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Abstract. We use intuitive results from algebraic topology and intersection theory to
clarify the pullback action on cohomology by compositions of rational maps. We use these
techniques to prove a simple sufficient criterion for functoriality of a composition of two
rational maps on all degrees of cohomology and we then reprove the criteria of Diller-Favre,
Bedford-Kim, and Dinh-Sibony. We conclude with a cautionary example.

1. Introduction

Suppose that X and Y are complex projective algebraic manifolds, both of dimension k,
and f : X 99K Y is a rational map. If If denotes the indeterminacy set of f , the graph of
f is the irreducible variety

Γf := {(x, y) ∈ X × Y : x 6∈ If and y = f(x)}.(1)

One defines the action f∗ : H∗(Y )→ H∗(X) on the singular cohomology ofX by considering
f as the correspondence Γf ⊂ X × Y . If π1 : X × Y → X and π2 : X × Y → Y are the
canonical projections, then, for any α ∈ H i(Y ),

f∗α := π1∗([Γf ]^π∗2α).(2)

Here, [Γf ] is the fundamental cohomology class of Γf , π∗2 is the classical pullback on co-
homology as defined for regular maps, and π1∗ is the pushforward on cohomology, defined
by π1∗ = PD−1

X ◦ π1# ◦ PDX×Y , where π1# denotes the push forward on homology and
PDM : H∗(M) → HdimRM−∗(M) denotes the Poincaré duality isomorphism on a manifold
M . If f is regular (i.e. If = ∅) then (2) coincides with the classical definition of pullback.

We will take the coefficients for our cohomology in C, letting H i(X) ≡ H i(X;C). Since
our manifolds are Kähler, there is a natural isomorphism⊕

p+q=i

Hp,q(X) → H i(X),

where the former are the Dolbeault cohomology groups. This isomorphism induces a split-
ting of the singular cohomology of X into bi-degrees, which one can check is invariant under
the pullback (2).

The most primitive dynamical invariants of any rational selfmap h : X 99K X are the
dynamical degrees

λp(h) := lim
n→∞

||(hn)∗ : Hp,p(X)→ Hp,p(X)| |1/n,(3)
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which are defined for 1 ≤ p ≤ k = dim(X). They were introduced by Friedland [20] and by
Russakovskii and Shiffman [33] and shown to be invariant under birational conjugacy by
Dinh and Sibony [15]. Note that dynamical degrees were originally defined with the limit
in (3) replaced by a limsup. However, it was shown in [15] that the limit always exists.

The dynamical degrees of h are tied to the expected ergodic properties of h; see, for
example, [24]. (These expected properties have been proved when λk(h) is maximal [25, 14]
or when dim(X) = 2, λ1(h) > λ2(h), and certain minor technical hypotheses are satisfied
[12].) Dynamical degrees are typically hard to compute because (2) does not behave well
under composition of maps. There are simple examples for which (hn)∗ 6= (h∗)n. One
says that h is p-stable if (hn)∗ = (h∗)n on Hp,p(X) for every n ∈ Z+. A nice summary of
techniques on how to compute dynamical degrees appears in [6]. Let us note that there are
very few explicit examples [2, 18, 31, 32] in which the p-th dynamical degrees have been
computed for 1 < p < k.

In order to study the problem of p-stability, one typically looks for criterion on f :
X 99K Y and g : Y 99K Z under which (g ◦ f)∗ = f∗ ◦ g∗ (either on all cohomology or for
certain degrees). Such criteria have been given by Fornaess-Sibony [19], Diller-Favre [13],
Bedford-Kim [7, 8], and Dinh-Sibony [16]. The proofs of these criteria typically represent a
cohomology class α ∈ H∗(Z) with a smooth form, pull it back under g∗ as a closed current,
and then pull back the resulting current under f∗. This approach is especially challenging
when p ≥ 2 since the pullback of such higher-codimension currents is very delicate.

The purpose of this note is to prove these criteria using intuitive techniques from coho-
mology and intersection theory. This approach is inspired by the techniques used by Amerik
in [2]. Our primary motivation is to provide those who are learning these results with an
alternative approach, in the hope that seeing two different proofs makes the results clearer.

Another merit of this approach is that it may be possible to adapt it to problems about
rational maps between projective manifolds defined over fields K 6= C. The dynamics of
such mappings has gained considerable interest recently (see, for example, [3, 27, 28, 36, 34]
and the references therein) and the analytic techniques involving smooth forms and positive
closed currents from [13, 7, 8, 16] do not apply in that context. However, Intersection Theory
(our main underlying tool) still applies to projective manifolds defined over other fields K.

Several of the references listed above consider the broader context of meromorphic maps of
compact Kähler manifolds. In order for the techniques used in this note to be as elementary
as possible, we will restrict our attention to rational maps of projective algebraic manifolds.
This allows us to use classical techniques from intersection theory, such as Fulton’s Excess
Intersection Formula, which will be helpful when establishing Lemma 2.5, below.

Let us make the convention that all rational maps are dominant, meaning that the image
is not contained within a proper subvariety of the codomain. To be concise, we will use the
term algebraic manifold to mean complex projective algebraic manifold. Moreover, since
we are primarily motivated by dynamics, all rational mappings will be between algebraic
manifolds of the same dimension. For any S ⊂ X, we define f(S) := π2(π−1

1 (S) ∩ Γf ) and

for any S ⊂ Y we define f−1(S) := π1(π−1
2 (S) ∩ Γf )

For simplicity of exposition, we will ignore the decomposition of cohomology into bidegree
wherever possible.
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In order to study the composition g ◦ f we will need the following diagram:

Γg◦f ⊂ X × Z

pr1





pr2

��

X × Y × Z

ρ2

OO

ρ1

vv

ρ3

((
Γf ⊂ X × Y

π1

yy

π2

((

Γg ⊂ Y × Z
π3

vv

π4

%%
X

f // Y
g // Z

(4)

Central to the entire discussion is the following.

Proposition 1.1. We have

f∗g∗α = pr1∗ (ρ2∗(ρ
∗
1[Γf ]^ρ∗3[Γg]) ^ pr∗2α) .(5)

In particular, (g ◦ f)∗ = f∗ ◦ g∗ on all cohomology groups if and only if

[Γg◦f ] = ρ2∗(ρ
∗
1[Γf ]^ρ∗3[Γg]) ∈ H2k(X × Z).

This proposition is probably well-known within algebraic geometry, for example a variant
of (5) is proved for the pull back on the Chow Ring in [22, Sec. 16.1] and [38, Prop. 9.7],
but it seems to be less well-known in rational dynamics.

Our first application of Proposition 1.1 is to prove:

Proposition 1.2. Let f : X 99K Y and g : Y 99K Z be rational maps. Suppose that there

exits an algebraic manifold X̃ and holomorphic maps pr and f̃ making the following diagram
commute (wherever f ◦ pr is defined)

X̃

pr

��

f̃

��
X

f // Y

(6)

with the property that f̃−1(x) is a finite set for every y ∈ Y . Then, (g ◦ f)∗ = f∗ ◦ g∗ on all
cohomology groups.

