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Abstract. Let Zn(z, t) denote the partition function of the q-state Potts Model on the rooted

binary Cayley tree of depth n. Here, z = e−h/T and t = e−J/T with h denoting an externally
applied magnetic field, T the temperature, and J a coupling constant. One can interpret z as a
“magnetic field-like” variable and t as a “temperature-like” variable. Physical values h ∈ R, T > 0,
and J ∈ R correspond to t ∈ (0,∞) and z ∈ (0,∞). For any fixed t0 ∈ (0,∞) and fixed n ∈ N
we consider the complex zeros of Zn(z, t0) and how they accumulate on the ray (0,∞) of physical
values for z as n→∞. In the ferromagnetic case (J > 0 or equivalently t ∈ (0, 1)) these Lee-Yang
zeros accumulate to at most one point on (0,∞) which we describe using explicit formulae. In
the antiferromagnetic case (J < 0 or equivalently t ∈ (1,∞)) these Lee-Yang zeros accumulate to
finitely many points of (0,∞), which we again describe with explicit formulae. The same results
hold for the unrooted Cayley tree of branching number two.

These results are proved by adapting a renormalization procedure that was previously used
in the case of the Ising model on the Cayley Tree by Müller-Hartmann and Zittartz (1974 and
1977), Barata and Marchetti (1997), and Barata and Goldbaum (2001). We then use methods from
complex dynamics and, more specifically, the active/passive dichotomy for iteration of a marked
point, along with detailed analysis of the renormalization mappings, to prove the main results.

1. Introduction

This paper concerns the Lee-Yang zeros for the q ≥ 2 state Potts Model on the binary Cayley
Tree. Because of the recursive nature in which the Cayley Tree is constructed, there is a suitable
renormalization procedure which makes this problem amenable to methods from dynamical systems.
This paper is intended for readers from statistical physics and also from mathematics (especially
dynamical systems), so we will provide considerable background and motivation in Sections 1 and 2.

1.1. Lee-Yang zeros for the Ising Model. Let (Γn)∞n=1 be a sequence of graphs, and let (Vn)∞n=1

and (En)∞n=1 be the corresponding vertex set (sites) and edge set (bonds). Each such graph is
interpreted as a finite approximation to a magnetic material and classically one might let Γn be an
n× n piece of the Z2 square lattice or an n× n× n piece of the Z3 cubical lattice.

In the Ising model, one magnetic particle (an electron, for example) is at each vertex, and two
particles interact if and only if they are connected by an edge. Each particle is assigned a magnetic
moment, called spin, which is represented in the model by the discrete variable σ(i) ∈ {−1,+1}
which describes the spin at vertex i. For each spin configuration, σ : Vn → {±1} define the
Hamiltonian (energy) of σ by

Hn(σ) := −J ·
∑

<i,j>∈En

σ(i)σ(j)− h ·
∑
i∈Vn

σ(i).(1)

Here J > 0 is the ferromagnetic coupling constant and h is the strength of the external magnetic
field.

For a fixed temperature T > 0, the Gibbs-Boltzman weight of the spin configuration σ is given
by

Wn(σ) := e−Hn(σ)/T .(2)
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(We set the Boltzman constant kB = 1.) Summing over all the possible spin configurations gives
the partition function

Zn(h, T ) :=
∑
σ

Wn(σ) =
∑
σ

e−Hn(σ)/T .(3)

The probability Pn(σ) of the system being in the state σ is proportional to Wn(σ). Thus,

Pn(σ) = Wn(σ)/Zn(h, T ).

Since Zn(h, T ) is a finite sum of exponentials, it can never be zero for real values of h and T .
However, the zeros of Zn(h, T ) at complex values of h or T do occur. The way in which they
accumulate to real values of h and T in the limit as n tends to infinity gives information about
the phase transitions in the model. This interpretation dates back to the works of Lee and Yang
[43, 29]. We will use this interpretation as a motivation for studying the complex zeros of Zn(h, T )
for the Cayley Tree and their limiting behavior as n tends to infinity, without pursuing more deeply
how this relates to phase transitions.

By letting

z = e−h/T (field-like) and t = e−J/T (temperature-like),(4)

we get Zn(z, t) as a polynomial of z and t when multiplied by z|Vn|t|En| to clear the denominator.
For the physical values T > 0 and h ∈ R, we must have t ∈ (0, 1) and z ∈ (0,∞). Because the
partition function becomes a polynomial in the (z, t) variables we will study it exclusively in terms
of z and t.

The initial studies of phase transitions for the Ising model considered what happens as T is varied
with fixed h = 0. This corresponds to setting z = 1 and studying the zeros of Zn(1, t) in the complex
t plane and how they accumulate to points on the interval (0, 1) of physically relevant values of t.
Such zeros in the complex t plane are called Fisher zeros in honor of Michael Fisher [21, 8].

It is also interesting to fix T = T0 > 0 and to vary h. This corresponds to fixing a value of
t = t0 ∈ (0, 1) and studying the the zeros of Zn(z, t0) in the complex z plane and also how they
accumulate to the real ray (0,∞) of physically relevant values of z. In 1952, Tsung-Dao Lee and
Chen-Ning Yang published two important papers in statistical mechanics and proved a series of
Lee-Yang theorems [43, 29]. The most interesting theorem is the following:

Theorem 1 (Lee-Yang Circle Theorem). For t ∈ [0, 1], the complex zeros in z of the partition
function Z(z, t) of the Ising model on any graph lie on the unit circle T = {z ∈ C : | z |= 1}.

Interpreting parameters z0 ∈ (0,∞) at which zeros of Zn(t0, z) accumulate when n → ∞ as
corresponding to phase transitions, this implies that for any fixed t0 ∈ [0, 1], the only physical
parameter at which we could potentially observe a phase transition is when z0 = 1 (equivalently
when h0 = 0). Because of this impressive theorem, the zeros of Zn(z, t0) in the complex z plane
are called Lee-Yang zeros.

1.2. Potts Model with an external magnetic field and its Lee-Yang zeros. Much of the
discussion of the previous section carries over directly to the Potts model. Let q > 2 be a natural
number. Now one can consider configurations σ : Vn −→ {0, · · · , q − 1}. If J > 0 is the coupling
constant, then the energy of such a configuration when exposed to external magnetic field h ∈ R is
defined to be

Hn(σ) = −J
∑

(i,j)∈En

δ(σ(i), σ(j))− h
∑
i∈Vn

δ(σ(i), 0).(5)

See, for example, Equation 20 in [41]. (Here, δ(i, j) = 1 if i = j and δ(i, j) = 0 otherwise.) The
partition function Zn(z, t) and probability P (σ) with which a spin configuration occurs are defined
exactly in the same way as in the previous section, except that the new Formula (5) for the energy
Hn(σ) is used instead of the one in the Ising model.

Like for the Ising Model, it is convenient to express the partition function in terms of the “field-
like” and “temperature-like” variables z and t that were defined in (4). In the context of the Potts
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Model, one again calls the zeros of Zn(1, t) in the complex t plane the Fisher zeros and, for fixed
t0 ∈ [0, 1], the zeros of Zn(z, t0) in the complex z plane, the Lee-Yang zeros.

Remark that for t = 0 and t = 1 it is easy to compute the partition function. For any connected
graph Γ with k vertices one finds

ZΓ(z, 0) = z−k + (q − 1) and ZΓ(z, 1) =
(
q − 1 + z−1

)k
.(6)

In particular the Lee-Yang zeros when t = 0 are the k-th roots of 1/(1− q) and the Lee-Yang zeros
when t = 1 all k Lee-Yang zeros are equal to 1/(1 − q). When t ∈ (0, 1) the Lee-Yang zeros are
much more difficult to compute and they depend on the graph Γ and the temperature-like variable
t in a non-trivial way.

Because of its complexity, the q-state Potts model with the presence of an external magnetic
field has been researched by just a few authors, as described in Section 1.8.

1.3. The antiferromagnetic case. As in Sections 1.1 and 1.2 above, it is customary to choose
the coupling constant J to be positive, making it energetically favorable for spins at neighboring
vertices to be aligned. It corresponds to the ferromagnetic materials. However, there are some
physical systems for which the opposite phenomenon holds. They are called antiferromagnetic and
for such systems one assumes that J < 0.

1.4. Binary Cayley Tree. The nth-level rooted binary Cayley tree is a tree (a simple, undirected,
connected, and finite graph in which any two vertices are connected by exactly one path) in which
one vertex, called the root, is of degree two with all leaves (vertices of degree one) at a distance
(minimum number of edges to connect) n from the root, and all the other vertices are of degree
three. The nth-level unrooted binary Cayley tree is a tree in which all vertices have degree 3 or 1
and for which there exists a unique vertex of degree 3 such that all of the leaves are of distance n
from that specified vertex. The remainder of this paper we will denote the rooted binary Cayley
Tree of level n by Γn and the unrooted binary Cayley Tree of level n by Γ̂n. We will consider the
q-state Potts Model on these two families of graphs, as n approaches infinity, for the remainder of
this paper.

1.5. Plots of some Lee-Yang zeros for the Ising and Potts models on the Cayley tree.
There is a convenient recursive formula that allows one to compute the Lee-Yang zeros of the nth

rooted Cayley tree for the relatively small values of n. See Theorem D in Section 1.6 below. It
applies to both the Ising and Potts models. Using that theorem, we have generated figures plotting
Lee-Yang zeros for the Ising model and 3-state Potts model.

The left side of Figure 2 shows the Lee-Yang zeros for the Ising model on the binary Cayley tree
when n = 5 and when t = 0.0625. Note that the zeros appear to lie perfectly on the unit circle
| z |= 1 as described by the Lee-Yang circle theorem. Moreover, there exists a critical temperature
tcrit = 1/3 > 0 such that when t < tcrit the Lee-Yang zeros accumulate to 1 on the positive real

Figure 1. Left: rooted binary Cayley Tree Γ4 of depth 4. Right: unrooted binary
Cayley tree Γ̂4 of depth 4.
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axis and such that when t > tcrit, the Lee-Yang zeros stay away from the positive real axis (right
side of Figure 2). (For a rigorous justification of this phenomenon, see [13, Theorem A].)

The situation is dramatically different for the 3-state Potts model on the binary Cayley tree
because the Lee-Yang zeros no longer lie on the unit circle. In fact, the Lee-Yang zeros of the 5th

rooted binary Cayley tree for the 3-state Potts model seem to lie inside the unit circle (left side

of Figure 3). Furthermore, there is a critical temperature tcrit = 1+
√

73
36 ≈ 0.265 such that for any

t ≤ tcrit, these zeros accumulate to a point on the positive real axis and such that when t > tc,
the Lee-Yang zeros stay away from the positive real axis (right side of Figure 3). (This will be
rigorously justified in Theorem A.)

Figure 2. The Lee-Yang zeros for the 5th rooted Cayley Tree with branching num-
ber 2 (Ising model). Left: t = 0.0625 < tc = 1/3. Right: t = 0.5 > tc = 1/3.

Figure 3. The Lee-Yang zeros for the 5th rooted Cayley Tree with branching num-

ber 2 for 3-state Potts model. Left: t = 0.0625 < tc = 1+
√

73
36 ≈ 0.265. Right:

t = 0.5 > tc = 1+
√

73
36 ≈ 0.265.
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1.6. Main Results. For the remainder of the paper we will denote by Zn(z, t, q) the partition
function for the q state Potts model on the rooted binary Cayley tree of depth n. The partition
function for the unrooted binary Cayley tree of depth n will be denoted by Ẑn(z, t, q). Often
we will drop the dependence of q from the notation when it is clear: Zn(z, t) ≡ Zn(z, t, q) and

Ẑn(z, t) ≡ Ẑn(z, t, q).
Our results consider the sets

B(t, q) := {z ∈ C : Zn(z, t, q) = 0 for some n ∈ N}, and(7)

B̂(t, q) := {z ∈ C : Ẑn(z, t, q) = 0 for some n ∈ N}.

Following the Lee-Yang approach to studying phase transitions (see Section 1.1) we will be inter-

ested in where the sets B(t, q) and B̂(t, q) intersect the ray z ∈ (0,∞) for various fixed choices of
t ≥ 0 and q ∈ N≥2.

