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ABSTRACT. General Relativity gives that finitely many point massesvieen an observer and a
light source create many images of the light source. Positmf these images are solutions of
r(z) = z, wherer(z) is a rational function. We study the number of solutiongte) = z and
r(z) = z, wherep(z) andr(z) are polynomials and rational functions, respectively. &hpand
lower bounds were previously obtained by Khaviani@tek, Khavinson-Neumann, and Petters.
Between these bounds, we show that any number of simple akoasgd by the Argument Principle
occurs and nothing else occurs, off of a proper real algelseti Ifr(z) = z describes am-point
gravitational lens, we determine the possible numbersoége images.

1. INTRODUCTION

One of the results of Einstein’s General Theory of Relatiigtihat a point mass placed between
an observer and a light source will create two images of thecgo If this single mass is replaced
with a distribution of masses, significantly more compkchtonfigurations of images can be cre-
ated. Multiple images were first observed by astronomersari®70’s and further technological
advancements pushed gravitational lensing as an impaoi@nh astrophysics. Gravitational lens-
ing has also become an exciting field of research in mathealginysics—see the recent beautiful
surveys [5, 8, 12, 14] and for deeper discussion, includwegistory, see [13] and [16].

Suppose that the distribution of mass is well-localizea@tred to the distances between the
observer and the mass and relative to the distances bethegarasses and the light source. Images
of the light source are described by solutionsfdo

Z:/dﬂ(@ (1.1)
cz—¢’ '

wherey is a compactly supported measure describing the distobuf mass projected onto the
plane through the center of mass perpendicular to the I the observer to the light source.
See, for example, [5] and [17].

An early and important result in gravitational lensing, do@urke [2], is that ifu is a smooth
mass distribution, then the number of solutions to (1.1)dd.oThis was generalized by Petters
[11] to the situation wher@ has smooth density except@points. In this case, he showed that
the number of solutions is congruent(ip— 1) modulo2. See also [14, Thm. 1].
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In this paper, we will focus on the casepoint masses. Far < j < n, leto; be a positive
n

mass located af;. In this casey = Z 0,;0(z — z;) and (1.1) simplifies to become
j=1

% (1.2)

Z—Zj

z =
Jj=1

For the remainder of the paper, we refer to (1.2) adehe equation

It is also interesting to study variations of Equation (1r2placing the sum on the right-hand
side with a general polynomial(z) or rational functions:(z). In the polynomial case, Khavin-
son andéwi@tek [9] used a clever application of the Fatou Lemmanftwlomorphic dynamics
combined with the “Argument Principle” [4] to show that)ifz) has degree, then the number
of solutions top(z) = Zz is bounded above byn — 2. It was a delicate question of whether this
upper bound was achieved for eachUsing Thurston’s Theorem from rational dynamics, Geyer
[6] proved the sharpness of this bound.

In the rational case, Khavinson and Neumann [7] used sirtelgmniques as [9] to prove that
if r(z) has degree:, then the number of solutions is bounded aboveshy— 5. (Note that
r(z) = p(z)/q(z) has degree = max(deg p,degq).) Surprisingly, the sharpness of this bound
for eachn had already been proved by Rhie [15], using an explicit canstn of an appropriate
configuration of masses in the lens equation (1.2).

Let U be an open subset @f. A function f : U — C is calledharmonicif both the real and
imaginary parts off are harmonic in the classical sense. A zefo= z( + iy of f(x,y) =
u(z,y) + iv(z, y) is calledsimpleif the JacobiarD(z) = det | 7 4! | # 0. We call a polynomial
p(z) simple if all of the zeros of(z) — z are simple. Similarly, we call a rational functiofz)
simple if all of the zeros of(z) — z are simple.

If p(2) is a simple polynomial ofleg p > 2, then there is also an obvious lower bound on the
number of solutions byleg p, as a consequence of the “Argument Principle?(f) = p(z)/q(z)
is a simple rational function afegr > 2, then there is a lower bound on the number of solutions
depending on the degrees pfandq. For example, ifdegp < deggq, then the lower bound is
degr — 1.

A special subcase of the rational case is obtained by camsidieational functions of the form
(1.2) with all positive masses;. Since Rhie’s examples were constructed with positive nsasse
the upper bound din — 5 is still achieved. Meanwhile, Petters [11] showed using $4cFheory
that if (z) is a simple rational function of the form (1.2), then the loweund on the number of
images is: + 1.

We will look at each of the three cases mentioned above (potyal, rational, and physical)
from the perspective of “parameter spaces” and with a miiraf understanding what numbers
of solutions between the lower and upper bounds can occerigaity.

