A DYNAMICAL APPROACH TO STUDYING THE LEE-YANG ZEROS FOR
THE POTTS MODEL ON THE CAYLEY TREE

DIYATH PANNIPITIYA AND ROLAND ROEDER

ABSTRACT. Let Z,(z,t) denote the partition function of the g-state Potts Model on the rooted
binary Cayley tree of depth n. Here, z = ¢ 7 and ¢t = e~7//T with h denoting an externally
applied magnetic field, T' the temperature, and J a coupling constant. One can interpret z as a
“magnetic field-like” variable and ¢ as a “temperature-like” variable. Physical values h € R, T' > 0,
and J € R correspond to ¢ € (0,00) and z € (0,00). For any fixed to € (0,00) and fixed n € N
we consider the complex zeros of Z,(z,to) and how they accumulate on the ray (0, c0) of physical
values for z as n — oo. In the ferromagnetic case (J > 0 or equivalently ¢ € (0,1)) these Lee-Yang
zeros accumulate to at most one point on (0,00) which we describe using explicit formulae. In
the antiferromagnetic case (J < 0 or equivalently ¢ € (1,00)) these Lee-Yang zeros accumulate to
finitely many points of (0,00), which we again describe with explicit formulae. The same results
hold for the unrooted Cayley tree of branching number two.

These results are proved by adapting a renormalization procedure that was previously used
in the case of the Ising model on the Cayley Tree by Miiller-Hartmann and Zittartz (1974 and
1977), Barata and Marchetti (1997), and Barata and Goldbaum (2001). We then use methods from
complex dynamics and, more specifically, the active/passive dichotomy for iteration of a marked
point, along with detailed analysis of the renormalization mappings, to prove the main results.

1. INTRODUCTION

This paper concerns the Lee-Yang zeros for the ¢ > 2 state Potts Model on the binary Cayley
Tree. Because of the recursive nature in which the Cayley Tree is constructed, there is a suitable
renormalization procedure which makes this problem amenable to methods from dynamical systems.
This paper is intended for readers from statistical physics and also from mathematics (especially
dynamical systems), so we will provide considerable background and motivation in Sections 1 and 2.

1.1. Lee-Yang zeros for the Ising Model. Let (I';,)72; be a sequence of graphs, and let (V,,)2%
and (E,)52, be the corresponding vertex set (sites) and edge set (bonds). Each such graph is
interpreted as a finite approximation to a magnetic material and classically one might let I';, be an
n x n piece of the Z? square lattice or an n x n x n piece of the Z3 cubical lattice.

In the Ising model, one magnetic particle (an electron, for example) is at each vertex, and two
particles interact if and only if they are connected by an edge. Each particle is assigned a magnetic
moment, called spin, which is represented in the model by the discrete variable o(i) € {—1,+1}
which describes the spin at vertex i. For each spin configuration, o : V,, — {£1} define the

Hamiltonian (energy) of o by

(1) Hy(o):=~J- Y oi)o)—h-> o).

<i,j>€E, 1€V

Here J > 0 is the ferromagnetic coupling constant and h is the strength of the external magnetic
field.

For a fixed temperature T > 0, the Gibbs-Boltzman weight of the spin configuration o is given
by

(2) Wy (o) i= e Hn(/T,
1
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(We set the Boltzman constant kg = 1.) Summing over all the possible spin configurations gives
the partition function

(3) Za(h,T) =3 Wy(o) = e /T,

The probability P, (o) of the system being in the state o is proportional to W, (o). Thus,
P, (o) = Wy(0)/Zn(h,T).

Since Z,(h,T) is a finite sum of exponentials, it can never be zero for real values of h and T
However, the zeros of Z,(h,T) at complex values of h or T" do occur. The way in which they
accumulate to real values of h and T in the limit as n tends to infinity gives information about
the phase transitions in the model. This interpretation dates back to the works of Lee and Yang
[43, 29]. We will use this interpretation as a motivation for studying the complex zeros of Z,,(h,T)
for the Cayley Tree and their limiting behavior as n tends to infinity, without pursuing more deeply
how this relates to phase transitions.

By letting

(4) z=¢ M7 (field-like) and t = e~7/T (temperature-like),

we get Z,(z,t) as a polynomial of z and ¢ when multiplied by 2IVeltlEnl to clear the denominator.
For the physical values T' > 0 and h € R, we must have ¢t € (0,1) and z € (0,00). Because the
partition function becomes a polynomial in the (z,t) variables we will study it exclusively in terms
of z and t.

The initial studies of phase transitions for the Ising model considered what happens as T is varied
with fixed h = 0. This corresponds to setting z = 1 and studying the zeros of Z,,(1, ) in the complex
t plane and how they accumulate to points on the interval (0, 1) of physically relevant values of ¢.
Such zeros in the complex ¢ plane are called Fisher zeros in honor of Michael Fisher [21, 8.

It is also interesting to fix T" = Ty > 0 and to vary h. This corresponds to fixing a value of
t =to € (0,1) and studying the the zeros of Z,(z,tg) in the complex z plane and also how they
accumulate to the real ray (0,00) of physically relevant values of z. In 1952, Tsung-Dao Lee and
Chen-Ning Yang published two important papers in statistical mechanics and proved a series of
Lee-Yang theorems [43, 29]. The most interesting theorem is the following:

Theorem 1 (Lee-Yang Circle Theorem). For ¢t € [0,1], the complex zeros in z of the partition
function Z(z,t) of the Ising model on any graph lie on the unit circle T ={z € C: | z |= 1}.

Interpreting parameters zp € (0,00) at which zeros of Z,(to,z) accumulate when n — oo as
corresponding to phase transitions, this implies that for any fixed ¢y € [0, 1], the only physical
parameter at which we could potentially observe a phase transition is when zp = 1 (equivalently
when hy = 0). Because of this impressive theorem, the zeros of Z,(z,%p) in the complex z plane
are called Lee-Yang zeros.

1.2. Potts Model with an external magnetic field and its Lee-Yang zeros. Much of the
discussion of the previous section carries over directly to the Potts model. Let ¢ > 2 be a natural
number. Now one can consider configurations o : V;, — {0,--- ,¢ — 1}. If J > 0 is the coupling
constant, then the energy of such a configuration when exposed to external magnetic field h € R is
defined to be

() Hy(o)=—J ) 6(o(i),a(j)) —h ) 8(a(i),0).

(i,§)EEn i€V

See, for example, Equation 20 in [41]. (Here, §(i,j) = 1 if ¢ = j and 0(¢,5j) = 0 otherwise.) The
partition function Z,(z,t) and probability P(o) with which a spin configuration occurs are defined
exactly in the same way as in the previous section, except that the new Formula (5) for the energy
H, (o) is used instead of the one in the Ising model.

Like for the Ising Model, it is convenient to express the partition function in terms of the “field-
like” and “temperature-like” variables z and ¢ that were defined in (4). In the context of the Potts
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Model, one again calls the zeros of Z,(1,t) in the complex ¢ plane the Fisher zeros and, for fixed
to € [0, 1], the zeros of Z,(z,tp) in the complex z plane, the Lee-Yang zeros.

Remark that for ¢ = 0 and ¢t = 1 it is easy to compute the partition function. For any connected
graph I with k vertices one finds

(6) Zr(z,0)=2%+(g—1) and  Zp(z,1) = (g— 142"

In particular the Lee-Yang zeros when ¢ = 0 are the k-th roots of 1/(1 — ¢) and the Lee-Yang zeros
when ¢ = 1 all £ Lee-Yang zeros are equal to 1/(1 —¢). When ¢t € (0,1) the Lee-Yang zeros are
much more difficult to compute and they depend on the graph I' and the temperature-like variable
t in a non-trivial way.

Because of its complexity, the g-state Potts model with the presence of an external magnetic
field has been researched by just a few authors, as described in Section 1.8.

1.3. The antiferromagnetic case. As in Sections 1.1 and 1.2 above, it is customary to choose
the coupling constant J to be positive, making it energetically favorable for spins at neighboring
vertices to be aligned. It corresponds to the ferromagnetic materials. However, there are some
physical systems for which the opposite phenomenon holds. They are called antiferromagnetic and
for such systems one assumes that J < 0.

1.4. Binary Cayley Tree. The n'"-level rooted binary Cayley tree is a tree (a simple, undirected,
connected, and finite graph in which any two vertices are connected by exactly one path) in which
one vertex, called the root, is of degree two with all leaves (vertices of degree one) at a distance
(minimum number of edges to connect) n from the root, and all the other vertices are of degree
three. The nt"-level unrooted binary Cayley tree is a tree in which all vertices have degree 3 or 1
and for which there exists a unique vertex of degree 3 such that all of the leaves are of distance n
from that specified vertex. The remainder of this paper we will denote the rooted binary Cayley
Tree of level n by I';; and the unrooted binary Cayley Tree of level n by I'n. We will consider the
g-state Potts Model on these two families of graphs, as n approaches infinity, for the remainder of
this paper.

1.5. Plots of some Lee-Yang zeros for the Ising and Potts models on the Cayley tree.
There is a convenient recursive formula that allows one to compute the Lee-Yang zeros of the nt”
rooted Cayley tree for the relatively small values of n. See Theorem D in Section 1.6 below. It
applies to both the Ising and Potts models. Using that theorem, we have generated figures plotting
Lee-Yang zeros for the Ising model and 3-state Potts model.

The left side of Figure 2 shows the Lee-Yang zeros for the Ising model on the binary Cayley tree
when n = 5 and when ¢t = 0.0625. Note that the zeros appear to lie perfectly on the unit circle
| z |=1 as described by the Lee-Yang circle theorem. Moreover, there exists a critical temperature
tait = 1/3 > 0 such that when ¢t < t. the Lee-Yang zeros accumulate to 1 on the positive real

FIGURE 1. Left: rooted binary Cayley Tree I'y of depth 4. Right: unrooted binary
Cayley tree I'y of depth 4.
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axis and such that when t > tq:i, the Lee-Yang zeros stay away from the positive real axis (right
side of Figure 2). (For a rigorous justification of this phenomenon, see [13, Theorem A].)

