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ABSTRACT. General Relativity gives that finitely many point masses between an observer and a
light source create many images of the light source. Positions of these images are solutions of
r(z) = z̄, wherer(z) is a rational function. We study the number of solutions top(z) = z̄ and
r(z) = z̄, wherep(z) andr(z) are polynomials and rational functions, respectively. Upper and
lower bounds were previously obtained by Khavinson-Świa̧tek, Khavinson-Neumann, and Petters.
Between these bounds, we show that any number of simple zerosallowed by the Argument Principle
occurs and nothing else occurs, off of a proper real algebraic set. Ifr(z) = z̄ describes ann-point
gravitational lens, we determine the possible numbers of generic images.

1. INTRODUCTION

One of the results of Einstein’s General Theory of Relativityis that a point mass placed between
an observer and a light source will create two images of the source. If this single mass is replaced
with a distribution of masses, significantly more complicated configurations of images can be cre-
ated. Multiple images were first observed by astronomers in the 1970’s and further technological
advancements pushed gravitational lensing as an importanttool in astrophysics. Gravitational lens-
ing has also become an exciting field of research in mathematical physics—see the recent beautiful
surveys [5, 8, 12, 14] and for deeper discussion, including the history, see [13] and [16].

Suppose that the distribution of mass is well-localized relative to the distances between the
observer and the mass and relative to the distances between the masses and the light source. Images
of the light source are described by solutions forz to

z̄ =

∫

C

dµ(ζ)

z − ζ
, (1.1)

whereµ is a compactly supported measure describing the distribution of mass projected onto the
plane through the center of mass perpendicular to the line from the observer to the light source.
See, for example, [5] and [17].

An early and important result in gravitational lensing, dueto Burke [2], is that ifµ is a smooth
mass distribution, then the number of solutions to (1.1) is odd. This was generalized by Petters
[11] to the situation whereµ has smooth density except atg points. In this case, he showed that
the number of solutions is congruent to(g − 1) modulo2. See also [14, Thm. 1].
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In this paper, we will focus on the case ofn point masses. For1 ≤ j ≤ n, let σj be a positive

mass located atzj. In this case,µ =
n∑

j=1

σjδ(z − zj) and (1.1) simplifies to become

z̄ =
n∑

j=1

σj

z − zj
. (1.2)

For the remainder of the paper, we refer to (1.2) as thelens equation.
It is also interesting to study variations of Equation (1.2), replacing the sum on the right-hand

side with a general polynomialp(z) or rational functionsr(z). In the polynomial case, Khavin-
son andŚwia̧tek [9] used a clever application of the Fatou Lemma from holomorphic dynamics
combined with the “Argument Principle” [4] to show that ifp(z) has degreen, then the number
of solutions top(z) = z̄ is bounded above by3n − 2. It was a delicate question of whether this
upper bound was achieved for eachn. Using Thurston’s Theorem from rational dynamics, Geyer
[6] proved the sharpness of this bound.

In the rational case, Khavinson and Neumann [7] used similartechniques as [9] to prove that
if r(z) has degreen, then the number of solutions is bounded above by5n − 5. (Note that
r(z) = p(z)/q(z) has degreen = max(deg p, deg q).) Surprisingly, the sharpness of this bound
for eachn had already been proved by Rhie [15], using an explicit construction of an appropriate
configuration of masses in the lens equation (1.2).

Let U be an open subset ofC. A function f : U → C is calledharmonicif both the real and
imaginary parts off are harmonic in the classical sense. A zeroz0 = x0 + iy0 of f(x, y) =
u(x, y) + iv(x, y) is calledsimpleif the JacobianD(z0) = det

∣∣ ux uy
vx vy

∣∣ 6= 0. We call a polynomial
p(z) simple if all of the zeros ofp(z) − z̄ are simple. Similarly, we call a rational functionr(z)
simple if all of the zeros ofr(z)− z̄ are simple.

If p(z) is a simple polynomial ofdeg p ≥ 2, then there is also an obvious lower bound on the
number of solutions bydeg p, as a consequence of the “Argument Principle.” Ifr(z) = p(z)/q(z)
is a simple rational function ofdeg r ≥ 2, then there is a lower bound on the number of solutions
depending on the degrees ofp and q. For example, ifdeg p ≤ deg q, then the lower bound is
deg r − 1.

A special subcase of the rational case is obtained by considering rational functions of the form
(1.2) with all positive massesσi. Since Rhie’s examples were constructed with positive masses,
the upper bound of5n − 5 is still achieved. Meanwhile, Petters [11] showed using Morse Theory
that if r(z) is a simple rational function of the form (1.2), then the lower bound on the number of
images isn+ 1.

We will look at each of the three cases mentioned above (polynomial, rational, and physical)
from the perspective of “parameter spaces” and with a motivation of understanding what numbers
of solutions between the lower and upper bounds can occur generically.

For the purposes of this paper, we will parameterize the space of polynomials by their coeffi-
cients, letting

Pn =
{
anz

n + an−1z
n−1 + · · ·+ a0 | an ∈ C \ {0} , aj ∈ C for 0 ≤ j ≤ n− 1

} ∼= C \ {0} × C
n.