For the purposes of this paper, we will parameterize theespapolynomials by their coeffi-
cients, letting

P ={a.2" 4+ an12"""+ - +ag|a, e C\{0},a; €Cfor0<j<n—-1} =C\ {0} x C".

Remark.After performing a rotation and/or shift in one can suppose that € R, anda,,_; =0
without affecting any of the statements below. However, westder the present definition &,
more natural.
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FIGURE 1. Parameter space pictures for slices\éf, M3, and M, respectively.
The fixed masses are denoted with large, black dots.

Left: There is one fixed mass located(&t0). Placing a second, equal mass in the
green region will produce 3 images and placing in the redoregiill produce 5
images.

Center: There are two equal, fixed masses Iocate(d—e}t, ‘/75 and (—%, —“73)

Placing a third, equal mass in the green region will produoeagies, red- 6 images,
blue- 8 images, and yellow- 10 images.

Right: There are three equal, fixed masses Iocate{dre}t */75) , (—%, —‘/g) ,and
(1,0). Placing a fourth, equal mass in the magenta region will pcedlL1 images,

light blue- 13 images, and black- 15 images.

Theorem 1.1. Let SP, (k) be the set of simple polynomials of degree 2 with p(z) — z having
k roots. ThenSP, (k) is a non-empty, open subset®@f if and only ifk = n,n+2,...,3n — 2.
Furthermore, the set of non-simple polynomia{s?,,, is the complement of the union

U s
k=n,n+2,....3n—2
and is contained in a proper real algebraic (hence meas$\yisubset ofP,, .

We parameterize the space of rational functions of degiegtheir coefficients up to scalings,
with the condition thap andq are relatively prime. More specifically, let
a2t Fa
rz) = bpz™ + ...+ bg
for (an,...,ap, by, ..., by) € C*" 2. The spac&,, of rational functions of degreecan be param-
eterized by2n + 2-tuples of complex numbers.,, ..., ag, b,, . . ., by), considered up to non-zero
complex scaling with two restrictions:
1) a, #0o0rb, #0and
(2) The resultant ofi,,z™ + ... + ag andb,z™ + ... + by is not equal tad.
As such, it is an open subset@P*" !,

(1.3)

Theorem 1.2.Let SR, (k) be the set of simple rational function§:) of degreen > 2 such that
f(z) = r(z) — z hask roots. Then for alh > 2, SR, (k) is a non-empty, open subset®f if and
onlyifk=n—1,n+1,...,5n — 5. Moreover, the complement of
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U SR (k), (1.4)

k=n—1,n+1,....5n—5
is contained in a proper real algebraic (hence meadirsubset ofR .

Remark.In the rational case, the complement of the union given byakqgn (1.4) consists of both
the hyperplané, = 0 and the set of non-simple rational functiodsR,,,.

In the physical case, we parameterize the space of all coafigus ofn positive masses it
by n-tuples
My ={((z1,01), .., (2n,00)) € (CXRL)" | 2z # 2z if 0 # j}.
Note that our parameterization represents the masses aketjai.e. if two masses have the

same mass and are interchanged, then the correspondirigmaity, is different even though the
physical configuration is the same.

Theorem 1.3.LetSM,, (k) be the set of simple, “positive massed” rational functiefs) € M,,
having degree: > 2 that yield & solutions to Equatiorf1.2). Then for alln > 2, SM,,(k) is a

non-empty, open subset®f,, if and only itk = n+ 1,n + 3,...,5n — 5. Moreover, the set of
non-simple positive massed rational functioisM,,, is the complement of the union
U SM., (k)

k=n+1n+3,....,5n—>5

and is contained within a proper real algebraic (hence measlisubset ofM,,.

Thus, we have completed the solution to the problem of howymgages of a star can be
created by a gravitational lens consistingmgioint masses.

1.1. Structure of the Paper. In Section 2, we use basic properties of real algebraic and-se
algebraic sets to show that nonsimple polynomials andmratkitunctions lie within proper real
algebraic subsets @®,, R,,, andM,,. The main tool used in the remainder of the paper is the
extension of the “Argument Principle” to harmonic functsofi: C — C obtained in [4], which is
stated precisely in Section 3. We then prove Theorem 1.1 ¢tic®e4. In Section 5, we present
Rhie’s examples [15] and then prove Theorem 1.2. We considephysical case in Section 6,
presenting a simplified exposition of Petters’ lower bound proving Theorem 1.3.

