sum of the face angles would have to converge
to π(n−2), if the face has n sides. The fact that the face angles are non-obtuse,
allows us to see that π(n−2) ≤ nπ/2 implying that n ≤ 4. This restricts such a
degenerating face Fi to either a triangle or a quadrilateral, the only Euclidean
polygons having non-obtuse angles.

If Fi is a triangle, then the three edges leading to Fi form a prismatic 3-
circuit, because our hypothesis N > 4 implies that C is not the simplex. If Fi

degenerates to a point, the three faces adjacent to Fi would meet at a vertex, in
the limit. Therefore, by Lemma 3.2, the sum of the dihedral angles at the edges
leading to Fi would limit to a value ≥ π, contrary to condition (3). Otherwise,
if Fi is a triangle which degenerates to a line segment or ray in the limit, then
two of its face angles will tend to π/2. Then, by Lemma 5.1, the dihedral angles
at the edges opposite of these face angles become π/2. However, these edges are
part of the prismatic 3-circuit of edges leading to Fi, resulting in an angle sum
≥ π, contrary to condition (3).

If, on the other hand, Fi is a quadrilateral, each of the face angles would
have to limit to π/2. By Lemma 5.1, the dihedral angles at each of the edges
leading from Fi to the rest of Pi would limit to π/2, as well as at least one edge
of Fi leading to each vertex of Fi. Therefore, the dihedral angles at each of the
edges leading from Fi to the rest of Pi and at least one opposite pair of edges
of Fi limit to π/2, in violation of condition (5).

Since none of the faces of the Pi can degenerate to a point a line segment,
or a ray, neither can the Pi. Suppose that the Pi degenerate to a polygon, G.
Because the dihedral angles are non-obtuse, only two of the faces of the Pi can
limit to the polygon G. Therefore the rest of the faces of the Pi must limit to
points, line segments, or rays, contrary to our reasoning above.

We are now ready to show that any Am that is a point in H3 is the limit of
a single vertex of the Pi. Let v1, · · · , vk be the distinct vertices that converge to
the same point Am. Then, since the Pi do not shrink to a point, a line segment,
a ray, or a polygon, there are at least three vertices vi

p, v
i
q and vi

r that don’t
converge to Am and that don’t converge to each other. Perform the appropriate
isometry taking Am to the origin in the ball model. Place sphere S centered at
the origin, so small that vi

p, v
i
q and vi

r never enter S.
For all sufficiently large values of i, the intersection Pi ∩ S approximates a

spherical polygon whose angles approximate the dihedral angles between the
faces of Pi that enter S. These spherical polygons cannot degenerate to a point
or a line segment because the polyhedra Pi do not degenerate to a line segment,
a ray, or a polygon. By reasoning similar to that of Proposition 1.1, one can
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check that this polygon must have only three sides and angle sum > π. If k > 1,
the edges of this triangle form a prismatic 3-circuit in C∗, since for each i, Pi has
more than one vertex inside the sphere (k > 1) and at least the three vertices
corresponding to the points represented by vi

p, v
i
q and vi

r. So, the Pi would have
a prismatic 3-circuit whose angle sum limits to a value > π. However, this
contradicts our assumption that a satisfies condition (3). Therefore, we must
have k = 1.

Therefore, we conclude that each Am is the limit of a single vertex of Pi. �

Corollary 5.4 The mapping α : P0
C → AC is proper.

Proof: Suppose that Pi is a sequence of polyhedra in P0
C with α(Pi) = ai ∈ AC .

If the sequence ai converges to a point in a ∈ AC , we must show that there is
a subsequence of the Pi that converges in P0

C .
Since a satisfies conditions (1) and (3-5), by Proposition 5.3, there is a sub-

sequence of the Pi converging to a polyhedron P0 that realizes C with dihedral
angles a. The sum of the dihedral angles at each vertex of P0 is > π since a
satisfies condition (2) as well. Therefore, by Lemma 3.2, each vertex of P0 is at
a finite point in H3, giving that P0 is compact. Hence P0 realizes C, is compact,
and has non-obtuse dihedral angles. Therefore P0 ∈ P0

C . �

Corollary 5.5 Suppose that Andreev’s Theorem holds for C and suppose that
there is a sequence ai ∈ AC converging to a ∈ ∂AC. If a satisfies conditions
(1,3-5) and if condition (2) is satisfied for vertices v1, · · · , vk of C, but not for
vk+1, · · · , vn for which the dihedral angle sum is exactly π, then there exists a
non-compact polyhedron P0 realizing C with dihedral angles a. P0 has vertices
v1, · · · , vk at distinct finite points and the vk+1, · · · , vn at distinct points at in-
finity.

Proof: Because we assume that Andreev’s Theorem holds for C, there exists a
sequence of polyhedra Pi with α(Pi) = ai. The proof continues in the same way
as that of Corollary 5.4, except that in this case, it then follows from Lemma
3.2 that v1, · · · , vk lie in H3, while vk+1, · · · , vn lie in ∂H3. �

Notice that if an abstract polyhedron has no prismatic 3-circuits, it has no
triangular faces, so collapsing a single edge to a point results in a cell complex
satisfying all of the conditions of an abstract polyhedron, except that one of the
vertices is now 4-valent.

Proposition 5.6 Let C be an abstract polyhedron having no prismatic 3-circuits
for which Andreev’s Theorem is satisfied. For any edge e0 of C, let C0 be the
complex obtained by contracting e0 to a point. Then, there exists a non-compact
polyhedron P0 realizing C0 with the edge e0 contracted to a single vertex at in-
finity and the rest of the vertices at finite points in H3.
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Proof of Proposition 5.6: Let v1 and v2 be the vertices at the ends of e0, let
e1, e2, e3, e4 the edges emanating from the ends of e0, and f1, f2, f3, f4 be the
four faces containing either v1 or v2, as illustrated below.

f3

e0
v1 v2

e1
e4

e3

f1

f2

f4

e2

For ǫ ∈ (0, π/2] the angles: α(e0) = ǫ, α(e1) = α(e2) = α(e3) = α(e4) = π/2,
and α(e) = 2π/5, for all other edges e, are in AC since C has no prismatic 3-
circuits. Therefore, because we assume that Andreev’s Theorem holds for C,
there is a polyhedron Pǫ ∈ P0

C realizing these angles. Choose a sequence ǫi > 0
converging to 0.

As in the proof of Proposition 5.3, we choose three vertices of Pi that are on
the same face (but not on f2 or f4) and normalize the polyhedra so that each Pi

has these three vertices on the x-axis, the y-axis, and the z-axis, respectively.
The vertices vi

1, · · · , v
i
n of each Pi are in the compact space H3 so, as before, we

can take a subsequence so that each vertex converges to some point in H3.
The strategy of the proof is to consider the limit points A1, · · · ,Aq of these

vertices and to show that vi
1 and vi

2 converge to the same limit point, say A1

and that exactly one of each of the other vertices vi
j (for j > 2) converges to

each of the other Am, with m > 1.
We first check that that vi

1 and vi
2 converge to the same point at infinity.