Remark.After performing a rotation and/or shift inz, one can suppose thatan ∈ R+ andan−1 = 0
without affecting any of the statements below. However, we consider the present definition ofPn

more natural.
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FIGURE 1. Parameter space pictures for slices ofM2, M3, andM4, respectively.
The fixed masses are denoted with large, black dots.
Left: There is one fixed mass located at(1, 0). Placing a second, equal mass in the
green region will produce 3 images and placing in the red region will produce 5
images.

Center: There are two equal, fixed masses located at
(
−1

2
,
√
3
2

)
and

(
−1

2
,−

√
3
2

)
.

Placing a third, equal mass in the green region will produce 4images, red- 6 images,
blue- 8 images, and yellow- 10 images.

Right: There are three equal, fixed masses located at
(
−1

2
,
√
3
2

)
,
(
−1

2
,−

√
3
2

)
, and

(1, 0). Placing a fourth, equal mass in the magenta region will produce 11 images,
light blue- 13 images, and black- 15 images.

Theorem 1.1. LetSPn(k) be the set of simple polynomials of degreen ≥ 2 with p(z)− z̄ having
k roots. ThenSPn(k) is a non-empty, open subset ofPn if and only ifk = n, n + 2, . . . , 3n − 2.
Furthermore, the set of non-simple polynomials,NPn, is the complement of the union

⋃

k=n,n+2,...,3n−2

SPn(k)

and is contained in a proper real algebraic (hence measure0) subset ofPn.

We parameterize the space of rational functions of degreen by their coefficients up to scalings,
with the condition thatp andq are relatively prime. More specifically, let

r(z) =
anz

n + . . .+ a0
bnzn + . . .+ b0

(1.3)

for (an, . . . , a0, bn, . . . , b0) ∈ C
2n+2. The spaceRn of rational functions of degreen can be param-

eterized by2n + 2-tuples of complex numbers(an, . . . , a0, bn, . . . , b0), considered up to non-zero
complex scaling with two restrictions:

(1) an 6= 0 or bn 6= 0 and
(2) The resultant ofanzn + . . .+ a0 andbnzn + . . .+ b0 is not equal to0.

As such, it is an open subset ofCP
2n+1.

Theorem 1.2. LetSRn(k) be the set of simple rational functionsr(z) of degreen ≥ 2 such that
f(z) = r(z)− z̄ hask roots. Then for alln ≥ 2, SRn(k) is a non-empty, open subset ofRn if and
only if k = n− 1, n+ 1, . . . , 5n− 5. Moreover, the complement of
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⋃

k=n−1,n+1,...,5n−5

SRn(k), (1.4)

is contained in a proper real algebraic (hence measure0) subset ofRn.

Remark.In the rational case, the complement of the union given by Equation (1.4) consists of both
the hyperplanebn = 0 and the set of non-simple rational functions,NRn.

In the physical case, we parameterize the space of all configurations ofn positive masses inC
by n-tuples

Mn = {((z1, σ1), . . . , (zn, σn)) ∈ (C× R+)
n | zi 6= zj if i 6= j}.

Note that our parameterization represents the masses as “marked,” i.e. if two masses have the
same mass and are interchanged, then the corresponding point in Mn is different even though the
physical configuration is the same.

Theorem 1.3.LetSMn(k) be the set of simple, “positive massed” rational functionsr(z) ∈ Mn

having degreen ≥ 2 that yieldk solutions to Equation(1.2). Then for alln ≥ 2, SMn(k) is a
non-empty, open subset ofMn if and only ifk = n + 1, n + 3, . . . , 5n − 5. Moreover, the set of
non-simple positive massed rational functions,NMn, is the complement of the union

⋃

k=n+1,n+3,...,5n−5

SMn(k)

and is contained within a proper real algebraic (hence measure0) subset ofMn.

Thus, we have completed the solution to the problem of how many images of a star can be
created by a gravitational lens consisting ofn point masses.

1.1. Structure of the Paper. In Section 2, we use basic properties of real algebraic and semi-
algebraic sets to show that nonsimple polynomials and rational functions lie within proper real
algebraic subsets ofPn, Rn, andMn. The main tool used in the remainder of the paper is the
extension of the “Argument Principle” to harmonic functions f : C → C obtained in [4], which is
stated precisely in Section 3. We then prove Theorem 1.1 in Section 4. In Section 5, we present
Rhie’s examples [15] and then prove Theorem 1.2. We consider the physical case in Section 6,
presenting a simplified exposition of Petters’ lower bound and proving Theorem 1.3.

2. NONSIMPLE HARMONIC FUNCTIONS AND SEMIALGEBRAIC GEOMETRY

Recall thatNPn, NRn, andNMn denote the sets of non-simple polynomials, rational func-
tions, and “positive massed” rational functions, respectively.

Proposition 2.1. For anyn > 1,

• NPn is contained in a proper real algebraic subset ofPn,
• NRn is contained in a proper real algebraic subset ofRn, and
• NMn is contained in a proper real algebraic subset ofMn.