The situation is dramatically different for the 3-state Potts model on the binary Cayley tree
because the Lee-Yang zeros no longer lie on the unit circle. In fact, the Lee-Yang zeros of the 5"
rooted binary Cayley tree for the 3-state Potts model seem to lie inside the unit circle (left side

of Figure 3). Furthermore, there is a critical temperature tc = 1“‘37\6/% ~ 0.265 such that for any
t < teit, these zeros accumulate to a point on the positive real axis and such that when ¢ > %,
the Lee-Yang zeros stay away from the positive real axis (right side of Figure 3). (This will be
rigorously justified in Theorem A.)

Re

FIGURE 2. The Lee-Yang zeros for the 5" rooted Cayley Tree with branching num-
ber 2 (Ising model). Left: t = 0.0625 < t. = 1/3. Right: t = 0.5 > t. = 1/3.

Im Im

FIGURE 3. The Lee-Yang zeros for the 5% rooted Cayley Tree with branching num-
ber 2 for 3-state Potts model. Left: t = 0.0625 < t. = % ~ 0.265. Right:
t=0.5>t, = VT~ 0.265.
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1.6. Main Results. For the remainder of the paper we will denote by Z,(z,t,¢q) the partition
function for the ¢ state Potts model on the rooted binary Cayley tree of depth n. The partition
function for the unrooted binary Cayley tree of depth n will be denoted by Zn(z,t,q). Often
we will drop the dependence of ¢ from the notation when it is clear: Z,(z,t) = Z,(z,t,q) and
Zn(z,t) = Zp(2,t,q).

Our results consider the sets

(7) B(t,q) :={z € C : Z,(2,t,q) = 0for some n € N}, and

B(t,q) :={z € C : Z,(2,t,q) = 0for some n € N}.

Following the Lee-Yang approach to studying phase transitions (see Section 1.1) we will be inter-
ested in where the sets B(t,¢) and B(t,q) intersect the ray z € (0,00) for various fixed choices of
tZOanquNzg.

We first consider the ferromagnetic case J > 0 in which physical values of z and ¢ correspond to
z € (0,00) and 0 <t < 1. Let

®) h(g) 1 752(q):q—2+\/q2+32q—32'

- d
1+q M 18(g — 1)

Note that t1(2) = t2(2) = 1/3 but that t1(q) < t2(q) for all ¢ > 3.
Theorem A (Ferromagnetic Case). For any t € [0,1], as n — oo the Lee-Yang zeros for the

q > 2 state Potts Model on the (rooted or unrooted) binary Cayley Tree accumulate to z € (0,00) if
and only if t € [0,t2(q)]. They do so at a single point

1 if 0<t<ti(q)
ze(t, q) = {Zq(t) if t1(q) <t <ta(q)

with

<(27(q1)2t4+18(q23q+2)t3+(q2+14q14)t2+2(q2)t+1))>
—V/(t=1)((a=1)H1)(9(g—1)2—(q—2)t—1)°
8t((q — 2)t + 1)°

9) Z,(t) =

Remark 1. Theorem A can be reformulated as saying that for any q € N>o we have that B(t,q) N
(0,00) consists of a single point z.(t,q) for 0 <t < ts(q) and that B(t,q) N (0,00) = 0 for ta(q) <
t < 1. The same holds when B(t,q) (associated with the rooted Cayley Tree) is replaced with B(t,q)
(associated with the unrooted Cayley Tree).

Remark 2. In the case of the Ising Model we have t1(2) = t2(2) = 1/3 so that for t € [0,1] the
only z € (0,00) at which the Lee-Yang zeros can accumulate is z = 1. This is consistent with
the Lee-Yang circle theorem. However, when q > 3 an interesting new phenomenon occurs for
the Potts Model. For the non-empty interval t € (t1(q),t2(q)] the Lee-Yang zeros accumulate at
2e(t,q) = Z4(t) < 1. See Figure J for the case when q = 3.

We now consider the antiferromagnetic case J < 0 in which physical values of z and ¢ correspond
to z € (0,00) and t > 1. Let

3 (3q—6+ NGYE —32q—|—32>
):

(10) t3(q 3G =1)
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FIGURE 4. Graph of z = 2.(t,3) (Theorem A). For 0 <t < 1/4 we have z.(t,3) =1
(blue) and for 1/4 <t < t3(q) ~ 0.2651 we have z.(t,3) = Z,(t) (red).

Theorem B (Antiferromagnetic Case, ¢ > 3). For anyt > 1, asn — oo the Lee-Yang zeros for
the ¢ > 3 state Potts Model on the (rooted or unrooted) binary Cayley tree accumulate to z € (0,00)
if and only if t > t3(q) and z = zE(t,q) where

(=3=6(=2+q)t=3(2+(-2+9)q)t* —6(—2+q) (~1+)t*+(~1+¢)*t*)
( £1/(—1+t)3(1—t+qt)3(—9+18t—9qt—t2+qt?) )
8t(1 — 2t + qt)3

(11) Ze (tq) =

A plot of 2 (t,3) versus t > 1 is shown in Figure 5.

Remark 3. Theorem B can be reformulated as saying that for any q € N>o we have that B(t,q) N
(0,00) =0 for 1 <t < t3(q) and that B(t,q) N (0,00) consists of the (one or) two points zX(t,q) for
ts(q) <t < co. The same holds when B(t,q) (associated with the rooted Cayley Tree) is replaced
with B(t,q) (associated with the unrooted Cayley Tree).

The antiferromagnetic case for the Ising Model (¢ = 2) is slightly different than in Theorem B
because one also has Lee-Yang zeros accumulating to z = 1 when ¢ > t3(2) = 3. We record this
fact here:

Theorem C (Antiferromagnetic Case, ¢ = 2). For anyt > 1, as n — oo the Lee-Yang zeros
for the Ising Model (q = 2) on the (rooted or unrooted) binary Cayley tree accumulate to z € (0, 00)
if and only if t > t3(q) and z =1 or z = zF(t,2) where

=612 —3£4/(2 - 1)3(t2 - 9)
(12) 2E(t,2) = m .

A plot of z1(¢,2) and also z =1 versus ¢ > 1 that illustrates Theorem C is given in Figure 6.

The following theorem is what enables us to use the methods from dynamical systems to prove
Theorems A and B above. It is a generalization to the Potts model of a result used by Miiller-
Hartmann-Zittartz [35], Barata-Marchetti [3], Chio-He-Ji-Roeder [13]|, and others for the Ising
model on the Cayley tree.
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FIGURE 5. Graph of 2 (,3) and 2} (¢,3) (Theorem B).
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FIGURE 6. Graphs of 2 (¢,2) and 2 (¢,2) (Theorem C).
Theorem D (Renormalization Procedure). For g € N>y, t € R, and z,w € C define R 1 4(w)
and R4 4(w) by

t4w+ (g —2)tw]?
14 (¢ —1)tw

t+w+ (g —2)tw]?

(13) R q(w) =z 14+ (¢ — Dtw

Then:

(i) the Lee-Yang zeros of the q-state Potts model on the n'" level rooted Cayley tree with branch-
ing number two are the solutions z to
1

RZ,t,q(Z) = Tqv

(ii) the Lee-Yang zeros of the g-state Potts model on the n'" level unrooted Cayley tree with
branching number two are the solutions z to

and R.iq(w):=z

and

Remark 4. The expression RZ,; (z) means that one first iterates R 4(w) n-times with respect to
w and then substitutes w = z. The expression in Claim (ii) is interpreted analogously.
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1.7. Comparison of temperatures ¢;(¢) and t3(¢) to the works of Wang and Wu and
of Miiller-Hartmann—Zittartz. In their 1976 paper [40], Wang and Wu considered the ferro-
magentic g-state Potts Model on the Cayley tree and they computed the temperature T.(q) > 0
such that the zero magnetic field susceptibility diverges for T' < T¢.(q) but converges for T > T.(q).
(See also [42, Section L.LE].) As they explain, this proves that the limiting free energy f(7,h) is
non-analytic as h is varied about 0, at least in the range 0 < T' < T,(q). Expressed in our notation,
and specialized to the binary Cayley tree, their result is

o fetv2-l V2 -1
Te(q) V2-1 g+V2-1

The reader can check that 0 < t.(q) < ti1(q) for all ¢ € Ny>o. In fact, t.(q) is the unique value of
t € (0,1) at which Ry, (1) = v/2. The reason for this connection between t.(q) and the derivative
of the renormalization map R, (in the context of the Ising model) is nicely explained in the
papers of Miiller-Hartmann-Zittartz [35] and of Miiller-Hartmann [34].

Wang and Wu also explain that the higher derivatives of f(T,h) with respect to h diverge at
h = 0 over the wider range of temperatures 0 < 7" < Tgp(q), where Tpp(q) is the “Bethe-Peierls”
temperature. Thus it is more interesting to compare the Bethe-Peierls temperature tpp(q) =
e~ //Tsp(9) with t;(q) and ty(q). As explained by the papers of Miiller-HartmannZittartz and
of Miiller-Hartmann in the context of the Ising Model, this corresponds precisely to the unique
temperature tgp(g) at which R}, (1) = 1. A simple calculation shows that tgp(q) = t1(q) =
Indeed, this condition shows up naturally in our proof of Theorem A.

) corresponding to te = eI/ Te —

1
1+q°

1.8. Related Works. An early study of the Lee-Yang zeros for the ¢ > 3 state Potts Model was
done numerically by Kim-Creswich [28] in 1998. Their observations included that the Lee-Yang
zeros no longer lie on the unit circle |z| = 1 when ¢ > 3. Much closer to our paper is the 2002 paper
of Myshlyavtsev-Ananikian-Sloot [24] where the Lee-Yang zeros for the g-state Potts model on the
Cayley Tree are studied using a renormalization mapping similar to the one used here, combined
with physical reasoning and also numerical experiments. A main novelty of our paper that goes
beyond this nice work of Ghulghazaryan-Ananikian-Sloot is the use of the active/passive dichotomy
from complex dynamics; see Section 2.1 below.

Other studies regarding the Potts model with non-zero external magnetic field were done by
Chang and Shrock in [11] and [12], Shrock and Xu in [38] and [39], McDonald and Moffat [31].