Since the dihedral angle at edge e0 converges to 0, the two planes carrying faces
f2 and f4 will intersect at dihedral angles converging to 0. In the limit, these
planes will intersect with dihedral angle 0, therefore, at a single point in ∂H3.
The edge e0 is contained within the intersection of these two planes, hence the
entire edge e0 converges to a single point in ∂H3, and hence vi

1 and vi
2 converge

to this point. We label this point by A1.
We must now show vi

1 and vi
2 are the only vertices that converge to A1.

As in the proof of Proposition 5.3, one can do further normalizations so that
all of the vertices that converge to A1 are in an arbitrarily small neighborhood
N of the north pole and all of the other vertices are in an arbitrarily small
neighborhood S of the south pole. Since a satisfies conditions (3) and (4) we
deduce that there there are exactly four edges ei

1, e
i
2, e

i
3, and ei

4 that connect
N to S and that do not form a prismatic 4-circuit. Then, by Lemma 1.3, this
4-circuit separates exactly two vertices from the remaining vertices of Pi, hence
only vi

1 and vi
2 converge to A1.

The proof that a single vertex of Pi converges to each Am, for m > 1 is
almost the same as the proof of Proposition 5.3, because the dihedral angles
ai are non-zero for all edges other than e0 and because conditions (3-5) are
satisfied.

The only difference is that one must directly check that faces f2 and f4 do
not collapse to line segments or rays, even though on each of these faces, two
vertices converge to the same point at infinity. A vertex of f2 or f4 that is
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not v1 or v2 must have face angle that is strictly acute. Otherwise, Lemma 5.1
would give the dihedral angles at two of the edges meeting at this vertex is π/2,
contrary to the fact that at least two of these dihedral angles are assigned to be
2π/5. From here, the Gauss-Bonnet Theorem can be used to check that neither
f2 nor f4 collapses to a line segment or a ray.

Therefore, we conclude that the vertices vi
j (i > 3) converge to distinct

points in H3 away from the limit of vi
1 and vi

2, which converge to the same
point in ∂H3. Since condition (2) is satisfied at each vertex vi

j (i > 3), Lemma

3.2 guarantees that each of these Am is at a finite point. Therefore, vi
1 and vi

2

converge to the same point at infinity, and each of the other vertices converges
to a distinct finite point. �

6 AC 6= ∅ implies P0
C 6= ∅

At this point, we know the following result:

Proposition 6.1 If P0
C 6= ∅, then α : P0

C → AC is a homeomorphism.

Proof: We have shown in preceding sections that α : P1
C → RE is a continuous

and injective map whose domain and range are manifolds (without boundary)
of the same dimension, so it follows from invariance of domain that α is a local
homeomorphism. Local homeomorphisms restrict nicely to subspaces, giving
that α : P0

C → RE is a local homeomorphism, as well. In fact, because α :
P0

C → RE is also injective it is a homeomorphism onto its image, which we
showed in Section 3 is a subset of AC .

Since AC is convex and therefore connected, it suffices to show that α(P0
C) is

both open and closed in AC , for it will then follow (since the image is non-empty
by hypothesis) that the image is the entire set AC . But local homeomorphisms
are open maps, so α(P0

C) is open in AC ; and since Corollary 5.4 shows that
α : P0

C → AC is proper, it immediately follows that the limit of any sequence
in the image of α which converges in AC must lie in the image of α, so α(P0

C)
is closed in AC . �

Indeed, any local homeomorphism between metric spaces which is also proper
will be a finite-sheeted covering map [14, p. 23] and [18, p. 127]. This gives an
alternative route to proving the above result.

But what is left is absolutely not obvious, and is the hardest part of the
whole proof: proving that if AC 6= ∅, then P0

C 6= ∅. We have no tools with
which to approach it and must use bare hands. We follow the proof of Andreev,
although the proof of his key lemma contains a significant error. We provide
our own correction.

First recall that in Corollary 1.6, we saw that if C has no prismatic 3-
circuits, AC 6= ∅. We will call polyhedra that have no prismatic 3-circuits simple
polyhedra. We will also say that the dual graph C∗ is simple if it satisfies the
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dual condition, that every 3-cycle is the boundary of a single face. (This usage
of “simple” follows Andreev, but differs from that used by others, including
Vinberg [33, p. 47], for polyhedra in all dimensions greater than two.)

We first prove that P0
C 6= ∅ for simple polyhedra, and hence by Proposition

6.1 that Andreev’s Theorem holds for simple polyhedra. We then show that
for any C having prismatic 3-circuits, if AC 6= ∅, then P0

C 6= ∅ by making a
polyhedron realizing C from (possibly many) simple polyhedra. By Proposition
6.1, this final step will complete the proof of Andreev’s theorem.

Proof of Andreev’s Theorem for Simple Polyhedra

Proposition 6.2 If C is simple and has N > 5 faces, P0
C 6= ∅. In words: every

simple polyhedron is realizable.

Proof: The proof comprises three lemmas. We will first state the lemmas and
prove this proposition using them. Then we will prove the lemmas.

Lemma 6.3 Let PrN and DN be the abstract polyhedra corresponding to the
N -faced prism and the N -faced “split prism”, as illustrated below. If N > 4,
P0

PrN
is nonempty and if N > 7, P0

DN
is nonempty.

Prism with 10 faces Splitprism with 11 faces

A Whitehead move on an edge e of an abstract polyhedron is given by the
local change Wh(e) described by the following diagram. The Whitehead move
in the dual complex is dashed. (Sometimes we will find it convenient to describe
the Whitehead move entirely in terms of the dual complex, in which case we
write Wh(f)).

Whitehead move on edge e

e1 e2

e3e4

e′e

e1 e2

e3e4

f f ′Wh(e)
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Lemma 6.4 Let the abstract polyhedron C′ be obtained from the simple abstract
polyhedron C by a Whitehead move Wh(e). Then if P0

C is non-empty, so is P0
C′ .

Lemma 6.5 (Whitehead Sequence) Let C be a simple abstract polyhedron
on S2 which is not a prism. If C has N > 7 faces, one can simplify C by a finite
sequence of Whitehead moves to DN such that all of the intermediate abstract
polyhedra are simple.