In order to prove Proposition 2.1 we will need to take projections of real algebraic sets. However,
such projections often fail to be real algebraic sets—notable examples include the projection of
x = y2 or xy = 1 on to thex-axis. Thus, we will need to work in the realm of semialgebraic
geometry, see [1] and [3].
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Definition 2.2. A semialgebraicsubset ofRn is a finite union of sets given by finitely many poly-
nomial equations and inequalities with real coefficients.

We will need the following key properties of semialgebraic sets:

Tarski-Seidenberg Theorem.LetA be a semialgebraic subset ofRn+1 andπ : Rn+1 → R
n, the

projection on the firstn coordinates. Thenπ(A) is a semialgebraic subset ofRn.

See [1, Thm. 2.2.1].

Cylindrical Algebraic Decomposition. Any semialgebraic set can be decomposed into finitely
many sets, each homeomorphic to[0, 1]di for somedi.

See [1, Thm. 2.3.6].

Definition 2.3. The dimension of a semialgebraic setA is the maximum of the dimensionsdi from
some cylindrical algebraic decomposition ofA.

Note that the dim(A) is well-defined independent of which cylindrical algebraicdecomposition
is chosen. Recall that for anyB ⊂ R

n, the Zariski closure ofB, denoted Zariski(B), is the smallest
real algebraic set containingB.

Dimension Theorem.For any semialgebraic setA ⊂ R
n, dim(A) coincides with dim(Zariski(A)).

See [1, Section 2.8].

Remark.The definition of dimension for a semialgebraic setA is given in a different, but equivalent
way in [1, Section 2.8]. They define dim(A) = dim(Zariski(A)) and then prove that this definition
coincides with the maximal dimension of any cell from the Cylindrical Algebraic Decomposition.

Proof of Proposition 2.1.Consider the real algebraic set

V =
{
(p, z) ∈ Pn × C | p(z) = z̄, |p′(z)|2 = 1

}
.

Note that sinceV is a real algebraic set, it is also a semialgebraic set.
If we let π : Pn × C → Pn be the projection onto the first coordinate. SinceNPn = π(V ), the

Tarski-Seidenberg Theorem gives thatNPn is a semialgebraic set.
We know from [9, Lemma 5] thatSPn is dense inPn, henceNPn cannot contain a set homeo-

morphic to[0, 1]2n+2. Thus, by Definition 2.3 and the Dimension Theorem, we have that

dim(Zariski(NPn)) = dim(NPn) ≤ 2n+ 1.

In particular,NPn is a subset of Zariski(NPn), which is a proper real algebraic subset ofPn.
An identical proof shows thatNRn andNMn are semialgebraic subsets ofRn andMn, re-

spectively. By the lemma from p. 1081 of [7],SRn is a dense subset ofRn, implying that
dim(Zariski(NRn)) < dim(Rn).

Moreover, given anyr(z) ∈ Mn and anyc ∈ C, r(z) + c corresponds to a shift made to the
locations of each of the masseszi and therefore,r(z)+ c ∈ Mn as well. Thus, the lemma from [7,
p. 1081] also shows thatSMn is a dense subset ofMn, implying that dim(Zariski(NMn)) <
dim(Mn). �
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3. HARMONIC FUNCTIONS AND THE ARGUMENT PRINCIPLE

We will need to use an extension of the classical Argument Principle to harmonic functions given
by [4] and [18]. For a harmonic functionf(x, y) = u(x, y) + iv(x, y) defined on an open simply
connected setU ⊂ C, we can find analytic functionsh andg, unique up to additive constants, such
thatf = h+ ḡ. Let us consider the power-series expansions ofh andg at z0:

h(z) = a0 +
∞∑

k=1

ak(z − z0)
k, g(z) = b0 +

∞∑

k=1

bk(z − z0)
k.

Let m ≥ 1 be the first index for which eitheram or bm is non-zero. We say thatf is sense-
preserving(s.p) atz0 if am 6= 0 and|bm/am| < 1, and we say thatf is sense-reversing(s.r) atz0 if
bm 6= 0 and|am/bm| < 1. Note that if the JacobianDf (z0) = |a1|2 − |b1|2 6= 0, then this definition
coincides with the classical one. Ifh(z0) = 0, we define the order ofz0 as+m if f is s.p atz0 and
−m if f is s.r atz0. If f is neither s.p or s.r atz0, thenz0 is called asingular pointand the order is
undefined.

We will also need to consider harmonic functions with poles,i.e. functions

f : C \ {z1, . . . , zk} → C,

which are harmonic and satisfylimz→zj |f(z)| = ∞. The pointsz1, . . . , zk are calledpolesof f
and we will writef(zj) = ∞.

Take an oriented closed contourΓ such thatf(x, y) /∈ {0,∞} for (x, y) ∈ Γ. Consider a
“normal” coordinates : [0, 1] → Γ, with s(0) = s(1), and writef(s(t)) = r(t)eiθ(t) in such a way
thatθ varies continuously over[0, 1]. Then we say that∆Γ arg(f) = θ(1)− θ(0) = 2π ·ωΓ, where
ωΓ is an integer. We callωΓ the “winding number” off overΓ.