2. NONSIMPLEHARMONIC FUNCTIONS AND SEMIALGEBRAIC GEOMETRY

Recall thatNP,, NR,, and N M,, denote the sets of non-simple polynomials, rational func-
tions, and “positive massed” rational functions, respedyi

Proposition 2.1. For anyn > 1,

e NP, is contained in a proper real algebraic subset/?f,
e NR, is contained in a proper real algebraic subset®f, and
e NM,, is contained in a proper real algebraic subset/of,,.

In order to prove Proposition 2.1 we will need to take progt of real algebraic sets. However,
such projections often fail to be real algebraic sets—netakamples include the projection of
x = y? orzy = 1 on to thex-axis. Thus, we will need to work in the realm of semialgebrai
geometry, see [1] and [3].
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Definition 2.2. A semialgebraicsubset ofR” is a finite union of sets given by finitely many poly-
nomial equations and inequalities with real coefficients.

We will need the following key properties of semialgebragtss

Tarski-Seidenberg Theorem.Let A be a semialgebraic subset®f ! andr : R"*! — R", the
projection on the firsk coordinates. Then(A) is a semialgebraic subset Bf*.

See[1, Thm. 2.2.1].

Cylindrical Algebraic Decomposition. Any semialgebraic set can be decomposed into finitely
many sets, each homeomorphid(ol % for somed;.

See [1, Thm. 2.3.6].

Definition 2.3. The dimension of a semialgebraic seis the maximum of the dimensiodsfrom
some cylindrical algebraic decomposition.f

Note that the dirA) is well-defined independent of which cylindrical algebrdé&composition
is chosen. Recall that for ady C R™, the Zariski closure oB, denoted ZariskiB), is the smallest
real algebraic set containing.

Dimension Theorem.For any semialgebraic set C R"™, dim(A) coincides with dinfiZzariski(A)).
See [1, Section 2.8].

Remark.The definition of dimension for a semialgebraic 4a¢ given in a different, but equivalent
way in [1, Section 2.8]. They define di) = dim(Zariski(A)) and then prove that this definition
coincides with the maximal dimension of any cell from the @gtical Algebraic Decomposition.

Proof of Proposition 2.1 Consider the real algebraic set

V={(p.2) P x Clp(z) = 2, (2) = 1}.

Note that sincé/ is a real algebraic set, it is also a semialgebraic set.

If we letr : P, x C — P, be the projection onto the first coordinate. Sid¢®,, = =(V'), the
Tarski-Seidenberg Theorem gives th&P,, is a semialgebraic set.

We know from [9, Lemma 5] thatP,, is dense irP,,, henceNP, cannot contain a set homeo-
morphic to[0, 1]>***2. Thus, by Definition 2.3 and the Dimension Theorem, we haae th

dim(Zariski NP,,)) = dim(NP,) < 2n + 1.

In particular, NP, is a subset of ZariskiV'P, ), which is a proper real algebraic subseff

An identical proof shows thaVvR,, and NM,, are semialgebraic subsets®f, and M,,, re-
spectively. By the lemma from p. 1081 of [7§R, is a dense subset &&,,, implying that
dim(ZariskiNR,,)) < dim(R,,).

Moreover, given any(z) € M, and anyc € C, r(z) + ¢ corresponds to a shift made to the
locations of each of the massgsand thereforey;(z) + ¢ € M,, as well. Thus, the lemma from [7,
p. 1081] also shows th&tM,, is a dense subset d#1,,, implying that din{Zariski NM,,)) <
dim(M,,). O
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3. HARMONIC FUNCTIONS AND THE ARGUMENT PRINCIPLE

We will need to use an extension of the classical Argumemicirie to harmonic functions given
by [4] and [18]. For a harmonic functiofi(z,y) = u(x,y) + iv(z, y) defined on an open simply
connected sét C C, we can find analytic functionsandg, unique up to additive constants, such
that f = h + g. Let us consider the power-series expansions afdg at z:

2) :ao-i‘z&k(Z—Zo)k; 9(z) :bo+zbk(2—zo)k
k=1 k=1

Let m > 1 be the first index for which eithet,, or b,, is non-zero. We say that is sense-
preserving(s.p) atz if a,, # 0 and|b,,/a,,| < 1, and we say thaf is sense-reversins.r) atz if
bm # 0 and|a,,/b,| < 1. Note that if the Jacobia®;(zy) = |a1|* — |b1|* # 0, then this definition
coincides with the classical one./fz,) = 0, we define the order of, as+m if fis s.p at; and
—m if fiss.ratz. If fis neither s.p or s.r at), thenz is called asingular pointand the order is
undefined.