Proof of Proposition 6.2, assuming these three lemmas: Given simple C
with N > 5 faces; if C is a prism, the statement is proven by Lemma 6.3. One
can check that if C has 7 or fewer faces (and is not the tetrahedron) it is a prism.
So, if C is not a prism, we have N > 7. Then, according to Lemma 6.5, one
finds a reduction by (say m) Whitehead moves to DN , with each intermediate
abstract polyhedron simple. Applying Lemma 6.4 m times, one sees that P0

C

is non-empty if and only if P0
DN

is non-empty. However, P0
DN

is non-empty by
Lemma 6.3. �

Theorem 6 from Andreev’s original paper corresponds to our Proposition 6.2.
The hard technical part of this is the proof of Lemma 6.5. Andreev’s original
proof of Theorem 6 in [4, 5] provides an algorithm giving the Whitehead moves
needed for this lemma but the algorithm just doesn’t work. It was implemented
as a computer program by the first author and failed on the first test case, C
being the dodecahedron. On one of the final steps, it produced an abstract
polyhedron which had a prismatic 3-circuit. This error was then traced back to
a false statement in Andreev’s proof of the lemma. We will explain the details
of this error in the proof of Lemma 6.5.

Proof of Lemma 6.3: We construct the N -faced prism explicitly. First,
construct a regular polygon with N − 2 sides centered at the origin in the disc
model for H2. (N − 2 ≥ 3, since N ≥ 5.) We can do this with the angles
arbitrarily small. Now view H2 as the equatorial plane the ball model of H3;
and consider the hyperbolic planes which are perpendicular to the equatorial
plane and contain one side of the polygon. In Euclidean geometry these are
hemispheres with centers on the boundary of the equatorial disc. The dihedral
angles between intersecting pairs of these planes are the angles of the polygon.

Now consider two hyperbolic planes close to the equatorial plane, one slightly
above and one slightly beneath, both perpendicular to the z-axis. These will
intersect the previous planes at angles slightly smaller than π/2. The region
defined by these N planes makes a hyperbolic polyhedron realizing the cell
structure of the prism, so PPrN

6= ∅. In particular, using Proposition 6.1,
Andreev’s Theorem holds for C = PrN , N ≥ 5.

When N > 7, the split prism DN can be constructed by gluing together a
prism and its mirror image, each having N − 1 faces. The dihedral angles are
given in the figure below.

29



π/3

π/2

π/2
π/2

π/2

π/2

π/2

π/3

π/3

π/3

π/3

π/2

π/2 π/2

π/2

π/2

π/2

π/2

π/4

π/3

π/3

π/2

π/2

π/3

These angles satisfy Andreev’s conditions (1–5), and Andreev’s Theorem
holds for PrN−1 since N − 1 > 6 > 5, so there exists such a hyperbolic prism.
When this prism is glued to its mirror image, along the (N −3)-gon given by the
outermost edges in the figure, the corresponding dihedral angles all double. So
the edges on the outside which were labeled π/2 “disappear” into the interior
of a “merged” face, and the edge which was labeled π/4 now corresponds to a
dihedral angle of π/2. Hence, P0

DN
6= ∅, when N > 7. Notice that when N = 7,

the construction yields Pr7 (which is combinatorially equivalent to D7). �

Proof of Lemma 6.4: We are given C and C′ simple with C′ obtained by a
Whitehead move on the edge e0 and we are given that PC 6= ∅. By Proposition
6.1, since PC 6= ∅, we conclude that Andreev’s Theorem holds for C. Let C0

be the complex obtained from C by shrinking the edge e0 down to a point. By
Proposition 5.6, there exists a non-compact polyhedron P0 realizing C0 since
Andreev’s Theorem holds for C.

We use the upper half-space model of H3, and normalize so that e0 has col-
lapsed to the origin of C ⊂ ∂H3. The faces incident to e0 are carried by 4 planes
H1, ..., H4 each intersecting the adjacent ones at right angles, and all meeting at
the origin. Their configuration will look like the center of the following figure.
(Recall that planes in the upper half-space model of H3 are hemispheres which
intersect ∂H3 in their boundary circles. The dihedral angle between a pair of
planes is the angle between the corresponding pair of circles in ∂H3.)

e4e4

e3

e1

e3
e2

e0

e2

e1

e3
e2

e1

e0

e4

The pattern of circles in the center of the figure can by modified forming
the figures on the left and the right with each of the four circles intersecting
the adjacent two circles orthogonally. If we leave the other faces of P0 fixed
we can make a small enough modification that the edges e1, e2, e3, e4 still have
finite non-zero lengths. Since each of the dihedral angles corresponding to edges
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other than e0, e1, e2, e3, and e4 were chosen to be 2π/5, this small modification
will not increase any of these angles past π/2. One of these modified patterns
of intersecting circles will correspond to a polyhedron in P0

C and the other to a
polyhedron in P0

C′ . �

Proof of Lemma 6.5: We assume that C 6= PrN is a simple abstract polyhe-
dron with N > 7 faces. We will construct a sequence of Whitehead moves that
change C to DN , so that no intermediate complex has a prismatic 3-circuit.

Find a vertex v∞ of C∗ which is connected to the greatest number of other
vertices. We will call the link of v∞, a cycle of k vertices and k edges, the
outer polygon. Notice that k ≤ N − 2, with equality precisely when C = PrN .
Therefore, since C 6= PrN by hypothesis, our first goal is to find Whitehead
moves which increase k to N − 3 without introducing any prismatic 3-circuits
along the way. Once this is completed, an easy sequence of Whitehead moves
changes the resulting complex to D∗

N .
Let us set up some notation. Draw the dual complex C∗ in the plane with

the vertex v∞ at infinity, so that the outer polygon P surrounding the remaining
vertices and triangles. We call the vertices inside of P interior vertices. All of
the edges inside of P which do not have an endpoint on P are called interior
edges.

Note that the graph of interior vertices and edges is connected, since C∗ is
simple. An interior vertex which is connected to only one other interior vertex
will be called an endpoint.

F 2
v

F 1
w

w

F 1
v

v

endpoint

Throughout this proof we will draw P in black and we draw interior edges
and vertices of C∗ in black, as well. The connections between P and the interior
vertices will be in grey. Connections between P and v∞ will be black, if shown
at all.

The link of an interior vertex v will intersect P in a number of components
F 1

v , · · · , Fn
v . (Possibly n = 0.) See the above figure. We will say that v is

connected to P in these components. Notice that since C∗ is simple, an endpoint
is always connected to P in exactly one such component.

Sub-lemma 6.6 If a Whitehead move on the dual C∗ of an abstract polyhedron
yields C′∗ (replacing f by f ′), and if δ is a simple closed path in C∗, which
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separates one endpoint of f ′ from the other, then any newly-created 3-circuit
will contain some vertex of δ which shares edges with both endpoints of f ′.