A simple calculation shows that the order of a zero is equal toωγ, whereγ is a sufficiently small
geometric circle centered at the zero and positively oriented. The order of a pole is defined in an
ad-hoc way to be−ωγ, whereγ is defined similarly.

The result from [18] is:

Argument Principle. Letf be harmonic, except at a finite number of poles, in a simply connected
domainD ⊂ C. LetC be an oriented closed contour inD not passing through a pole or a zero,
enclosing a region (taken with orientation)Ω ⊂ D. Suppose thatf has no singular zeros inD,
and letN be the sum of the orders of the zeros off in Ω. LetM be the sum of the orders of the
poles off in Ω. Then

∆C arg f(z) = 2πN − 2πM.

4. POLYNOMIAL CASE

In this section, we prove Theorem 1.1. An immediate application of the Argument Principle
gives the following result (briefly mentioned in [9]).

Proposition 4.1. Let p be a simple polynomial and letk+ and k− denote the number of sense-
preserving and sense-reversing zeros off(z) = p(z) − z̄, respectively. Ifn = deg p > 1, then
k+ − k− = n. In particular, the total number of zeros satisfiesk = k+ + k− ≡ n mod 2.

Proof. Let SR be a circle sufficiently large and centered at the origin so thatSR contains all zeros
of f and so thatf applied toSR is dominated by then-th degree term. Then, by the Argument
Principle,k+ − k− = ωSR

= n. �
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Proof of Theorem 1.1.We have already shown in Proposition 2.1 thatNPn is contained in a proper
real algebraic subset ofPn so we will focus our attention on simple polynomials. From Proposi-
tion 4.1, we have that the number of zerosk = k+ + k− ≥ n and thatk is congruent ton mod 2.
From [9], we have thatk ≤ 3n− 2. Moreover by the Implicit Function Theorem, the setsSPn(k)
are open for anyk. Thus, it suffices to show thatSPn(k) is non-empty fork = n, n+2, . . . , 3n−2.
We will prove this by induction onn ≥ 2. For n = 2, z2 + 1 is an element ofSP2(2) since
z2 + 1 = z̄ has solutionsz = −1

2
±

√
7
2
i. Also, z2 is an element ofSP2(4) sincez2 = z̄ has

solutionsz = 0, 1,−1
2
±

√
3
2
i.

SupposeSPn(k) 6= ∅ for k = n, n + 2, . . . , 3n − 2. For each suchk, we will show that
SPn+1(k + 1) 6= ∅. We first let

c(z) = p′(z)− nanz
n−1 = (n− 1)an−1z

n−2 + . . .+ a1,

d(z) = p(z)− anz
n = an−1z

n−1 + . . .+ a0, and

c̃(z) =
z

n+ 1
(1 + |c(z)|).

Sinced(z) andc̃(z) both have degreen− 1, |d(z)|+ |c̃(z)| ≤ C|z|n−1 for some constantC. Now,
assumep ∈ SPn(k). ChooseR > 0 sufficiently large such that the following hold true:

(1) All roots ofp(z)− z̄ are contained in the circleSR of radiusR centered at the origin.
(2) Outside ofSR,

∣∣anzn
n+1

∣∣− C|z|n−1 > |z|.

Denote thek roots off(z) = p(z)− z̄ asr1, . . . , rk. For eachi, letDri be a sufficiently small disk
centered atri such that theDri are pairwise disjoint and:

(3) There existsA such that for allz ∈ C\⋃Dri , |f(z)| = |p(z)− z̄| > A > 0.
(4) There existsB such that for allz ∈ ⋃

Dri , |D(z)| = ||p′(z)|2 − 1| > B > 0.

Let p̃(z) = p(z) + ǫzn+1, f̃(z) = p̃(z) − z̄, and letk̃+ and k̃− denote the number of s.p and s.r
zeros off̃ , respectively. We will first prove that̃k− = k−. Using (1) and (2), we can findǫ > 0
sufficiently small so that

(5) f̃ remains non-zero inside ofSR and outside of
⋃
Dri,

(6) the winding number of̃f on each of the circlesCri = ∂Dri remains as±2π, and
(7) the Jacobians of̃f andf have the same sign on eachDri.

Thus, by the Argument Principle,̃f has exactly one zero within each discDri and this zero has the
same orientation as the original zero off in Dri. We conclude that̃f andf have the same number
of s.r zeros inside ofSR.