We first consider the ferromagnetic case J > 0 in which physical values of z and t correspond to
z ∈ (0,∞) and 0 < t < 1. Let

t1(q) =
1

1 + q
and t2(q) =

q − 2 +
√
q2 + 32q − 32

18(q − 1)
.(8)

Note that t1(2) = t2(2) = 1/3 but that t1(q) < t2(q) for all q ≥ 3.

Theorem A (Ferromagnetic Case). For any t ∈ [0, 1], as n → ∞ the Lee-Yang zeros for the
q ≥ 2 state Potts Model on the (rooted or unrooted) binary Cayley Tree accumulate to z ∈ (0,∞) if
and only if t ∈ [0, t2(q)]. They do so at a single point

zc(t, q) =

{
1 if 0 ≤ t ≤ t1(q)

Zq(t) if t1(q) < t ≤ t2(q)

with

Zq(t) :=

(
(−27(q−1)2t4+18(q2−3q+2)t3+(q2+14q−14)t2+2(q−2)t+1))

−
√

(t−1)((q−1)t+1)(9(q−1)t2−(q−2)t−1)3

)
8t((q − 2)t+ 1)3

.(9)

Remark 1. Theorem A can be reformulated as saying that for any q ∈ N≥2 we have that B(t, q) ∩
(0,∞) consists of a single point zc(t, q) for 0 ≤ t ≤ t2(q) and that B(t, q) ∩ (0,∞) = ∅ for t2(q) <

t ≤ 1. The same holds when B(t, q) (associated with the rooted Cayley Tree) is replaced with B̂(t, q)
(associated with the unrooted Cayley Tree).

Remark 2. In the case of the Ising Model we have t1(2) = t2(2) = 1/3 so that for t ∈ [0, 1] the
only z ∈ (0,∞) at which the Lee-Yang zeros can accumulate is z = 1. This is consistent with
the Lee-Yang circle theorem. However, when q ≥ 3 an interesting new phenomenon occurs for
the Potts Model. For the non-empty interval t ∈ (t1(q), t2(q)] the Lee-Yang zeros accumulate at
zc(t, q) = Zq(t) < 1. See Figure 4 for the case when q = 3.

We now consider the antiferromagnetic case J < 0 in which physical values of z and t correspond
to z ∈ (0,∞) and t > 1. Let

t3(q) =
3
(

3q − 6 +
√

9q2 − 32q + 32
)

2(q − 1)
.(10)
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Figure 4. Graph of z = zc(t, 3) (Theorem A). For 0 ≤ t ≤ 1/4 we have zc(t, 3) = 1
(blue) and for 1/4 ≤ t ≤ t2(q) ≈ 0.2651 we have zc(t, 3) = Zq(t) (red).

Theorem B (Antiferromagnetic Case, q ≥ 3). For any t > 1, as n→∞ the Lee-Yang zeros for
the q ≥ 3 state Potts Model on the (rooted or unrooted) binary Cayley tree accumulate to z ∈ (0,∞)
if and only if t ≥ t3(q) and z = z±c (t, q) where

z±c (t, q) :=

(
(−3−6(−2+q)t−3(2+(−2+q)q)t2−6(−2+q)(−1+q)t3+(−1+q)2t4)

±
√

(−1+t)3(1−t+qt)3(−9+18t−9qt−t2+qt2)

)
8t(1− 2t+ qt)3

.(11)

A plot of z±c (t, 3) versus t > 1 is shown in Figure 5.

Remark 3. Theorem B can be reformulated as saying that for any q ∈ N≥2 we have that B(t, q) ∩
(0,∞) = ∅ for 1 ≤ t < t3(q) and that B(t, q)∩ (0,∞) consists of the (one or) two points z±c (t, q) for
t3(q) ≤ t < ∞. The same holds when B(t, q) (associated with the rooted Cayley Tree) is replaced

with B̂(t, q) (associated with the unrooted Cayley Tree).

The antiferromagnetic case for the Ising Model (q = 2) is slightly different than in Theorem B
because one also has Lee-Yang zeros accumulating to z = 1 when t ≥ t3(2) = 3. We record this
fact here:

Theorem C (Antiferromagnetic Case, q = 2). For any t > 1, as n → ∞ the Lee-Yang zeros
for the Ising Model (q = 2) on the (rooted or unrooted) binary Cayley tree accumulate to z ∈ (0,∞)
if and only if t ≥ t3(q) and z = 1 or z = z±c (t, 2) where

z±c (t, 2) :=
t4 − 6t2 − 3±

√
(t2 − 1)3(t2 − 9)

8t
.(12)

A plot of z±(t, 2) and also z = 1 versus t > 1 that illustrates Theorem C is given in Figure 6.
The following theorem is what enables us to use the methods from dynamical systems to prove

Theorems A and B above. It is a generalization to the Potts model of a result used by Müller-
Hartmann-Zittartz [35], Barata-Marchetti [3], Chio-He-Ji-Roeder [13], and others for the Ising
model on the Cayley tree.
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Figure 5. Graph of z−c (t, 3) and z+
c (t, 3) (Theorem B).

Figure 6. Graphs of z−c (t, 2) and z+
c (t, 2) (Theorem C).

Theorem D (Renormalization Procedure). For q ∈ N≥2, t ∈ R, and z, w ∈ C define Rz,t,q(w)

and R̂z,t,q(w) by

Rz,t,q(w) := z

[
t+ w + (q − 2)tw

1 + (q − 1)tw

]2

and R̂z,t,q(w) := z

[
t+ w + (q − 2)tw

1 + (q − 1)tw

]3

.(13)

Then:

(i) the Lee-Yang zeros of the q-state Potts model on the nth level rooted Cayley tree with branch-
ing number two are the solutions z to

Rnz,t,q(z) =
1

1− q
, and

(ii) the Lee-Yang zeros of the q-state Potts model on the nth level unrooted Cayley tree with
branching number two are the solutions z to(

R̂z,t,q ◦R(n−1)
z,t,q

)
(z) =

1

1− q
.

Remark 4. The expression Rnz,t,q(z) means that one first iterates Rz,t,q(w) n-times with respect to
w and then substitutes w = z. The expression in Claim (ii) is interpreted analogously.
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1.7. Comparison of temperatures t1(q) and t2(q) to the works of Wang and Wu and
of Müller-Hartmann–Zittartz. In their 1976 paper [40], Wang and Wu considered the ferro-
magentic q-state Potts Model on the Cayley tree and they computed the temperature Tc(q) > 0
such that the zero magnetic field susceptibility diverges for T < Tc(q) but converges for T > Tc(q).
(See also [42, Section I.E].) As they explain, this proves that the limiting free energy f(T, h) is
non-analytic as h is varied about 0, at least in the range 0 < T < Tc(q). Expressed in our notation,
and specialized to the binary Cayley tree, their result is

J

Tc(q)
= ln

(
q +
√

2− 1√
2− 1

)
corresponding to tc = e−J/Tc =

√
2− 1

q +
√

2− 1
.

The reader can check that 0 < tc(q) < t1(q) for all q ∈ Nq≥2. In fact, tc(q) is the unique value of

t ∈ (0, 1) at which R′1,t,q(1) =
√

2. The reason for this connection between tc(q) and the derivative

of the renormalization map Rz,t,q (in the context of the Ising model) is nicely explained in the
papers of Müller-Hartmann–Zittartz [35] and of Müller-Hartmann [34].

Wang and Wu also explain that the higher derivatives of f(T, h) with respect to h diverge at
h = 0 over the wider range of temperatures 0 < T < TBP(q), where TBP(q) is the “Bethe-Peierls”
temperature. Thus it is more interesting to compare the Bethe-Peierls temperature tBP(q) =

e−J/TBP(q) with t1(q) and t2(q). As explained by the papers of Müller-Hartmann–Zittartz and
of Müller-Hartmann in the context of the Ising Model, this corresponds precisely to the unique
temperature tBP(q) at which R′1,t,q(1) = 1. A simple calculation shows that tBP(q) = t1(q) = 1

1+q .

Indeed, this condition shows up naturally in our proof of Theorem A.

1.8. Related Works. An early study of the Lee-Yang zeros for the q ≥ 3 state Potts Model was
done numerically by Kim-Creswich [28] in 1998. Their observations included that the Lee-Yang
zeros no longer lie on the unit circle |z| = 1 when q ≥ 3. Much closer to our paper is the 2002 paper
of Myshlyavtsev-Ananikian-Sloot [24] where the Lee-Yang zeros for the q-state Potts model on the
Cayley Tree are studied using a renormalization mapping similar to the one used here, combined
with physical reasoning and also numerical experiments. A main novelty of our paper that goes
beyond this nice work of Ghulghazaryan-Ananikian-Sloot is the use of the active/passive dichotomy
from complex dynamics; see Section 2.1 below.

Other studies regarding the Potts model with non-zero external magnetic field were done by
Chang and Shrock in [11] and [12], Shrock and Xu in [38] and [39], McDonald and Moffat [31].

Studies of the Lee-Yang zeros for the Ising Model are more common, so we mention the ones that
are closest to the present work. Studies of the Lee-Yang zeros for the Ising Model on the Cayley
Tree date back to Müller-Hartmann [34], Müller-Hartmann and Zittartz [35], whose works were
followed by that of Barata and Marchetti [3], Barata and Goldbaum [4]. Some of the most recent
work was done by Chio, He, Ji, and Roeder [13]. Extensive studies regarding the Lee-Yang zeros
for the Ising Model on the Diamond Hierarchical Lattice were done by Bleher, Lyubich, and Roeder
[6]. Studies of Locations of Lee-Yang zeros can be found in the works of Bencs, Buys, Guerini, and
Peters [5], Regts and Peters [37], Camia, Jiang, and Newman [9], Hou, Jiang, and Newman [25],
and the references therein. Studies of the limiting measure of Lee-Yang zeros for the Curie-Weiss
Model were done by Kabluchko [27].

Note that studying statistical physics on the Cayley tree falls within the wider context of sta-
tistical physics on hierarchical lattices. For a sample of recent works see: Akin and Berker [1], De
Simoi and Marmi [17], De Simoi [18], Jiang, Qiao, and Lan [26], Myshlyavtsev, Myshlyavtsev, and
Akimenko [36], Alvarez [2], Chio and Roeder [14], Chang, Roeder, and Shrock [12], and Bleher,
Lyubich, and Roeder [7].

1.9. Structure of the paper. In Section 2 we present some tools from complex dynamics that
will be needed to prove Theorems A-C. Section 3 is devoted to the proof of Theorem A and Section
4 is devoted to the proof of Theorem B. It is followed by a short Section 5 which sketches the proof
of Theorem C. A technical lemma that is used in the proofs of Theorem A is presented in Appendix
A. Even though Theorem D is used in the proofs of Theorems A-C, we have relegated its proof to



September 14, 2025 9

the Appendix B because it is relatively standard. In particular, it is similar to the derivation of
the renormalization mapping for the Ising Model on the Cayley tree that was presented in [13].

Acknowledgments. We are very grateful to Arnaud Cheritat for making the computer images of
the active locus shown in Figures 7 through 10 and also for describing his algorithm to us. We also
thank Suzanne and Brian Boyd for their help using the Dynamics Explorer computer software to
help us discover the statements proved in this paper. We are very grateful to Pavel Bleher, Bruce
Kitchens, and Robert Shrock for their many helpful suggestions. We thank Thomas Gauthier for his
comments about the active/passive dichotomy and we thank Krishna Kalidindi for his comments
on Section 2.1. Both authors were supported by NSF grant DMS-2154414.

2. Background from complex dynamics and initial consequences for our problem.

The proofs of Theorem A-C are based on the recursive formula in Theorem D and some ideas
in complex dynamics, which we present in Section 2.1, below. Section 2.2 concerns application of
the methods from Section 2.1 to the Renormalization mapping Rz,t,q(w). The ideas presented in
Sections 2.1 and 2.2 allow us to plot high-quality computer-generated images of the accumulation
set of Lee-Yang zeros of the Potts model on the nth-level binary Cayley tree with branching number
two as n→∞. This will be done in Section 2.3.

2.1. Active-Passive Dichotomy in Complex Dynamics. We refer the reader to [33] for general
background on holomorphic dynamics and to [10, Section V] for a similar discussion of the topics
presented below that is also written for an audience from statistical physics.

Let Λ ⊂ C be open and let C∞ be the Riemann sphere . Let (fλ)λ∈Λ be a family of rational
maps from the Riemann sphere to itself that depends holomorphically on the parameter λ. Let
a(λ) be a choice of initial conditions for the iterates of fλ which also depends holomorphically on
λ. It is called a marked point for fλ.