Proof: A newly created 3-circuit γ must contain the new edge f ′ as well as
two additional edges e1 and e2 connecting from a single vertex V to the two
endpoints of f ′. By the Jordan Curve Theorem, since δ separates the endpoints
of f ′, the path e1e2 intersects δ. The path e1e2 is entirely in C∗ since f ′ is the
only new edge in C′∗, so the vertex V is in δ. �

We now prove three additional sub-lemmas that specify certain Whitehead
moves that, when performed on a simple abstract polyhedron C (which is not
a prism and has more than 7 faces), do not introduce any prismatic 3-circuits.
Hence the resulting abstract polyhedron C′∗ is simple. More specifically, we
will use Sub-lemma 6.6 to see that each Whitehead move introduces exactly
two newly-created 3-circuits in C′∗, the two triangles containing the new edge
f ′.

Sub-lemma 6.7 Suppose that there is an interior vertex A of C∗ which is
connected to P in exactly one component consisting of exactly two consecutive
vertices Q and R. The Whitehead move Wh(QR) on C∗ increases the length of
the outer polygon by one, and introduces no prismatic 3-circuit.

Proof:

v∞

E

v∞

Wh(QR)
R R

interior stuffother interior stuff

A ED

Q Q

AD

Clearly this Whitehead move increases the length of P by one. We apply
Sub-lemma 6.6 to see that this move introduces no prismatic 3-circuits. We let
δ = P , the outer polygon, which clearly separates the interior vertex A from v∞
in C∗. Any new 3-circuit would consist of a point on P connected to both A and
v∞. By hypothesis, there were only the two points Q and R on P connected
to A. These two points result in the new triangles QAv∞ and RAv∞ in C′∗.
Therefore Wh(QR) result in no prismatic 3-circuits. �

In the above sub-lemma, the condition that A is connected to exactly two
consecutive vertices of P prevents A from being an endpoint. For if A is an
endpoint, let B denote the unique interior vertex connected to A. Then BQR
would be a 3-circuit in C∗ separating A from the other vertices and hence
would contradict the hypothesis that C is simple. Therefore any endpoint must
be connected to P in a single component having three or more vertices.
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Sub-lemma 6.8 Suppose that there is an interior vertex A that is connected to
P in a component consisting of M consecutive vertices Q1, · · · , QM of P (and
possibly other components).
(a) If A is not an endpoint and M > 2, the sequence of Whitehead moves
Wh(AQM ), . . . , Wh(AQ3) results in a complex in which A is connected to the
same component of P in only Q1 and Q2. These moves leave P unchanged, and
introduce no prismatic 3-circuit.

A

QM−1 QM

D EA

Q1Q2Q3 QM−1QM

Wh(AQM)

D E

Q1Q2Q3

(b) If A is an endpoint and M > 3, the sequence of Whitehead moves
Wh(AQM ), . . . , Wh(AQ4) results in a complex in which A is connected to the
same component of P in only Q1, Q2, and Q3. These moves leave P unchanged
and introduce no prismatic 3-circuits.

Q1

EA

QM−1

QM

Q2

Q4

Q3

QM−2

Wh(AQM)

EA

Q2

Q4

QM−1

QM

Q3

QM−2

Q1

Proof: Part (a) A is not an endpoint. Clearly the move Wh(AQM ) de-
creases M by one. We check that if M > 2, this move introduces no prismatic
3-circuits. We let δ be the path v∞QM−2AQM which separates QM−1 from E
in C∗. By Sub-lemma 6.6, any new 3-circuit contains a vertex on δ connected
to both E and QM−1. Clearly v∞ is not connected to the interior vertex E.
If M > 3, QM−2 is connected only to QM−1, A, QM−3, and v∞. Otherwise,
when M = 3, a connection of Q1 to E would mean that C∗ had a 3-cycle EQ1A
which would have to separate D (in the figure above corresponding to part (a))
from Q2, contrary to the hypothesis that C∗ is simple.

Hence, the only two vertices on δ that are connected to both E and QM−1

are A and QM , forming the two triangles AQM−1E and QMQM−1E in C′∗.
Hence there are no new prismatic 3-circuits, so we can reduce M by one, when
M > 2.

Part (b) A is an endpoint. We again use δ = v∞QM−2AQM to check that
the move Wh(AQM ) introduces no prismatic 3-circuits. The proof is identical to
Part (a), except that M > 3 is needed to conclude that QM−2 is not connected
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to E since A is now an endpoint.
Therefore, as long as M > 3 we can reduce M by one without introducing

prismatic 3-circuits. Recall that an endpoint of a simple complex cannot be
connected to fewer than three points of P , so this is optimal. �

Note: In both parts (a) and (b), each of the Whitehead moves Wh(AQM )
transfers the connection between A and QM to a connection between the neigh-
boring interior vertex E and QM−1. In fact QM−1 gets added to the component
containing QM in which E is connected to P . This is helpful later on, in Case
2 of Lemma 6.5.

Sub-lemma 6.9 Suppose that there is an interior vertex A whose link con-
tains two distinct vertices X and Y of P . Then there are Whitehead moves
which eliminate any component in which A is connected to P , if that component
does not contain X or Y . P is unchanged, and no prismatic 3-circuits will be
introduced.

Example:

A A

X X

Y Y

Here A is connected to P in four components containing six vertices. We can
eliminate connections of A to all of the components except for the single-point
components X and Y .

Proof: Let O be a component not containing X or Y . If O contains more
than two vertices, we can reduce it to two vertices by Sub-lemma 6.8(a).

Suppose that O contains exactly two vertices, V and W . We check that the
move Wh(AW ) eliminates the connection from A to W without introducing
prismatic 3-circuits. Let D be the unique interior vertex forming triangle ADW ,
as in the figure below. The move Wh(AW ) creates the new edge DV . Let δ be
the loop v∞Y AW which separates D from V in C∗. See the dashed curve in the
figure below. By Sub-lemma 6.6, any new 3-circuit contains a point on δ that is
connected to both D and V . Clearly v∞ is not connected to the interior vertex
D. Since Y and V are in different components of connection between A and
P , Y is not connected to V . Therefore, only A and W are connected to both
D and V , forming the triangles ADV and WV D in C′∗. Therefore, Wh(AW )
results in no prismatic 3-circuits.

X
v∞

V

A

D

X

Y
v∞ v∞

v∞

v∞

v∞ v∞

v∞

Wh(AW )

D

Y
A δ

W

V
W
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Thus, we can suppose that O contains a single vertex V . We check that
the move Wh(AV ), which eliminates this connection, does not introduce any
prismatic 3-circuits. Let D and E be the unique interior vertices forming the
triangles ADV and AEV . Let δ1 be the curve v∞Y AV and δ2 be the curve
v∞XAV in C∗. See the two dashed curves in the figure below. Both of these
curves separate D and E in C∗. Applying Sub-lemma 6.6 twice, we conclude
that any newly created 3-circuit contains a point that is both on δ1 and on δ2

and that connects to both D and E. The only points on both δ1 and δ2 are
v∞, A, and V . Since D and E are interior, v∞ cannot connect to either of them.
The connections from A and from V to D and E result in the triangles ADE
and V DE in C′∗. Therefore, Wh(AV ) results in no prismatic 3-circuits.