We now show that̃f has no s.r zeros outside ofSR. Outside ofSR, f̃(z) is s.p, except possibly
in a small region determined by the inequality|p̃′(z)|2 = |(n+ 1)ǫzn + nanz

n−1 + c(z)|2 ≤ 1. By
the triangle inequality, all points in the non-s.p region satisfy

|(n+ 1)ǫzn + nanz
n−1| ≤ 1 + |c(z)|.
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On this region,

|f̃(z)| ≥ |ǫzn+1 + anz
n| − |d(z)| − |z̄| ≥

∣∣∣∣
anz

n

n+ 1

∣∣∣∣−
|z|

n+ 1

∣∣(n+ 1)ǫzn + nanz
n−1

∣∣− |d(z)| − |z|

≥
∣∣∣∣
anz

n

n+ 1

∣∣∣∣−
|z|

n+ 1
(1 + |c(z)|)− |d(z)| − |z| ≥

∣∣∣∣
anz

n

n+ 1

∣∣∣∣− |c̃(z)| − |d(z)| − |z|

≥
∣∣∣∣
anz

n

n+ 1

∣∣∣∣− C|z|n−1 − |z|.

By the assumption onR, |f̃(z)| > 0 on the non-s.p region outside ofSR. Sincef̃ andf have
the same number of s.r zeros inside ofSR and neither of them has any zeros outside ofSR, we
conclude that̃k− = k−.

By Proposition 4.1,̃k+ − k̃− = n + 1, so k̃+ = k+ + 1, which gives that̃k = k + 1. Thus we
have shown thatSPn+1(k + 1) 6= ∅ for k + 1 = n + 1, n + 3, . . . , 3n − 1. It remains to show
SPn+1(3(n+ 1)− 2) 6= ∅; however, this follows from Geyer’s examples [6]. �

5. RATIONAL CASE

In this section, we will prove Theorem 1.2 using methods similar to those in the polynomial
case. Throughout the proof, we will only consider rational functionsr(z) = p(z)

q(z)
∈ Rn for which

deg q ≥ deg p. In terms of the description ofRn given in the introduction, this amounts to throwing
out the algebraic hyperplanebn = 0; see Equation 1.3.

Using the Argument Principle, we can prove the following lemma, which has previously ap-
peared in [7, Cor. 2].

Lemma 5.1. Let r(z) = p(z)
q(z)

be a simple rational function withdeg q ≥ deg p and letk+ andk−
denote the number of sense-preserving and sense-reversingroots off(z) = r(z)− z̄, respectively.
Thenk+ − k− = n− 1.

Proof of Lemma 5.1.Let f(z) = r(z) − z̄. Consider a circleSR of large radiusR centered at
the origin such that theSR contains all the zeros and poles off . Sincedeg p ≤ deg q, r(z) is at
mostO(1) for z large. Thenf is sense-reversing onSR with an argument change of−2π. By the
Argument Principle,−2π = 2π ·(N−M), whereN = k+−k− andM is the number of poles off
counted with orientation. But notice that at each of then = deg q poles ofr, f is sense-preserving,
so−2π = 2π · (k+ − k− − n), which givesk+ − k− = n− 1, as desired. �

The examples given in Proposition 5.2 below were previouslypresented by Rhie in a preprint
[15]. Since they were never published and since we will lateruse details from the construction, we
will reproduce them here.

Proposition 5.2(Rhie [15]). For n ≥ 2, SRn(5n− 5) is a non-empty, open subset ofRn.

Proof. We will use the Lens Equation (1.2) to show that the upper bound of 5n − 5 solutions is
attainable forn ≥ 2 by a specific choice of massesσj and locations of masseszj. Throughout the
proof, the reader may find it helpful to look at Figure 2, wherethe construction is illustrated with
four and five masses.

Considern equal masses (with one mass on the positive real axis) equally spaced around a circle

of radiusa = (n−1)−
1

n

(
n−1
n

) 1

2 (in fact, any smalla will work) centered at0. With zj = ae
2πi
n

(j−1),
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M

M

M

Re(z)

M

MIm(z)

M

Re(z)

M Im(z)M M

FIGURE 2. The diagram on the left shows the real and imaginary parts of the lens
equation for three point masses around a circle and an epsilon mass at the center.
The diagram on the right shows the configuration for four point masses and an
epsilon mass at the center. The bold M’s represent mass positions. The black dots
are sense-preserving image positions and the gray dots are sense-reversing image
positions.

(1.2) becomes:

0 = r(z)− z̄; r(z) =
zn−1

zn − an

In the case thatn is odd, we only need to consider the lens equation on the real line since the
mass configuration is symmetric by a rotation of2π

n
. There is always one solution atz = 0, and

the other solutions satisfy

zn − zn−2 − an = 0. (5.1)

The equationzn−zn−2 has three real solutions, and it is easy to see that shifting this graph vertically
by a sufficiently small amount (an in our case) will still give three real solutions. Hence, we have
a total of3n+ 1 images. (This was previously observed in [10].)

In the case thatn is even, we need to consider the real line and the line obtained by a rotation of
π/n. Solving (5.1) gives two real solutions by an analysis similar to that in the odd case. On the
rotated line, we setz = teiπ/n with t 6= 0 and the lens equation,

z̄ =
zn−1

zn − an
,

simplifies to

tn − tn−2 + an = 0. (5.2)
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A similar analysis of this equation gives four real solutions. Therefore, there are a total of six
non-zero solutions on the two neighboring lines, and the total number of images in the even case
is 6 · n/2 + 1 = 3n+ 1.