Studies of the Lee-Yang zeros for the Ising Model are more common, so we mention the ones that
are closest to the present work. Studies of the Lee-Yang zeros for the Ising Model on the Cayley
Tree date back to Miller-Hartmann [34], Miiller-Hartmann and Zittartz [35], whose works were
followed by that of Barata and Marchetti [3], Barata and Goldbaum [4]. Some of the most recent
work was done by Chio, He, Ji, and Roeder [13]. Extensive studies regarding the Lee-Yang zeros
for the Ising Model on the Diamond Hierarchical Lattice were done by Bleher, Lyubich, and Roeder
[6]. Studies of Locations of Lee-Yang zeros can be found in the works of Bencs, Buys, Guerini, and
Peters [5], Regts and Peters [37], Camia, Jiang, and Newman [9], Hou, Jiang, and Newman [25],
and the references therein. Studies of the limiting measure of Lee-Yang zeros for the Curie-Weiss
Model were done by Kabluchko [27].

Note that studying statistical physics on the Cayley tree falls within the wider context of sta-
tistical physics on hierarchical lattices. For a sample of recent works see: Akin and Berker [1], De
Simoi and Marmi [17], De Simoi [18], Jiang, Qiao, and Lan [26], Myshlyavtsev, Myshlyavtsev, and
Akimenko [36], Alvarez [2], Chio and Roeder [14], Chang, Roeder, and Shrock [12], and Bleher,
Lyubich, and Roeder [7].

1.9. Structure of the paper. In Section 2 we present some tools from complex dynamics that
will be needed to prove Theorems A-C. Section 3 is devoted to the proof of Theorem A and Section
4 is devoted to the proof of Theorem B. It is followed by a short Section 5 which sketches the proof
of Theorem C. A technical lemma that is used in the proofs of Theorem A is presented in Appendix
A. Even though Theorem D is used in the proofs of Theorems A-C, we have relegated its proof to
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the Appendix B because it is relatively standard. In particular, it is similar to the derivation of
the renormalization mapping for the Ising Model on the Cayley tree that was presented in [13].

Acknowledgments. We are very grateful to Arnaud Cheritat for making the computer images of
the active locus shown in Figures 7 through 10 and also for describing his algorithm to us. We also
thank Suzanne and Brian Boyd for their help using the Dynamics Explorer computer software to
help us discover the statements proved in this paper. We are very grateful to Pavel Bleher, Bruce
Kitchens, and Robert Shrock for their many helpful suggestions. We thank Thomas Gauthier for his
comments about the active/passive dichotomy and we thank Krishna Kalidindi for his comments
on Section 2.1. Both authors were supported by NSF grant DMS-2154414.

2. BACKGROUND FROM COMPLEX DYNAMICS AND INITIAL CONSEQUENCES FOR OUR PROBLEM.

The proofs of Theorem A-C are based on the recursive formula in Theorem D and some ideas
in complex dynamics, which we present in Section 2.1, below. Section 2.2 concerns application of
the methods from Section 2.1 to the Renormalization mapping R, ;,(w). The ideas presented in
Sections 2.1 and 2.2 allow us to plot high-quality computer-generated images of the accumulation
set of Lee-Yang zeros of the Potts model on the n'-level binary Cayley tree with branching number
two as n — oo. This will be done in Section 2.3.

2.1. Active-Passive Dichotomy in Complex Dynamics. We refer the reader to [33] for general
background on holomorphic dynamics and to [10, Section V] for a similar discussion of the topics
presented below that is also written for an audience from statistical physics.

Let A C C be open and let C be the Riemann sphere . Let (fy)aca be a family of rational
maps from the Riemann sphere to itself that depends holomorphically on the parameter A. Let
a(\) be a choice of initial conditions for the iterates of f which also depends holomorphically on
A. It is called a marked point for fy.

Definition 1. A marked point a()\) is called passive for fy at the parameter \y if the sequence
(gn)o2y of functions defined by gn(\) := f{(a(X)) forms a normal family in some neighborhood
of No. Else, we say a(X\) is active for fx at the parameter \g.

See [15, Chapter VII] for the definition of normal family.

Remark 5. Historically, the above definitions were applied in the case where the marked point
a(\) was a critical point of f\(z) for each A € A, to study bifurcations in the dynamics of f.
See, for example, [32]. However, recently there has been considerable interest in the dynamical
properties of moncritical marked points, with some of the motivations coming from problems in
arithmetic dynamics. As a sample of such recent papers, we refer the reader to [19, 16, 23, 20| and
the references therein.

The set of all passive parameters for the marked point a(\) is an open set. It is called the passive
locus for a(\). Similarly, the set of active parameters for the marked point a(A) is called the active
locus for a(X).

Lemma 1. Let ¢ be a natural number. Then, marked point a(\) is passive for fy(z) at A = Ao if
and only if it is passive for the (-th iterate f5(z) at A = ).

Proof. Suppose that the marked point a(\) is passive for ff(z) at A\g. To show that a()) is passive
for f\(z) at Ao, consider any subsequence (ng) of the sequence (n) of all natural numbers. There
must then be some m € {0,...,¢—1} such that for infinitely many indices k& we have n; = m(mod /).
We denote this subsequence by (ny;); and for each j we write ny, = £ q;+m with (g;); an increasing
sequence of natural numbers. Since a()) is passive for ff(z) we can find an open neighborhood
U of Ao and a further subsequence (gj,), of (g;); such that (f*)*? (a()\)) converges uniformly on
compact subsets of U to some holomorphic function g(A). Then, f*%+™(a())) converges uniformly
on compact subsets of U to f™ o g(\). Therefore, given the original subsequence (ng)i of (n) we
have found a further subsequence (£ - g;, +m), along which fE9p ™ (a(N)) converges uniformly on
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compact subsets of U. Therefore, the family of functions {f™(a(\))}5; is a normal family on U
implying that Ao € U is a passive parameter for fy(z).
The converse implication immediately follows from the definition of normal family. g

Definition 2. Let z.¢,(Ao) be a repelling fized point of f,. Because fy varies holomorphically with
A, we can find a holomorphic map zrep(N) defined in a neighborhood U of Ao such that zep(N) is a
repelling fived point of fy for all A € U. Let ng € N. We say f;f(? maps a(Ag) non-persistently onto
the repelling fized point zyep(No) if

(14) ffg (a(Mo)) = Zv"ep(/\O) and f,r\L0 (a(N) # Zrep()‘) on U.

The definition that fx, maps the marked point a(\o) non-persistently onto a repelling periodic point
of period p > 1 is defined analogously by replacing f, with ff\)o.

Lemma 2. Suppose f;(g’ maps a(Ao) non-persistently onto a repelling periodic point for fi,(z).
Then \g is an active parameter for the marked point a(\) under fy.

If a(Xo) is in the basin of attraction of an attracting periodic point for fy,, then o is a passive
parameter for the marked point a()\) under iteration of fy.

Even though this lemma is well-known in complex dynamics, for the convenience of the reader
we include a sketch of the proof. Those who wish to see a more sophisticated proof can consider
[22, Lemma 3.1(2)].

Proof. 1t suffices to prove the statement when the (repelling or attracting) periodic cycle is a fixed
point. Indeed, Lemma 1 allows for a simple adaptation of both of the proofs below the case of a
periodic point of higher period.

It follows from the definition of normal families that we can assume without loss of generality
that ng = 0. By the Implicit Function Theorem and conjugation of f) by a suitable holomorphically
varying Mobius transformation we can also assume without loss of generality that that z =0 is a
repelling fixed point of fy(z) for all A in some small open neighborhood U C A of A\g. If we let
r > 0 be sufficiently small then for each A € U the topological annulus

x = D) \ Dr

will serve as a fundamental domain for the dynamics of f) near 0. In other words, for any A € U
and any z with 0 < |z| < r there is a unique natural number k(A z) such that f/l\g()"z)(z) € Ay.
Because f is Lipshitz continuous for any A € U we have that k(\, z) — oo as z — 0.

Our assumption that f'° maps a(\g) non-persistently onto the repelling fixed point and our
assumption that ng = 0 implies that a(\g) = 0 and a(\) # 0 for all A # \¢ chosen sufficiently close

to Ag. In particular for any A sufficiently close to A\g there exists a natural number £(\) = k(X, a(N))
such that ff(/\)(a()\)) € A,. Foreach A € U and any n € N we have that f, " (A,) is also a topological
annulus surrounding 0. Therefore, it follows from the intermediate value theorem (or other basic
topological considerations) that for any n € N there exists A, € U such that ¢(\,) = n.

We now suppose for contradiction that A\g is a passive parameter. Restricting U to a smaller
neighborhood of Ay, if necessary, we can suppose that A — f{(a(A)) is a normal family on U. In
particular this implies that there is some subsequence (n;); of the sequence of all natural numbers
such that f,”(a()\)) converges uniformly on compact subsets of U to a holomorphic function g(\).
Note that for A = Ao we have that ffg (a(No)) = /T\LOJ (0) = 0 for all j implying that g(0) = 0.
On the other hand, as explained in the previous paragraph, for each j there exists A; € U such
that £(\;) = nj. Moreover we must have A\; — 0 as j — oo because for all A outside of a given
neighborhood of Ay we have that |a(Ag)| is uniformly bounded below, implying that £(\) is uniformly
bounded above for such parameters. Because the convergence of f,”(a())) to g()) is uniform on
compact subsets of U and because f;:()\k) € A, for each index k we therefore have

l9(0) = lim [£3F(Ak)[ =7 > 0.

This contradicts that g(0) = 0.
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Now suppose that a(Ag) is in the basin of attraction of an attracting fixed point for fy,(z). As
in the previous case, we can assume without loss of generality that z = 0 is an attracting fixed
point for fy(z) for all A in some sufficiently small neighborhood of A\g. Restricting U further if
necessary, there is a uniform choice of r > 0 such that for all A € U the disc D,(0) is in the basin
of attraction of 0 under iteration of fy(z). By hypothesis there is a natural number ny such that
|£x2(a(A))] < r/2. By continuity we will then have that [f}?(a()))| < 3r/4 for all A is some open
neighborhood V' C U of Ag. It is then immediate that the sequence of functions A — f{(a()))
converges uniformly to g(A) = 0 on all of V. Therefore )\ is a passive parameter. O

Lemma 3. Let k and £ be distinct natural numbers. Suppose that in any open neighborhood of
parameter Ay there exist parameters Ay and Ay such that

(i) a(\1) is in the basin of attraction for an attracting periodic point of prime period k for
fa (%) and

(ii) a(X2) is in the basin of attraction for an attracting periodic point of prime period £ for
f)\z (Z)

Then \g is an active parameter for the marked point a(\) under iteration of f.