Definition 1. A marked point a(λ) is called passive for fλ at the parameter λ0 if the sequence
(gn)∞n=1 of functions defined by gn(λ) := fnλ (a(λ)) forms a normal family in some neighborhood
of λ0. Else, we say a(λ) is active for fλ at the parameter λ0.

See [15, Chapter VII] for the definition of normal family.

Remark 5. Historically, the above definitions were applied in the case where the marked point
a(λ) was a critical point of fλ(z) for each λ ∈ Λ, to study bifurcations in the dynamics of fλ.
See, for example, [32]. However, recently there has been considerable interest in the dynamical
properties of noncritical marked points, with some of the motivations coming from problems in
arithmetic dynamics. As a sample of such recent papers, we refer the reader to [19, 16, 23, 20] and
the references therein.

The set of all passive parameters for the marked point a(λ) is an open set. It is called the passive
locus for a(λ). Similarly, the set of active parameters for the marked point a(λ) is called the active
locus for a(λ).

Lemma 1. Let ` be a natural number. Then, marked point a(λ) is passive for fλ(z) at λ = λ0 if
and only if it is passive for the `-th iterate f `λ(z) at λ = λ0.

Proof. Suppose that the marked point a(λ) is passive for f `λ(z) at λ0. To show that a(λ) is passive
for fλ(z) at λ0, consider any subsequence (nk)k of the sequence (n) of all natural numbers. There
must then be some m ∈ {0, . . . , `−1} such that for infinitely many indices k we have nk ≡ m(mod `).
We denote this subsequence by (nkj )j and for each j we write nkj = ` qj+m with (qj)j an increasing

sequence of natural numbers. Since a(λ) is passive for f `λ(z) we can find an open neighborhood

U of λ0 and a further subsequence (qjp)p of (qj)j such that
(
f `
)qjp (a(λ)) converges uniformly on

compact subsets of U to some holomorphic function g(λ). Then, f `·qjp+m(a(λ)) converges uniformly
on compact subsets of U to fm ◦ g(λ). Therefore, given the original subsequence (nk)k of (n) we

have found a further subsequence (` · qjp +m)p along which f `·qjp+m(a(λ)) converges uniformly on
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compact subsets of U . Therefore, the family of functions {fn(a(λ))}∞n=1 is a normal family on U
implying that λ0 ∈ U is a passive parameter for fλ(z).

The converse implication immediately follows from the definition of normal family. �

Definition 2. Let zrep(λ0) be a repelling fixed point of fλ0. Because fλ varies holomorphically with
λ, we can find a holomorphic map zrep(λ) defined in a neighborhood U of λ0 such that zrep(λ) is a
repelling fixed point of fλ for all λ ∈ U . Let n0 ∈ N. We say fn0

λ0
maps a(λ0) non-persistently onto

the repelling fixed point zrep(λ0) if

fn0
λ0

(a(λ0)) = zrep(λ0) and fn0
λ (a(λ)) 6≡ zrep(λ) on U.(14)

The definition that fλ0 maps the marked point a(λ0) non-persistently onto a repelling periodic point
of period p > 1 is defined analogously by replacing fλ0 with fpλ0.

Lemma 2. Suppose fn0
λ0

maps a(λ0) non-persistently onto a repelling periodic point for fλ0(z).

Then λ0 is an active parameter for the marked point a(λ) under fλ.
If a(λ0) is in the basin of attraction of an attracting periodic point for fλ0, then λ0 is a passive

parameter for the marked point a(λ) under iteration of fλ.

Even though this lemma is well-known in complex dynamics, for the convenience of the reader
we include a sketch of the proof. Those who wish to see a more sophisticated proof can consider
[22, Lemma 3.1(2)].

Proof. It suffices to prove the statement when the (repelling or attracting) periodic cycle is a fixed
point. Indeed, Lemma 1 allows for a simple adaptation of both of the proofs below the case of a
periodic point of higher period.

It follows from the definition of normal families that we can assume without loss of generality
that n0 = 0. By the Implicit Function Theorem and conjugation of fλ by a suitable holomorphically
varying Möbius transformation we can also assume without loss of generality that that z = 0 is a
repelling fixed point of fλ(z) for all λ in some small open neighborhood U ⊂ Λ of λ0. If we let
r > 0 be sufficiently small then for each λ ∈ U the topological annulus

Aλ = fλ(Dr) \ Dr
will serve as a fundamental domain for the dynamics of fλ near 0. In other words, for any λ ∈ U
and any z with 0 < |z| < r there is a unique natural number k(λ, z) such that f

k(λ,z)
λ (z) ∈ Aλ.

Because fλ is Lipshitz continuous for any λ ∈ U we have that k(λ, z)→∞ as z → 0.
Our assumption that fn0

λ maps a(λ0) non-persistently onto the repelling fixed point and our
assumption that n0 = 0 implies that a(λ0) = 0 and a(λ) 6= 0 for all λ 6= λ0 chosen sufficiently close
to λ0. In particular for any λ sufficiently close to λ0 there exists a natural number `(λ) = k(λ, a(λ))

such that f
`(λ)
λ (a(λ)) ∈ Aλ. For each λ ∈ U and any n ∈ N we have that f−nλ (Aλ) is also a topological

annulus surrounding 0. Therefore, it follows from the intermediate value theorem (or other basic
topological considerations) that for any n ∈ N there exists λn ∈ U such that `(λn) = n.

We now suppose for contradiction that λ0 is a passive parameter. Restricting U to a smaller
neighborhood of λ0, if necessary, we can suppose that λ 7→ fnλ (a(λ)) is a normal family on U . In
particular this implies that there is some subsequence (nj)j of the sequence of all natural numbers

such that f
nj
λ (a(λ)) converges uniformly on compact subsets of U to a holomorphic function g(λ).

Note that for λ = λ0 we have that f
nj
λ0

(a(λ0)) = f
nj
λ0

(0) = 0 for all j implying that g(0) = 0.
On the other hand, as explained in the previous paragraph, for each j there exists λj ∈ U such
that `(λj) = nj . Moreover we must have λj → 0 as j → ∞ because for all λ outside of a given
neighborhood of λ0 we have that |a(λ0)| is uniformly bounded below, implying that `(λ) is uniformly
bounded above for such parameters. Because the convergence of f

nj
λ (a(λ)) to g(λ) is uniform on

compact subsets of U and because fnkλk (λk) ∈ Aλ for each index k we therefore have

|g(0)| = lim
k→∞

|fnkλk (λk)| ≥ r > 0.

This contradicts that g(0) = 0.



September 14, 2025 11

Now suppose that a(λ0) is in the basin of attraction of an attracting fixed point for fλ0(z). As
in the previous case, we can assume without loss of generality that z = 0 is an attracting fixed
point for fλ(z) for all λ in some sufficiently small neighborhood of λ0. Restricting U further if
necessary, there is a uniform choice of r > 0 such that for all λ ∈ U the disc Dr(0) is in the basin
of attraction of 0 under iteration of fλ(z). By hypothesis there is a natural number n0 such that
|fn0
λ0

(a(λ))| < r/2. By continuity we will then have that |fn0
λ0

(a(λ))| < 3r/4 for all λ is some open

neighborhood V ⊂ U of λ0. It is then immediate that the sequence of functions λ 7→ fnλ (a(λ))
converges uniformly to g(λ) ≡ 0 on all of V . Therefore λ0 is a passive parameter. �

Lemma 3. Let k and ` be distinct natural numbers. Suppose that in any open neighborhood of
parameter λ0 there exist parameters λ1 and λ2 such that

(i) a(λ1) is in the basin of attraction for an attracting periodic point of prime period k for
fλ1(z) and

(ii) a(λ2) is in the basin of attraction for an attracting periodic point of prime period ` for
fλ2(z).

Then λ0 is an active parameter for the marked point a(λ) under iteration of fλ.

Proof. Without loss of generality and by Lemma 1, we can assume k = 1 and ` > 1. For a
contradiction, let’s assume that λ0 is a passive parameter for the marked point a(λ) under iteration
of fλ(z). Then, there is a connected open neighborhood U of λ0 on which (fnλ (a(λ)))∞n=1 forms a

normal family. Then, (f `·nλ (a(λ)))∞n=1 has a sub-sequence (f `·nkλ (a(λ)))∞k=1 that converges locally
uniformly to a holomorphic function g(λ) on U . Denote by z• the attracting fixed point for fλ1
that has a(λ1) in its basin of attraction. By the Implicit Function Theorem, there is an open

neighborhood V ⊂ U of λ1 and a holomorphic function zattr : V → Ĉ such that zattr(λ1) = z• and
zattr(λ) is an attracting fixed point of fλ for all λ ∈ V . It follows for some potentially smaller open
neighborhood W ⊂ V of λ1 that we have g(λ) = zattr(λ) for all λ ∈W . Meanwhile, g(λ2) is one of
the points in the attracting cycle of period ` > 1 for fλ2(z).

Now consider the family (f `·n+1
λ (a(λ)))∞n=1. The sub-sequence (f `·nk+1

λ (a(λ)))∞k=1 converges lo-
cally uniformly to the holomorphic function fλ (g(λ)) on U . Notice that

f(g(λ)) = g(λ) = zattr(λ)

on W and hence f(g(λ)) = g(λ) on all of U by the Identity Theorem. On the other hand f(g(λ2)) 6=
g(λ2) because g(λ2) is a periodic point of period greater than 1. This is a contradiction. �

Definition 3. We say that a point b ∈ C∞ is exceptional for a rational function f : C∞ → C∞
if the cardinality of the set f−m({b}) is less than or equal to two for all m ∈ N. A marked point
b(λ) is called persistently exceptional for a holomorphic family of rational maps {fλ}λ∈Λ if b(λ) is
exceptional for fλ for all λ ∈ Λ.

The following lemma plays a key role in our proofs of Theorems A and B.
.

Lemma 4 (Lyubich, [30]). Let {fλ}λ∈Λ be a family of rational maps which depends holomorphically
on the parameter λ. Let a(λ) and b(λ) be marked points for fλ with b(λ) not being persistently
exceptional for fλ. If λ0 is an active parameter for a(λ) under fλ, then

λ0 ∈ {λ ∈ Λ : fmλ (a(λ)) = b(λ) for some m ∈ N}.

In addition to the original source [30], we also refer the reader to [10, Lemma V.2] for a proof of
Lemma 4

2.2. Applications of the Active-Passive dichotomy to the renormalization map Rz,t,q(w).
We will now interpret our renormalization mapping Rz,t,q(w) and Theorem D in the context of
Section 2.1. Note that the degree of Rz,t,q(w) in w drops if either z = 0 or t ∈ {1, 1/(1 − q)}.
Throughout this paper we will only work with Rz,t,q(w) for fixed choices of t ∈ (0, 1) ∪ (1,∞) and
q ∈ N≥2. For such fixed t, q we will let z ∈ C \ {0} serve the role of the varying parameter. These
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restrictions on the parameters allow us to avoid any possible drop in degree and therefore we obtain
a holomorphic family of rational maps in the sense of Section 2.1 with z serving the role of the
parameter λ varying over the parameter space Λ = C \ {0}.

Consider two marked points a(z) := z and b(z) := 1/(1−q). Theorem D gives that the Lee-Yang
zeros for the level n rooted and unrooted Cayley tree correspond to

{z ∈ C \ {0} : Rnz,t,q(a(z)) = b(z)} and
{
z ∈ C \ {0} :

(
R̂z,t,q ◦R(n−1)

z,t,q

)
(a(z)) = b(z)

}
,

respectively. Note that we have used that z = 0 is never a Lee-Yang zero for when t > 0 which
is why we are able to assume z ∈ C \ {0} in the above formula. Therefore, one has the following

expressions for the sets B(t, q) and B̂(t, q) that were defined in Equation (7) above:

B(t, q) = {z ∈ C \ {0} : Rnz,t,q(a(z)) = b(z) for some n ∈ N} and

B̂(t, q) =
{
z ∈ C \ {0} :

(
R̂z,t,q ◦R(n−1)

z,t,q

)
(a(z)) = b(z) for some n ∈ N

}
,

respectively.
For fixed t ∈ (0, 1)∪ (1,∞) and q ∈ N≥2 we denote the active locus of the marked point a(z) = z

under the holomorphic family Rz,t,q(w) by A(t, q).