We now drop a small massǫ > 0 at the center of the circle. This changes the number of masses
to n+ 1, so we now require5n distinct image positions. We will first check that ifǫ is sufficiently
small, then all3n solutions away from the origin will persist and any new solutions will occur
within distance2

√
ǫ from the origin.

Let f(z) = r(z) − z̄. Denote the3n + 1 roots off as0 = r0, . . . , r3n. For eachi, letDri be a
sufficiently small disk centered atri such that theDri are pairwise disjoint and

(1) There existsA such that for allz ∈ C \⋃Dri , |f(z)| = |r(z)− z̄| > A > 0.
(2) There existsB such that for allz ∈ ⋃

Dri , |D(z)| = ||r′(z)2| − 1| > B > 0.
Suppose thatǫ is sufficiently small so thatA >

√
ǫ and so that the diskD′

r0
of radius2

√
ǫ centered

at 0 satisfiesD′
r0

⊂ Dr0. By (2), there are no critical points in the annulusDr0 \ D′
r0

, so the
minimum of |f | (over this annulus) occurs on its boundary. On∂Dr0, |f(z)| > B, and on∂D′

r0
,

|f(z)| = |r(z)− z̄| ≥ |z̄| − |r(z)| ≥ √
ǫ

sincer(0) = r′(0) = 0. Hence, we have:
(1′) For all z∈ C \D′

r0
∪Dr1 ∪ · · · ∪Dr3n, |f(z)| > √

ǫ.

Adding the massǫ results inf̃(z) = r̃(z)− z̄ = r(z) + ǫ
z
− z̄. By (1′) and (2), ifǫ is sufficiently

small, then in the region|z| ≥ 2
√
ǫ, each of the zeros of̃f is obtained by a continuous motion of a

zero off , and each of them will remain simple with the same orientation.
We now focus on|z| < 2

√
ǫ. The new lens equation on the real line is

zn+2 − zn(1 + ǫ)− z2an + ǫan = 0. (5.3)

At this scale, equation (5.3) is an arbitrarily small perturbation of the equation−z2an + ǫan = 0,
which gives two simple solutions at±√

ǫ. If n is odd, then symmetry under rotation by2π/n leads
to a total of2n new simple images in the2

√
ǫ neighborhood of the origin. Since we originally had

3n+ 1 simple zeros, we now have exactly exactly3n+ 1+ 2n− 1 = 5n simple zeros, as desired.
If n is even, symmetry under rotation by2π/n only leads ton new images in the2

√
ǫ neigh-

borhood of the origin. However, on the linez = teiπ/n the lens equation is the same as Equation
(5.3), except that the first two terms have the opposite sign.Two new simple zeros are produced
on this line at approximatelyt = ±√

ǫ. Under symmetry by rotation of2π/n, this produces then
additional new images that we needed.

In the case ofn = 2 andn = 3, this construction fails due to the low number of masses.
However, a quick check shows that the original constructionof n equally spaced masses around
the circle of radiusa gives5 and10 simple zeros in these two cases. For example, in the case of
n = 2, we haver(z) = z

z2−1/2
, and solving the equation̄z = r(z) will give five solutions. The

reason we do not reach the3n+ 1 bound in the casen = 2 is because on the imaginary axis, there
are only two solutions (since the degree is not high enough).In the case ofn = 3, 3n+1 = 5n−5,
so we see that the original construction works as well. �

Proposition 5.3. For n ≥ 2, SRn(5n− 7) is a non-empty, open subset ofRn.

Proof of Proposition 5.3.Placing mass1/2 at z = 1 andz = −1 produces three images. Placing
mass1 at z = 1

2
andz = −1

2
±

√
3
2
i produces eight images.

For four or more masses, the construction is a perturbation of Rhie’s examples, which consisted
of n equal masses equally spaced around the circle of radiusa and anǫ mass at the origin. We
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claim that a small perturbation for the location of theǫ mass from the origin will result in5n − 2
simple solutions. More exactly, for appropriate choices ofA andφ, we claim that the equation

zn−1

zn − c
+

ǫ

z − b
= z̄, (5.4)

whereb = Aǫ(n−1)/2 · eiφ andc = an is the constant from Proposition 5.2, has exactly5n − 2
simple solutions so long asǫ > 0 is sufficiently small.

As in the Proof of Proposition 5.2, a perturbation byǫ
z−b

of f(z) = r(z) − z̄ will not affect the
roots outside of the disk of radius2

√
ǫ centered at the origin so long as|b| < √

ǫ. Hence, we need
only consider Equation (5.4) inside the disk of radius2

√
ǫ.

Equation (5.4), after simplification, becomes

zn

zn − c
+ ǫ = zz̄ − bz̄ +

bzn−1

zn − c
. (5.5)

Replacingzn − c by−c in Equation (5.5) gives

ǫ− zn

c
= zz̄ − bz̄ − bzn−1

c
, (5.6)

which is an approximation of Equation (5.5) up to an error term of orderǫn. Let z = reiθ. The real
part of Equation (5.6) givesr =

√
ǫ + O(ǫ). We now compare the imaginary parts of both sides,

which will give us the values ofθ.
If n is even, letφ = π/2+π/2n. The lowest order terms for the imaginary part of Equation (5.6)

are of orderǫn/2. They are

Im

(
−zn

c

)
= Im (−bz̄) .