We will also need to consider harmonic functions with poigs,functions

f:C\{z,...,z} — C,

which are harmonic and satisfim._., | f(z)| = co. The pointsz,, ..., z; are calledpolesof f
and we will write f(z;) = oo.

Take an oriented closed contolirsuch thatf(x,y) ¢ {0,00} for (z,y) € F Consider a
“normal” coordinates : [0,1] — T, with s(0) = s(1), and writef(s(t)) = r(¢)e*®® in such a way
thaté varies continuously ovef, 1]. Then we say thatr arg(f) = 0(1) — 9(0) = 27 - wr, Where
wr is an integer. We callr the “winding number” off overT'.

A simple calculation shows that the order of a zero is equal tavherey is a sufficiently small
geometric circle centered at the zero and positively ogi@niThe order of a pole is defined in an
ad-hoc way to be-w.,, wherey is defined similarly.

The result from [18] is:

Argument Principle. Let f be harmonic, except at a finite number of poles, in a simplyeoted
domainD C C. LetC be an oriented closed contour il not passing through a pole or a zero,
enclosing a region (taken with orientatiof) C D. Suppose thaf has no singular zeros i,
and let N be the sum of the orders of the zerosfah €). Let M be the sum of the orders of the
poles off in 2. Then

Acarg f(z) = 27N — 2r M.

4. POLYNOMIAL CASE

In this section, we prove Theorem 1.1. An immediate appboadf the Argument Principle
gives the following result (briefly mentioned in [9]).

Proposition 4.1. Let p be a simple polynomial and lét, and k£_ denote the number of sense-
preserving and sense-reversing zeros 0f) = p(z) — z, respectively. Ifh = degp > 1, then
k. — k_ = n. In particular, the total number of zeros satisfles- £, + k- = n mod 2.

Proof. Let S be a circle sufficiently large and centered at the origin sb.$l3 contains all zeros
of f and so thatf applied toSy is dominated by the:-th degree term. Then, by the Argument
Principle,k; — k- = wg, =n. O
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Proof of Theorem 1.1We have already shown in Proposition 2.1 thg®,, is contained in a proper
real algebraic subset @, so we will focus our attention on simple polynomials. Fronpsi-
tion 4.1, we have that the number of zefos- k£, + k- > n and thatt is congruent to: mod 2.
From [9], we have that < 3n — 2. Moreover by the Implicit Function Theorem, the s8®, (k)
are open for an¥. Thus, it suffices to show th&tP, (k) is non-empty fokk = n,n+2,...,3n—2.
We will prove this by induction om > 2. Forn = 2, z? + 1 is an element of5P,(2) since

2 +1 = z has solutionsy = —1 + ?z Also, 2% is an element ofSP,(4) sincez? = z has
solutionsz = 0,1, —% + ;.

SupposeSP, (k) # (0 for k = n,n+2,...,3n — 2. For each sucl, we will show that
SPni1(k+ 1) # 0. We first let

=(n—1ap_12" %+ ... +ai,

p(2) — a,2" = ap_12"" ' + ... +ay, and

= —=(1+ |e(2)]).

c(z) =p'(z2) — na,z"

SH
—
N
~—
I

Sinced(z) andc(z) both have degree — 1, |d(z2)| + [¢(z)] < C|z|"~! for some constant’. Now,
assume € SP,(k). ChooseR > 0 sufficiently large such that the following hold true:

(1) Allroots of p(z) — z are contained in the circl€y of radiusR centered at the origin.
(2) Outside ofSg, |22 | — C|z|"7! > |2

n+1

Denote thé: roots of f(z) = p(z) — z asry, ..., . For each, let D,, be a sufficiently small disk
centered at; such that the),. are pairwise disjoint and:

(3) There existsA such that for alk € C\|J D, |f(2)| = |p(z) — z| > A > 0.
(4) There existP such that for alk € |J D,.., |D(2)| = ||p'(2)|> — 1| > B > 0.

Letp(z) = p(z) + ez"*, f(2) = p(2) — %, and letk, andk_ denote the number of s.p and s.r
zeros off, respectively. We will first prove thdt. = k£_. Using (1) and (2), we can find > 0
sufficiently small so that

(5) f remains non-zero inside of; and outside of ) D,,,
(6) the winding nunlber of on each of the circle§’,, = 9D,, remains as:27, and
(7) the Jacobians of and f have the same sign on eafh,.