Vv∞

v∞

X

Y
A

D

E

v∞

v∞

X

Y A

D

E

Wh(AV )
v∞ v∞

δ1

δ2 V

�

The proof that this move does not introduce any prismatic 3-circuit depends
essentially on the fact that A is connected to P in at least two other vertices
X and Y . Andreev describes a nearly identical process to Sublemma 6.9 in his
paper [4] on pages 333-334. However, he merely assumes that A is connected to
P in at least one component in addition to the components being eliminated.
He does not require that A is connected to P in at least two vertices outside of
the components being eliminated. Andreev then asserts: “It is readily seen that
all of the polyhedra obtained in this way are simple...” In fact, the Whitehead
move demonstrated below clearly creates a prismatic 3-circuit. (Here, M and
N lie in P .)

AWh(AN)

N

M

EDA

M

N

ED

Having assumed this stronger (and incorrect) version of Sub-lemma 6.9, the
remainder of Andreev’s proof is relatively easy. Unfortunately, the situation
pictured above is not uncommon (as we will see in Case 3 below!) Restricted to
the weaker hypotheses of Sub-lemma 6.9 we will have to work a little bit harder.

We will now use these three sub-lemmas to show that if the length of P is
less than N − 3 (so that there are at least 3 interior vertices), then we can do
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Whitehead moves to increase the length of P by one, without introducing any
prismatic 3-circuits.

Case 1: An interior point which isn’t an endpoint connects to P in a com-
ponent with two or more vertices, and possibly in other components.

Apply Sub-lemma 6.8(a) decreasing this component to two vertices. We
can then apply Sub-lemma 6.9, eliminating any other components since this
component contains two vertices. Finally, apply Sub-lemma 6.7 to increase the
length of the outer polygon by 1.

Case 2: An interior vertex that is an endpoint is connected to more than
three vertices of P .

We assume that each of the interior points that are not endpoints are con-
nected to P in components consisting of single points, otherwise we are in Case
1. Let A be the endpoint which is connected to more than three vertices of P .
By Sub-lemma 6.8(b), there is a Whitehead move that transfers one of these
connections to the interior vertex E that is next to A. The point E is not an
endpoint since the interior graph is connected and the assumption N − k > 3
implies that there are at least three interior vertices. Now, one of the compo-
nents in which E is connected to P has exactly two vertices, so we can then
apply Case 1 for vertex E.

Case 3: Each interior vertex which is an endpoint is connected to exactly
3 points of P and every other interior vertex is connected to P in components
each consisting of a single vertex.

First, notice that if the interior vertices and edges form a line segment,
this restriction on how interior points are connected to P results in the prism,
contrary to hypothesis of this lemma. However, there are many complexes
satisfying the hypotheses of this case which have interior vertices and edges
forming a graph more complicated than a line segment:

For such complexes we need a very special sequence of Whitehead moves to
increase the length of P .

Pick an interior vertex which is an endpoint and label it I1. Denote by P1,
P2, and P3 the three vertices of P to which I1 connects. I1 will be connected to a
sequence of interior vertices I2, I3, · · · Im, m ≥ 2, with Im the first interior vertex
in the sequence that is connected to more than two other interior vertices. Vertex
Im must exist by the assumption that the interior vertices don’t form a line
segment, the configuration that we ruled out above. By hypothesis, I2, · · · , Im

can only connect to P in components which each consist of a vertex, hence each
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must be connected to P1 and to P3. Similarly, there is an interior vertex (call it
X) which connects both to Im and to P1 and another vertex Y which connects
to Im and P3. Vertex Im may connect to other vertices of P and other interior
vertices, as shown on the left side of the following diagram.

Im−1

P1

P2

P3

X

Y

other vertices

Im I1I3 I2Im−2

Now we describe a sequence of Whitehead moves that can be used to connect
Im to P in only P1 and P2. This will allow us to use Sub-lemma 6.7 to increase
the length of P by one.

First, using Sub-lemma 6.9, one can eliminate all possible connections of
Im to P in places other than P1 and P3. Next, we do the move Wh(ImP3) so
that Im connects to P only in P1. We check that this Whitehead move does
not create any prismatic 3-circuits. Let δ be the curve v∞P1ImP3 separating
Im−1 from Y . By Sub-lemma 6.6, any newly created prismatic 3-circuit would
contain a point on δ connected to both Im−1 and Y . Since Y and Im−1 are
interior, v∞ does not connect to them. Also, P1 is not connected to Y as
this would correspond to a pre-existing prismatic 3-circuit P1ImY , contrary to
assumption. So, the only vertices of δ that are connected to both Im−1 and
Y are Im and P3, which result in the triangles ImIm−1Y and P3Im−1Y , hence
do not correspond to newly created prismatic 3-circuits. Therefore Wh(ImP3)
introduces no prismatic 3-circuits.

Im−1

P1

P2

P3

I1I2I3Im

X

Y

Im−2
other vertices

Next, one must do the moves Wh(Im−1P1),...,Wh(I1P1), in that order. (See
the figure below). We check that each of these moves creates no prismatic 3-
circuits. Fix 1 ≤ k ≤ m−1, and let δ be the loop v∞P1IkP3. Wh(IkP1) creates
a new edge Ik−1Im if k > 1, or P2Im if k = 1, the vertices of which are separated
by δ. Since Im is interior, v∞ does not connect to Im. Also, Im is no longer
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connected to P3. Therefore the only points of δ that are both connected to Im

and Ik−1 are Ik and P1. Those connections form the new triangles P1ImIk−1

and IkIk−1Im (when k = 1, replace Ik−1 with P2). Hence no prismatic 3-circuits
were created, as claimed.

P1

IkIm−1

other vertices

Y

X

Im

P2

Wh(IkP1)

P1

IkIm−1

other vertices

Y

X

Im

P2

P3

Ik−1

Ik−1

Ik+1

P3

Ik+1

I1

I1

After this sequence of Whitehead moves, we obtain the diagram below, with
Im connected to P exactly at P1 and P2. We can then apply Sub-lemma 6.7 to
increase the length of P by the move Wh(P1P2), as shown below.

I1

P1

P2

P3

X

Y

other vertices

I2I3I4

Im

Im−1

I1

P1

P3

X

Y

other vertices

Im−1
I2I3I4

Im

P2
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This concludes Case 3.

Since C∗ must belong to one of these cases, we have seen that if the length of
P is less than N −3, we can do Whitehead moves to increase it to N −3 without
creating prismatic 3-circuits. Hence we can reduce to the case of two interior
vertices, both of which must be endpoints. Then we can apply Sublemma 6.8(b)
to decrease the number of connections between one of these two interior vertices
and P to exactly 3. The result is the complex DN , as shown to the right below.

w

vv

w

� Lemma 6.5.