Using thatr =
√
ǫ+O(ǫ) and|b| = Aǫ(n−1)/2, the lowest order terms give

sinnθ = C sin(φ− θ),

whereC = A · c. We notice that whenθ = π/2n, both sides attain their maximum value. The left
hand side attains its minimum value whenθ = (4k+3)π

2n
for integerk. The right hand side attains

its minimum whenθ = (−4kn−2n+1)π
2n

for integerk. However,4k + 3 6≡ −4kn− 2n + 1 (mod 4)
sincen is even. Therefore,sinnθ andsin(φ − θ) are tangent at only one point,θ = π/2n. When
C = 0, there are2n solutions - a simple calculation shows that forC < 1, sinnθ andsin(φ − θ)
cannot be tangent. Hence, the first time a tangency occurs is whenC = 1, and from above, this
tangency is located at the single pointθ = π/2n. IncreasingC by a sufficiently small amount will
pull apart this tangency, but the other simple solutions tosinnθ = sin(φ − θ) will persist, so we
have lost exactly two solutions, as desired.

Whenn is odd, for any choice ofφ, the above approach produces two tangencies and thus it
cannot be used without considering higher order terms. Letφ = π/2. As before,r =

√
ǫ +O(ǫ).

The imaginary part of Equation (5.6) yields

sinnθ =
c|b|
rn−1

cos θ +
|b|
r
cos((n− 1)θ). (5.7)

Up to terms of orderǫ(n−1)/2, Equation (5.7) becomes

sinnθ = C cos θ + Aǫ(n−2)/2 cos((n− 1)θ),
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whereC = A · c. We first look at the lowest order terms, which gives

sinnθ = C cos θ. (5.8)

When the massǫ is located exactly at the center,C = 0, and there are2n solutions. First, notice
that if θ is a solution to (5.8), so isπ + θ. IncreasingC will not change the number of solutions
to (5.8) untilC cos θ is tangent tosinnθ at some point. For this to occur, we require a solution to
(5.8) to also be a solution to

n cosnθ = −C sin θ. (5.9)

Squaringn·(5.8) and (5.9) and summing gives

n2 = C2 + C2(n2 − 1) · cos2 θ,
which gives two solutions forcos θ and four forθ - however, one can readily verify that two of
these are extraneous, so there are only two values ofθ for which (5.8) and (5.9) are satisfied, and
moreover they differ byπ. Reconsidering the small termAǫ(n−2)/2 cos((n − 1)θ), we find that
cos((n−1)θ) = cos((n−1)(π+θ)). Since one of the tangencies was a minimum for both sides of
Equation (5.8) and the other was a maximum, this perturbation will pull apart one of the tangencies
and change the other to be two simple solutions. �

With these facts, we can prove Theorem 1.2.

Proof of Theorem 1.2.We have already shown in Proposition 2.1 thatNRn is contained in a proper
real algebraic subset ofRn so we will focus our attention on simple rational functions.

We will also throw out the proper algebraic set given bybn = 0 in the parameterization of
rational functions (Equation (1.3)). This allows us to restrict our attention to the case thatdeg q ≥
deg p. Under these assumptions, we have that the number of zeros,k, satisfiesn − 1 ≤ k, from
the Argument Principle, andk ≤ 5n − 5, from [9]. Furthermore, from Lemma 5.1, we have
thatk ≡ n − 1 mod 2. Thus, it suffices to show that for eachn ≥ 2, SRn(k) is non-empty for
k = n− 1, n+ 1, n+ 3, . . . , 5n− 5.

We will proceed with an induction onn, similar to the proof of Theorem 1.1. First consider
the case wheren = 2. The equationr(z) = c

z2
= z̄ has exactly one root for anyc soSR2(1) is

non-empty. Furthermore, by Proposition 5.2 and Proposition 5.3 we have thatSR2(3) andSR2(5)
are non-empty, respectively.

Now, suppose for somen ≥ 2 that SRn(k) 6= ∅ for k = n − 1, n + 1, n + 3, . . . , 5n − 5.
We will first show thatSRn+1(k + 1) 6= ∅ for the same values ofk. By assumption, there exists
r(z) ∈ SRn(k). Denote thek roots off(z) = r(z) − z̄ asr1, . . . , rk and then poles off as
z1, z2, . . . , zn. Consider the rational functioñr = r(z) + ǫ

z−z̃
, wherez̃ 6= ri andz̃ 6= zi for any i.