Lemma 5. For any t ∈ (0, 1)∪ (1,∞) and q ∈ N≥2 we have A(t, q) ⊂ B(t, q) and A(t, q) ⊂ B̂(t, q).

Proof. We will first prove the containment A(t, q) ⊂ B(t, q). By Lemma 4 it suffices to show that
b(z) = 1/(1− q) is not persistently exceptional for Rz,t,q(w). We will show that for z = 1 the point
b(1) is not exceptional for R1,t,q(w). The critical values of R1,t,q(w) are 0 and ∞ and therefore the
critical values of the second iterate R2

1,t,q(w) consist of

0, ∞, R1,t,q(0) = t2, and
((q − 2)t+ 1)2

(q − 1)2t2
,

each of which is non-negative (or infinite). Therefore b(1) = 1/(1 − q) < 0 is not a critical value
of R2

1,t,q(w) implying that it has four preimages under R2
1,t,q(w). We conclude that b(1) is not

exceptional for R1,t,q(w) and therefore that b(z) is not persistently exceptional for Rz,t,q(w).

The containment A(t, q) ⊂ B̂(t, q) will also follow from Lemma 4. Note that for any z 6= 0 the

critical values of R̂z,t,q(w) are 0 and infinity. Since R̂z,t,q(w) is a rational map of degree three and
b(q) = 1/(1 − q) is not a critical value, one of the three preimages of b(q) will not be exceptional
for Rz,t,q(w). Denoting that preimage by c(q) we apply Lemma 4 to see that

A(t, q) ⊂ {z ∈ C \ {0} : R
(n−1)
z,t,q (a(z)) = c(z) for some n ∈ N} ⊂ B̂(t, q).

�

Lemma 6. For any t ∈ (0, 1) ∪ (1,∞) and q ∈ N≥2 we have

B(t, q) ∩ (0,∞) = B̂(t, q) ∩ (0,∞) = A(t, q) ∩ (0,∞).

Proof. Lemma 5 gives A(t, q) ∩ (0,∞) ⊂ B(t, q) ∩ (0,∞) and A(t, q) ∩ (0,∞) ⊂ B̂(t, q) ∩ (0,∞).

Therefore, it suffices to show that if z ∈ (0,∞) \ A(t, q) then z 6∈ B(t, q) and z 6∈ B̂(t, q).
We first show that if z ∈ (0,∞)\A(t, q) then z 6∈ B(t, q). Let z• ∈ (0,∞) be a passive parameter

for the marked point a(z) = z under Rz,t,q(w). Then, by definition, there is an open neighborhood
U of z• such that the sequence gn : U → C∞ of functions defined by

gn(z) := Rnz,t,q(a(z)) = Rnz,t,q(z)

forms a normal family. For the sake of contradiction, let’s assume that z• ∈ B(t, q). Then we can
find a sub-sequence (nk)k∈N and points znk ∈ U such that:

(i) (gnk) converges uniformly on compact subsets of U ,
(ii) gnk(znk) = Rnkznk ,t,q

(znk) = 1/(1− q) for all k ∈ N, and

(iii) limk→∞ znk = z•.
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Let g(z) be the uniform limit of gnk(z). Notice t > 0, q ≥ 2 and z• > 0 imply that gnk(z•) > 0
for each k and hence that the limit satisfies g(z•) ≥ 0. On the other hand, because gnk converges
uniformly to g, and znk → z•, we have gnk(znk)→ g(z•). This is a contradiction because g(z•) ≥ 0
and gnk(znk) = 1/(1− q) < 0 for each k.

The proof that if z ∈ (0,∞) \ A(t, q) then z 6∈ B̂(t, q) is quite similar, except that one replaces

the sequences of functions gn(z) = Rnz,t,q(a(z)) with a new sequence ĝn(z) =
(
R̂z,t,q ◦R(n−1)

z,t,q

)
(z).

We leave the details to the reader. �

2.3. Plotting Numerical Approximations to Lee-Yang Zeros Using The Active-Passive
Dichotomy. Lemma 5 gives that A(t, q) ⊂ B(t, q) and A(t, q) ⊂ B̂(t, q). Although we are primarily

interested in the sets B(t, q) and B̂(t, q), the active locus A(t, q) for the marked point a(z) = z
under the holomorphic family Rz,t,q(w) can be studied dynamically. Moreover, we can also use the
computer to make plans of A(t, q) that are far more detailed than the plots of Lee-Yang zeros given

in Figure 3. While the plots of A(t, q) may be missing some points of B(t, q) or B̂(t, q) they still
may be informative about those two sets of Lee-Yang zeros.

Arnaud Chéritat helped us by using his computer software to plot the active and passive param-
eters of the marked point a(z) = z for Rz,t,q, for fixed q and t, in the complex z-plane. Figures 7
and 8 show the active loci related to t = 0.26 and t = 0.5 for the 3-state Potts model. The points
in black are supposed to be active parameters and the points in white are supposed to be passive
parameters. The reader should compare Figures 7 and 8 with Figure 3.

It is difficult to numerically compute the Lee-Yang zeros of the partition function when t > 1.
Therefore, we did not include any images analogous to Figure 3 when t > 1 (the antiferromagnetic
case). Instead, we include the plots of the active locus for the marked point a(z) = z for Rz,t(w)
at t = 6 in Figure 9 and Figure 10. The Lee-Yang zeros for Γn accumulate to this active locus as
n→∞.

We briefly describe here the method used by Chéritat to numerically compute the active locus
for a marked point a(λ) under a holomorphic family of mappings fλ(z). A rectangular region in the
complex λ plane is divided into pixels. Each pixel is interpreted as a small square in the complex
plane whose side length is r > 0. One also picks a parameter 0 < θ < 1, a small parameter ε > 0,
and a threshold m0 ∈ N. These are “tuned” by the user to get a reasonably looking plot.

To determine if the pixel associated to λ = λ0 should be colored black (active), white (passive),
or red (undecided) the program checks each of the following three conditions for m = 1, 2, 3, . . ..
Once one of the conditions below is met for the pixel associated to λ0 the program moves on to
check the next pixel.

(1) The program computes Fm(λ) := fmλ (a(λ)) together with a numerical approximation to the

derivative
∣∣∣d(Fm(λ)−λ)

dλ

∣∣∣
λ=λ0

. If

|Fm(λ0)− a(λ0)| < r · θ
∣∣∣∣d(Fm(λ)− λ)

dλ
|λ=λ0

∣∣∣∣
then it is assumed that a(λ0) is close to being periodic and, when that happens it is likely
that a(λ0) is periodic repelling. In this case the program declares λ0 to be active and the
pixel is colored black.

(2) If Step 1 failed at iterate m then the program checks if∣∣∣∣dfmλ (z)

dz
|z=a(λ0)

∣∣∣∣ < ε.

If this holds then the program decides that a(λ0) is probably in the basin of attraction of
an attracting periodic cycle. In this case, the program declares λ0 to be passive and the
pixel is colored white.

(3) If Steps 1 and 2 both fail and if m has reached the threshold, m0 then the program stops
and colors the pixel red, indicating that it could not decide if a(λ) should be interpreted as
being active or passive at the parameter λ0.
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Figure 7. The active locus for the marked point a(z) = z for Rz,t,3(w) at t = 0.26.
Points in the active locus are black and the points in the passive locus are white.
As explained in Section 2.3 the Lee-Yang zeros at t = 0.26 accumulate to the active
locus (black) as n→∞.

Figure 8. The active locus for the marked point a(z) = z for Rz,t,3(w) at t = 0.5.
Points in the active locus are black and the points in the passive locus are white.
As explained in Section 2.3 the Lee-Yang zeros at t = 0.25 accumulate to the active
locus (black) as n→∞.

Figure 9. The active locus for the marked point a(z) = z for Rz,t,3(w) at t = 6.
Points in the active locus are black and the points in the passive locus are white.
The following Figure 10 is a zoomed-in version of this image around z = 1.

3. PROOF OF THEOREM A

Note that the cases when t = 0 and t = 1 are easily handled using the explicit formula (6). We
therefore restrict our attention to 0 < t < 1 throughout the remainder of this section. We refer the
reader to Equation (8) for the definitions of t1(q) and t2(q). By Lemma 6 the proof of Theorem A
reduces to the proof of the following theorem.
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Figure 10. The active locus for the marked point a(z) = z for Rz,t,3(w) at t = 6.
Points in the active locus are black and the points in the passive locus are white.
This is a zoomed-in version of above Figure 9 around z = 1.

Theorem 2. Suppose 0 < t < 1 and let A(t, q) be the active locus for the marked point a(z) = z
under Rz,t,q(w). Then

A(t, q) ∩ (0,∞) =

 {1} if 0 < t ≤ t1(q),
{Zq(t)} if t1(q) < t ≤ t2(q),
∅ if t2(q) < t < 1.

Here Zq(t) is given in Equation (9) in the statement of Theorem A.

We begin with several lemmas.

Lemma 7. Let 0 < t < 1, z > 0, and q ≥ 2. Then the map Rz,t,q(w) has the following properties:

(i) Rz,t,q(w) is increasing on [0,∞),
(ii) Rz,t,q(w) has at least one fixed point on [0,∞), and

(iii) Rz,t,q ([0,∞)]) ⊆ [c, d] with c, d ∈ R and 0 < c < d.

Proof. Simple calculations show that

∂Rz,t,q
∂w

(w) =
2z(1− t)((q − 1)t+ 1)((q − 2)tw + t+ w)

((q − 1)tw + 1)3
.

Because t ∈ (0, 1), z > 0, and q ≥ 2, we get
∂Rz,t,q
∂w

(w) > 0 for all w > 0. Thus, Rz,t,q(w) is

increasing on [0,∞). This proves Claim (i).
Notice that Rz,t,q(0) = zt2 > 0. Furthermore, the horizontal asymptote of Rz,t,q(w),

lim
w→∞

Rz,t,q(w) = z

[
1 + (q − 2)t

(q − 1)t

]2

is positive and finite. Thus, Rz,t,q(w) must intersect the diagonal at least once. Hence, Rz,t,q(w)
has at least one positive fixed point, thus proving Claim (ii).

Thus, if we let

c := Rz,t,q(0) = zt2 and d := lim
w→∞

Rz,t,q(w) = z

[
1 + (q − 2)t

(q − 1)t

]2

,

then Claim (iiii) follows from Claims (i) and (ii). �

Let c, d ∈ R with c < d. Let f : [c, d]→ [c, d] be a differentiable function such that f ′(x) > 0 for
all x ∈ [a, b], and with f(a) > a, and f(b) < b. A fixed point xfix for f is repelling if f ′(xfix) > 1,
neutral if f ′(xfix) = 1, and attracting if f ′(xfix) < 1. The following Lemma is well-known, so we
omit the proof.



16 September 14, 2025

Lemma 8. Let f : [c, d] → [c, d] be as described above. Let Af , Nf and Rf be the set of all
attracting, neutral, and repelling fixed points of f respectively. Then for any x0 ∈ (c, d)\(Rf ∪Nf ∪
Af ), the orbit of x0 under f converges to a point in Af ∪ Nf . Furthermore, if there is a point
xN ∈ Nf and an open interval I 3 x0, xN with no fixed point of f in I\{xN} such that

(i) x0 < xN and f |I(x) > x or
(ii) x0 > xN and f |I(x) < x,

then the orbit {fn(z0)}∞n=0 of x0 converges to xN .

Lemma 9. Let t ∈ (0, 1) be fixed. Suppose z > 0 is an active parameter for the marked point
a(z) = z under Rz,t,q(w). Then one of the following two cases occurs.

(i) The marked point a(z) = z is a repelling fixed point of Rz,t,q(w).
(ii) Rz,t,q(w) has a positive neutral fixed point.

Proof. Let t ∈ (0, 1) be fixed. Then for any fixed z > 0, by Lemma 7, the function Rz,t,q(w) is
increasing on [0,∞) with at least one fixed point. Moreover, Rz,t,q(w) maps the compact interval
[c, d] to itself. Therefore, from Lemma 8 we see that a(z) = z is a repelling fixed point of Rz,t,q(w),
the orbit of z under Rz,t,q converges to a neutral fixed point, or the orbit of z under Rz,t,q converges
to an attracting fixed point of Rz,t,q(w). By Lemma 2, the third option corresponds to passive
behavior of the marked point a(z), so that (i) or (ii) must occur. �

Lemma 10. Let t ∈ [0,∞) \ {1} and z ≥ 0. Then the marked point a(z) = z is a fixed point of
Rz,t,q(w) if and only if z = 1.