Remark 1.3. In many cases, X̃ will be a blow-up of X. However this is not a hypothesis of
Proposition 1.2, which can also be useful in other situations. Notice also that the condition

that f̃−1(x) is a finite set implies that dim(X̃) = k.

After proving Proposition 1.2, we will use Proposition 1.1 to prove the criteria of Diller-
Favre, Bedford-Kim, and Dinh-Sibony stated below.

Historically, the first criterion for functoriality of pullbacks under compositions was given
by Fornaess and Sibony [19] who proved that if f : CPk 99K CPk and g : CPk 99K CPk are
rational maps then (g ◦ f)∗ = f∗ ◦ g∗ on the second cohomology if and only if there is
no hypersurface H ⊂ Pk with f(H \ If ) ⊂ Ig. The proof consists of recognizing that the
homogeneous expression obtained when composing f and g has a common factor of positive
degree if and only if there is a hypersurface H ⊂ Pk with f(H \If ) ⊂ Ig. Since this common
factor must be removed in order to define g ◦ f , the resulting composition has lower degree.
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A further study of this phenomenon and a characterization of the sequences of degrees that
may appear for the iterates of such a map f is given in [9].

Since Ig is of codimension at least two, in order that f(H \ If ) ⊂ Ig, f must collapse H
to a variety of lower dimension. The principle that non-functoriality is caused by collapse
of a subvariety under f to something of lower dimension that is contained within Ig appears
as a common theme in the following three criteria:

Proposition 1.4. (Diller-Favre [13, Prop. 1.13]) Let X,Y, and Z be algebraic manifolds of
dimension 2. Let f : X 99K Y and g : Y 99K Z be rational maps. Then (g ◦ f)∗ = f∗ ◦ g∗ if
and only if there is no curve C ⊂ X with f(C \ If ) ⊂ Ig.
Proposition 1.5. (Bedford-Kim [8, Thm. 1.1]) Let X,Y, and Z be algebraic manifolds of
dimension k. Let f : X 99K Y and g : Y 99K Z be rational maps. If there is no hypersurface
H with f(H \ If ) ⊂ Ig, then f∗ ◦ g∗ = (g ◦ f)∗ on H2(Z).

We will prove a slightly stronger variant of the criterion of Dinh and Sibony. Let Σ̃′f ⊂ Γf
is the set of points such that

(i) π2 restricted to Γf is not locally finite at x, and

(ii) π2((x, y)) ∈ Ig for every (x, y) ∈ Σ̃′f .

Let Σ′f := π1

(
Σ̃′f

)
.

Proposition 1.6. (Variant of Dinh-Sibony [16, Prop. 5.3.5]) Let X,Y, and Z be algebraic
manifolds of dimension k. Let f : X 99K Y and g : Y 99K Z be rational maps. If dim Σ′f <

k − p, then (g ◦ f)∗ = f∗ ◦ g∗ on H i(Z) for 1 ≤ i ≤ 2p.

Remark 1.7. The distinction between this criterion and the one from [16, Prop. 5.3.5] is
that we impose the extra condition (ii) on Σf , allowing for higher dimensional varieties to
be collapsed by f , so long as they don’t map into Ig.

Remark 1.8. Proposition 1.2, the sufficiency condition in Proposition 1.4, and Proposition
1.5 can all be obtained as corollaries to Proposition 1.6. However, we’ll present them
separately since they’re of independent interest and their direct proofs are simpler.

In §2 we provide a brief background with needed tools from cohomology and intersec-
tion theory. In §3 we discuss some further properties of the graph Γf and we show that
definition (2) of f∗ is equivalent with some of the other standard versions appearing in the
literature. We prove Propositions 1.1 in §4. In §5 we prove Propositions 1.2-1.6. This paper
is concluded with §6 in which we provide a cautionary example, presenting a rational map
f : X 99K X of a three dimensional manifold X that is not 2-stable but has the property

that
(
f |X\If

)−1
(x) is finite for every x ∈ X. This example illustrates that to study p sta-

bility for 1 < p < k, one must consider collapsing behavior lying within the indeterminate
set.

2. Background from cohomology and intersection theory

Suppose f : M → N is a continuous map between compact manifolds of dimensions m
and n, respectively. Given α ∈ H i(M), we define f∗ : H i(M)→ Hn−m+i(N) by

f∗α := PD−1
N (f#(PDMα)),(7)

where f# : H∗(M)→ H∗(N) is the push forward on homology.
We will make extensive use of the following formula.
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Lemma 2.1 (Push-Pull Formula). Suppose M and N are manifolds and f : M → N is
continuous. Then, for any α ∈ H i(N) and any β ∈ Hj(M) we have

f∗(f
∗(α)^β) = α^ f∗(β) ∈ Hn−m+i+j(N).

Note that when f is holomorphic, this is sometimes also called the “projection formula”.

Proof. This is a simple consequence of the following three facts

(i) Push-Pull formula on homology: If f : M → N is continuous, η ∈ H∗(N), and
γ ∈ H∗(M), then

f#(f∗(η)_γ) = η _ f#γ,

(ii) PDM (α) is defined by α_ {M}, where {M} is the fundamental homology class of
M , and

(iii) for any η, φ ∈ H∗(M) and γ ∈ H∗(M), then (η ^ φ)_γ = η _ (φ_ γ).

See [10, Ch. VI, Thm. 5.1 and Cor. 9.3]. �

We will need a little bit of information about the Künneth formuli on cohomology and
homology. Recall that our (co)homology is taken with coefficients in the field C. Let

κi :
⊕
a+b=i

Ha(M)⊗Hb(N)→ H i(M ×N)

and

Ki :
⊕
a+b=i

Ha(M)⊗Hb(N)→ Hi(M ×N)

be the Künneth isomorphisms. Recall that κi(γ ⊗ η) = π∗1γ ^ π∗2η. Suppose M and N are
manifolds.

Lemma 2.2. The following diagram commutes:⊕
a+b=iH

a(M)⊗Hb(N)

κi

��

(−1)mbPDM⊗PDN //⊕
a+b=iHm−a(M)⊗Hn−b(N)

Km+n−i

��
Hi(M ×N)

PDX×Y // Hm+n−i(M ×N).

(8)

Proof. According to [10, Ch. VI, Thm. 5.4], if α ∈ H∗(X), β ∈ H∗(Y ), c ∈ H∗(X), and
d ∈ H∗(Y ), then

κ(α⊗ β)_K(c⊗ d) = (−1)deg(β) deg(c)K((α_ c)⊗ (β _ d)).

The result follows, since PDM×N is obtained by taking the cap product with {M ×N}
= K({M} ⊗ {N}). �

Lemma 2.3. Let M and N be connected manifolds of dimensions m and n, respectively
and let π : M × N → M be projection onto the first coordinate. Suppose ν ∈ H i(M × N)
satisfies

κ−1(ν) =
i∑

a=1

lj∑
l=1

γi−a,l ⊗ ηa,l
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with γi−a,l ∈ H i−a(M), ηa,l ∈ Ha(N), and with the normalization that each ηn,l ∈ Hn(N)
is the fundamental class [x] of a point x ∈ N . Then

π∗ν = (−1)mn
ln∑
l=1

γi−n,l.