Thus, by the Argument Principlg,has exactly one zero within each dib¢, and this zero has the
same orientation as the original zerojfoin D,,. We conclude that and f have the same number
of s.r zeros inside of’. B

We now show thaf has no s.r zeros outside 8f. Outside ofSy, f(z) is s.p, except possibly
in a small region determined by the inequalii§(z)|? = |(n + 1)ez" + na, 2" ' + ¢(2)|* < 1. By
the triangle inequality, all points in the non-s.p regiotisfg

|(n+ 1ez" + na,z" ' <1+ |e(2)].
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On this region,

ry n n _ an 2" |Z| n n—
T 2 e+ ane| = ()]~ 21 2 | 22| Py e 4yt = jage)] — 12
2" |z Ap 2" _
- 1 —|d(2)] — |2| = — —ld(z)| —
Z n+1( + le(2)]) = |d(2)] = |2| > o [c(2)] — |d(2)] = |2]
> |22 Ot~ ).
n+1

By the assumption o, |f(z)| > 0 on the non-s.p region outside 8f;. Sincef and f have
the same nuanber of s.r zeros insideSpf and neither of them has any zeros outsideSgf we
concludethat =k_. B B

By Proposition 4.1k, — k_ =n + 1, sok, = k, + 1, which gives that: = k£ + 1. Thus we
have shown thabP, . 1(k + 1) # O fork+1 =n+1,n+3,...,3n — 1. It remains to show
SP.i1(3(n + 1) — 2) # 0; however, this follows from Geyer’'s examples [6]. O

5. RaTiONAL CASE

In this section, we will prove Theorem 1.2 using methods Isinto those in the polynomial
case. Throughout the proof, we will only consider rationaldtionsr(z) = fl’gjg € R,, for which
deg g > deg p. Interms of the description @&, given in the introduction, this amounts to throwing
out the algebraic hyperplabg = 0; see Equation 1.3.

Using the Argument Principle, we can prove the following teay which has previously ap-

pearedin [7, Cor. 2].

Lemma5.1. Letr(z) = % be a simple rational function witheg g > deg p and letk, andk_

denote the number of sense-preserving and sense-reveositsgof f (2) = r(z) — z, respectively.
Thenk, —k_=n—1.

Proof of Lemma 5.1Let f(z) = r(z) — z. Consider a circleSy of large radiusk centered at
the origin such that thér contains all the zeros and poles faf Sincedegp < deggq, r(z) is at
mostO(1) for z large. Thenf is sense-reversing ofi; with an argument change ef2r. By the
Argument Principle—2r = 27+ (N — M), whereN = k, —k_ andM is the number of poles of
counted with orientation. But notice that at each ofithe deg ¢ poles ofr, f is sense-preserving,
S0 —2m =27 - (ky — k_ —n), which givesk, — k_ = n — 1, as desired. O

The examples given in Proposition 5.2 below were previopssented by Rhie in a preprint
[15]. Since they were never published and since we will lagerdetails from the construction, we
will reproduce them here.

Proposition 5.2(Rhie [15]) Forn > 2, SR, (5n — 5) is a non-empty, open subsetRf.

Proof. We will use the Lens Equation (1.2) to show that the upper Hafron — 5 solutions is
attainable fom > 2 by a specific choice of massegand locations of masses. Throughout the
proof, the reader may find it helpful to look at Figure 2, whire construction is illustrated with
four and five masses.

Considem equal masses (with one mass on the positive real axis) gqmated around a circle

of radiusa = (n—1)"» (%1)2 (in fact, any smalk will work) centered a0. With z; = ae™r 01,
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D.i—-
Im(z)D—-

-0 5

_ P
] p: e "‘_‘_/ "\\
1' -1 // —— ~
) 1 - e : ™ N
1% |
—— —————— ——— T
-1 -03 0 03 1 -1 0.3 0 0.3 1
Re(z) Re(z)
| reql =— — z'magmw‘y| | real — — z‘magmm}'|

FIGURE 2. The diagram on the left shows the real and imaginary pattseedens

equation for three point masses around a circle and an epsiiss at the center.
The diagram on the right shows the configuration for four porasses and an
epsilon mass at the center. The bold M’s represent massgsitThe black dots
are sense-preserving image positions and the gray dot®ase-seversing image

positions.

(1.2) becomes:

In the case that is odd, we only need to consider the lens equation on theireakince the
mass configuration is symmetric by a rotation?sf There is always one solution at= 0, and

the other solutions satisfy

The equation™—z"~2 has three real solutions, and it is easy to see that shifiisgjtaph vertically
by a sufficiently small amount{" in our case) will still give three real solutions. Hence, vayéd
atotal of3n + 1 images. (This was previously observed in [10].)