Proof. A direct calculation gives R1,t,q(1) = 1. Conversely, t ≥ 0 and z ≥ 0 imply that t+ z + (q−
2)tz ≥ 0, and 1 + (q − 1)tz > 0 which allows us to simplify

Rz,t,q(z) = z

[
t+ z + (q − 2)tz

1 + (q − 1)tz

]2

= z

to
t+ z + (q − 2)tz = 1 + (q − 1)tz

by taking a square root. This implies z(1− t) = 1− t. Because t 6= 1, we get z = 1. �

Lemma 11. Let z > 0, t ∈ (0, 1) and q ≥ 2. If Rz,t,q(w) has a neutral fixed point at some
w = wN (z) > 0, then t ∈ (0, t2(q)] and z = N±(t, q), where

N±(t, q) :=

(
(−27(q−1)2t4+18(q2−3q+2)t3+(q2+14q−14)t2+2(q−2)t+1))

±
√

(t−1)((q−1)t+1)(9(q−1)t2−(q−2)t−1)3

)
8t((q − 2)t+ 1)3

.

Moreover, for each value of t ∈ (0, t2(q)] both values N±(t, q) are positive.

Remark: Zq(t) from Theorem A is equal to N−(t, q). Figure 11 shows a plot N±(t, q) in the case
that q = 3.

Proof. Throughout the proof, fix q ≥ 2. By definition, wN > 0 is a neutral fixed point of Rz,t,q(w)
if and only if

Rz,t,q(wN ) = wN and
d

dw
Rz,t,q(w) |w=wN (z)= ±1.

However, by Lemma 7 we find that
d

dw
Rz,t,q(w) = 1. Therefore the above conditions reduce to the

condition that Rz,t,q(w) − w has a multiple root at wN . Clearing denominators, this is equivalent
to the following polynomial in w having a multiple root at some wN :

Pz,t,q(w) := z((q − 2)tw + t+ w)2 − w((q − 1)tw + 1)2.

Taking the discriminant of Pz,t,q(w) with respect to the variable w we find that Rz,t,q has a neutral
fixed point if and only if

−(−1 + t)2(1− t+ qt)2z Q(z, t, q) = 0,
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Figure 11. Plots of N+(t, 3) (orange), N−(t, 3) (red), and 1 (blue) versus t. Com-
pare with Figure 4.

where the last factor Q(z, t, q) is the following quadratic polynomial in z:

Q(z, t, q) :=
(
4q3t4 − 24q2t4 + 48qt4 − 24(q − 2)t3 + 12(q − 2)qt3 + 12qt2 − 32t4 − 24t2 + 4t

)
z2(

−q2t4 + 3q2t2 + 2qt4 − 6(q − 2)t3 + 6(q − 2)qt3 − 6qt2 + 6qt− t4 + 6t2 − 12t+ 3
)
z

4qt− 4t = 0.

Since t ∈ [0, 1), z > 0, and q ≥ 2 the only way that the discriminant of Pz,t,q(w) vanishes is when
Q(z, t, q) vanishes. The reader can check that Q(z, t, q) vanishes precisely under the conditions
stated in the conclusion of this lemma.

The square root in the formula for N±(t) is non-negative if and only if t ∈ (0, t2(q)]. Since the
denominator of N±(t, q) does not vanish for t > 0 we have that N±(t, q) both vary continuously as
t varies over the interval (0, t2(q)]. When t = 1/(1 + q) one finds that

N−(t, q) = 1 and N+(t, q) =
(q − 1)(q + 1)3

(2q − 1)3
,

both of which are positive. Meanwhile, substituting z = 0 into the polynomial Pz,t,q(w) yields
−w(1 + (−1 + q)tw)2 which has no solutions when w, t > 0. Therefore N±(t, q) remain positive for
all t ∈ (0, t2(q)]. �

We will need the following lemma to complete the proof of Theorem 2. Since the proof involves
some technical calculations, we will give it in Appendix A.

Lemma 12. We have:

(i) Suppose z = N+(t, q). Then, for any t ∈ (0, t2(q)), the orbit of the marked point a(z) = z
under iteration of Rz,t,q converges to an attracting fixed point wA(z) of Rz,t,q(w).

(ii) Suppose z = N−(t, q). Then:
(a) If t ∈ (0, t1(q)), then the orbit of the marked point a(z) = z under iteration of Rz,t,q

converges to an attracting fixed point wA(z) of Rz,t,q(w).
(b) If t ∈ (t1(q), t2(q)), then the orbit of the marked point a(z) = z under iteration of Rz,t,q

converges to a neutral fixed point wN (N−(t, q)) of Rz,t,q(w).
(iii) If t ∈ (t1(q), t2(q)) and z < N−(t, q) is sufficiently close to N−(t, q), then the orbit of z

under iteration of Rz,t,q converges to an attracting fixed point wA(z) of Rz,t,q(w).

Proof of Theorem 2. Suppose 0 < t < 1. By Lemma 9, if z > 0 is an active parameter for the
marked point a(z) = z under Rz,t,q(w), then either

(i). a(z) = z is a repelling fixed point for Rz,t,q(w), and in this case, that repelling fixed point
must be w = 1 by Lemma 10, or
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(ii). Rz,t,q(w) has a neutral fixed point wN (z) > 0. Then by Lemma 11, t ∈ (0, t2(q)] and
z = N±(t, q).

In Case (i), a simple calculation gives

R′1,t,q(1) =
2− 2t

(q − 1)t+ 1
.

By solving the inequality R′1,t,q(1) > 1 for t we get 0 ≤ t < t1(q). Moreover, when 0 ≤ t < t1(q),

Rz,t,q(w) maps a(z) = z non-persistently onto this repelling fixed point w = 1 as a(z) = z is not
fixed for z 6= 1. Then by Lemma 2, z = 1 is an active parameter for the marked point a(z) = z
under the map Rz,t,q(w). If t = t1(q), then z = 1 continues to be an active parameter for the
marked point a(z) = z as the active locus is closed. If t > t1(q), then w = 1 is an attracting fixed
point. So, in that case, a(z) = z is passive at z = 1.

We now consider Case (ii). Note that when t = t2(q) we have N+(t, q) = N−(t, q). To finish the
proof of Theorem 2 we must check:

(I). For any 0 < t < t2(q) we have that z = N+(t, q) is passive for the marked point a(z) = z
under Rz,t,q(w).

(II). For any 0 < t < t1(q) we have that z = N−(t, q) is passive for the marked point a(z) = z
under Rz,t,q(w), and for any t1(q) ≤ t ≤ t2(q) we have that z = N−(t, q) is active for the
marked point a(z) = z under Rz,t,q(w).

Suppose 0 < t < t2(q). If z = N+(t, q), then Lemma 12(i) gives that the orbit of z converges to
an attracting fixed point of Rz,t,q(w). Thus, by Lemma 2, z = N+(t, q) is a passive parameter for
the marked point a(z) = z under Rz,t,q(w). Similarly, when 0 < t < t1(q) and z = N−(t, q), Lemma
12(ii(a)) gives that the orbit of z converges to an attracting fixed point of Rz,t,q(w), making it a
passive parameter for the marked point a(z) = z under Rz,t,q(w) by Lemma 2.

Suppose t1(q) < t < t2(q) and z = N−(t, q). By Lemma 12(ii(b)), the orbit of z0 = N−(t, q)
converges to the neutral fixed point wN (N−(t, q)). Furthermore, there exists an attracting fixed
point wA < wN (N−(t, q)). This attracting fixed point varies continuously with respect to z around
N−(t, q). We will denote this dependence on z by wA ≡ wA(z). By Lemma 12(iii) if z < z0

is sufficiently close to z0, then the orbit of z converges to wA(z). Thus, for any subsequence(
Rnkz,t,q(z)

)∞
k=1

of
(
Rnz,t,q(z)

)∞
n=1

and any neighborhood U of z0 = N−(t, q), we can find a further

subsequence
(
R
nkj
z,t,q(z)

)∞
j=1

of
(
Rnkz,t,q(z)

)∞
k=1

and a point z1 ∈ U such that for all j ∈ N

∣∣∣Rnkjz1,t,q
(z1)−Rnjkz0,t,q

(z0)
∣∣∣ > wN (z0)− wA(z1)

2
.

Because wN (z0)−wA(z0) > 0 and because wA(z) depends continuously on z we can choose z1 ∈ U
sufficiently close to z0 so that the right-hand side of the above inequality is positive.

Therefore the family
{
Rnz,t,q(z)

}
n=1

of functions is not normal at z0 = N−(t, q). Hence, the

marked point a(z) = z under Rz,t,q(w) is active at z0 = N−(t, q). Because the active locus is a
closed set, the marked point a(z) = z under Rz,t,q(w) is also active at z0 = N−(t, q) when t = t1(q)
and t = t2(q).

This completes the proof of Theorem 2. �

4. Proof of Theorem B (Antiferromagnetic Case, q ≥ 3)

Recall that Theorem B concerns the antiferromagnetic regime J < 0. Since the physical values

of temperature are T > 0, this corresponds to the temperature-like parameter t = e−
J
T > 1 and the

field-like parameter z = e−
h
T > 0. By Lemma 6 the proof of Theorem B reduces to the proof of the

following theorem.
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Theorem 3. Suppose t > 1, q ≥ 3 and let A(Rz,t,q) be the active locus for the marked point a(z) = z
under Rz,t,q(w). Then

A(Rz,t,q) ∩ (0,∞) =

{
∅ if 1 ≤ t < t3(q)

{z±c (t, q)} if t3(q) ≤ t.
(15)

Here t3(q) > 1 and z±c (t, q) are given in Equations (10) and (11) as in the statement of Theorem B.

Therefore, the rest of this section is devoted to the proof of Theorem 3. The reader can see
the plots of z±c (t, 3) in Figure (5). The main challenge is that Rz,t,q(w) is not increasing on [0,∞)
when t > 1. However, the second iterate R2

z,t,q(w) = Rz,t,q (Rz,t,q(w)) of Rz,t,q(w) is increasing on
[0,∞) when t > 1. By Lemma 1 the active locus for the marked point a(z) = z under Rz,t,q(w)
is the same as for the second iterate R2

z,t,q(w) so we can therefore work extensively with R2
z,t,q(w)

throughout the proof of Theorem 3.

Lemma 13. Let z > 0, t > 1, and q ≥ 2. The map

R2
z,t,q(w) := Rz,t,q (Rz,t,q(w)) =

z
(
z((q − 2)t+ 1)((q − 2)tw + t+ w)2 + t((q − 1)tw + 1)2

)2
((q − 1)tz((q − 2)tw + t+ w)2 + ((q − 1)tw + 1)2)2

has the following properties.

(i) R2
z,t,q(w) is increasing on [0,∞),

(ii) R2
z,t,q(w) has at least one fixed point on [0,∞), and

(iii) R2
z,t,q ([0,∞)]) ⊆ [c, d] with c, d ∈ R and 0 < c < d.

Proof. The interval [0,∞) is forward invariant under Rz,t,q(w) so, by the chain rule it suffices to

prove that ∂
∂wRz,t,q(w) < 0 when z > 0, t > 1, and q ≥ 2 and when w ≥ 0. Expressing everything

in terms of z, s = t− 1 > 0, p = q − 2 > 0, and w > 0 we find:

∂

∂w
Rz,t,q(w) =

−2zs(2 + p+ s+ ps)(1 + s+ w + pw + psw)

(1 + w + pw + sw + psw)3
< 0.

This proves Claim (i). To prove Claim (ii), notice that

R2
z,t,q(0) =

z
(
t2z((q − 2)t+ 1) + t

)2
((q − 1)t3z + 1)2 > 0,

and

lim
w→∞

R2
z,t,q(w) =

z
(
t3
(
q3z + q2(1− 6z) + 2q(6z − 1)− 8z + 1

)
+ 3(q − 2)2t2z + 3(q − 2)tz + z

)2
(q − 1)2t2 ((q − 2)2t2z + t(2qz + q − 4z − 1) + z)2

which is positive and finite. Hence, R2
z,t,q(w) has at least one positive fixed point by the Intermediate

Value Theorem. Since R2
z,t,q(w) is increasing on [0,∞) we can prove Claim (iii) by letting c :=

R2
z,t,q(0) and d := limw→∞R

2
z,t,q(w). �

Lemma 14. For fixed z > 0, t > 1 and q ≥ 2, if the map R2
z,t,q(w) has a neutral fixed point, then

t ≥ t3(q) > 1 and z = z±c (t, q),

where the formulae for t3(q) and z = z±c (t, q) are given in Equations (10) and (11).
Furthermore, for all t ≥ t3(q) we have

(a) 0 < z−c (t, q) ≤ z+
c (t, q) with the equality z−c (t, q) = z+

c (t, q) only when t = t3(q).
(b) If q ≥ 3 then z+

c (t, q) < 1.