Proof of Andreev’s Theorem for general polyhedra

We have seen that Andreev’s Theorem holds for every simple abstract polyhe-
dron C. Now we consider the case of C having prismatic 3-circuits. So far, the
only example we have seen has been the triangular prism. Recall that there are
some such C for which AC = ∅, so we can only hope to prove that P0

C 6= ∅ when
AC 6= ∅.

Lemma 6.10 If AC 6= ∅, then there are points in AC arbitrarily close to
(π/3, π/3, · · · , π/3).

Proof: Let a ∈ AC and let at = a(1− t)+ (π/3, π/3, · · · , π/3)t. To see that for
each t ∈ [0, 1), at ∈ AC , we check conditions (1-5): each coordinate is clearly > 0
so condition (1) is satisfied. Given edges ei, ej, ek meeting at a vertex we have
(ai + aj + ak)(1− t)+πt > π(1− t)+πt = π for t < 1, since (ai + aj + ak) > π.
So, condition (2) is satisfied. Similarly, given a prismatic 3-circuit intersecting
edges ei, ej , ek we have (ai + aj + ak)(1 − t) + πt < π(1 − t) + πt = π for t < 1,
so condition (3) is satisfied. Conditions (4) and (5) are satisfied since each
component of at is < π/2 for t > 0 and since a satisfies these conditions for
t = 0. �

The polyhedra corresponding to these points in AC , if they exist, will have
“spiky” vertices and think “necks”, wherever there is a prismatic 3-circuit.

We will distinguish two types of prismatic 3-circuits. If a prismatic 3-circuit
in C∗ separates one point from the rest of C∗, we will call it a truncated triangle,
otherwise we will call it an essential 3-circuit. The name truncated triangle
comes from the fact that such a 3-circuit in C∗ corresponds geometrically to
the truncation of a vertex, forming a triangular face. We will first prove the
following sub-case:
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Proposition 6.11 Let C be an abstract polyhedron (with N > 4 faces) in which
every prismatic 3-circuit in C∗ is a truncated triangle. If AC is non-empty, then
P0

C is non-empty.

We will need the following three elementary lemmas in the proof:

Lemma 6.12 Given three planes in H
3 that intersect pairwise, but which do

not intersect at a point in H3, there is a fourth plane that intersects each of
these planes at right angles.

Proof: Suppose that the three planes are given by Pv1
, Pv2

, and Pv3
. Since

there is no common point of intersection in H3, the line Pv1
∩Pv2

∩Pv3
in E3,1

is outside of the light-cone, so the hyperplane (Pv1
∩ Pv2

∩ Pv3
)⊥ intersects H3

and hence defines a plane orthogonal to Pv1
, Pv2

, and Pv3
. �

Lemma 6.13 Given two halfspaces H1 and H2 intersecting with dihedral angle
a ∈ (0, π/2] and a point p in the interior of H1 ∩ H2. Let l1 be the ray from p

perpendicular to ∂H1 and let H̃1 be the half-space obtained by translating ∂H1

a distance δ further from p perpendicularly along l1. For δ > 0 and sufficiently
small H̃1 and H2 intersect with dihedral angle α(δ) where α is a decreasing
continuous function of δ.

Proof: In this and the following lemma, we use the fact that in a polyhedron
P with non-obtuse dihedral angles (here P = H1 ∩H2), the foot of the perpen-
dicular from an arbitrary interior point of P to a plane containing a face of P
will lie in that face (and indeed will be an interior point of that face). See, for
example, [33, p. 48].

We assume that δ is sufficiently small so that ∂H̃1 and ∂H2 intersect. Let
l2 be the ray from p perpendicular to ∂H2 and let Q be the plane containing l1
and l2. By construction, Q intersects ∂H1, ∂H2 and ∂H̃1 each perpendicularly
so that Q ∩ H1 and Q ∩ H2 are half-planes in Q intersecting with angle a and
Q ∩ H̃1 and Q ∩ H2 are half-planes in Q intersecting with angle α(δ). See the
figure below:

R

H2

H1
δ

fH1

α(δ)

p

l1

l2

a
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Let R be the compact polygon in Q bounded by ∂H̃1, ∂H2, l1 and l2. (In the
figure above, R is the shaded region.) Because R has non-obtuse interior angles

it is a parallelogram. If we denote the outward pointing normal vectors to H̃1

and H2, by v1(δ) and v2, then Lemma 4.3 gives that 〈v1(δ),v2〉 is a decreasing
continuous function of δ. Since α(δ) = − cos (〈v1(δ),v2〉), we see that α is a
decreasing continuous function of δ, as well. �

Lemma 6.14 Given a finite volume hyperbolic polyhedron P with dihedral an-
gles in (0, π/2] and with trivalent ideal vertices. Suppose that the vertices
v1, ..., vn are at distinct points at infinity and the remaining are at finite points
in H3. Then there exists a polyhedron P ′ which is combinatorially equivalent to
the result of truncating P at its ideal vertices, such that the new triangular faces
of P ′ are orthogonal to each adjacent face, and each of the remaining dihedral
angles of P ′ lies in (0, π/2].

Proof: Let p be an arbitrary point in the interior of P =
⋂N

i=0 Hi and let li be
the ray from p to ∂Hi that is perpendicular to ∂Hi.

By Lemma 6.13, we can decrease the dihedral angles between the face carried
by ∂Hi and all adjacent faces an arbitrarily small non-zero amount by trans-
lating ∂Hi a sufficiently small distance further from p. Appropriately repeating
for each i = 1, . . . , N , we can shift each of the half-spaces an appropriate small
distance further away from p in order to decrease all of the dihedral angles by
some non-zero amount bounded above by any given ǫ > 0.

We choose ǫ sufficiently small that the sum dihedral angles at finite vertices
of P remains > π and dihedral angles between each pair of faces remains > 0.
At each infinite vertex vi of P the sum of dihedral angles becomes < π because
each dihedral angle is decreased by a non-zero amount. Consequently, Lemma
6.12 gives a fourth plane perpendicular to each of the three planes previously
meeting at vi. This resulting polyhedron P ′ has the same combinatorics as P ,
except that each of the infinite vertices of P is replaced by a triangular face
perpendicular to its three adjacent faces. By construction the dihedral angles
of P ′ are in (0, π/2]. �

Proof of Proposition 6.11: By the hypothesis that N > 4 from Andreev’s
Theorem, C is not the tetrahedron and since we have already seen that An-
dreev’s Theorem holds for the triangular prism, we assume that C has more
than 5 faces. In this case, one can replace all (or all but one) of the truncated
triangles by single vertices to reduce C to a simple abstract polyhedron (or to
a triangular prism). The latter case is necessary when replacing all of the trun-
cated triangles would lead to a tetrahedron, (Pr5 is a truncated tetrahedron.)
In either case, we call the resulting abstract polyhedron C0.