Proof. Without loss of generality and by Lemma 1, we can assume £k = 1 and £ > 1. For a
contradiction, let’s assume that \g is a passive parameter for the marked point a(\) under iteration
of fA(z). Then, there is a connected open neighborhood U of A\g on which (f{(a()\)))s2; forms a
normal family. Then, (f{™(a())))%; has a sub-sequence ( ff'"k(a()\)))zil that converges locally
uniformly to a holomorphic function g(A\) on U. Denote by z, the attracting fixed point for fy,
that has a(A1) in its basin of attraction. By the Implicit Function Theorem, there is an open
neighborhood V' C U of A1 and a holomorphic function zat¢, : V — C such that Zattr (A1) = ze and
Zattr(A) 1s an attracting fixed point of fy for all A € V. It follows for some potentially smaller open
neighborhood W C V' of A1 that we have g(\) = zatr(A) for all A € W. Meanwhile, g(\2) is one of
the points in the attracting cycle of period ¢ > 1 for fy,(z).
l-n+1

Now consider the family (f,"" (a(\)))s2;. The sub-sequence ( ﬁ'nkﬂ(a()\)))zo:l converges lo-

cally uniformly to the holomorphic function fy (¢(\)) on U. Notice that

f(g(N) = g(A) = zater(N)
on W and hence f(g(\)) = g(A\) on all of U by the Identity Theorem. On the other hand f(g(A\2)) #
g(A2) because g(A2) is a periodic point of period greater than 1. This is a contradiction. O

Definition 3. We say that a point b € Cs is exceptional for a rational function f:Cyp — Cop
if the cardinality of the set f~™({b}) is less than or equal to two for all m € N. A marked point
b(\) is called persistently exceptional for a holomorphic family of rational maps {fx}rea if b(N) is
exceptional for fy for all A € A.

The following lemma plays a key role in our proofs of Theorems A and B.

Lemma 4 (Lyubich, [30]). Let {fx}xea be a family of rational maps which depends holomorphically
on the parameter . Let a(\) and b(\) be marked points for fy with b(\) not being persistently
exceptional for fx. If Ao is an active parameter for a(\) under fx, then

Xo € {Ae A fi*(a(N)) = b(A) for some m € N}.

In addition to the original source [30], we also refer the reader to [10, Lemma V.2| for a proof of
Lemma 4

2.2. Applications of the Active-Passive dichotomy to the renormalization map R, ; ,(w).
We will now interpret our renormalization mapping R, ;,(w) and Theorem D in the context of
Section 2.1. Note that the degree of R, ,(w) in w drops if either z = 0 or t € {1,1/(1 — q)}.
Throughout this paper we will only work with R, ; ,(w) for fixed choices of ¢ € (0,1) U (1, 00) and
q € N>o. For such fixed t,q we will let z € C\ {0} serve the role of the varying parameter. These
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restrictions on the parameters allow us to avoid any possible drop in degree and therefore we obtain
a holomorphic family of rational maps in the sense of Section 2.1 with z serving the role of the
parameter \ varying over the parameter space A = C\ {0}.

Consider two marked points a(z) := z and b(z) := 1/(1 —gq). Theorem D gives that the Lee-Yang
zeros for the level n rooted and unrooted Cayley tree correspond to

{z€C\{0} : BY, (a() =b(z)} and {zeC\{0} : (Ropyo RYD) (a(2) = b(2) },

respectively. Note that we have used that z = 0 is never a Lee-Yang zero for when ¢ > 0 which
is why we are able to assume z € C\ {0} in the above formula. Therefore, one has the following

expressions for the sets B(t,q) and B(t, q) that were defined in Equation (7) above:
B(t,q) = {z € C\ {0} : R?, (a(2)) = b(z) for some n € N} and

2,t,q

B(t,q) = {z e C\ {0} : (Rz,t,q o R("fl)) (a(2)) = b(z) for some n € N},

z,t,q

respectively.
For fixed ¢t € (0,1)U(1,00) and ¢ € N>2 we denote the active locus of the marked point a(z) = 2
under the holomorphic family R, ;,(w) by A(t, q).

Lemma 5. For anyt € (0,1)U(1,00) and g € N> we have A(t,q) C B(t,q) and A(t,q) C [;’(t,q).

Proof. We will first prove the containment A(t,q) C B(t,q). By Lemma 4 it suffices to show that
b(z) =1/(1 — q) is not persistently exceptional for R, ; ,(w). We will show that for z = 1 the point
b(1) is not exceptional for R; ¢ 4(w). The critical values of R;;4(w) are 0 and oo and therefore the
critical values of the second iterate Rim(w) consist of

((q—2)t+1)°

(q—1)% ~
each of which is non-negative (or infinite). Therefore b(1) = 1/(1 —¢) < 0 is not a critical value
of R}, (w) implying that it has four preimages under R}, (w). We conclude that b(1) is not
exceptional for Ry ;q(w) and therefore that b(z) is not persistently exceptional for R, ¢ 4(w).

The containment A(t,q) C B(t,q) will also follow from Lemma 4. Note that for any z # 0 the
critical values of Rz,t,q (w) are 0 and infinity. Since Rzyt’q(w) is a rational map of degree three and
b(q) = 1/(1 — q) is not a critical value, one of the three preimages of b(q) will not be exceptional
for R, ; q(w). Denoting that preimage by ¢(g) we apply Lemma 4 to see that

0, 00, Riuqe(0)=1% —and

A(t,q) C{z € C\ {0} : Ri?tqu)(a(z)) = ¢(z) for some n € N} C 3(t, q).

Lemma 6. For anyt € (0,1) U (1,00) and q¢ € N>o we have

A~

B(t,q) N (0,00) = B(t,q) N (0,00) = A(t,q) N (0, 0).

Proof. Lemma 5 gives A(t,q) N (0,00) C B(t,q) N (0,00) and A(t,q) N (0,00) C B(t,q) N (0,00).
Therefore, it suffices to show that if z € (0,00) \ A(t,q) then z & B(t,q) and z & B(t, q).

We first show that if z € (0,00) \ A(t, q) then z & B(t,q). Let z¢ € (0,00) be a passive parameter
for the marked point a(z) = z under R, ,(w). Then, by definition, there is an open neighborhood
U of z, such that the sequence g, : U — C of functions defined by

gn(2) = R, 4(a(2)) = RE, ((2)
forms a normal family. For the sake of contradiction, let’s assume that ze € B(t,q). Then we can
find a sub-sequence (ny)ren and points z,, € U such that:

(i) (gn,) converges uniformly on compact subsets of U,
(i) gny(2n,) = RZF 4 (2n,) = 1/(1 —q) for all k € N, and

Zny s
(ill) limp_yo0 2n, = Ze-
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Let g(z) be the uniform limit of gy, (z). Notice t > 0,q > 2 and z, > 0 imply that g,, (ze) > 0
for each k and hence that the limit satisfies g(zo) > 0. On the other hand, because g, converges
uniformly to g, and z,, — ze, we have gp, (2, ) — g(2e). This is a contradiction because g(ze) > 0
and gn, (zn,) = 1/(1 — q) < 0 for each k.

The proof that if z € (0,00) \ A(t,q) then z & B(t,q) is quite similar, except that one replaces
the sequences of functions gn(2) = R7, ,(a(z)) with a new sequence g, (z) = (Rzi,q o RS,Z]I)) (2).
We leave the details to the reader.

2.3. Plotting Numerical Approximations to Lee-Yang Zeros Using The Active-Passive
Dichotomy. Lemma 5 gives that A(t,q) C B(t,q) and A(t,q) C [;’(t, q). Although we are primarily
interested in the sets B(t,q) and B(t,q), the active locus A(t,q) for the marked point a(z) = z
under the holomorphic family R, ,(w) can be studied dynamically. Moreover, we can also use the
computer to make plans of A(t, ¢) that are far more detailed than the plots of Lee-Yang zeros given
in Figure 3. While the plots of A(t, ¢) may be missing some points of B(t,q) or [;’(t, q) they still
may be informative about those two sets of Lee-Yang zeros.

Arnaud Chéritat helped us by using his computer software to plot the active and passive param-
eters of the marked point a(z) = z for R, 4, for fixed ¢ and t, in the complex z-plane. Figures 7
and 8 show the active loci related to ¢ = 0.26 and ¢ = 0.5 for the 3-state Potts model. The points
in black are supposed to be active parameters and the points in white are supposed to be passive
parameters. The reader should compare Figures 7 and 8 with Figure 3.

It is difficult to numerically compute the Lee-Yang zeros of the partition function when ¢t > 1.
Therefore, we did not include any images analogous to Figure 3 when ¢ > 1 (the antiferromagnetic
case). Instead, we include the plots of the active locus for the marked point a(z) = z for R, +(w)
at ¢ = 6 in Figure 9 and Figure 10. The Lee-Yang zeros for I';, accumulate to this active locus as
n — 0o.

We briefly describe here the method used by Chéritat to numerically compute the active locus
for a marked point a(A) under a holomorphic family of mappings f)(z). A rectangular region in the
complex A plane is divided into pixels. Each pixel is interpreted as a small square in the complex
plane whose side length is » > 0. One also picks a parameter 0 < # < 1, a small parameter € > 0,
and a threshold mg € N. These are “tuned” by the user to get a reasonably looking plot.

To determine if the pixel associated to A = A\g should be colored black (active), white (passive),
or red (undecided) the program checks each of the following three conditions for m = 1,2,3,....
Once one of the conditions below is met for the pixel associated to A\g the program moves on to

check the next pixel.
(1) The program computes Fy,(A) := f{*(a())) together with a numerical approximation to the
derivative ’W’ It
A=Xo
d(Fn(A) = A) |
X A= o

then it is assumed that a(\g) is close to being periodic and, when that happens it is likely
that a()\g) is periodic repelling. In this case the program declares Ay to be active and the
pixel is colored black.