Proof. The proof is quite similar to the proof of Lemma 11 given in the previous section. We
express the condition that R2

z,t,q(w) has a neutral fixed point as the existence of a multiple root of a

polynomial Pz,t,q(w) which is obtained from the equation R2
z,t,q(w) = w by clearing denominators.

The discriminant of Pz,t,q(w) with respect to w equals

z8(t− 1)16((q − 1)t+ 1)16Q1(z, t, q)Q2(z, t, q)3,(16)
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where

Q1(z, t, q) = z[t(27(q − 1)2t3 − 18(q − 2)(q − 1)t2 − q(q + 14)t− 2q + 14t + 4)− 1] + 4tz2((q − 2)t + 1)3 + 4(q − 1)t,

and

Q2(z, t, q) = z(−(q − 1)2t4 + 6(q − 2)(q − 1)t3 + 3((q − 2)q + 2)t2 + 6(q − 2)t + 3) + 4tz2((q − 2)t + 1)3 + 4(q − 1)t.

(17)

Therefore, we find that Rz,t,q has a neutral fixed point if and only if one of the factors in Equa-
tion (16) vanishes. The first three factors clearly don’t vanish for z > 0, t > 1, and q ≥ 2. We claim
that Q1(z, t, q) also does not vanish for this range of the parameters z, t, q. Expressing everything
in terms of z, s = t− 1 > 0, p = q − 2 ≥ 0, and w > 0 we find:

Q1 = 4p3s4z2 + 16p3s3z2 + 24p3s2z2 + 16p3sz2 + 4p3z2 + 27p2s4z + 12p2s3z2 + 90p2s3z

+ 36p2s2z2 + 107p2s2z + 36p2sz2 + 52p2sz + 12p2z2 + 8p2z + 54ps4z + 198ps3z

+ 12ps2z2 + 252ps2z + 24psz2 + 124psz + 4ps+ 12pz2 + 16pz + 4p+ 27s4z(18)

+ 108s3z + 144s2z + 4sz2 + 72sz + 4s+ 4z2 + 8z + 4 > 0.

Note thatQ2(z, t, q) is quadratic in z with the coefficients depending on t and q. SolvingQ2(z, t, q) = 0
for z in terms of t and q we find precisely the values z±c (t, q) given in Formula (11). Note that
the term under the square root in formula for z±c (t, q) vanishes at t = t3(q) and that it is nega-
tive for 1 < t < t3(q) and strictly positive for t > t3(q). In particular, when t > t3(q) we have
z−c (t, q) < z+

c (t, q).
We now prove the additional claim (a) by checking that for all t ≥ t3(q) we have 0 < z−c (t, q).

When t = t3(q) we have

z+
c (t, q) = z−c (t, q) =

−27q3 + 153q2 − 297q + 198 +
(
9q2 − 35q + 35

)√
9q2 − 32q + 32

2(q − 1)
,(19)

which one can check is positive for all q ≥ 2. It is clear from the formulae for z±c (t, q) that for
fixed q ≥ 2 they are continuous functions of t ≥ t3(q). Suppose for contradiction that there were
some t4 > t3(q) with z−c (t4, q) < 0. In this case the Intermediate Value Theorem would give
that there exists t5 ∈ [t3(q), t4] with z−c (t5, q) = 0. We obtain a contradiction by noting that
we would then have Q2 (z−c (t5, q), t5, q) = Q2(0, t5, q) = 0 while a direct calculation gives that
Q2(0, t, q) = 4(q − 1)t > 0 for all q ≥ 2 and t > 0.

To prove additional claim (b) it suffices to show that Q1(z, t, q) > 0 for all z ≥ 1, t ≥ 1, and
q ≥ 3. If one computes Q1(1 + r, 1 + s, 3 + p) one finds a polynomial whose constant term is 72
and all of whose monomials appear with a “plus” sign. (We have omitted the many line expression
which is similar to Equation (18) above, but the reader can check it in a computer algebra software
package.). �

In the following statement, we extend the range of allowable values of q from N≥3 to the interval
[3,∞) so that methods involving continuity can be used in the proof.

Lemma 15. Define sets R1 and R2 as follows:

R1 := {(z, t, q) ∈ R3 : t > 1, q ≥ 3, and if t ≥ t3(q) then 0 < z < z−c (t, q) or z > z+
c (t, q)}

R2 := {(z, t, q) ∈ R3 : t ≥ t3(q), q ≥ 3, z−c (t, q) < z < z+
c (t, q)}.

Then,

(i) For all (z, t, q) ∈ R1 the second iterate of the renormalization map, R2
z,t,q(w), has only one

real fixed point. This fixed point is in (0,∞) and it is an attracting fixed point of Rz,t,q(w).
(ii) For all (z, t, q) ∈ R2 the second iterate of the renormalization map, R2

z,t,q(w), has three real
fixed points each of which is in (0,∞). One of these fixed points is a repelling fixed point of
Rz,t,q(w). The other two fixed points correspond to an attracting period 2-cycle of Rz,t,q(w).
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Proof. We first prove that R1 and R2 are each path connected. We begin with R1. One can easily
check from the formula (10) that for q ≥ 3 one has t3(q) ≥ 3. Therefore, we have the containment

B := {(z, t, q) ∈ R3 : z > 0, 1 < t < 3, and q ≥ 3} ⊂ R1.

Note that B is convex and hence path connected. Moreover, for each fixed choice of real q = q0 ≥ 3
the slice

R1 ∩ {q = q0} := {(z, t, q0) ∈ R3 : t > 1 and if t ≥ t3(q0) then 0 < z < z−c (t, q0) or z > z+
c (t, q0)}

has non-trivial intersection with B. Therefore it suffices to show for each real q0 ≥ 3 that the slice
R1 ∩ {q = q0} is path connected. We will describe an explicit path within R1 ∩ {q = q0} from any
point (z0, t0, q0) ∈ R1 ∩ {q = q0} to the point (1, 2, q0) ∈ B. There are three possibilities:

Option 1: 1 < t0 < t3(q0). The straight line path between (z0, t0, q0) and (1, 2, q0) remains in
R1 ∩ {q = q0}.

Option 2: t0 ≥ t3(q0) and z0 > z+
c (t0, q0). Since q0 ≥ 3, Lemma 14 gives that z+

c (t0, q0) < 1.
We can therefore form a path from (z0, t0, q0) to (1, 2, q0) by first connecting (z0, t0, q0) to (1, t0, q0)
using a straight-line path (varying only z) and then connecting from (1, t0, q0) to (1, 2, q0) by a
straight line path (varying only t). Each of these line segments is in R1 ∩ {q = q0}.

Option 3: t0 ≥ t3(q0) and 0 < z0 < z−c (t0, q0). By Lemma 14 we have that z−c (t, q0) > 0 for all
t ≥ t3(q0). Moreover, it is clear from the expression for z−c (t, q0) that it is a continuous function
of t ≥ t3(q). Therefore, there exists a positive M > 0 such that for all t ∈ [t3(q0), t0] we have
z−c (t, q0) ≥ M . We can therefore form a path within R1 ∩ {q = q0} from (z0, t0, q0) to (1, 2, q0) by
a concatenation of three straight line paths. One first connects from (z0, t0, q0) to (M/2, t0, q0) by
varying only z. One then connects from (M/2, t0, q0) to (M/2, 2, q0) by varying only t. One finally
connects from (M/2, 2, q0) to (1, 2, q0) by varying only z.

We have therefore proved that R1 is path connected. We will now prove that R2 is path-
connected. For each t ≥ t3(q) let

zmid
c (t, q) =

1

2
(z−c (t, q) + z+

c (t, q)).

For each t > t3(q) one has zmid
c (t, q) ∈ R2. In particular, given any 3 ≤ q0 < q1 we can form

a path in R2 connecting the slice R2 ∩ {q = q0} to the slice R2 ∩ {q = q1} using the mapping
q 7→ (zmid

c (t3(q) + 1, q), t3(q) + 1, q) where q varies over the interval [q0, q1]. Therefore, it suffices to
prove for each q = q0 ≥ 3 thatR2∩{q = q0} is path-connected. Given any (z0, t0, q0) ∈ R2∩{q = q0}
we can connect it using a path within R2 ∩ {q = q0} to (zmid

c (t3(q0) + 1), t3(q0) + 1, q0) as follows.
One first varies just the z-coordinate to connect from (z0, t0, q0) to (zmid

c (t0, q0), t0, q0). One then
connects from (zmid

c (t0, q0), t0, q0) to (zmid
c (t3(q0) + 1), t3(q0) + 1, q0) by varying t between t0 and

t3(q0) + 1 and letting z = zmc (t, q0) as one does so.

We now prove Statements (i) and (ii). The regions R1 and R2 were chosen so that the second
iterate of the renormalization mapping R2

z,t,q(w) has only attracting or repelling (but not neutral)
real fixed points for all parameters (z, t, q) ∈ R1 ∩ R2. Therefore, as one varies the parameters
(z, t, q) within a given region R1 or R2 these real fixed points each vary continuously and their
nature (attracting or repelling) remains unchanged. (This also implies that the same holds for fixed
points of the first iterate Rz,t,q(w).) Moreover, Lemma 13(iii) gives for all (z, t, q) ∈ R1 ∪ R2 that
R2
z,t,q ((0,∞)) is contained in a compact subset of (0,∞). Therefore, as (z, t, q) varies over R1 or

over R2 any fixed point of R2
z,t,q(w) that lies in (0,∞) of one choice of parameters (z, t, q) moves to

a fixed point of R2
z,t,q(w) that again lies in (0,∞) for the other choice of parameters. Therefore it

suffices to check the assertions of each of the claims (ii) and (iii) for a single choice of parameters
in each region.
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Region R1: Note that (z, t, q) = (1, 3, 3) ∈ R1. One finds that

R1,3,2(w) =
(4w + 3)2

(6w + 1)2
and R2

1,3,2(w) =

(
172w2 + 132w + 39

)2
(132w2 + 156w + 55)2 .

By solving R2
1,3,3(w) = w for w one finds that the only real solution is w = 1 and that it is also a

fixed point of R1,3,3(w). Moreover, |R′1,3,2(w)| = 4
7 < 1, so the only real fixed point of R2

1,3,3(w) is

actually an attracting fixed point of the first iterate R1,3,3(w).

Region R2: Note that (z, t, q) = (1/5, 8, 3) ∈ R2 because

z−c (8, 3) =
9229− 119

√
5593

46656
≈ 0.0071 and z+

c (8, 3) =
9229− 119

√
5593

46656
≈ 0.3886.

We have

R1/5,8,3(w) =
(9w + 8)2

5(16w + 1)2
and R2

1/5,8,3(w) =

(
1567w2 + 368w + 88

)2
5 (368w2 + 352w + 147)2 .

By solving R2
1/5,8,3(w) = w for w one finds the following three real roots:

w1 :=
939− 17

√
2165

1058
≈ 0.1399, w2 :=

939 + 17
√

2165

1058
≈ 1.6352 and

w3 ≈ 0.4412, which is the unique real root of p(x) = −64− 139x+ 79x2 + 1280x3.

The only real root of R1/5,8,3(w) = w is w = w3 and one finds that
∣∣(R1/5,8,3)′(w3)

∣∣ ≈ 1.088 > 1.
Thus, w3 is a repelling fixed point ofR1/5,8,3(w). Furthermore, one can check thatR1/5,8,3(w1) = w2,
R1/5,8,3(w2) = w1, and ∣∣∣(R2

1/5,8,3)′(w1)
∣∣∣ =

∣∣∣(R2
1/5,8,3)′(w2)

∣∣∣ ≈ 0.7003 < 1.