The idea of the proof quite simple. Since Andreev’s Theorem holds for C0,
we construct a polyhedron P 0 realizing C0 with appropriately chosen dihedral
angles. We then decrease the dihedral angles of P 0, using Lemmas 6.14 and 6.12
to truncate vertices of P 0 as they “go past ∞,” eventually obtaining a compact
polyhedron realizing C with non-obtuse dihedral angles.
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Using that AC 6= ∅ and Lemma 6.10, choose a point β ∈ AC so that each
coordinate of β is within δ of π/3, with δ < π/18. It will be convenient to
number the edges of C and C0 in the following way: If there is a prismatic
3-circuit in C0 (i.e., C0 = Pr5), we number these edges 1, 2, and 3 in C and C0.

Otherwise, we can use the facts that C0 is trivalent and is not a tetrahedron,
to find three edges whose endpoints are six distinct vertices. Next, we number
the remaining edges common to C and C0 by 4, 5, · · · , k. Finally, we number
the edges of C that were removed to form C0 by k + 1, · · · , n so that the edges
surrounded by prismatic 3-circuits of C with smaller angle sum (given by β)
come before those surrounded by prismatic 3-circuits with larger angle sum.

To see that the point γ = (β1, β2, β3, β4+2δ, β5+2δ, ..., βk+2δ) is an element
of AC0 , we check conditions (1-5). Each of the dihedral angles specified by γ
is in (0, π/2) because 0 < βi + 2δ < π/3 + 3δ < π/3 + π/6 = π/2. Therefore,
condition (1) is satisfied, as well as conditions (4) and (5) because the angles
are acute. Two of the edges labeled 4 and higher will enter any vertex of C0 so
the sum of the three dihedral angles at each vertex is at least 4δ greater than
the sum of the three dihedral angles given by β, which is > π − 3δ. Therefore
condition (2) is satisfied. If there is a prismatic 3-circuit in C0, it crosses the
first three edges of C0 and is also a prismatic 3-circuit in C. Since β ∈ AC ,
β1 + β2 + β3 < π, and it follows that condition (3) is satisfied by γ.

Now define α(t) = (1−t)γ+t(β1, ...βk). Let T0, ..., Tl−1 ∈ (0, 1) be the values
of t at which there is at least one vertex of C0 for which α(t) gives an angle
sum of π. We also define T−1 = 0, Tl = 1. We will label the vertices that have
angle sum π at Ti by vi

1, · · · , v
i
n(i). Let Ci+1 be Ci with vi

1, · · · , v
i
n(i) truncated

for i = 0, · · · , l − 1. Hence Cl is combinatorially equivalent to C.
Since the number of edges increases as we move from C0 toward C, we will

redefine α(t), appending
∑i

j=1 n(j) coordinates, all constant and equal to π/2,
for values of t between Ti−1 and Ti.

We know that Andreev’s Theorem holds for C0 because C0 is either simple,
or the triangular prism. So, it is sufficient to show that if Andreev’s Theorem
is satisfied for Ci then it is satisfied for Ci+1, for each i = 0, · · · , l − 1. To do
this, we must generate a polyhedron realizing Ci with the vertices vi

1, ..., v
i
n(i) at

infinity and the other vertices at finite points in H3. This will be easy with our
definition of α(t) and Corollary 5.5. We will then use Lemma 6.14 to truncate
these vertices. Details follow.

To use Corollary 5.5, we must check that α(t) ∈ ACi when t ∈ (Ti−1, Ti).
This follows directly from the definition of α(t). To check condition (1), notice
that both βj and γj are non-zero and non-obtuse, for each j(1 ≤ j ≤ k), so
αj(t) must be as well. To check condition (2), note first that if a vertex of Ci

belongs also to both C and C0, then it will have dihedral angle sum greater than
π because both the corresponding sums in both β and γ have that property. If
the vertex corresponds to a truncated triangle of C, but not of Ci, then by the
definition of Ti, the angle sum is greater than π. If the vertex lies on one of
the truncated triangles of Ci, then at least two of the incident edges will have
angles equal to π/2. In each case, condition (2) is satisfied.
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Any prismatic 3-circuit in Ci is is either a prismatic 3-circuit in both C0 and
C (the special case where C0 is the triangular prism) or is a prismatic circuit of
Ci which wasn’t a prismatic circuit of C0. In the first case, the dihedral angle
sum is < π because condition (3) is satisfied by both β and γ and in the second
case, the angle sum is < π by definition of the Ti.

For each j = 1, · · · , k we have βj , γj ∈ (0, π/2), so αj(t) ∈ (0, π/2). However,
αj(t) = π/2 for j > k, corresponding to the edges of the added triangular faces.
Fortunately, a prismatic 4-circuit cannot cross edges of these triangular faces,
since it would have to cross two edges from the same triangle, which meet at
a vertex, which is contrary to the definition of a prismatic circuit. Thus, a
prismatic 4-circuit can only cross edges numbered less than or equal to k, each
of which is assigned an acute dihedral angle, giving that condition (4) is satisfied.

Lemma 1.5 gives that condition (5) is a consequence of conditions (3) and
(4) for C1, · · · , Cl, because they cannot be triangular prisms. If C0 happens to
be the triangular prism, condition (5) holds, since each of its edges e1, · · · , ek is
assigned an acute dihedral angle.

Consider the sequence of dihedral angles αm,i = α(Ti−1 + (1 − 1/m)(Ti −
Ti−1)). By our above analysis, αm,i ∈ ACi for each m, i. In fact, by definition
αm,i limits to the point α(Ti) ∈ ∂ACi (as m → ∞), which satisfies conditions
(1-5) to be in ACi , except that the sum of the dihedral angles at each vertex
vi
1, · · · , v

i
n(i) is exactly π. We assume that Andreev’s Theorem holds for Ci, so

by Corollary 5.5, there exists a non-compact polyhedron P i realizing Ci with
each of the vertices vi

1, · · · , v
i
n(i) at infinity and the rest of the vertices at finite

points.
By Lemma 6.14, the existence of P i implies that there is a polyhedron re-

alizing Ci+1 and therefore, by Proposition 6.1, that Andreev’s Theorem holds
for the abstract polyhedron Ci+1. Repeating this process until i+ 1 = l, we see
that Andreev’s Theorem holds for Cl, which is our original abstract polyhedron
C. �

Proposition 6.15 If AC 6= ∅, then P0
C 6= ∅.

Combined with Proposition 6.1, this proposition concludes the proof of An-
dreev’s Theorem.
Proof: By Proposition 6.2 and Proposition 6.11 we we are left with the case that
there are k > 0 essential 3-circuits. We will show that a polyhedron realizing C
with dihedral angles a ∈ AC can be formed by gluing together k+1 appropriate
sub-polyhedra, each of which has only truncated triangles.