Proof. This follows from Lemma 2.2 and the fact that the push forward pr# on homology
satisfies that

pr#

(
K

(
i∑

a=1

la∑
l=1

gi−a,l ⊗ ea,l

))
=

l0∑
l=1

gi,l,

if each gi−a,l ∈ Hi−a(M), each ea,l ∈ Ha(N), and each e0,i = {x} is the fundamental
homology class of a point. This follows easily from the fact that the Künneth Isomorphism
is natural with respect to induced maps. �

Remark 2.4. In our applications, M and N will be complex manifolds. Since they have
even real-dimension, the signs will disappear from Lemmas 2.2 and 2.3.

Let X be an algebraic manifold of (complex) dimension k and let V ⊂ X be a subvariety
of dimension k − i. It is well known that V generates a cohomology class [V ] ∈ H2i(X);
see, for example, [23, 37]. If V ′ ⊂ X is another subvariety of dimension k − j, we will
need information relating [V ] ^ [V ′] to V ∩ V ′. This is the subject of Intersection Theory
[21, 22, 38]. One says that V and V ′ are transverse at generic points of V ∩ V ′ if there is
a dense set of V ∩ V ′ on which V and V ′ are both smooth and intersect transversally. The
information we need is encapsulated in:

Lemma 2.5. Let V and V ′ be subvarieties of X of dimensions k − i and k − j. Then,
[V ] ^ [V ′] is represented as a linear combination of fundamental cohomology classes of
k − i− j-dimensional subvarieties of V ∩ V ′. More specifically:

(i) If V and V ′ are transverse at generic points of V ∩ V ′, then [V ]^ [V ′] = [V ∩ V ′].
(ii) More generally, if each of the components W1, . . . ,Wm0 of V ∩ V ′ has the correct

dimension of k − i− j, then

[V ]^ [V ′] =

m0∑
m=1

am[Wm],

where each am ∈ Z+ is an intersection number satisfying that am = 1 if and only if
V and V ′ are transverse at generic points of Wm.

(iii) Most generally, if some of the components W1, . . . ,Wm0 of V ∩V ′ are of dimension
> k − i− j, then,

[V ]^ [V ′] =

m0∑
m=1

nm∑
n=1

am,n[Wm,n],

where each Wm,n ⊂ Wm is a subvariety of Wm of dimension k − i − j and each
am,n ∈ Z. For each Wm of the correct dimension k− i− j the inner sum reduces to
be am[Wm], where am is given as in (ii).

Note that in case (iii), the coefficients am,n can be negative, for example the self-

intersection of the exceptional divisor resulting from a blow-up of CP2 is represented by
a single point on the exceptional divisor with coefficient −1.
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Rather than presenting a proof of Lemma 2.5, we will mention how to obtain it from the
corresponding properties in the Chow Ring CH∗(X), which are proved in [21, 22, 38]. For
each 0 ≤ i ≤ k, the chow group CH i(X) is the collection of finite formal sums of k − i-
dimensional irreducible subvarieties taken with integer coefficients, up to an equivalence
relation known as rational equivalence. We won’t need the detailed definition of rational
equivalence, however let us denote the rational equivalence class of an irreducible subvariety
V by (V ).

One obtains the Chow Ring CH∗(X) =
⊕k

i=0CH
i(X) by defining an intersection prod-

uct

• : CH i(X)× CHj(X)→ CH i+j(X).

If V and V ′ intersect properly, with dimension k − i − j, then each component of the
intersection is assigned an intersection multiplicity in a relatively simple way, see [22, Sec.
8.2]. (Note that using the uniqueness described in [22, Eg. 11.4.1], one can show that this
intersection multiplicity is consistent with the more intuitive approach of [11, Sec. 12.3].)
This intersection multiplicity is a positive integer that equals 1 if and only if V and V ′ are
generically transverse along the component.

If the intersection has a component whose dimension is larger than k − i − j, there are
two approaches:

(i) moving one of the subvarieties V to a rationally equivalent one Ṽ in such a way that

Ṽ ∩ V ′ has the correct dimension, via Chow’s moving lemma (see [38, Lem. 9.22]
or [22, Sec. 11.4]), or

(ii) or Fulton’s excess intersection formula, which represents the intersection product as
a linear combination of subvarieties lying within V ∩ V ′ (see [38, Sec. 9.2] or [22,
Sec. 6.3]).

In order to guarantee the property that the cup product is represented by a sum of funda-
mental classes of subvarieties of V ∩ V ′, we appeal to the latter.

Lemma 2.5 then follows from the fact that there is a ring homomorphism cl : CH∗(X)→
H2∗(X) with the property that for any irreducible V ⊂ X, cl((V )) = [V ]. See, for example,
[22, Ch. 19] or [38, Lem. 9.18 and Prop. 9.20].

Remark 2.6. In many of our applications, we will only need properties (i) and (ii) which
are relatively simple. We will only use property (iii) to show that the cup product is given
by subvarieties of the geometric intersection V ∩ V ′. We won’t use any details of how the
coefficients am,n in Part (iii) of Lemma 2.5 are actually computed.

Lemma 2.7. Suppose that f : X → Y is a proper holomorphic map between algebraic
manifolds. For any irreducible subvariety V ⊂ X we have

(i) if dim(f(V )) = dim(V ), then f∗([V ]) = degtop(f |V )[f(V )], where degtop(f |V ) is the
number of preimages under f |V of a generic point from f(V ).

(ii) Otherwise, f∗([V ]) = 0.

Proof. This is essentially [22, Lem. 19.1.2] combined the remark in Section 1.4 of [22] that
deg(V/f(V )) is equal to the topological degree degtop(f |V ) of f |V : V → f(V ). �

Lemma 2.8. Let X and Z be k-dimensional algebraic manifolds and let W be a k-dimensional
subvariety of X × Z. We have

pr1∗([W ]^ pr∗2α) = 0
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if either

(i) dim(pr1(W )) ≤ k − p and α ∈ H i(Z) for some i < 2p, or
(ii) dim(pr2(W )) ≤ p and α ∈ H i(Z) for some i > 2p.

Proof. Suppose dim(pr1(W )) ≤ k−p. The fundamental homology class {W} is in the image
of ι#, where ι : pr1(W )× Z ↪→ X × Z is the inclusion. Therefore,

K−1({W}) =

2k−2p∑
a=1

la∑
l=1

ga,l ⊗ e2k−a,l,

with each ga,l ∈ Ha(X) and each e2k−a,l ∈ H2k−a(Z). Applying Lemma 2.2, we have

κ−1([W ]) =

2k−2p∑
a=1

la∑
l=1

PD−1
X (ga,l)⊗ PD−1

Y (e2k−a,l) =

2k−2p∑
a=1

la∑
l=1

γ2k−a,l ⊗ ηa,l.

where each γ2k−a,l ∈ H2k−a(X) and ηa,l ∈ Ha(Z). Thus for any α ∈ H i(Z) we have,

[W ]^ pr∗2α =

2k−2p∑
a=1

la∑
l=1

pr∗1(γ2k−a,l)^ pr∗2(ηa,l^α)

= κ−1

(
2k−2p∑
a=1

la∑
l=1

γ2k−a,l ⊗ (ηa,l^α)

)
.

Since each term in the second factor has degree 2k − 2p+ i < 2k, Lemma 2.3 gives that

pr2∗([W ]^ pr∗2α) = 0.