(2) If Step 1 failed at iterate m then the program checks if

dfy' (2) |
dz z=a(No)

|E(Xo) —a(Xo)| <7 -0

<€

If this holds then the program decides that a()Ag) is probably in the basin of attraction of
an attracting periodic cycle. In this case, the program declares \g to be passive and the
pixel is colored white.

(3) If Steps 1 and 2 both fail and if m has reached the threshold, mg then the program stops
and colors the pixel red, indicating that it could not decide if a(A) should be interpreted as
being active or passive at the parameter \g.
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FIGURE 7. The active locus for the marked point a(z) = z for R, ;3(w) at t = 0.26.
Points in the active locus are black and the points in the passive locus are white.
As explained in Section 2.3 the Lee-Yang zeros at t = 0.26 accumulate to the active
locus (black) as n — oc.

-
-

FIGURE 8. The active locus for the marked point a(z) = z for R, ;3(w) at t = 0.5.
Points in the active locus are black and the points in the passive locus are white.
As explained in Section 2.3 the Lee-Yang zeros at ¢t = 0.25 accumulate to the active
locus (black) as n — oc.

FIGURE 9. The active locus for the marked point a(z) = z for R, 3(w) at t = 6.
Points in the active locus are black and the points in the passive locus are white.
The following Figure 10 is a zoomed-in version of this image around z = 1.

3. PROOF OF THEOREM A

Note that the cases when ¢t = 0 and ¢ = 1 are easily handled using the explicit formula (6). We
therefore restrict our attention to 0 < t < 1 throughout the remainder of this section. We refer the
reader to Equation (8) for the definitions of ¢;(¢) and t2(¢q). By Lemma 6 the proof of Theorem A
reduces to the proof of the following theorem.
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R

FIGURE 10. The active locus for the marked point a(z) = z for R, ;3(w) at t = 6.
Points in the active locus are black and the points in the passive locus are white.
This is a zoomed-in version of above Figure 9 around z = 1.

Theorem 2. Suppose 0 < t < 1 and let A(t,q) be the active locus for the marked point a(z) = z
under R, ¢ q(w). Then

A(t,q) N (0,00) = ¢ {Z4()} if ti(g) <t <ta2(q),
) if ta(q) <t<1.

Here Z,(t) is given in Equation (9) in the statement of Theorem A.
We begin with several lemmas.

Lemma 7. Let 0 <t <1, 2 >0, and ¢ > 2. Then the map R 4(w) has the following properties:
(i) R.tq(w) is increasing on [0, 00),
(ii) R.¢q(w) has at least one fized point on [0,00), and
(ili) Ratq([0,00)]) C[c,d] with c,d € R and 0 < ¢ < d.

Proof. Simple calculations show that
dw B (g — Dtw+1)3 '

OR
Because t € (0,1), z > 0, and ¢ > 2, we get Tz’t’q(w) > 0 for all w > 0. Thus, R,;4(w) is
w

increasing on [0, 00). This proves Claim (i).
Notice that R, 4(0) = zt* > 0. Furthermore, the horizontal asymptote of R, ,(w),

{1 + (g — 2)1 2
(¢—1)t
is positive and finite. Thus, R, ,(w) must intersect the diagonal at least once. Hence, R, q(w)
has at least one positive fixed point, thus proving Claim (ii).
Thus, if we let

Jim R q(w) =2

. 1+ (¢—2)t]”
Pp— = 2 = = T (g — 1)+
€= Repg0) = 247 and d:= lim R pq(w) =2 [ (=1t |~

then Claim (iiii) follows from Claims (i) and (ii). O

Let ¢,d € R with ¢ < d. Let f : [¢,d] — [e,d] be a differentiable function such that f’(z) > 0 for
all x € [a,b], and with f(a) > a, and f(b) < b. A fixed point zgy for f is repelling if f'(zgx) > 1,
neutral if f'(zgy) = 1, and attracting if f'(rgc) < 1. The following Lemma is well-known, so we
omit the proof.



16 September 14, 2025

Lemma 8. Let f : [c,d] — [c,d] be as described above. Let Ay, Ny and Ry be the set of all
attracting, neutral, and repelling fived points of f respectively. Then for any xo € (¢, d)\(Rf UNyU
Ay), the orbit of xo under f converges to a point in Ay U Ny. Furthermore, if there is a point
xn € Ny and an open interval I 3 xg,xn with no fixed point of f in I\{xn} such that

(i) zo < xzn and f|(z) >z or

(ii) o > xn and f|1(z) < z,
then the orbit {f™(z0)}52 of xo converges to xy.

Lemma 9. Let t € (0,1) be fized. Suppose z > 0 is an active parameter for the marked point
a(z) = z under R, 4(w). Then one of the following two cases occurs.

(i) The marked point a(z) = z is a repelling fized point of R, ¢ q4(w).

(ii) R.tq(w) has a positive neutral fized point.

Proof. Let t € (0,1) be fixed. Then for any fixed z > 0, by Lemma 7, the function R, ;q(w) is
increasing on [0, 00) with at least one fixed point. Moreover, R, ,(w) maps the compact interval
[c, d] to itself. Therefore, from Lemma 8 we see that a(z) = z is a repelling fixed point of R, 4(w),
the orbit of z under R, ;, converges to a neutral fixed point, or the orbit of z under R, ; , converges
to an attracting fixed point of R, ;(w). By Lemma 2, the third option corresponds to passive
behavior of the marked point a(z), so that (i) or (ii) must occur. O

Lemma 10. Let t € [0,00) \ {1} and z > 0. Then the marked point a(z) = z is a fived point of
R, i q4(w) if and only if z = 1.

Proof. A direct calculation gives Ry 4(1) = 1. Conversely, t > 0 and z > 0 imply that ¢t + 2z + (¢ —
2)tz >0, and 1 + (¢ — 1)tz > 0 which allows us to simplify

t+z+ (qg—2)tz 2_

Beval2) =2 | 50 T
to
t+z+(q—2)tz=1+(q¢— 1)tz
by taking a square root. This implies z(1 —t) = 1 — t. Because t # 1, we get z = 1. ]

Lemma 11. Let z > 0, t € (0,1) and ¢ > 2. If R.;q,(w) has a neutral fized point at some
w =wpn(z) >0, then t € (0,t2(q)] and z = N4 (t,q), where
(—27(q—1)2t*+18(q2—3¢+2) 13+ (¢?+14g—14)t3+2(q—2)t+1))
( v/ (=1 (g )41 (9= 1) —(g—2)t-1)° >
8t((q —2)t +1)3
Moreover, for each value of t € (0,t2(q)] both values N4 (t,q) are positive.

N:I:(ta Q) =

Remark: Z4(t) from Theorem A is equal to N_(¢,q). Figure 11 shows a plot Ni(¢,q) in the case
that ¢ = 3.
Proof. Throughout the proof, fix ¢ > 2. By definition, wy > 0 is a neutral fixed point of R, ¢ 4(w)
if and only if

d

Repg(wn) =wy  and SRy g(W) fumwy (= +1.

d
However, by Lemma 7 we find that d—Rz,m (w) = 1. Therefore the above conditions reduce to the
w

condition that R, ;,(w) — w has a multiple root at wy. Clearing denominators, this is equivalent
to the following polynomial in w having a multiple root at some wy:

P, 1 q(w) = 2((q — 2)tw + t + w)* — w((q — Vtw + 1)*.

Taking the discriminant of P, ;,(w) with respect to the variable w we find that R, ;, has a neutral
fixed point if and only if

—(—14t)2(Q —t+qt)*2Q(2,t,q) = 0,
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F1cure 11. Plots of N, (t,3) (orange), N_(t,3) (red), and 1 (blue) versus ¢. Com-
pare with Figure 4.

where the last factor Q(z,t,q) is the following quadratic polynomial in z:
Q(z,t,q) == (4¢°t" — 24¢t" + 48qt" — 24(q — 2)t° + 12(q — 2)qt> + 12qt* — 32t* — 24¢* + 4¢) 2°

(=gt + 3¢ + 2qt* — 6(q — 2)t* + 6(q — 2)qt> — 6qt* + 6qt — t* + 6t> — 12t + 3) 2
4qt — 41 = 0.

Since t € [0,1), z > 0, and g > 2 the only way that the discriminant of P, ,(w) vanishes is when

Q(z,t,q) vanishes. The reader can check that Q(z,t,q) vanishes precisely under the conditions

stated in the conclusion of this lemma.

The square root in the formula for N (t) is non-negative if and only if ¢ € (0,t2(g)]. Since the

denominator of N4 (t,q) does not vanish for ¢ > 0 we have that N (t, ¢) both vary continuously as
t varies over the interval (0,¢2(q)]. When ¢t = 1/(1 4 ¢) one finds that

(a—D(g+1)°
(2¢—-1)%
both of which are positive. Meanwhile, substituting z = 0 into the polynomial P, ;,(w) yields

—w(1+ (=14 ¢)tw)? which has no solutions when w,¢ > 0. Therefore N (¢, q) remain positive for
all t € (0,t2(q)]- O

N_(t,Q):l and N—‘r(t?q):

We will need the following lemma to complete the proof of Theorem 2. Since the proof involves
some technical calculations, we will give it in Appendix A.

Lemma 12. We have:
(1) Suppose z = N4 (t,q). Then, for anyt € (0,t2(q)), the orbit of the marked point a(z) = z
under iteration of R, ., converges to an attracting fized point wa(z) of R, ¢ q(w).
(i1) Suppose z = N_(t,q). Then:
(a) Ift € (0,t1(q)), then the orbit of the marked point a(z) = z under iteration of R, 4
converges to an attracting fized point wa(z) of Ry q(w).
(b) Ift € (t1(q),t2(q)), then the orbit of the marked point a(z) = z under iteration of R, ¢ 4
converges to a neutral fixed point wy(N_(t,q)) of R, tq4(w).
(iii) If t € (t1(q),t2(q)) and z < N_(t,q) is sufficiently close to N_(t,q), then the orbit of z
under iteration of R, , converges to an attracting fized point wa(z) of R, 4q(w).