In the case that is even, we need to consider the real line and the line olitdige rotation of
7 /n. Solving (5.1) gives two real solutions by an analysis samib that in the odd case. On the
rotated line, we set = e/ with ¢ # 0 and the lens equation,

simplifies to

n—1

0=r(z)—2z r(z) =

Zn_an

2 gt = 0.

Zn—l

zZ= )
2n — qn

" —t"2 g = 0.

(5.1)

(5.2)

Im(z)
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A similar analysis of this equation gives four real solusorTherefore, there are a total of six
non-zero solutions on the two neighboring lines, and thal tmimber of images in the even case
is6-n/2+1=3n+1.

We now drop a small mags> 0 at the center of the circle. This changes the number of masses
ton + 1, so we now requirén distinct image positions. We will first check thatkifs sufficiently
small, then all3n solutions away from the origin will persist and any new siolus will occur
within distance2./e from the origin.

Let f(z) = r(z) — z. Denote the3n + 1 roots of f as0 = r,...,rs,. For each, let D,, be a
sufficiently small disk centered at such that the),.. are pairwise disjoint and

(1) There existsA such thatforalk € C\ U D,,, |f(z)| =|r(z) —z| > A > 0.
(2) There exist® such that for alk € | J D,,, |D(z)| = ||r'(2)?| — 1| > B > 0.
Suppose thatis sufficiently small so thatl > /e and so that the disk); of radius2./e centered

at 0 satisfiesD., c D,,. By (2), there are no critical points in the annulls, \ D, , so the
minimum of | f| (over this annulus) occurs on its boundary. @0, , | f(z)| > B, and ondD;, ,

[f() = Ir(z) =21 2 |2] = Ir(2)] = Ve
sincer(0) = 7'(0) = 0. Hence, we have:
(1) Forallze C\ D, UD,, U---UD,,, |f(2)] > /e

Adding the mass results inf(z) = 7(z) — Z = r(z) + £ — 2. By (1') and (2), ife is sufficiently
small, then in the regiofx| > 2./¢, each of the zeros qf is obtained by a continuous motion of a

zero of f, and each of them will remain simple with the same orientatio
We now focus onz| < 24/e. The new lens equation on the real line is

22— 214 €) — 2%a" +ea” = 0. (5.3)

At this scale, equation (5.3) is an arbitrarily small pepation of the equation-z2a" + ea™ = 0,
which gives two simple solutions &t,/e. If n is odd, then symmetry under rotation dy/n leads

to a total of2n new simple images in th /e neighborhood of the origin. Since we originally had
3n + 1 simple zeros, we now have exactly exadly+ 1 + 2n — 1 = 5n simple zeros, as desired.

If n is even, symmetry under rotation By /n only leads ton new images in the,/e neigh-
borhood of the origin. However, on the line= te'™/™ the lens equation is the same as Equation
(5.3), except that the first two terms have the opposite sigro new simple zeros are produced
on this line at approximately= +/c. Under symmetry by rotation & /n, this produces the
additional new images that we needed.

In the case of» = 2 andn = 3, this construction fails due to the low number of masses.
However, a quick check shows that the original construatibn equally spaced masses around
the circle of radius: gives5 and10 simple zeros in these two cases. For example, in the case of
n = 2, we haver(z) = =~ 173» and solving the equation = r(z) will give five solutions. The
reason we do not reach tBe + 1 bound in the case = 2 is because on the imaginary axis, there
are only two solutions (since the degree is not high enoughhe case o = 3,3n+1 = 5n—5,

SO we see that the original construction works as well. O

Proposition 5.3. For n > 2, SR,,(5n — 7) is a non-empty, open subset/df.

Proof of Proposition 5.3Placing masg /2 atz = 1 andz = —1 produces three images. Placing
massl atz =  andz = —1 + ‘/752 produces eight images.

For four or more masses, the construction is a perturbafi®&nie’s examples, which consisted
of n equal masses equally spaced around the circle of radamsl ane mass at the origin. We
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claim that a small perturbation for the location of theass from the origin will result iAn — 2
simple solutions. More exactly, for appropriate choicegl@nd¢, we claim that the equation

21 €

+ =z, (5.4)
zZv"—¢c  z-—b

whereb = Ae»~1D/2. ¢ ande = " is the constant from Proposition 5.2, has exaéity— 2
simple solutions so long as> 0 is sufficiently small.

As in the Proof of Proposition 5.2, a perturbationy of f(z) = r(z) — z will not affect the
roots outside of the disk of radis/e centered at the origin so long #$ < /e. Hence, we need
only consider Equation (5.4) inside the disk of radiyge.