The proof of (ii) is essentially the same. �

3. Alternative definitions for f∗ and remarks about Γf

In this section, we’ll show that two common alternative definitions for f∗α are consistent
with (2). In Example 3.4, we’ll see that the graph Γf may be singular at points whose first
coordinate is in If . For this reason, these alternative definitions for f∗α are more commonly
used in actual computations.

Lemma 3.1. Suppose X̃ is a k-dimensional algebraic manifold and that pr : X̃ → X and f̃ :

X̃ → Y are holomorphic maps making the Diagram (6) commute. Then, f∗α = pr∗

(
f̃∗α

)
.

Usually, pr : X̃ → X will be a blow-up, but Lemma 3.1 holds in greater generality.

Proof. This follows from the fact that (pr× id)∗

[
Γ
f̃

]
= [Γf ] and the Push-Pull formula. �

Lemma 3.2. Suppose that Γ̃f is a resolution of the singularities in Γf and π̃1 and π̃2 are

the lifts of π1|Γf
and π2|Γf

to Γ̃f . Then, f∗α = π̃1∗(π̃2
∗α).

Proof. This is a restatement of Lemma 3.1. �

The following lemma will be helpful later.

Lemma 3.3. Let X and Y be algebraic manifolds of dimension k and let f : X 99K Y be a
rational map. If V ⊂ X be a proper subvariety of X, then

Γf = {(x, y) ∈ X × Y : x 6∈ V ∪ If and y = f(x)}.
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Proof. Since Γf is defined by (1), it suffices to show that Γf \ π−1
1 (V ) is dense in Γf . This

follows since π1 : Γf → X is dominant, giving that π−1
1 (V ) is a proper subvariety of Γf . �

Example 3.4. Both Eric Bedford and the one of the anonymous referees have pointed out
to us several complications arising when working directly with the graph Γf . The following
is an expanded version of Example 1 from [5, §5].

The quadratic Hénon map ha,c : C2 → C2, given by

ha,c(x1, x2) = (x2
1 + c− ax2, x1),(9)

extends as a birational map of P2, which is expressed in homogeneous coordinates as

ha,c([X1 : X2 : X3]) = [X2
1 + cX2

3 − aX2X3 : X1X3 : X2
3 ].(10)

The extension has indeterminacy Ih = {[0 : 1 : 0]}. One can check that Ih blows-up under
h to L∞ := {X3 = 0} and that h(L∞ \ Ih) = [1 : 0 : 0]. In particular, points of Γh satisfy
that X3 = 0⇔ Y3 = 0.

In C2 × C2, the graph of h is given by

y1 = x2
1 + c− ax2 and y2 = x1.(11)

It is natural to expect that the graph Γh of h : P2 99K P2 is obtained by substituting
x1 = X1

X3
, x2 = X2

X3
, y1 = Y1

Y3
, and y2 = Y2

Y3
and then clearing denominators. One obtains

Y1X
2
3 = X2

1Y3 + cX2
3Y3 − aX2X3Y3 and(12)

Y2X3 = X1Y3,

which describe some subset of P2 × P2. However, if one sets X3 = Y3 = 0, both equations
become 0 = 0, so that [X1 : X2 : 0] × [Y1 : Y2 : 0] satisfies (12) for any X1, X2, Y1, and Y2.
Thus, (12) does not capture the fact that h(L∞ \ Ih) = [1 : 0 : 0].

One can try adding further equations that are consistent with (11) on C2×C2. When X3

and Y3 are not 0, it follows from the second equation in (12) that X1
X3

= Y2
Y3

, which implies
1
X3

= Y2
Y3X1

. Substituting x1 = X1Y2
Y3X1

= Y2
Y3
, x2 = X2Y2

Y3X1
and y1 = Y1

Y3
into first equation from

(11), clearing denominators, and dividing by a common factor of X1 adds a third equation
to the system:

Y1X
2
3 = X2

1Y3 + cX2
3Y3 − aX2X3Y3,

Y2X3 = X1Y3, and(13)

Y1Y3X1 = X1Y
2

2 + cY 2
3 X1 − aX2Y2Y3.

When one substitutes X3 = Y3 = 0 into (13), the third equation becomes 0 = X1Y
2

2 , which
expresses that h(L∞ \ Ih) = [1 : 0 : 0]. However, [0 : 1 : 0]× [Y1 : 0 : Y3] satisfies (13) for any
Y1 and Y3. Thus (13) does not imply that X3 = 0 ⇔ Y3 = 0, which is required for points
of Γh.

If one computes h−1 : C2 → C2, one of the equations is x2 = 1
a(y2

2 + c− y1). Converting
this equation to homogeneous coordinates and adding it to our system, we obtain

Y1X
2
3 = X2

1Y3 + cX2
3Y3 − aX2X3Y3,

Y2X3 = X1Y3,(14)

Y1Y3X1 = X1Y
2

2 + cY 2
3 X1 − aX2Y2Y3, and

aX2Y
2

3 = X3Y
2

2 + cX3Y
2

3 − Y1Y3X3.
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These four equations imply that X3 = 0⇔ Y3 = 0. When X3 = Y3 = 0, the third equation
becomes 0 = X1Y

2
2 , which describes Γh ∩ (L∞×L∞) and when X3 6= 0 and Y3 6= 0 the first

two equations describe Γh ∩ (C2 × C2). Therefore, (14) describes Γh ⊂ P2 × P2.
One might wonder whether Γh can be described with fewer equations. This is related to

the notion on complete intersection; see, for example, [26, Exercise I.2.17]. If we let J be

the ideal in C[X1, X2, X3, Y1, Y2, Y3] defined by (14), one can compute I(Γh) =
√
J using

the computer algebra package Macaulay2 [1]. One finds that I(Γh) is generated by two
equations

X3Y2 −X1Y3 = 0, and(15)

X3Y1 −X1Y2 + aX2Y3 − cX3Y3 = 0.

Thus, Γh is a complete intersection. In particular, these two equations describe Γh in all of
P2 × P2.

If we express (15) in the local coordinates z1 = X1/X2, z2 = X3/X2, w1 = Y2/Y1, and
w2 = Y3/Y1 centered at [0 : 1 : 0]× [1 : 0 : 0], we find

z2w1 − z1w2 = 0 and

z2 − z1w1 + aw2 − cz2w2 = 0.

Since the lowest order terms of the first equation are quadratic, when one restricts Γh to
any plane through (z1, z2, w1, w2) = (0, 0, 0, 0), the result will have local multiplicity ≥ 2.
This implies that Γh has local multiplicity ≥ 2 at [0 : 1 : 0]× [1 : 0 : 0] and hence that Γh is
singular there.

4. Proof of the composition formula

The proof of (5) below is cribbed from Voisin’s textbook [38, Prop. 9.17].