Proof of Theorem 2. Suppose 0 < t < 1. By Lemma 9, if z > 0 is an active parameter for the
marked point a(z) = z under R, ;,(w), then either

(). a(z) = z is a repelling fixed point for R, ;,(w), and in this case, that repelling fixed point
must be w = 1 by Lemma 10, or
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(ii). Rstq(w) has a neutral fixed point wy(z) > 0. Then by Lemma 11, t € (0,t2(q)] and
z= Nt (t7 Q)

In Case (i), a simple calculation gives

22t
R, ()= —""".
1ta(l) (q—1)t+1

By solving the inequality R}, (1) > 1 for t we get 0 < ¢ < t1(g). Moreover, when 0 <t < t;(qg),
R.:q(w) maps a(z) = z non-persistently onto this repelling fixed point w = 1 as a(z) = z is not
fixed for z # 1. Then by Lemma 2, z = 1 is an active parameter for the marked point a(z) = z
under the map R.;q(w). If t = t1(¢), then z = 1 continues to be an active parameter for the
marked point a(z) = z as the active locus is closed. If ¢ > t1(q), then w = 1 is an attracting fixed
point. So, in that case, a(z) = z is passive at z = 1.

We now consider Case (ii). Note that when ¢ = t2(q) we have N4 (t,q) = N_(t,q). To finish the
proof of Theorem 2 we must check:

(I). For any 0 < t < t2(q) we have that z = N,(t,q) is passive for the marked point a(z) = z
under R, ; ,(w).

(IT). For any 0 < t < t1(q) we have that z = N_(¢,q) is passive for the marked point a(z) = z
under R, q(w), and for any t;(q) <t < t2(q) we have that z = N_(t,q) is active for the
marked point a(z) = z under R, ; 4(w).

Suppose 0 < t < ta(q). If z = N, (t,q), then Lemma 12(i) gives that the orbit of z converges to
an attracting fixed point of R, ;,(w). Thus, by Lemma 2, z = N, (t,q) is a passive parameter for
the marked point a(z) = z under R, ; ,(w). Similarly, when 0 < t < t1(¢) and z = N_(t,q), Lemma
12(ii(a)) gives that the orbit of z converges to an attracting fixed point of R, ;,(w), making it a
passive parameter for the marked point a(z) = z under R, ,(w) by Lemma 2.

Suppose t1(q) < t < ta(q) and z = N_(t,q). By Lemma 12(ii(b)), the orbit of zop = N_(¢,q)
converges to the neutral fixed point wx(N_(t,q)). Furthermore, there exists an attracting fixed
point wa < wy(N_(t,q)). This attracting fixed point varies continuously with respect to z around
N_(t,q). We will denote this dependence on z by wg = wa(z). By Lemma 12(iii) if z < z
is sufficiently close to zp, then the orbit of z converges to wa(z). Thus, for any subsequence
(thq( ))Zozl of (R?’t,q(z))oo: and any neighborhood U of zg = N_(t,q), we can find a further

. o0
subsequence (R:?q(z)> of (thq( ))zo_l and a point z; € U such that for all j € N
"y J: =

Nk

‘Rniq(zl) - R:() t q(ZO)‘ >

wn(z0) —wa(z1)
5 )

Because wy(z0) —wa(z0) > 0 and because wa(z) depends continuously on z we can choose z; € U
sufficiently close to zp so that the right-hand side of the above inequality is positive.

Therefore the family {RZ, (z )}n:1 of functions is not normal at zp = N_(¢,q). Hence, the
marked point a(z) = z under R, (w) is active at z9p = N_(¢,q). Because the active locus is a
closed set, the marked point a(z) = z under R, ; ,(w) is also active at zg = N_(t,q) when t = t1(q)
and t = ta(q).

This completes the proof of Theorem 2. O

4. PROOF OF THEOREM B (ANTIFERROMAGNETIC CASE, ¢ > 3)

Recall that Theorem B concerns the antiferromagnetic regime J < 0. Since the physical values
J
of temperature are 1" > 0, this corresponds to the temperature-like parameter t = e~ 7 > 1 and the

field-like parameter z = e T > 0. By Lemma 6 the proof of Theorem B reduces to the proof of the
following theorem.
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Theorem 3. Supposet > 1,q > 3 and let A(R,;4) be the active locus for the marked point a(z) = z
under R, ; 4(w). Then

0 if 1<t <t3(q)
{z&(t,0)} if ts(a) <t.
Here t3(q) > 1 and z£(t,q) are given in Equations (10) and (11) as in the statement of Theorem B.

(15) A(Rz4,4) N (0,00) = {

Therefore, the rest of this section is devoted to the proof of Theorem 3. The reader can see
the plots of zF(¢,3) in Figure (5). The main challenge is that R, ,(w) is not increasing on [0, 00)
when ¢ > 1. However, the second iterate RZ;  (w) = R. 4 (R.1q(w)) of R,y q(w) is increasing on
[0,00) when ¢t > 1. By Lemma 1 the active locus for the marked point a(z) = z under thq(w)
is the same as for the second iterate R?; (w) so we can therefore work extensively with RZ, (w)
throughout the proof of Theorem 3.

Lemma 13. Let z > 0,t > 1, and ¢ > 2. The map
2 (2((g — 2)t + 1)((g — 2)tw + t + w)% + (g — )tw + 1)2)*
((q = Dtz((q — 2)tw + t +w)2 + ((g — Dtw + 1)2)?

Rz,t,q( ) = Rz,tvq (th,q(w)) =

has the following properties.
(1) thq( w) is increasing on [0,00),
(i) RZ, ,(w) has at least one fized point on [0,00), and
(iii) RZ,,([0,00)]) C [¢,d] with ¢,d € R and 0 < ¢ < d.
Proof. The interval [0, 00) is forward invariant under R, ;,(w) so, by the chain rule it suffices to
prove that %Rz,uq(w) < 0when z >0, t > 1, and g > 2 and when w > 0. Expressing everything
intermsof 2z, s=t—1>0, p=g—2>0, and w > 0 we find:
iR 2282+ p+s+ps)(1+s+w+pw+ psw)
ow sta(W) = (1+ w+ pw + sw + psw)3
This proves Claim (i). To prove Claim (ii), notice that

2(22((g - 2)t +1) +1)°
((q— 1)t3z + 1)

< 0.

Rz,t,q (O) =

and

lim B2, (w) z (8 (¢®2+ ¢*(1 — 62) +2¢(62 — 1) — 8z + 1) +3(q—2)2t22+3(q—2)tz+z)2
im =
whioe b\ (q—1)22 ((q — 2)222 + t(2qz + ¢ — 4z — 1) + 2)?
which is positive and finite. Hence, R? t,q(w) has at least one positive fixed point by the Intermediate
Value Theorem. Since RZ, (w) is increasing on [0,00) we can prove Claim (iii) by letting ¢ :=
thq( ) and d := limy, o0 Rgtq(w). O
Lemma 14. For fixred z > 0, t > 1 and q > 2, if the map th q( w) has a neutral fized point, then
t>t3(q) > 1 and  z=z5(t,q),

where the formulae for t3(q) and z = zE(t,q) are given in Equations (10) and (11).

Furthermore, for all t > t3(q) we have

(a) 0 < 27(t,q) < zF(t,q) with the equality z_ (t,q) = 2} (t,q) only when t = t3(q).

(b) Ifq>3thenz (t q) <1.
Proof. The proof is quite similar to the proof of Lemma 11 given in the previous section. We
express the condition that RZ t.¢(w) has a neutral fixed point as the existence of a multiple root of a

polynomial P, ; 4(w) which is obtained from the equation RZ; (w) = w by clearing denominators.
The discriminant of P, ; ,(w) with respect to w equals

(16) Zs(t - 1)16((q - 1)t + 1)16 Ql(Z, t, q)Qz(z, t, Q)gv
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where
Qi(z,t,q) = 2[t(27(q — 1)*t> — 18(q — 2)(q — 1)t* — q(q + 14)t — 2 + 14t +4) — 1] + 4t2°((¢ — 2)t + 1) + 4(q — 1)t,

and
(17)
Q2(z,t,q) = 2(—(qg — 1)*t* +6(q — 2)(q — 1)t> +3((q — 2)q + 2)t* + 6(q — 2)t + 3) + 4t2>((q — 2)t + 1)* + 4(q — 1)t.

Therefore, we find that R, ;, has a neutral fixed point if and only if one of the factors in Equa-
tion (16) vanishes. The first three factors clearly don’t vanish for z > 0,¢ > 1, and ¢ > 2. We claim
that Q1(z,t,q) also does not vanish for this range of the parameters z,t, q. Expressing everything
interms of z,s=t—1>0,p=¢q¢q—2 >0, and w > 0 we find:

Q1 = 4p3s*2% + 16p3s32% + 24p3 %22 + 16p°s22 + 4p>22 + 27p?s* 2 + 12p 322 + 90p?s32
+ 36p2s222 + 107p%s% 2 + 36p%sz? + 52p%sz + 12p%2% + 8p®z + bdpstz + 198ps3 2
(18) + 12ps?2% + 252ps?z + 24psz? + 124psz + Aps + 12p2? + 16pz + 4p + 275z
+1085%2 + 144572 + 4s2% + 7252 + 4s + 42° + 82 + 4 > 0.

Note that Q2(z,t, q) is quadratic in z with the coefficients depending on ¢t and q. Solving Q2(z,t,q) =
for z in terms of ¢ and ¢ we find precisely the values 2 (t,q) given in Formula (11). Note that
the term under the square root in formula for zF(t,q) vanishes at ¢t = t3(q) and that it is nega-
tive for 1 < ¢ < t3(q) and strictly positive for ¢t > ¢3(¢). In particular, when ¢ > t3(q) we have
2 (tq) < 2 (1, q).

We now prove the additional claim (a) by checking that for all ¢ > t3(¢) we have 0 < z_ (¢, q).
When t = t3(q) we have

—27¢% 4+ 153¢% — 297q + 198 + (9¢* — 35q + 35) \/9¢> — 32¢ + 32
2(¢—1) ’

which one can check is positive for all ¢ > 2. It is clear from the formulae for zF(t,q) that for
fixed ¢ > 2 they are continuous functions of ¢ > t3(g). Suppose for contradiction that there were
some t4 > t3(q) with 2 (t4,¢q) < 0. In this case the Intermediate Value Theorem would give
that there exists t5 € [t3(q),ts] with z_ (t5,¢) = 0. We obtain a contradiction by noting that
we would then have Q2 (2. (t5,9),t5,9) = Q2(0,t5,q) = 0 while a direct calculation gives that
Q2(0,t,q) =4(q— 1)t > 0 for all ¢ > 2 and ¢t > 0.