For eachi, letDri be a sufficiently small disk centered atri and letDzi be a sufficiently small disk
centered atzi such that theDri andDzi are pairwise disjoint,̃z /∈ ⋃

Dri

⋃
Dzi, and

(1) There existsA such that for allz ∈ C\⋃Dri , |f(z)| = |z̄ − r(z)| > A > 0.
(2) There existsB such that for allz ∈ ⋃

Dri , |D(z)| = ||r′(z)2| − 1| > B > 0.
(3) There existsC such that for allz ∈ C\⋃Dzi , |r′(z)| < C.

Clearly,r̃ has degreen+ 1, so it is sufficient to show that̃f = r̃(z)− z̄ hask+ 1 zeros. Forǫ > 0
sufficiently small, the winding number around each of the circlesCri = ∂Dri remains as±2π and
the Jacobian does not change sign inDri . Therefore, each rootri of f moves continuously to some
new simple root̃ri of the same “orientation” asri. Moreover,̃ri remains in the diskDri , so there
is still exactly one root in each disk.
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We claim now that any new root of̃f must be sense-preserving. Iff̃(z) = 0, then
∣∣∣∣

ǫ

z − z̃

∣∣∣∣ = |z̄ − r(z)| > A ⇒
∣∣∣∣

ǫ

(z − z̃)2

∣∣∣∣ >
A2

ǫ
.

At any such point,

|r̃′(z)| =
∣∣∣∣r

′(z)− ǫ

(z − z̃)2

∣∣∣∣ >
∣∣∣∣

ǫ

(z − z̃)2

∣∣∣∣− |r′(z)| > A2

ǫ
− C.

As long asǫ is sufficiently small,|r̃′(z)| > 1, so any new root of̃f is sense-preserving. By Lemma
5.1, k̃+ − k̃− = n. As no new s.r roots are created,k− stays the same, sok+ must have increased
by exactly1, as desired.

We have shown thatSn+1(k) is non-empty fork = n, n+2, . . . , 5n−4 = 5(n+1)−9. However,
Propositions 5.2 and 5.3 give thatSn+1(5n− 2) andSn+1(5n) are also non-empty, thus our proof
is complete. �

6. PHYSICAL CASE

The Lens Equation (1.2) can be rewritten as

0 = z̄ −
n∑

i=1

σi(z̄ − z̄i)

|z̄ − z̄i|2
, (6.1)

where0 is the source position,zi is the position of theith point mass, andz is the image position.
Thetime delay functionT is defined to be

T (z) =
|z|2
2

−
n∑

i=1

σi ln |z − zi|.

Note thatz0 = x+ iy is a solution to∂zT = (Tx − iTy)/2 = 0 (a critical point ofT ) if and only
if z is a solution to Equation 6.1. Moreover,z0 is a non-degenerate local minimum (respectively
maximum) ofT iff z0 is a s.r (respectively s.p) simple zero of (6.1).

Proposition 6.1(Petters [11]). If all of the massesσi are positive and if all of the zeros of the lens
equation(6.1)are simple, then there are at leastn+ 1 of them.

Proof. Let DR be the closed disc centered at the origin of radiusR and for eachi, let Di,ǫ be the
open disc of radiusǫ centered atzi. LetG = DR \ ∪Di,ǫ.

If |z| → ∞ or if z → zi, thenT (z) → ∞. Hence, we can chooseR > 0 sufficiently large and
ǫ > 0 sufficiently small so that the minimum ofT is not attained on the boundary ofG. Therefore,
the minimum ofT occurs on the interior ofG. This minimum corresponds to a s.r simple zero of
(6.1). We can show thatn−1 = k+−k− as in Lemma 5.1, wherek+ (k−) is the number of s.p (s.r)
zeros of (6.1). Since we have at least one s.r zero,k− ≥ 1, andk+ + k− ≥ n− 1 + 2k− ≥ n+ 1,
as desired. �

Proof of Theorem 1.3.We use an inductive proof similar to that of Theorem 1.2.
Consider the casen = 2. Placing mass1 at any point other than the origin will result in two

images and the inductive step from the proof of Theorem 1.2 shows that placing a sufficiently small
ǫ mass anywhere else will generate exactly one more image. Also, Rhie [15] gives an example for
a configuration that yields5 roots. Thus,SM2(3) andSM2(5) are non-empty open sets.

From here, exactly the same inductive step can be applied as in the proof of Theorem 1.2 to show
that ifSMn(n+1), . . . , SMn(5n− 5) are non-empty, thenSMn+1(n+3), . . . , SMn+1(5n− 4)
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are non-empty since addition of the termǫ/(z − z̃) corresponds to adding a small mass atz̃.
Propositions 5.2 and 5.3 give thatSMn+1(5n− 2) andSMn+1(5n) are non-empty. �

Remark.Each of theSMn(k) contains a positive massed rational function with masses arbitrarily
close to the origin. Thus, these functions are consistent with the physical assumption that all the
masses are close together and at small angular positions with respect to the light source. In the
proof of Theorem 1.3, the base case of the induction can be done with two masses arbitrarily close
to the origin. The inductive step from the proof of Theorem 1.2 allowed us to add a small mass at
an arbitrary point and, moreover, the proofs of Propositions 5.2 and 5.3 can be done with masses
arbitrarily close to the origin.
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