Thus, w1 and w2 correspond to an attracting period 2-cycle of R1/5,8,3(w). �

Proof of Theorem 3. We will first prove that if (z, t, q) ∈ R1 ∪R2 then the marked point a(z) = z
is passive under iteration of Rz,t,q(w). By Lemma 1 it suffices to prove that a(z) is passive under
the second iterate R2

z,t,q(w). Moreover, by Lemma 2, it suffices to prove that for such choices of

parameters we have that a(z) is in the basin of attraction of an attracting fixed point for R2
z,t,q(w).

Suppose (z, t, q) ∈ R1 ∪ R2. By Lemma 13, we see that R2
z,t,q(w) satisfies the hypotheses of

Lemma 8. Lemma 15 implies that R2
z,t,q(w) has no neutral fixed points and also that if R2

z,t,q(w)
has a repelling fixed point then it is actually a repelling fixed point of the first iterate Rz,t,q(w).
Meanwhile, Lemma 10 gives that if a(z) is a fixed point for Rz,t,q(w) then z = 1. As in the proof
of Theorem 2 we compute that

R′1,t,q(1) =
2− 2t

(q − 1)t+ 1
.

One can then check that for t > 1 and q ≥ 3 we have −1 < R′1,t,q(1) < 0. Therefore, a(z) = z cannot

be a repelling fixed point of Rz,t,q(w). By Lemma 8 we therefore have that if (z, t, q) ∈ R1 ∪ R2

then the marked point a(z) = z is in the basin of attraction of an attracting fixed point of R2
z,t,q(w),

as desired.
It remains to show that if t ≥ t3(q) and z = z±c (t, q) then the marked point a(z) = z is active

under Rz,t,q(w). Since the active locus is closed, we can suppose that t > t3(q). Then, for any
z > z+

c (t, q) we have that (z, t, q) ∈ R1 and Lemma 15 and the discussion in the previous paragraph
gives that a(z) is in the basin of attraction of an attracting fixed point for Rz,t,q(w). On the other
hand for any z−c (t, q) < z < z+

c (t, q) we have that a(z) is in the basin of attracting of a period two
attracting cycle of Rz,t,q(w). Lemma 3 then implies that the marked point a(z) is active at the
parameter z = z+

c (t, q).
The proof that a(z) is active at z = z−c (t, q) is completely analogous. �
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5. Proof of Theorem C (Antiferromagnetic Case, q = 2)

Like the proof of Theorem B, the proof of Theorem C reduces to the following statement.

Theorem 4. Suppose t > 1, q = 2 and let A(Rz,t,2) be the active locus for the marked point a(z) = z
under Rz,t,2(w). Then

A(Rz,t,2) ∩ (0,∞) =

{
∅ if 1 ≤ t < 3

{1} ∪ {z±c (t, 2)} if 3 ≤ t.
(20)

Here t3(2) = 3 and z±c (t, 2) are given in Equations (10) and (12) as in the statement of Theorem C.

Sketch of proof. The proof is quite similar to the proof of Theorem 3 with a couple of small varia-
tions. First note that Lemmas 13 and 14 both hold for q = 2. We did not include the case q = 2 in
the statement of Lemma 15 because z+

c (t, 2) crosses z = 1 when t = 3. This would have complicated
our proof that R1 and R2 are connected (as q is varied), which played an important role in the
proof of Lemma 15. However, if one considers the following sets

S1 := {(z, t) ∈ R2 : t > 1, and if t ≥ 3 then 0 < z < z−c (t, 2) or z > z+
c (t, 2)}

S2 := {(z, t) ∈ R2 : t > 3, z−c (t, q) < z < z+
c (t, 2)}.

then it is straightforward to prove the analogous claims for them as in Lemma 15. (As before,
one proves that each set is connected and then checks the claims (i) and (ii) for a single choice of
parameters in each set. The proof that S1 and S2 are connected is rather straightforward, since
one can directly check that z+

c (t, 2) is an increasing function and z−c (t, 2) is a decreasing function
of t ≥ 3.)

The proof of Theorem 4 then concludes in almost the same way as the proof of Theorem 3,
except that since q = 2 one can have that the marked point a(z) = z does non-persistently land on
a repelling fixed point w = 1 when z = 1. It does this for all t ≥ 3, leading to the additional point
on (0,∞) at which the Lee-Yang zeros can accumulate that was described in Theorem C. �

Appendix A. Proof of Lemma 12.

We start with two simple lemmas that will be used in the proof. In each of these statements we
extend the range of allowable values of q from N≥2 to the interval [2,∞) so that methods involving
continuity can be used in the proofs.

Lemma 16. Suppose z > 0, t ∈ [0, 1), and q ≥ 2. If the renormalization mapping Rz,t,q(w) has

triple fixed point (i.e. w is a triple root of Rz,t,q(w) = w) then t = t2(q) =
q−2+
√
q2+32q−32

18(q−1) .

Proof. A polynomial w3 + aw2 + bw + c = 0 has a triple root if and only if b = a2

3 and c = a3

27 .
Using that z > 0, t ∈ [0, 1), and q ≥ 2, we can rewrite the condition that Rz,t,q(w) = w as a monic
cubic polynomial of the above form. It has a triple root if and only if

[2tz((q − 2)t+ 1)− 1]

−(q − 1)2t2
=

1

3

(
2tz((q − 2)t+ 1)− 1

−(q − 1)2t2

)2

and
t2z

−(q − 1)2t2
=

1

27

(
2tz((q − 2)t+ 1)− 1

−(q − 1)2t2

)3

.

Clearing denominators, the above two equations can be simplified to the conditions that P1(z, t, q) = 0
and P2(z, t, q) = 0 where P1 and P2 are polynomials in z, q and t. One can then use elimination
theory (resultants) to eliminate z from the above two equations. One finds the following factorized
polynomial in q and t:

(q − 1)4(t− 1)2t4(qt− t+ 1)2
(
9qt2 − qt− 9t2 + 2t− 1

)
= 0.

Since z > 0, t ∈ [0, 1), and q ≥ 2, the only relevant root comes from the last factor and it is
t = t2(q). �

Lemma 17. For any q ≥ 2 and t ∈ (0, t2(q)] we have:

(a) when z = N+(t, q), the point w = z is fixed by Rz,t,q(w) if and only if t = 1−2
√
q−1

5−4q , and
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(b) when z = N−(t, q), the point w = z is fixed by Rz,t,q(w) if and only if t = t1(q) = 1
q+1 .

Proof. Note that the marked points a(z) = N±(t, q) are positive by Lemma 11. Lemma 10 therefore
gives that they are fixed points of Rz,t,q(w) if and only if they equal 1. The result then follows by
solving N±(t, q) = 1. �

Lemma 18. For any q ≥ 2 and t ∈ (0, t2(q)) if z = N±(t, q) then Rz,t,q(w) has exactly two fixed
points and the non-neutral fixed point is attracting.

Proof. For t ∈ (0, t2(q)) and z = N±(t, q) the mapping Rz,t,q(w) has exactly two fixed points, with
one corresponding to a double root of Rz,t,q(w) = w and the other corresponding to a simple root
of the same equation. (See the proof of Lemma 11.) With this range of values for the parameters
t, q and z = N±(t, q) we have that R′z,t,q(w) > 0 for w > 0. Therefore, the double root corresponds
to a neutral fixed point wN (t, q) and for all w in a sufficiently small interval I containing wN (t, q)
we either have Rz,t,q(w) ≥ w or for all w ∈ I we have Rz,t,q(w) ≤ w. In other words, the graph of
Rz,t,q(w) does not cross the diagonal at the neutral fixed point wN (t, q).

Note that Rz,t,q(0) = zt2 > 0, and that

lim
w→∞

Rz,t,q(w) =
z((q − 2)t+ 1)2

(q − 1)2t2
∈ (0,∞).

Therefore, if we denote the fixed point corresponding to the simple root of Rz,t,q(w) = w by w2(t, q)
we must have a small interval J containing w2(t, q) such that Rz,t,q(w) > w for all w ∈ J satisfying
w < w2(t, q) and such that Rz,t,q(w) < w for all w ∈ J satisfying w > w2(t, q). This implies that
0 < R′z,t,q(w2(t, q)) < 1 and hence that w2 is an attracting fixed point for Rz,t,q(w). �

For the remainder of the proof we will denote the neutral and attracting fixed points whose
existence is given by Lemma 18 by wN (t, q) and wA(t, q).

Proof of Lemma 12. Proof of Claim (i): We suppose that t ∈ (0, t2(q)) and that z = N+(t, q).
Rather than considering q ≥ 2 as a natural number we consider it as a real number. By Lemma 17

the marked point z = N+(t, q) is a fixed point of Rz,t,q(w) if and only if t = 1−2
√
q−1

5−4q =: t4(q).

A direct calculation gives that t4(q) = t2(q) if and only if q = 2 and that for q > 2 we have
0 < t4(q) < t2(q). Thus, the two curves t = t2(q) and t = t4(q) divide the qt-plane, when t > 0 and
q ≥ 2, into three regions:

Region I: 0 < t < t4(q), Region II: t4(q) < t < t2(q), and Region III: t > t2(q).

Refer to Figure 12 for an illustration. Note that Region III is not considered under the hypotheses
of Lemma 12, so we will ignore it.

Note that every complex fixed point of Rz,t,q(w) is real when z = N+(t, q) and when (t, q) varies
over either Region I or Region II and that one of them is consistently a solution of multiplicity
two to the equation Rz,t,q(w) = w. Since complex solutions to Rz,t,q(w) = w vary continuously
with respect to the parameters, this implies that wN (t, q) and wA(t, q) vary continuously as the
parameters (t, q) are varied over Region I or over Region II and they are never equal since that would
correspond to a fixed point of multiplicity 3 which only happens when t = t2(q), by Lemma 16.
Moreover, by Lemma 7 we have that Rz,t,q ([0,∞)) is compactly contained in (0,∞) for each choice
of parameters, so that any fixed points in (0,∞) for one choice of parameters cannot leave (0,∞)
for a different choice of parameters in the same region.

Within Regions I and Region II we also have that the marked point z = N+(t, q) is not fixed
by Rz,t,q(w) because t 6= t4(q) in those regions. Therefore, the order with which wN (t, q), wA(t, q),
and N+(t, q) occur on [0,∞) is constant in each of the two regions.
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Figure 12. Plot of Regions I, II, and III in proof of Claim (i).

Region I: Considering (t, q) = (0.1, 5), which lies in Region 1. For these parameters one can do
explicit calculations in a computer algebra system (e.g. Mathematica) to find:

z = N+(0.1, 5) =
141
√

329 + 6457

4394
≈ 2.051,

wN (0.1, 5) =
1

52

(
59− 3

√
329
)
≈ 0.0881717, and

wA(0.1, 5) =
1

416

(
189
√

329 + 3433
)
≈ 16.4931.

In particular, we find that for all (t, q) in Region I we have the following order

wN (t, q) < z = N+(t, q) < wA(t, q).

In particular, since Rz,t,q(0) > 0 and since the graph of Rz,t,q(w) does not cross the diagonal at
wN (t, q) we find that Rz,t,q(w) > w for all w ∈ (wN (t, q), wA(t, q)). This implies that the orbit of
z = N+(t, q) under iteration of Rz,t,q(w) converges to wA(t, q), as claimed.

Region II: Considering (t, q) = (0.15, 10) which is in Region II. For these parameters one can
again do explicit calculations to find:

z = N+(0.15, 10) =
151
√

120649 + 1880293

2044416
≈ 0.945376,

wN (0.15, 10) =
637−

√
120649

2376
≈ 0.121908, and

wA(0.15, 10) =
799
√

120649 + 327037

769824
≈ 0.78533.

In particular, we find that for all (t, q) in Region II we have the following order

wN (t, q) < wA(t, q) < z = N+(t, q).
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Since limw→∞Rz,t,q(w) is finite we have that for all w > wA(t, q) that Rz,t,q(w) < w. This implies
that the orbit of z = N+(t, q) under iteration of Rz,t,q(w) converges to wA(t, q), as claimed.

Finally, suppose that t = t4(q), corresponding to the boundary between Regions I and II. It is
clear from the above calculations and continuity that in this case z = N+(t, q) = wA(t, q). Thus
Claim (i) is proved.