To prove additional claim (b) it suffices to show that Q1(z,¢,q) > 0 for all z > 1, ¢ > 1, and
q > 3. If one computes Q1(1+ r,1+ 5,3 + p) one finds a polynomial whose constant term is 72
and all of whose monomials appear with a “plus” sign. (We have omitted the many line expression
which is similar to Equation (18) above, but the reader can check it in a computer algebra software
package.). O

(19)  2l(t,q) =2z (t,q) =

In the following statement, we extend the range of allowable values of ¢ from Nx>3 to the interval
[3,00) so that methods involving continuity can be used in the proof.

Lemma 15. Define sets R1 and Ro as follows:
Ri:={(zt,q) eR3:t>1, ¢ >3, and if t > t3(q) then 0 < z < z_ (t,q) or z > 2T (t,q)}
Ro:={(z.t.0) €R* 1t 2 t3(q), 423, 2, (t,q) <2 <zl (t.q)}.
Then,
2

(i) For all (z,t,q) € R the second iterate of the renormalization map, RZ, ,(w), has only one

real fized point. This fized point is in (0,00) and it is an attracting fized point of R, 4(w).
(ii) For all (z,t,q) € Ro the second iterate of the renormalization map, R§7t7q(w), has three real
fized points each of which is in (0,00). One of these fixed points is a repelling fixed point of

R, i q4(w). The other two fized points correspond to an attracting period 2-cycle of R 1 q(w).
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Proof. We first prove that Ry and Ry are each path connected. We begin with R1. One can easily
check from the formula (10) that for ¢ > 3 one has t3(q) > 3. Therefore, we have the containment

B:={(ztq) €R®: 2>0,1<t<3, and ¢ >3} C Ry.

Note that B is convex and hence path connected. Moreover, for each fixed choice of real ¢ = qg > 3
the slice

RinN{qg=qo} :={(2,t,q0) € R3:t>1and if t > t3(qo) then 0 < z < 2 (t,qo) or z > 2 (t,q0)}

has non-trivial intersection with B. Therefore it suffices to show for each real gy > 3 that the slice
R1N{q=qo} is path connected. We will describe an explicit path within R1 N {qg = qo} from any
point (zo, to,q0) € R1 N {q = qo} to the point (1,2,qg) € B. There are three possibilities:

Option 1: 1 < tg < t3(qo). The straight line path between (zg,%o,qo) and (1,2,qp) remains in
R1N{q=q}

Option 2: ty > t3(qo0) and zp > 27 (tg,qo0). Since qo > 3, Lemma 14 gives that 2 (tp,q0) < 1.
We can therefore form a path from (2o, to, qo) to (1,2, qo) by first connecting (2o, to, qo) to (1, %0, qo)
using a straight-line path (varying only z) and then connecting from (1,tp,qo) to (1,2,q0) by a
straight line path (varying only ¢). Each of these line segments is in R1 N {g = qo}.

Option 3: tg > t3(qo) and 0 < 29 < z_ (to,q0). By Lemma 14 we have that z_ (¢,qp) > 0 for all
t > t3(qo). Moreover, it is clear from the expression for z_ (¢, qp) that it is a continuous function
of t > t3(q). Therefore, there exists a positive M > 0 such that for all ¢t € [t3(qo),to] we have
zo (t,qo) > M. We can therefore form a path within Ry N {q = qo} from (zo, t9, o) to (1,2,qo) by
a concatenation of three straight line paths. One first connects from (2, to, qo) to (M/2,to,qo) by
varying only z. One then connects from (M /2, ty, qo) to (M/2,2,qy) by varying only ¢. One finally
connects from (M /2,2, qo) to (1,2, qp) by varying only z.

We have therefore proved that Ri is path connected. We will now prove that Ro is path-
connected. For each t > t3(q) let

H(1,q) = 3 (o0 (t,a) + 22 (1,0))
For each ¢t > t3(q) one has z™4(t,q) € Ry. In particular, given any 3 < gy < ¢; we can form
a path in Ro connecting the slice Ra N {q = qo} to the slice Ra N {g = ¢1} using the mapping
g (z2M4(t3(q) + 1, q), t3(q) + 1, q) where ¢ varies over the interval [qo, q1]. Therefore, it suffices to
prove for each ¢ = qp > 3 that RaN{q = qo} is path-connected. Given any (2o, to,q0) € RoN{q = qo}
we can connect it using a path within Ra N {g = qo} to (2™9(¢3(q0) + 1),%3(qo) + 1, o) as follows.
One first varies just the z-coordinate to connect from (2, to,qo) to (229 (¢o, o), to, qo). One then
connects from (2™4(tg, qo), 0, go0) to (229(t3(qo) + 1),t3(q0) + 1,q0) by varying t between ¢, and
t3(qo) + 1 and letting z = 2]*(t, qo) as one does so.

We now prove Statements (i) and (ii). The regions R and Ry were chosen so that the second
iterate of the renormalization mapping Rit’q(w) has only attracting or repelling (but not neutral)
real fixed points for all parameters (z,t,q) € R1 N Rq. Therefore, as one varies the parameters
(z,t,q) within a given region R; or Ra these real fixed points each vary continuously and their
nature (attracting or repelling) remains unchanged. (This also implies that the same holds for fixed
points of the first iterate R, ¢ 4(w).) Moreover, Lemma 13(iii) gives for all (2,¢,q) € R1 U Ry that
RZ, ,((0,00)) is contained in a compact subset of (0,00). Therefore, as (z,t,q) varies over Ry or
over R any fixed point of R;t’q
a fixed point of Rg,uq(w) that again lies in (0, 00) for the other choice of parameters. Therefore it
suffices to check the assertions of each of the claims (ii) and (iii) for a single choice of parameters

in each region.

(w) that lies in (0, 00) of one choice of parameters (z, ¢, q) moves to
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Region R;: Note that (z,t,q) = (1,3,3) € R1. One finds that

(4w + 3)?

172w? + 132w + 39)°
Gwr1e Mnd R?gg(w)—( - v+ 39)
w "

R w) = B .
13.2(w) (132w? + 156w + 55)°

By solving Rig,?}(w) = w for w one finds that the only real solution is w = 1 and that it is also a
fixed point of R 33(w). Moreover, |R] 3,(w)| = 1 <1, so the only real fixed point of Ri&?’(w) is
actually an attracting fixed point of the first iterate Ry 33(w).

Region Ry: Note that (z,t,q) = (1/5,8,3) € Ry because

~ 9229 — 119v/5593 ~ 9229 — 119v/5593

Z (8,3) 16656 ~0.0071  and  z7(8,3) oG ~ 0.3886.
We have
9w + 8)? 1567w? + 368w + 88)°
R1/5,8,3(w) = 5&16’11)—&-)1)2 and R%/57873(w) = ( )

5 (368w? + 352w + 147)%
By solving R% /58 4(w) = w for w one finds the following three real roots:
939 — 172165 939+ 172165

1058 1058
w3 ~ 0.4412, which is the unique real root of p(x) = —64 — 1392 + 7922 + 128023.

wy : ~ 0.1399, wy : ~ 1.6352 and

The only real root of R;/553(w) = w is w = w3 and one finds that !(R1/5’8,3)’(w3)’ ~ 1.088 > 1.
Thus, w3 is a repelling fixed point of Ry /5 g 3(w). Furthermore, one can check that Ry 5 g 3(w1) = wa,
Ry /583(w2) = wy, and

(RY55) (w1)] = |(BY 5 50) (w2)| & 0.7008 < 1.
Thus, wy and wy correspond to an attracting period 2-cycle of Ry /5 g 3(w). O

Proof of Theorem 3. We will first prove that if (z,¢,¢q) € R1 U Rg then the marked point a(z) = z
is passive under iteration of R, ¢ ,(w). By Lemma 1 it suffices to prove that a(z) is passive under
the second iterate R§7t7q(w). Moreover, by Lemma 2, it suffices to prove that for such choices of
parameters we have that a(z) is in the basin of attraction of an attracting fixed point for Rit’q(w).

Suppose (z,t,q) € R; URe. By Lemma 13, we see that Rz’m(w) satisfies the hypotheses of
Lemma 8. Lemma 15 implies that RZ,  (w) has no neutral fixed points and also that if R,  (w)
has a repelling fixed point then it is actually a repelling fixed point of the first iterate R, ; (w).
Meanwhile, Lemma 10 gives that if a(z) is a fixed point for R, ;(w) then z = 1. As in the proof

of Theorem 2 we compute that
2 — 2t
/
1)=———.
l,t,q( ) (q _ 1)t 41

One can then check that for ¢ > 1 and ¢ > 3 we have —1 < R}, (1) < 0. Therefore, a(z) = 2 cannot
be a repelling fixed point of R, ;,(w). By Lemma 8 we therefore have that if (2,¢,q) € R1 UR2
then the marked point a(z) = z is in the basin of attraction of an attracting fixed point of RZ, (w),
as desired.

It remains to show that if ¢+ > t3(¢) and z = 2z (t,q) then the marked point a(z) = z is active
under R, ;,(w). Since the active locus is closed, we can suppose that ¢ > t3(q). Then, for any
z > 21 (t,q) we have that (z,t,q) € Ry and Lemma 15 and the discussion in the previous paragraph
gives that a(z) is in the basin of attraction of an attracting fixed point for R, ¢ ,(w). On the other
hand for any z, (t,q) < z < 21 (t,q) we have that a(z) is in the basin of attracting of a period two
attracting cycle of R, ;4(w). Lemma 3 then implies that the marked point a(z) is active at the
parameter z = 2} (¢, q).

The proof that a(z) is active at z = z_ (¢, q) is completely analogous. O
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5. PROOF OF THEOREM C (ANTIFERROMAGNETIC CASE, ¢ = 2)
Like the proof of Theorem B, the proof of Theorem C reduces to the following statement.

Theorem 4. Supposet > 1,q =2 and let A(R,;2) be the active locus for the marked point a(z) = z
under R, 2(w). Then

0 if 1<t<3
{1y U {zF(t,2)} if 3<t.