Proof. Proof of Proposition 1.1: For any α ∈ H∗(Z) we have

pr1∗(ρ2∗(ρ
∗
1[Γf ]^ρ∗3[Γg])^ pr∗2α)

PP
= pr1∗(ρ2∗(ρ

∗
1[Γf ]^ρ∗3[Γg]^ρ∗2pr∗2α))

= pr1∗(ρ2∗(ρ
∗
1[Γf ]^ρ∗3[Γg]^ (π4 ◦ ρ3)∗α)) = π1∗(ρ1∗(ρ

∗
1[Γf ]^ρ∗3[Γg]^ (π4 ◦ ρ3)∗α))

PP
= π1∗([Γf ]^ρ1∗(ρ

∗
3[Γg]^ (π4 ◦ ρ3)∗α)) = π1∗([Γf ]^ρ1∗(ρ

∗
3([Γg]^π∗4α)))

♦
= π1∗([Γf ]^π∗2(π3∗([Γg]^π∗4α))) = f∗g∗α.

Here, all unlabeled equalities follow from commutativity of Diagram (4) and the equality
labeled PP follows from the Push-Pull formula. To check ♦, one must show for any β ∈
H∗(Y × Z) that

(ρ1∗ ◦ ρ∗3)β = (π∗2 ◦ π3∗)β.(16)

This follows easily by expanding β using the Künneth formula and applying Lemma 2.3.

We’ll now check that if ρ2∗(ρ
∗
1[Γf ]^ρ∗3[Γg]) 6= [Γg◦f ], then f∗g∗ 6= (g ◦ f)∗. Let

ρ2∗(ρ
∗
1[Γf ]^ρ∗3[Γg]) = [Γg◦f ] + E .

By linearity of (5), it suffices to find some α ∈ H∗(Z) with pr1∗(E ^ pr∗2α) 6= 0. For each
i = 0, . . . , 2k, let γi,1, . . . , γi,ji be a basis of H i(X) and let ηi,1, . . . , γi,li be a basis of H i(Z).
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Using the Künneth Isomorphism, we have

κ−1(E) =

2k∑
i=0

ji∑
j=1

l2k−i∑
l=1

ai,j,lγi,j ⊗ η2k−i,l.

Since E 6= 0, there is some ai0,j0,l0 6= 0. Since we are using field coefficients the cup product
is a duality pairing; see [10, Ch. VI, Thm. 9.4]. We can therefore find some α ∈ H i0(Z) so
that η2k−i0,l0 ^α = [z•] and η2k−i0,l^α = 0 for every l 6= l0. (Here, [z•] is the fundamental

cohomology class of a point z• ∈ Z and a generator of H2k(Z).) This implies that

κ−1(E ^ pr∗2α) =
2k∑
i=0

ji∑
j=1

l2k−i∑
l=1

ai,j,lγi,j ⊗ (η2k−i,l^ pr∗2α)

= ai0,j0,l0(γi0,j0 ⊗ [z•]) +

2k∑
i=i0+1

ji∑
j=1

l2k−i∑
l=1

ai,j,lγi,j ⊗ (η2k−i,l^ pr∗2α).

Lemma 2.3 implies

pr1∗(E ^ pr∗2α) = ai0,j0,l0γi0,j0 6= 0.

we conclude that f∗ ◦ g∗(α) 6= (g ◦ f)∗(α). �

5. Criteria for functoriality

We’ll now start our study of the intersection ρ−1
1 (Γf ) ∩ ρ−1

3 (Γg). Let

U := {(x, y, z) ∈ X × Y × Z : (x, y) ∈ Γf , x 6∈ If , (y, z) ∈ Γg, and y 6∈ I(g)}.(17)

Lemma 5.1. We have

(i) ρ−1
1 (Γf ) and ρ−1

3 (Γg) are smooth and intersect transversally at points of U and

(ii) V = U is an irreducible component of ρ−1
1 (Γf )∩ρ−1

3 (Γg) ⊂ X×Y ×Z that is mapped
to Γg◦f by ρ2 with topological degree 1.

Consequently, if U is dense in ρ−1
1 (Γf )∩ ρ−1

3 (Γg) then (g ◦ f)∗ = f∗ ◦ g∗ on all cohomology.

We will call V the principal component of ρ−1
1 (Γf ) ∩ ρ−1

3 (Γg).

Proof. Since x 6∈ If and y 6∈ Ig, ρ∗1(Γf ) and ρ∗3(Γg) are smooth at any (x, y, z) ∈ U . For any
(x, y, z) ∈ U we have

T(x,y,z)ρ
−1
1 (Γf ) = {(u1, Dfxu1, w1) : u1 ∈ TxX andw1 ∈ TzZ} and

T(x,y,z)ρ
−1
3 (Γg) = {(u2, v2, Dgyv2) : v2 ∈ TyY andw2 ∈ TzZ}.

Therefore, T(x,y,z)ρ
−1
1 (Γf )+T(x,y,z)ρ

−1
3 (Γg) = T(x,y,z)X×Y ×Z, so that ρ−1

1 (Γf ) and ρ−1
3 (Γg)

are transverse at (x, y, z).

Notice that ρ2(U) is the graph of (g ◦ f)|X\(If∪f−1(I(g)), which is dense in Γg◦f , by
Lemma 3.3. Since ρ2 is continuous and closed,

ρ2 (V ) = ρ2

(
U
)

= ρ2(U) = Γg◦f .(18)

Finally, notice that ρ2 : U → ρ2(U) is one-to-one since for points of U , x completely
determines y and z. In particular, since Γg◦f is irreducible, so is V .



12 R. K. W. ROEDER

If U is dense in ρ−1
1 (Γf ) ∩ ρ−1

3 (Γg), then by Lemmas 2.5 and 2.7 we have

ρ2∗([ρ
−1
1 (Γf )]^ [ρ−1

3 (Γg)]) = ρ2∗([V ]) = [Γg◦f ].(19)

It follows from Proposition 1.1 that (g ◦ f)∗ = f∗ ◦ g∗ on all cohomology. �

Let us also prove one more helpful lemma:

Lemma 5.2. Let X,Y, Z be algebraic manifolds of dimension k and let f : X 99K Y and
g : Y 99K Z be rational maps. If α ∈ H i(Z) for i ∈ {0, 1, 2k − 1, 2k}, then (g ◦ f)∗α =
(f∗ ◦ g∗)α.

Proof. Since f is dominant, f−1(Ig)∪ If is a proper subvariety of X. Thus, any irreducible

component of ρ−1
1 (Γf ) ∩ ρ−1

3 (Γg) that projects under π1 ◦ ρ1 onto all of X is equal to the
principal component V . Similarly, since g is dominant g(Ig ∪ f(If )) is a proper subvariety

of Z, implying that any irreducible component of ρ−1
1 (Γf ) ∩ ρ−1

3 (Γg) that projects under
π4 ◦ ρ3 onto all of Z is equal to the principal component V .

Thus, if W 6= Γg◦f is a k-dimensional subvariety of ρ2(ρ−1
1 (Γf ) ∩ ρ−1

3 (Γg)) whose funda-
mental class appears in the expression for ρ2∗(ρ

∗
1[Γf ]∪ρ∗3[Γg]), one finds that dim(pr1(W )) ≤

k − 1 and dim(pr2(W )) ≤ k − 1. It then follows from Proposition 2.8 that if i ∈ {0, 1, 2k −
1, 2k} and α ∈ H i(Z) then pr1∗([W ] ^ pr∗2α) = 0. Equation (5) then implies that
(g ◦ f)∗α = (f∗ ◦ g∗)α. �

We are now ready to prove Propositions 1.2 – 1.6. For the reader’s convenience we’ll
repeat the statements before each of the proofs.