Proof of Claim (ii): We suppose that t ∈ (0, t2(q)) and that z = N−(t, q). By Lemma 17 the
marked point z = N+(t, q) is a fixed point of Rz,t,q(w) if and only if t = t1(q) = 1/(q+ 1). A direct
calculation gives that t1(q) = t2(q) if and only if q = 2 and that for q > 2 we have 0 < t1(q) < t2(q).
Thus, the two curves t = t2(q) and t = t1(q) divide the qt-plane, when t > 0 and q ≥ 2, into three
regions:

Region I: 0 < t < t1(q), Region II: t1(q) < t < t2(q), and Region III: t > t2(q).

Refer to Figure 13 for an illustration. Note that Region III is not considered under the hypotheses

Figure 13. Plot of Regions I, II, and III in proof of Claim (ii).

of Lemma 12, so we will ignore it.
Just as in the proof of Claim (i) the fixed points wN (t, q), wA(t, q), and the marked point z =

N−(t, q) vary continuously with (t, q) over Regions I and II, that they never leave (0,∞), and on a
given region they are never equal. Therefore, the order with which wN (t, q), wA(t, q), and N−(t, q)
occur on [0,∞) is constant in each of the two regions.

Region I: Consider (t, q) = (0.2, 3), which lies in Region I. For these parameters one can do explicit
calculations to find:

z = N−(0.2, 3) =
1

36

(
39−

√
21
)
≈ 0.95604,

wN (0.2, 3) =
1

6

(√
21 + 6

)
≈ 1.76376, and

wA(0.2, 3) =
1

12

(
33− 7

√
21
)
≈ 0.0768308.
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In particular, we find that for all (t, q) in Region I we have the following order

wA(t, q) < z = N−(t, q) < wN (t, q).

In particular, since limw→∞Rz,t,q(w) is finite and since the graph of Rz,t,q(w) does not cross the
diagonal at wN (t, q) we find that Rz,t,q(w) < w for all w ∈ (wA(t, q), wN (t, q)). This implies that
the orbit of z = N−(t, q) under iteration of Rz,t,q(w) converges to wA(t, q), as claimed. This proves
Claim (ii)(a).

Region II: Consider (t, q) = (1/6, 6), which lies in Region II. For these parameters one finds:

z = N−(1/6, 6) =
1

320
(−3)

(√
33− 111

)
≈ 0.98677,

wN (1/6, 6) =
1

20

(√
33 + 9

)
≈ 0.737228, and

wA(1/6, 6) =
1

80

(
69− 11

√
33
)
≈ 0.0726226.

In particular, we find that for all (t, q) in Region I we have the following order

wA(t, q) < wN (t, q) < z = N−(t, q).

since limw→∞Rz,t,q(w) is finite we find that Rz,t,q(w) < w for all w ∈ (wN (t, q),∞). This implies
that the orbit of z = N−(t, q) under iteration of Rz,t,q(w) converges to wN (t, q), as claimed.

Note that if t = t1(q) it is clear from the above calculations and continuity that z = N+(t, q) =
wN (t, q). Combined with the analysis of the parameters in Region II, this proves Claim (ii)(b).

Proof of Claim (iii): First suppose that z = N−(t, q) for (t, q) in Region II, as discussed in
Case (ii) above. Since the graph of Rz,t,q(w) does not cross the diagonal at the fixed point wN (t, q)
we have that for all w ∈ (wA(t, q),∞) that Rz,t,q(w) ≤ w with equality occurring at w = wN (t, q).
Decreasing the parameter z > 0 decreases the values of Rz,t,q(w) and this will eliminate the neutral
fixed point wN (t, q). Meanwhile, if the decrease of the parameter z > 0 is by a sufficiently small
amount, then the then the attracting fixed point wA(t, q) will move continuously to an attracting
fixed point w′A for the perturbed map, and we will have that Rz,t,q(w) < w for all w ∈ (w′A,∞).
This implies that the orbit of the marked point w = z will now converge to the new attracting fixed
point w′A, as claimed in Part (iii) of the Lemma. �

Appendix B. Derivation of the Renormalization Mapping (Proof of Theorem D)

Proof of Theorem D. For each 0 ≤ j ≤ q − 1 we define the conditional partition functions of Γn
conditioned on the spin σ(r) at the root vertex equaling j as follows

Zjn ≡ Zjn(z, t) :=
∑

σ s.t σ(r)=j

Wn(σ).

Here Wn(σ) := e−
Hn(σ)
T is the Boltzmann-Gibbs weight of the configuration σ.

Notice that Zjn = Zkn for any 1 ≤ j, k ≤ q − 1.(21)

To see why this is true, let ρ be a permutation on {0, 1, · · · , q − 1} which fixes 0. Then Hn(σ) =
Hn(ρ ◦ σ), implying the claim. The term Z0

n is different from Zkn for k = 1, · · · , q − 1 because of
the term −h

∑
i∈Vn δ(σ(i), 0) that corresponds to the interaction between the externally applied

magnetic field and the spins σ(i) in (5). The full partition function then equals to

Zn ≡ Zn(z, t) = Z0
n + (q − 1)Z1

n.

Computing Z0
0 and Z1

0 : Notice that Γn is just the root vertex r when n = 0, so that H(σ) = −h
when σ(r) = 0 and H(σ) = 0 when σ(r) = 1. Hence, we have

Z0
0 = eh/T = z−1 and Z1

0 = e0 = 1.(22)
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Computing Zn+1 in terms of Z0
n and Z1

n: We first compute Z0
n+1 and Z1

n+1 in terms of Z0
n

and Z1
n. Let σ : Vn+1 −→ {0, · · · , q − 1} be a spin configuration. Let Λn be the graph that can

be obtained by joining a single new vertex (say α) to the root vertex r of Γn using a new edge
(see Figure 14). By Λ2

n let us denote the graph that one can obtain by gluing two Λn graphs
together at the vertex α (see Figure 15). In fact Γn+1 = Λ2

n. Recall from Equation (5) that Hn(σ)
denotes the Hamiltonian of the nth level Cayley rooted tree with branching number two for the
spin configuration σ. By HΛn(σ), let us denote the Hamiltonian of Λn with spin configuration σ.

Let Wn+1(σ) be the Boltzmann-Gibbs weight of configuration σ for the graph Λn, and let Zσ(α)
n+1

be the conditional partition function of Λn, supposing the spin at α is σ(α). Here we extend the
domain of σ from Vn+1 to Vn+1 ∪ {α}. Thus, σ(α) ∈ {0, · · · , q − 1}.

Figure 14. Graph Λn.

Figure 15. Graph Γn+1 = Λ2
n: two Λn connected at their respective vertices α.

Computing Z0
n+1 in terms of Z0

n and Z1
n: First, we compute the conditional partition function

Z0
n+1 of Λn in terms of z, t, Z0

n and Z1
n. Notice that the superscript 0 on Z0

n+1 indicates that we
will have σ(α) = 0 throughout this entire subsection. We have two cases.
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Case 1: σ(r) = 0. Then HΛn(σ) = Hn(σ)− h, implying that
∑

σ(r)=0Wn+1 = z−1Z0
n.

Case 2: σ(r) 6= 0. Then HΛn(σ) = Hn(σ) + J − h, implying that
∑

σ(r)6=0Wn+1 = (q − 1)tz−1Z0
n.

Here we have used Equation (21).

Thus

Z0
n+1 = z−1

(
Z0
n + (q − 1)tZ1

n

)
.(23)

Notice that, when σ(α) = 0,

Hn+1 = Hamiltonian of Γ2
n = HΓn(σ) +HΓn(σ) + h.

Here the term “h” comes from the Hamiltonian of the graph of a single vertex α (subtracting the
energy of the single point α). Thus, Z0

n+1 = z(Z0
n+1)2. This together with (23) this gives us

Z0
n+1 = z−1

(
Z0
n + (q − 1)tZ1

n

)2
.(24)

Computing Z1
n+1 in terms of Z0

n and Z1
n: First, we compute the conditional partition function

Z1
n+1 of Λn in terms of z, t, Z0

n and Z1
n. Notice that the superscript 1 on Z1

n+1 indicates that we
will have σ(α) = 1 throughout this entire subsection. We have three cases.

Case 1: σ(r) = 0. Then HΛn(σ) = Hn(σ) + J , implying that
∑

σ(r)=0Wn+1 = tZ0
n.

Case 2: σ(r) = 1. Then HΛn(σ) = Hn(σ), implying that
∑

σ(r)=1Wn+1 = Z1
n.

Case 3: σ(r) 6= 0, 1. Then HΛn(σ) = Hn(σ) + J , implying that
∑

σ(r)/∈{0,1}Wn+1 = (q − 2)tZ1
n.

Here we have used Equation (21).

Thus

Z1
n+1 = tZ0

n + Z1
n + (q − 2)tZ1

n.(25)

Notice that, when σ(α) = 1,

Hn+1 = Hamiltonian of Γ2
n = HΓn(σ) +HΓn(σ).

Thus Z1
n+1 =

(
Z1
n+1

)2
. This together with Equation (25) gives us

Z1
n+1 =

(
tZ0

n + Z1
n + (q − 2)tZ1

n

)2
.(26)

Therefore, by (24) and (26) we have a formula for the full partition function of the rooted Cayley
tree with branching number two at level n+ 1:

Zn+1 := Z0
n+1 + (q − 1)Z1

n+1

= z−1
(
Z0
n + (q − 1)tZ1

n

)2
+ (q − 1)

(
tZ0

n + Z1
n + (q − 2)tZ1

n

)2
.(27)

We are interested in the zeros of Zn+1. Notice that Zn+1 = 0 when

Z1
n+1

Z0
n+1

= z

(
tZ0

n + Z1
n + (q − 2)tZ1

n

)2(
Z0
n + (q − 1)tZ1

n

)2 = z

[
tZ0

n + Z1
n + (q − 2)tZ1

n

Z0
n + (q − 1)tZ1

n

]2

=
1

1− q
.(28)

Let wn := Z1
n

Z0
n
. Then by (28),

wn+1 = z

[
tZ0

n + Z1
n + (q − 2)tZ1

n

Z0
n + (q − 1)tZ1

n

]2

= z

[
t+ Z1

n
Z0
n

+ (q − 2)tZ
1
n

Z0
n

1 + (q − 1)tZ
1
n

Z0
n

]2

= z

[
t+ wn + (q − 2)twn

1 + (q − 1)twn

]2

.

Thus if we define

Rz,t,q(w) := z

[
t+ w + (q − 2)tw

1 + (q − 1)tw

]2

,(29)
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then

wn = Rnz,t,q(w0).

Here, the superscript “n” indicates that we compose Rz,t,q(w) with itself n times (with respect to

the variable w while fixing parameters z, t and q). In other words, it denotes the nth iterate of the
function Rz,t,q.

By definition and (22) we have w0 =
Z1
0

Z0
0

= 1
z−1 = z. So, wn = Rnz,t,q(z). Therefore, by (27)

and (29) the Lee-Yang zeros of the q-state Potts model on the nth level Cayley tree with branching
number two are the solutions to the equation

Rnz,t,q(z) =
1

1− q
.(30)

This finishes the proof of Part (i) of Theorem D.

Case of the unrooted Cayley tree: We now explain how to prove Part (ii) of Theorem D about

the unrooted Cayley Γ̂n. Denote by c the central vertex of Γ̂n, i.e. the vertex at distance n from

the leaves of Γ̂n. For any 0 ≤ j ≤ q − 1 denote by Ẑjn the conditional partition function for Γ̂n
conditioned on σ(c) = j. Like in the proof for the rooted tree, we again have Ẑjn = Ẑkn for any
1 ≤ j, k ≤ q − 1.

One obtains Γ̂n by taking three copies of the rooted tree Γn−1 and attaching each of their root
vertices by an edge to the central vertex c. In much the same way as we handled the rooted tree
above, one can prove that:

Ẑ0
n = z−1

(
Z0
n−1 + (q − 1)tZ1

n−1

)3
and Ẑ1

n =
(
tZ0

n−1 + (1 + (q − 2)t)Z1
n−1

)3
.

Therefore, Ẑn = Ẑ0
n + (q − 1)Ẑ1

n = 0 if and only if

Ẑ1
n

Ẑ0
n

= z

(
tZ0

n−1 + (1 + (q − 2)t)Z1
n−1

)3(
Z0
n−1 + (q − 1)tZ1

n−1

)3 = R̂z,t,q(wn−1) =
(
R̂z,t,q ◦R(n−1)

z,t,q

)
(z) =

1

1− q
.

This finishes the proof of Part (ii) of Theorem D. �
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