Equation (5.4), after simplification, becomes

2" bzt

+e=zz2—-bzZ+ . (5.5)
2" —c 2" —c
Replacingz"™ — ¢ by —c in Equation (5.5) gives
n b n—1
e —zobr- 2 (5.6)
C C

which is an approximation of Equation (5.5) up to an erromtef ordere™. Let z = re. The real
part of Equation (5.6) gives = /¢ + O(¢). We now compare the imaginary parts of both sides,
which will give us the values of.

If nis even, letp = 7/2+x/2n. The lowest order terms for the imaginary part of Equatiof)5

are of order™?. They are
ZTL
Im{ ——) =Im(-b2).
(-2) =m-2

Using thatr = /e + O(e) and|b| = Ac™~Y/2 the lowest order terms give
sinnf = C'sin(¢ — 0),

whereC' = A - c¢. We notice that whe#i = 7 /2n, both sides attain their maximum value. The left
hand side attains its minimum value wheén= "2 for integerk. The right hand side attains

its minimum wherp = =#2_20407 for integerk. Howeverdk + 3 # —4kn — 2n + 1 (mod 4)
sincen is even. Thereforesin nf andsin(¢ — ) are tangent at only one poirtt,= 7/2n. When

C' = 0, there are&n solutions - a simple calculation shows that for< 1, sin nf andsin(¢ — 0)
cannot be tangent. Hence, the first time a tangency occurees @ = 1, and from above, this
tangency is located at the single point 7 /2n. Increasing”' by a sufficiently small amount will

pull apart this tangency, but the other simple solutionsiiiad = sin(¢ — ) will persist, so we
have lost exactly two solutions, as desired.

Whenn is odd, for any choice of, the above approach produces two tangencies and thus it

cannot be used without considering higher order termsgletr /2. As before; = /e + O(e).

The imaginary part of Equation (5.6) yields
clb|
C

Tn—l

osf + "r’ﬂ cos((n — 1)0). (5.7)

sin nf =

Up to terms of ordee™ /2 Equation (5.7) becomes
sinnh = C cos @ + Ae™ /2 cos((n — 1)8),
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whereC' = A - c¢. We first look at the lowest order terms, which gives
sinnf = C cos . (5.8)

When the mass is located exactly at the cent&r, = 0, and there arén solutions. First, notice
that if # is a solution to (5.8), so is + 6. Increasing” will not change the number of solutions
to (5.8) untilC cos @ is tangent tain nf at some point. For this to occur, we require a solution to
(5.8) to also be a solution to

ncosnf = —C'sin 6. (5.9)
Squaringn-(5.8) and (5.9) and summing gives
n?=C*+C*(n* —1) - cos b,

which gives two solutions fotos # and four ford - however, one can readily verify that two of
these are extraneous, so there are only two valuédafwhich (5.8) and (5.9) are satisfied, and
moreover they differ byr. Reconsidering the small teraae"=2)/2 cos((n — 1)6), we find that
cos((n—1)0) = cos((n—1)(w+46)). Since one of the tangencies was a minimum for both sides of
Equation (5.8) and the other was a maximum, this perturbatitd pull apart one of the tangencies
and change the other to be two simple solutions. O

With these facts, we can prove Theorem 1.2.

Proof of Theorem 1.2We have already shown in Proposition 2.1 thak,, is contained in a proper
real algebraic subset &,, so we will focus our attention on simple rational functions.

We will also throw out the proper algebraic set givenithy= 0 in the parameterization of
rational functions (Equation (1.3)). This allows us to riesour attention to the case théig ¢ >
degp. Under these assumptions, we have that the number of Zereatisfies:» — 1 < k, from
the Argument Principle, anél < 5n — 5, from [9]. Furthermore, from Lemma 5.1, we have
thatt = n — 1 mod 2. Thus, it suffices to show that for eaeh> 2, SR, (k) is non-empty for
k=n—1,n+1n+3,...,5n—5.

We will proceed with an induction on, similar to the proof of Theorem 1.1. First consider
the case where = 2. The equation’(z) = 5 = Z has exactly one root for anyso SR(1) is
non-empty. Furthermore, by Proposition 5.2 and Propasii8 we have thatR,(3) andSR»(5)
are non-empty, respectively.