Proposition 1.2. Let f : X 99K Y and g : Y 99K Z be rational maps. Suppose that there

exits an algebraic manifold X̃ and holomorphic maps pr and f̃ making the following diagram
commute (wherever f ◦ pr is defined)

(6) X̃

pr

��

f̃

��
X

f // Y

with the property that f̃−1(x) is a finite set for every y ∈ Y . Then, (g ◦ f)∗ = f∗ ◦ g∗ on all
cohomology groups.

Proof. By Lemma 5.1, it suffices to show that U , given by (17), is dense in ρ−1
1 (Γf )∩ρ−1

3 (Γg).

Consider any (x•, y•, z•) ∈ ρ−1
1 (Γf ) ∩ ρ−1

3 (Γg). We’ll show that (x•, y•, z•) is the limit of

a sequence {(xn, yn, zn)} ⊂ U . Since f(If ) := π2(π−1
1 (If ) ∩ Γf ) is a proper subvariety of

Y , Lemma 3.3 gives that Γg is the closure of the graph of g|Y \(f(If )∪Ig). Therefore, we can
choose a sequence

{(yn, zn)} ∈ {Y × Z : (y, z) ∈ Γg and y 6∈ (f(If ) ∪ Ig)}
with (yn, zn)→ (y•, z•).

Since (x•, y•) ∈ Γf , there exists x̃• ∈ X̃ with pr(x̃•) = x• and f̃(x̃•) = y•. Since f̃ is a

finite map, it is open. Therefore we can choose a sequence of preimages x̃n of yn under f̃
with x̃n → x̃•. If we let xn = pr(x̃n), by continuity of pr we have xn → x•. Since yn 6∈ f(If )
we have that each xn 6∈ If . Therefore, we have found a sequence (xn, yn, zn) ∈ U with
(xn, yn, zn)→ (x•, y•, z•). �
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Proposition 1.4. (Diller-Favre [13, Prop. 1.13]) Let X,Y, and Z be algebraic manifolds
of dimension 2. Then (g ◦ f)∗ = f∗ ◦ g∗ if and only if there is no curve C ⊂ X with
f(C \ If ) ⊂ Ig.

Remark 5.3. In the case that (g ◦ f)∗ 6= f∗ ◦ g∗, it follows from Lemma 5.2 that the
discrepancy happens on H2(Z).

Proof. Suppose that there is no curve C with f(C \ If ) ⊂ Ig. By Lemma 5.1, it suffices to

show that the set U , given by (17), is dense in ρ−1
1 (Γf ) ∩ ρ−1

3 (Γg).

Let (x•, y•, z•) ∈ ρ−1
1 (Γf )∩ρ−1

3 (Γg). If y• 6∈ Ig, then we can choose a sequence {(xn, yn)} ⊂
Γf converging to (x•, y•) with each xn 6∈ If . Since y• 6∈ Ig and Ig is closed, yn 6∈ Ig for large
enough n. Letting zn = g(yn), we obtain a sequence {(xn, yn, zn)} ⊂ U which converges to
(x•, y•, z•).

Now, suppose y• ∈ Ig. As in the proof of Proposition 1.2 we will use that Γg is the
closure of the graph of g|Y \(f(If )∪Ig). Therefore, we can choose a sequence {(yn, zn)} ⊂ Γg
with (yn, zn) → (y•, z•) and each yn 6∈ f(If ) ∪ Ig. We must show that there is a sequence
xn ∈ X \ If with f(xn) = yn and xn → x•.

Since X is a surface, we can make a resolution of indeterminacy of the form (6) where
pr consists of a sequence of point blow-ups over If . Since (x•, y•) ∈ Γf , there exists

(x̃•, y•) ∈ Γ
f̃

with pr(x̃•) = x•. Let D be the component of f̃−1(y•) containing x̃•. Since

y• 6= f(C \ Ig) for any curve C ⊂ X, pr(D) = {x•}.
Since f̃(D) = y• and D is a component of f̃−1(y•), we can choose a sequence x̃n ∈ X̃

with f̃(x̃n) = ỹn such that x̃n → D. Since pr(D) = x•, the desired sequence xn ∈ X \ If is
xn = pr(x̃n).

Now, suppose that there are curves C1, . . . , Cm ⊂ X with {yi} := f(Ci \If ) ⊂ Ig for each
i. For each i, g(yi) = Di is a curve in Z. Then,

ρ−1
1 (Γf ) ∩ ρ−1

3 (Γg) = V ∪
m⋃
i=1

Ci × {yi} ×Di

with each term in the union being an independent irreducible component and V = U being
the principal component.

Since each component has complex dimension 2, by Lemma 2.5

ρ∗1[Γf ]^ρ∗3[Γg] = [V ] +

m∑
i=1

ai[Ci × {yi} ×Di],

where each ai > 0 is a suitable intersection number.
By Lemmas 5.1 and 2.7,

ρ2∗

(
[V ] +

m∑
i=1

ai[Ci × {yi} ×Di]

)
= [Γg◦f ] +

m∑
i=1

ai[Ci ×Di].

Since
∑m

i=1 ai[Ci ×Di] 6= 0, it follows from Proposition 1.1 that (g ◦ f)∗ 6= f∗ ◦ g∗. �

Remark 5.4. Up to this point, we have only needed the simple cases (i) and (ii) of
Lemma 2.5 in which the subvarieties intersect with the correct dimension. The proofs
of the criteria of Bedford-Kim and Dinh-Sibony below rely upon case (iii) of Lemma 2.5,
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since one can easily have components of ρ−1
1 (Γf )∩ ρ−1

3 (Γg) of dimension > k. For example,

if f : CP3 99K CP3 and g : CP3 99K CP3 are both Cremona involutions

[x1 : x2 : x3 : x4] 7→ [x2x3x4 : x1x3x4 : x1x2x4 : x1x2x3](20)

then ρ−1
1 (Γ1) ∩ ρ−1

3 (Γg) contains a four-dimensional component

{x0 = 0} × {[1 : 0 : 0 : 0]} × {z0 = 0}.

Proposition 1.5. (Bedford-Kim [8, Thm. 1.1]) Let X,Y, and Z be algebraic manifolds of
dimension k. Let f : X 99K Y and g : Y 99K Z be rational maps. If there is no hypersurface
H with f(H \ If ) ⊂ Ig, then f∗ ◦ g∗ = (g ◦ f)∗ on H2(Z).

Proof. By Lemmas 2.5 and 2.7,

ρ2∗(ρ
∗
1[Γf ]^ρ∗3[Γg]) = [Γg◦f ] +

∑
ai[Wi],(21)

where each Wi is a k-dimensional subvariety of X × Z and each ai ∈ Z. By Lemma 2.8, it
suffices to show for every i that dim(pr1(Wi)) < k − 1.