We will work entirely within the dual complex C∗. Label the essential 3-
circuits γ1, ..., γk. The idea will be to replace C∗ with k + 1 separate abstract
polyhedra C∗

1 , ..., C∗

k+1 each of which has no essential 3-circuits. The γi separate
the sphere into exactly k + 1 components. Let C∗

i be the i-th of these compo-
nents. To make C∗

i a simplicial complex on the sphere we must fill in the holes,
each of which is bounded by 3 edges (some γl). We glue in the following figure
(the dark outer edge is γl).
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γl

1

so that where there was an essential prismatic 3-circuit in C∗ there are now two
truncated triangles in distinct C∗

i . Notice that none of the Ci is a triangular
prism, since we have divided up C along essential prismatic 3-circuits.

In Ci, we will call each vertex, edge, or face obtained by such filling in a new
vertex, new edge, or new face respectively. We will call all of the other edges old
edges. We label each such new vertex with the number l corresponding to the
3-circuit γl that was filled in. For each l, there will be exactly 2 new vertices
labeled l which are in two different C∗

i , C∗
j . See the following diagram for an

example.

γ1

γ1

1

C∗

C∗
1

C∗
2

1 (at infinity)

γ1

The choice of angles a ∈ AC gives dihedral angles assigned to each old edge
in each C∗

i . Assign to each of the new edges π/2. This gives a choice of angles
ai for for which it is easy to check that ai ∈ ACi

for each i:
Clearly condition (1) is satisfied since these angles are non-zero and none of

them obtuse. The angles along each triangle of old edges in C∗
i already satisfy

condition (2) since a ∈ AC . For each of the new triangles added, two of the
edges are assigned π/2 and the third was already assigned a non-zero angle,
according to a, so condition (2) is satisfied for these triangles, too. None of the
new edges in C∗

i can be in a prismatic 3-circuit or a prismatic 4-circuit since
such a circuit would have to involve two such new edges, which form two sides
of a triangle. Therefore, each prismatic 3- or 4-circuit in C∗

i has come from such
a circuit in C∗, so the choice of angles ai will satisfy (3) and (4). Since none
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of the C∗

i is a triangular prism, condition (5) is a consequence of condition (4),
and hence is satisfied.

Therefore by Proposition 6.11 there exist polyhedra Pi realizing the data
(Ci,ai), for 1 ≤ i ≤ k + 1. For each pair of new vertices labeled l, the two faces
dual to them are isomorphic, since by Proposition 1.1, the face angles are the
same (giving congruent triangular faces). So one can glue all of the Pi together
according to the labeling by l. Since the edges of these triangles were assigned
dihedral angles of π/2, the faces coming together from opposite sides of such a
glued pair fit together smoothly. The result is a polyhedron P realizing C and
angles a. See the following diagram.

The rest of P1
1

The rest of P2
The rest of P1

The rest of P21 1

�

That concludes the proof that α : P0
C → AC is a homeomorphism for every

abstract polyhedron C having more than four faces and hence concludes the
proof of Andreev’s Theorem.

7 Example of the combinatorial algorithm from

Lemma 6.5

We include an example of the combinatorial algorithm described in Lemma 6.5,
which gives a sequence of Whitehead moves to reduce the dual complex of a
simple abstract polyhedron, C∗, to D∗

N . We then explain how the sequence of
Whitehead moves described in Andreev’s paper [4] would result in prismatic
3-circuits for this C and for many others.
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Case 3 from the proof of Lemma 6.5 is done in subfigures (1)-(7).

(5) (6)

(1) (2) (3)

(4)

Case 1 follows in subfigures (7)-(9) and again in subfigures(9)-(12).

(7) (8) (9)

(10) (11) (12)
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Case 1 is repeated three times, first in subfigures (12)-(15), then in (15)-(17)

(17)

(13) (14) (15)

(16) (18)

subfigures (21) and (22), then Case 1 is done in (22)-(29).

and finally in (17)-(21). The diagram is straightened out between

(19)

(22) (23) (24) (25)

(21)(20)
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Apply Sublemma 6.8(b) in (30)-(33) so that one of the two

(33)

interior vertices is only connected to three points on the outer

polygon. This reduces the complex to D∗
18

(26) (27) (28) (29)

The diagram is striaghtened out between subfigures (29) and (30).

Subfigures (22)-(29) are another instance of Case 1.

(30) (31) (32)

It is interesting to note that Andreev’s version of our Lemma 6.5 (his The-
orem 6 in [4]) would fail for this abstract polyhedron C∗. The major difficulty
is to achieve the first increase in the length of the outer polygon P . We care-
fully chose the vertex v where the graph of interior vertices and edges branches
and then did Whitehead moves to reduce the number of components where this
vertex is connected to P . This is done in sub-figures (1)-(4). If we had started
with any other interior vertex and tried to decrease the number of components
where it is connected to P , prismatic 3-circuits would develop as shown below
(the dashed curve) in sub-figures (1) and (2).

(1) (2)
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Andreev states that one must do Whitehead moves until each interior vertex is
connected to P in a single component (creating what he calls the inner polygon),
but he does not indicate that one must do this for certain interior vertices before
others. Using a very specific order of Whitehead moves to reduce the number
of components of connection from each interior vertex to P to be either one
or zero would work, but Andreev does not prove this. Instead of doing this,
we find that it is simpler just to do Whitehead moves so that v is connected
to P in a single component consisting of two vertices and an edge, instead of
creating the whole “inner polygon” as Andreev would. Once this is done, doing
the Whitehead move on this edge of P increases the length of P by one.

There are cases where the graph of interior vertices and edges has no branch-
ing points and Andreev’s proof could not work, even having chosen to do White-
head moves to decrease the components of connection between each interior ver-
tex and P to one in some specific order. This is true for the following abstract
polyhedron C∗, shown in sub-figure (1) below:

(1) (2)

Each interior vertex of C∗ is either an endpoint, or connected to P in exactly
two components, each of which is a single point. Doing a Whitehead move to
eliminate any of these connections would result in a prismatic 3-circuit like the
dashed one in sub-figure (2) above.

Instead, Case 2 of our Lemma 6.5 “borrows” a point of connection from
one of the endpoints (sub-figures (1) and (2) below), making one of the interior
vertices connected to P in two components, one consisting of two vertices and
an edge, and the other consisting of one vertex. One then can eliminate the
single point of connection as in the Whitehead move (2) to (3). Then, it is
simple to increase the length of P by doing the Whitehead move on the single
edge in the single component of connection between this interior vertex and P ,
as shown in the change from sub-figure (3) to (4).

(2)

(3)

(1)

(4)
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