Now, suppose for some > 2 that SR, (k) # 0 fork = n—1,n+1,n+3,...,5n — 5.
We will first show thatSR,,.1(k + 1) # ) for the same values df. By assumption, there exists
r(z) € SR,(k). Denote thek roots of f(z) = r(z) — z asry,...,r, and then poles of f as
21,22, .., Z,. Consider the rational function= r(z) + -, wherez # r; andz # z; for anyi.
For each, let D,, be a sufficiently small disk centeredratand letD ., be a sufficiently small disk
centered at; such that thé,, and D, are pairwise disjoint; ¢ | J D,.,|J D.,, and

(1) There existsA such that for alk € C\|J D,,, |f(2)] = |z —r(z)] > A > 0.
(2) There existPB such that for alk € | J D,,, |D(z)| = ||r'(2)?| — 1| > B > 0.
(3) There existg’ such thatforalk € C\{J D.., |r'(z)| < C.

Clearly,r has degree + 1, so it is sufficient to show that = 7(z) — z hask + 1 zeros. Foe > 0
sufficiently small, the winding number around each of thelesC),, = 9D, remains as:27 and
the Jacobian does not change sigin. Therefore, each roet of f moves continuously to some
new simple root; of the same “orientation” as. Moreover,r; remains in the diskD,,, so there
is still exactly one root in each disk.
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We claim now that any new root q?must be sense-preserving.ﬁ(fz) = 0, then
AZ

€

€ €

G-22|"

—|=1z2—1r(2)| > A=

At any such point,
2

—|r'(2)| > A? - C.

€ €

(z=2)* " [(z=2)
As long as is sufficiently small]”(z)| > 1, so any new root of is sense-preserving. By Lemma
5.1 k+ k_ = n. As no new s.r roots are created, stays the same, o must have increased
by exactly1, as desired.

We have shown thet, | (k) is non-empty folk = n,n+2,...,5n—4 = 5(n+1)—9. However,
Propositions 5.2 and 5.3 give thét, ,(5n — 2) andS,, 1 (5n) are also non-empty, thus our proof
is complete. O

6. PHYsSICAL CASE

The Lens Equation (1.2) can be rewritten as

g; Z — Z

0=2z— - . 6.1

: Z T 6.1)

where0 is the source position;; is the p03|t|on of theth point mass, and is the image position.
Thetime delay functiori” is defined to be

Note thatz, = = + iy is a solution ta),T" = (T}, —i7,)/2 = 0 (a critical point of7") if and only
if z is a solution to Equation 6.1. Moreovey, is a non-degenerate local minimum (respectively
maximum) ofT" iff z; is a s.r (respectively s.p) simple zero of (6.1).

Proposition 6.1 (Petters [11]) If all of the masses; are positive and if all of the zeros of the lens
equation(6.1) are simple, then there are at least+ 1 of them.

Proof. Let Dy be the closed disc centered at the origin of radiuand for each, let D; . be the
open disc of radius centered at;. LetG = Dy \ UD,; .

If |z| — oo orif z — z;, thenT'(z) — oo. Hence, we can choode > 0 sufficiently large and
e > 0 sufficiently small so that the minimum @f is not attained on the boundary Gt Therefore,
the minimum of7" occurs on the interior of/. This minimum corresponds to a s.r simple zero of
(6.1). We canshow that— 1 = k, —k_ asinLemma 5.1, where, (k_) is the number of s.p (s.r)
zeros of (6.1). Since we have at least one s.r zZero> 1,andk, + k- >n—1+2k_>n+1,
as desired. O

Proof of Theorem 1.3We use an inductive proof similar to that of Theorem 1.2.

Consider the case = 2. Placing masg at any point other than the origin will result in two
images and the inductive step from the proof of Theorem lo#&/sthat placing a sufficiently small
e mass anywhere else will generate exactly one more image, Rlsie [15] gives an example for
a configuration that yields roots. ThusSM,(3) andSM,(5) are non-empty open sets.

From here, exactly the same inductive step can be appliecths proof of Theorem 1.2 to show
that if SM,,(n+1),...,5M,(5n —5) are non-empty, theAM,,,1(n+3),..., SM,1(5n—4)
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are non-empty since addition of the teef(z — Z) corresponds to adding a small masszat
Propositions 5.2 and 5.3 give th&i\,,,;(5n — 2) andSM,,,1(5n) are non-empty. O

Remark.Each of theS M,, (k) contains a positive massed rational function with masdag arily
close to the origin. Thus, these functions are consistettt thie physical assumption that all the
masses are close together and at small angular positiohgegpect to the light source. In the
proof of Theorem 1.3, the base case of the induction can be wih two masses arbitrarily close
to the origin. The inductive step from the proof of Theore@ dllowed us to add a small mass at
an arbitrary point and, moreover, the proofs of Propos#ibr2 and 5.3 can be done with masses
arbitrarily close to the origin.
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