Suppose for some i = i0 that dim(pr1(Wi0)) ≥ k − 1. Then, by commutativity of (4),
Vi0 := pr−1

2 (Wi0) satisfies that dim(π1 ◦ ρ1(Vi0)) ≥ k − 1. The hypothesis that there is
no hypersurface H with f(H \ If ) ⊂ Ig implies that dim(f−1(Ig)) ≤ k − 2. Therefore
dim(If ∪ f−1(Ig)) ≤ k − 2. Thus, there is a dense set of points (x, y, z) ∈ Vi0 with x 6∈
If ∪ f−1(Ig). All such points are in the principal component V ; therefore V = Vi0 . This
contradicts that ρ2(Vi0) = Wi0 6= Γg◦f = ρ2(V ). We conclude that, dim(pr1(Wi)) ≤ k − 2
for every i. �

Remark 5.5. Recently, Bayraktar [4, Thm. 5.3] has proved that the Bedford-Kim criterion
is necessary, i.e. if there is a hypersurface H ⊂ X with f(H \If ) ⊂ Ig, then (g◦f)∗ 6= f∗◦g∗
on H2(Z).

This does not seem to follow from the results developed in this note, since, when k =
dim(X) ≥ 3, ρ−1

1 (Γf )∩ρ−1(Γg) may have components of dimension > k. (See Remark 5.4.)
For this reason, the cup product ρ∗1[Γf ]^ρ∗3[Γg] may be represented by some k-dimensional
subvarieties having negative coefficients. In particular, one must prove that the cohomology
classes from all of the extra components of ρ−1

1 (Γf ) ∩ ρ−1(Γg) don’t completely cancel.

Remark 5.6. There is an older criterion of Bedford and Kim [7, Prop. 1.2], which one can
check is strictly weaker than the one stated in Proposition 1.5.

Recall that Σ̃′f ⊂ Γf is the set of points such that

(i) π2 restricted to Γf is not locally finite at x, and

(ii) π2((x, y)) ∈ Ig for every (x, y) ∈ Σ̃′f .

Let Σ′f := π1

(
Σ̃′f

)
.

Proposition 1.6. (Variant of Dinh-Sibony [16, Prop. 5.3.5]) Let X,Y, and Z be algebraic
manifolds of dimension k. Let f : X 99K Y and g : Y 99K Z be rational maps. If dim Σ′f <

k − p, then (g ◦ f)∗ = f∗ ◦ g∗ on H i(Z) for 1 ≤ i ≤ 2p.

Proof. As in the proof of Proposition 1.5, ρ2∗(ρ
∗
1[Γf ] ^ ρ∗3[Γg]) can be expressed by (21).

By Lemma 2.8 it suffices to show for every i that dim(pr1(Wi)) < k − p.
Suppose for some i = i0 that dim(pr1(Wi0)) ≥ k − p. Then, by commutativity of (4),

Vi0 := pr−1
2 (Wi0) satisfies that dim(π1 ◦ ρ1(Vi0)) ≥ k − p. We’ll show that the set U , given
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by (17), is dense in Vi0 , implying that Vi0 = V . This will contradict that ρ2(Vi0) = Wi0 6=
Γg◦f = ρ2(V ).

Since dim(Σ′f ) < k − p, we have that Vi0 \ (π1 ◦ ρ1)−1(Σ′f ) is dense in Vi0 . Therefore, it

suffices to show that U is dense in Vi0 \ (π1 ◦ ρ1)−1(Σ′f ). Let

(x•, y•, z•) ∈ Vi0 \ (π1 ◦ ρ1)−1(Σ′f ).

First suppose that y• 6∈ Ig. Then, we can choose a sequence (xn, yn) ∈ Γf with xn 6∈ If
converging to (x•, y•). Since y• 6∈ Ig and Ig is closed, yn 6∈ Ig for large enough n. Thus, if
we let zn = g(yn), we obtain a sequence (xn, yn, zn) ∈ U that converges to (x•, y•, z•).

Now suppose that y• ∈ If . By Lemma 3.3, Γg is the closure of the graph of g|Y \(Ig∪f(If )).

Thus, we can find a sequence (yn, zn) in the graph of g|Y \(Ig∪f(If )) with (yn, zn)→ (y•, z•).

Meanwhile, since x• 6∈ Σ′f and y• ∈ Ig, π2|Γf is a finite map in a neighborhood of (x•, y•). It

follows from the Weierstrass Preparation Theorem that π2|Γf
is an open map in that neigh-

borhood. Therefore, there is a sequence xn ∈ X with (xn, yn) ∈ Γf and (xn, yn) → (x•, y•).
Since yn 6∈ f(If ), xn 6∈ If . Thus, we have found a sequence {(xn, yn, zn)} ⊂ U with
(xn, yn, zn)→ (x•, y•, z•). We conclude that U is dense in Vi0 . �

Remark 5.7. The reader who is interested in proving Proposition 1.6 using currents should
note that Truong [35] presents an approach to pulling back (p, p)-currents for p > 1 that is
somewhat different from [16]. In particular, one can also use Theorem 7 from [35] to prove
Proposition 1.6.

6. A cautionary example

In this section, we present a rational map f : X 99K X of a three-dimensional algebraic

manifold X that is not 2-stable, but has the property that
(
f |X\If

)−1
(x) is a finite set for

every x ∈ X.
Let f0 : P3 99K P3 be the composition f0 = α0 ◦ s0, where α0 is the birational map

α0([x1 : x2 : x3 : x4])

(22)

= [x1(x2 − x4)(x3 − x4) : x4(x2 − x4)(x3 − x4) : x4(x2 − x1)(x3 − x4) : x4(x2 − x4)(x3 − x1)]

and s0 is the squaring map

s0([x1 : x2 : x3 : x4]) = [x2
1 : x2

2 : x2
3 : x2

4].(23)

Let % : X → P3 be the blow-up of P3 at the five points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 :
0], [0 : 0 : 0 : 1], and [1 : 1 : 1 : 1] and let α : X 99K X, s : X 99K X, and f be the lifts of α0,
s0, and f0.

Proposition 6.1. f : X 99K X satisfies for every x ∈ X that
(
f |X\If

)−1
(x) is a finite

set, but f is not 2-stable.

Proof. We will start by showing that
(
f |X\If

)−1
(x) is a finite set for every x ∈ X. One

can check that α0 : P3 99K P3 satisfies

Iα0 = {x1 = x4 = 0} ∪ {x2 = x4 = 0} ∪ {x3 = x4 = 0}
∪{x1 = x2 = x4} ∪ {x1 = x3 = x4} ∪ {x2 = x3 = x4}.
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The four points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [1 : 1 : 1 : 1] where these six lines
meet are each blown-up up by α0 to the following hyperplanes

{x2 = 0}, {x2 = x3}, {x2 = x4}, and {x1 = x2},

respectively. Once these four points are removed, the six lines in Iα0 map by flip indeter-
minacy (see, for example, [30]) to the lines

{x2 = x3 = x4} ∪ {x2 = x4 = 0} ∪ {x2 = x3 = 0}
∪{x1 = x2 = x4} ∪ {x1 = x2 = x3} ∪ {x1 = x2 = x4},

respectively. A flip indeterminacy from a line L1 to a line L2 blows up any point p ∈ L1

to all of L2, based on the direction that one approaches p within a transversal plane.
Meanwhile, there is a collapsing behavior: if one approaches any two points of L1 with the
same transversal direction, one is sent by f to the same point of L2.

The critical set of α0 consists of the hypersurfaces

{x4 = 0} ∪ {x1 = x4} ∪ {x2 = x4} ∪ {x3 = x4},

which are all collapsed by α0 to the points [1 : 0 : 0 : 0], [1 : 1 : 1 : 1], [0 : 0 : 1 : 0], and
[0 : 0 : 0 : 1], respectively, with the first three of these points in Iα0 .

When creating X, we have blown-up each of the images of the varieties that are collapsed
by α0 as well as [0 : 0 : 0 : 1] = α−1

0 ([0 : 1 : 0 : 0]). Using the universal property of blow-ups
[17] (or direct calculations), one can check the indeterminacy set of α : X 99K X is the
proper transform of Iα0 and that α has no critical points (outside of Iα). In particular, α
collapses no curves or hypersurfaces lying outside of Iα.

One can check that s : X 99K X is holomorphic in a neighborhood of each of the
exceptional divisors, inducing the squaring map on each of the exceptional divisors E[1:0:0:0],
E[0:1:0:0], E[0:0:1:0], E[0:0:0:1] and is the identity on the exceptional divisor E[1:1:1:1]. As a result,
the only indeterminacy points of s are the lifts under % above the 7 points in
s−1

0 ([1 : 1 : 1 : 1]) \ [1 : 1 : 1 : 1], each of which is blown-up by s to E[1:1:1:1]. Since s0 did not
collapse and hypersurfaces or curves and s does not collapse anything in these exceptional
divisors, we conclude that s also doesn’t collapse and hypersurfaces or curves.

The indeterminacy of f = α ◦ s is contained in s−1(Iα) ∪ Is. One can check that Is ⊂ If
since α doesn’t collapse E[1:1:1:1]. Meanwhile, s−1(Iα) is the proper transform of the 15 lines

s−1
0 (Iα0) = {x1 = x4 = 0} ∪ {x2 = x4 = 0} ∪ {x3 = x4 = 0}

∪{x1 = ±x2 = ±x4} ∪ {x1 = ±x3 = ±x4} ∪ {x2 = ±x3 = ±x4}.

Taking any point from one of these 15 lines that is not on one of the exceptional divisors,
one can use the homogeneous expression for f0 to see that each such point is in If . There-
fore, If = s−1(Iα) ∪ Is. Since neither α nor nor s collapse any variety outside of their
indeterminate sets, we conclude that f doesn’t collapse any variety outside of If .

The only non-trivial cohomology groups of X are

H0(X) ∼= C, H2(X) = H(1,1)(X) ∼= C6, H4(X) = H(2,2)(X) ∼= C6, andH6(X) ∼= C.

By Lemma 5.2, any rational map acts stably on H0(X) and H6(X). Since If is of codi-
mension ≥ 2 and f collapses nothing outside of If , the Bedford-Kim criterion (Prop. 1.5)

implies that f acts stably on H(1,1)(X). Therefore, in order to prove that f is not 2-stable,
it suffices to show that (f2)∗ 6= (f∗)2 on H∗(X).



THE ACTION ON COHOMOLOGY BY COMPOSITIONS OF RATIONAL MAPS 17

For notational convenience, we’ll write the composition as g ◦ f , where X = Y = Z and
f : X 99K Y and g : Y 99K Z are the same map. We will first show that every component
of ρ−1

1 (Γf ) ∩ ρ−1
3 (Γg) has the correct dimension (= 3), so that Lemma 2.5 implies that

each component appears with positive multiplicity in the cup product ρ∗1([Γf ]) ^ ρ∗3([Γg]).
We will then show that there is at least one component V ′ of the intersection other than
the principal component V (see Lemma 5.1 for the definition of the principal component)
with the property that ρ2∗([V

′]) 6= 0. Non-functoriality (f2)∗ 6= (f∗)2 will then follow from
Proposition 1.1.

Consider a component V ′ 6= V of ρ−1
1 (Γf ) ∩ ρ−1

3 (Γg). Since V ′ 6= V and f a finite map
outside of If , (π1◦ρ1)(V ′) ⊂ If . Meanwhile, (π2◦ρ1)(V ′) ⊂ Ig. Let φ : V ′ → φ(V ′) ⊂ X×Y
be the restriction of the projection onto the first two coordinates. If dim(V ′) ≥ 4, then,
since dim(φ(V ′)) ≤ 2, the fibers over generic points satisfy dim(φ−1(x, y)) ≥ 2. However,
there are finitely many points y ∈ Y with dim(g(y)) ≥ 2, implying that dim(π2◦ρ1)(V ′) = 0.
Therefore, the dimension of the projections of V ′ onto X, Y , and Z would be 1, 0, and 2,
respectively, implying that dim(V ′) = 3.

We will now find a component V ′ 6= V ⊂ ρ−1
1 (Γf ) ∩ ρ−1

3 (Γg) so that ρ2∗([V
′]) 6= 0. Let

L1 ⊂ X be the proper transform of {x1 = x3 = x4}, let L2 ⊂ Y be the proper transform of
{y1 = y2 = y3}, let p = %−1([1 : 1 : 1 : −1]) ∈ L2, and let H ⊂ Z be the proper transform
of {z1 = z2}. Since s maps a neighborhood of L1 biholomorphically onto a neighborhood
L1 and α blows-up each point of L1 to all of L2, we have that L1 × {p} ⊂ Γf . Meanwhile,
since s blows up the indeterminate point p to E[1:1:1:1], which is mapped by α to the plane
z1 = z2, we have that {p} ×H ⊂ Γg. We conclude that

V ′ := L1 × {p} ×H ⊂ ρ−1
1 (Γf ) ∩ ρ−1

3 (Γg).

Since V ′ is an irreducible 3-dimensional variety with (π1 ◦ ρ1)(V ) = L1 ( X, it is not the
principal component V . It is the collapsing behavior of the flip indeterminacy along L1 into
the point of indeterminacy p that produces this extra component of ρ−1

1 (Γf )∩ρ−1
3 (Γg). This

will lead to non-functoriality of the composition.
Since ρ2 maps V ′ biholomorphically to L1 × H ⊂ X × Z, ρ2∗([V

′]) 6= 0. We conclude
that (g ◦ f)∗ 6= f∗ ◦ g∗. �

Remark 6.2. In a joint work with S. Koch [29], we check that f can be lifted to a further
blow-up of X on which Proposition 1.2 can be applied. We then compute that the first and
second dynamical degrees of this lift satisfy that λ1 ≈ 2.3462 is the largest root of

p1(z) = z4 − z3 − 4z − 8,

λ2 ≈ 4.6658 is the largest root of

p2(z) = z9 − 3z8 − 16z6 − 192z5 + 384z4 + 128z3 + 6144z − 8192.

Since dynamical degrees are invariant under birational conjugacy, these are the same as
the dynamical degrees of f : X 99K X. However, one can check that dim(H4(X)) = 6.
Since p2 is an irreducible polynomial of degree 9 > 6, this gives an alternate proof that
f : X 99K X is not 2-stable.

Question 6.3. Does there exist a rational map f : P3 99K P3 such that
(
f |P3\If

)−1
(x) is

a finite set for every x ∈ P3, that is not 2-stable?
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