Here t3(2) = 3 and z£(t,2) are given in Equations (10) and (12) as in the statement of Theorem C.

(20) A(R.+2) N (0,00) = {

Sketch of proof. The proof is quite similar to the proof of Theorem 3 with a couple of small varia-
tions. First note that Lemmas 13 and 14 both hold for ¢ = 2. We did not include the case ¢ = 2 in
the statement of Lemma 15 because z (¢, 2) crosses z = 1 when ¢ = 3. This would have complicated
our proof that R; and Ry are connected (as ¢ is varied), which played an important role in the
proof of Lemma 15. However, if one considers the following sets

Sii={(zt) €R®:t>1, andif t > 3 then 0 < z < 2 (1,2) or 2 > 27 (1,2)}
Syi={(z,t) eR*: ¢t >3, 27 (t,q) <z < 2z} (t,2)}.

then it is straightforward to prove the analogous claims for them as in Lemma 15. (As before,
one proves that each set is connected and then checks the claims (i) and (ii) for a single choice of
parameters in each set. The proof that S; and S5 are connected is rather straightforward, since
one can directly check that zJ(¢,2) is an increasing function and 2 (£,2) is a decreasing function
of t > 3.)

The proof of Theorem 4 then concludes in almost the same way as the proof of Theorem 3,
except that since ¢ = 2 one can have that the marked point a(z) = z does non-persistently land on
a repelling fixed point w = 1 when z = 1. It does this for all t > 3, leading to the additional point
on (0,00) at which the Lee-Yang zeros can accumulate that was described in Theorem C. U

APPENDIX A. PROOF OF LEMMA 12.

We start with two simple lemmas that will be used in the proof. In each of these statements we
extend the range of allowable values of ¢ from N> to the interval [2, 00) so that methods involving
continuity can be used in the proofs.

Lemma 16. Suppose z > 0, t € [0,1), and ¢ > 2. If the renormalization mapping R, q(w) has

_q—2+4/¢%+32¢—32

triple fixed point (i.e. w is a triple root of R, 1 q(w) = w) then t = ta(q) =

18(q—1)
Proof. A polynomial w3 + aw? 4+ bw + ¢ = 0 has a triple root if and only if b = % and ¢ = %

Using that z > 0, t € [0,1), and ¢ > 2, we can rewrite the condition that R, ;,(w) = w as a monic
cubic polynomial of the above form. It has a triple root if and only if

[2t2((q—2)t+1)—1] 1 [22((q—2)t+1)—1)? 1t 1 (2tz((g—2)t+1) —1\°
= and ——— = —

—(¢—1)* 3 —(¢—1)* —(¢—1)%> 27 —(g—1)*
Clearing denominators, the above two equations can be simplified to the conditions that P;(z,t,q) = 0
and Py(z,t,q) = 0 where P; and P, are polynomials in z,q and ¢. One can then use elimination
theory (resultants) to eliminate z from the above two equations. One finds the following factorized

polynomial in ¢ and t:
(g —D)*t— )% (gt —t +1)? (9gt* — gt — 9t* + 2t — 1) = 0.

Since z > 0, t € [0,1), and ¢ > 2, the only relevant root comes from the last factor and it is
t= tg(q). ]

Lemma 17. For any ¢ > 2 and t € (0,t2(q)] we have:

(a) when z = Ny(t,q), the point w = z is fized by R+ 4(w) if and only if t = % Vﬁ;l, and
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(b) when z = N_(t,q), the point w = z is fived by R, 1 4(w) if and only if t = t1(q) = q%.
Proof. Note that the marked points a(z) = N4 (t, q) are positive by Lemma 11. Lemma 10 therefore
gives that they are fixed points of R, ,(w) if and only if they equal 1. The result then follows by
solving N4 (t,q) = 1. O

Lemma 18. For any q¢ > 2 and t € (0,t2(q)) if z = N+(t,q) then R, ,(w) has exactly two fized
points and the non-neutral fized point is attracting.

Proof. For t € (0,t2(¢q)) and z = N4 (t,q) the mapping R, ; ,(w) has exactly two fixed points, with
one corresponding to a double root of R, ; ,(w) = w and the other corresponding to a simple root
of the same equation. (See the proof of Lemma 11.) With this range of values for the parameters
t,q and z = Nx(t,q) we have that R, (w) > 0 for w > 0. Therefore, the double root corresponds
to a neutral fixed point wy(t,¢) and for all w in a sufficiently small interval I containing wy(t, q)
we either have R, ¢ ,(w) > w or for all w € I we have R, ,(w) < w. In other words, the graph of
R q(w) does not cross the diagonal at the neutral fixed point wy(t,q).

Note that R, t4(0) = 2t> > 0, and that

. ~2((g—2)t+1)?
wlgrolo R.;q(w) = TR € (0, 00).
Therefore, if we denote the fixed point corresponding to the simple root of R, ; ,(w) = w by ws(t, q)
we must have a small interval J containing ws(t, ¢) such that R, ; ,(w) > w for all w € J satisfying
w < wa(t,q) and such that R, ,(w) < w for all w € J satisfying w > wo(t,q). This implies that

0< R, (wat,q)) <1 and hence that ws is an attracting fixed point for R, ; ,(w). O

For the remainder of the proof we will denote the neutral and attracting fixed points whose
existence is given by Lemma 18 by wy (¢, q) and wa(t, q).

Proof of Lemma 12. Proof of Claim (i): We suppose that ¢ € (0,t2(q)) and that z = N, (¢, q).
Rather than considering ¢ > 2 as a natural number we consider it as a real number. By Lemma 17

1-2/qg—1
ﬁ = 754((])-

A direct calculation gives that t4(q) = t2(q) if and only if ¢ = 2 and that for ¢ > 2 we have
0 < t4(q) < ta(q). Thus, the two curves t = ta(q) and t = t4(q) divide the gt-plane, when ¢ > 0 and
q > 2, into three regions:

the marked point z = Ny (t,q) is a fixed point of R, ;,(w) if and only if ¢t =

Region I: 0 <t < t4(q), Region II:  t4(q) < t < ta(q), and Region III: ¢ > t2(q).

Refer to Figure 12 for an illustration. Note that Region III is not considered under the hypotheses
of Lemma 12, so we will ignore it.

Note that every complex fixed point of R, ; ,(w) is real when z = N, (¢, ¢) and when (¢, ¢) varies
over either Region I or Region II and that one of them is consistently a solution of multiplicity
two to the equation R.;,(w) = w. Since complex solutions to R, ;,(w) = w vary continuously
with respect to the parameters, this implies that wy(t,q) and wa(t, ¢) vary continuously as the
parameters (t, q) are varied over Region I or over Region IT and they are never equal since that would
correspond to a fixed point of multiplicity 3 which only happens when ¢ = ¢2(gq), by Lemma 16.
Moreover, by Lemma 7 we have that R, ;4 ([0, 00)) is compactly contained in (0, c0) for each choice
of parameters, so that any fixed points in (0, 00) for one choice of parameters cannot leave (0, 00)
for a different choice of parameters in the same region.

Within Regions I and Region II we also have that the marked point z = N, (¢,¢) is not fixed
by R :q(w) because t # t4(q) in those regions. Therefore, the order with which wy (¢, q), wa(t,q),
and N4 (t,q) occur on [0,00) is constant in each of the two regions.
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F1cure 12. Plot of Regions I, II, and III in proof of Claim (i).

Region I: Considering (¢,q) = (0.1,5), which lies in Region 1. For these parameters one can do
explicit calculations in a computer algebra system (e.g. Mathematica) to find:

141v/320 + 6457
2= N, (0.1,5) = 4391 ~ 2.051,
1
wn(0.1,5) = (59 - 3@) ~ 0.0881717, and
1
wa(01,5) = T (189\/329 + 3433) ~ 16.4931.

In particular, we find that for all (¢,¢) in Region I we have the following order
wn(t,q) < z= Ni(t,q) <walt,q).

In particular, since R.;,(0) > 0 and since the graph of R, ;,(w) does not cross the diagonal at
wn (t,q) we find that R, ;,(w) > w for all w € (wn(t,q), wa(t,q)). This implies that the orbit of
z = N4 (t,q) under iteration of R, ,(w) converges to wa(t,q), as claimed.

Region II: Considering (t,q) = (0.15,10) which is in Region II. For these parameters one can
again do explicit calculations to find:

151/120649 + 1880293
2044416
637 — /120649
wy(0.15,10) = “E S0 £ 0121908, and
799/120640 + 327037
wa(0.15,10) = 769821’ ~ 0.78533,

In particular, we find that for all (¢,q) in Region IT we have the following order
U)N(t, Q) < ’LUA(t, q) <z= N+(t7Q)

z = N,(0.15,10) = ~ 0.945376,
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Since limy o0 R ¢ 4(w) is finite we have that for all w > wa(t, q) that R, ;,(w) < w. This implies
that the orbit of z = N (¢, ¢) under iteration of R, ,(w) converges to wa(t,q), as claimed.

Finally, suppose that t = t4(q), corresponding to the boundary between Regions I and II. Tt is
clear from the above calculations and continuity that in this case z = N4 (¢,q) = wa(t,q). Thus
Claim (i) is proved.

Proof of Claim (ii): We suppose that ¢ € (0,t2(g)) and that z = N_(¢,¢). By Lemma 17 the
marked point z = N, (t, q) is a fixed point of R, ¢ 4(w) if and only if ¢t = t1(q) = 1/(¢+1). A direct
calculation gives that ¢;(q) = t2(q) if and only if ¢ = 2 and that for ¢ > 2 we have 0 < t1(q) < t2(q).
Thus, the two curves t = t2(q) and t = t1(q) divide the gt-plane, when ¢t > 0 and ¢ > 2, into three
regions:

Region I: 0 <t < t1(q), Region II:  t1(q) < t < ta2(q), and Region III: ¢ > t3(q).
Refer to Figure 13 for an illustration. Note that Region III is not considered under the hypotheses
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F1GUuRE 13. Plot of Regions I, II, and III in proof of Claim (ii).

of Lemma 12, so we will ignore it.

Just as in the proof of Claim (i) the fixed points wy(t,q), wa(t,q), and the marked point z =
N_(t,q) vary continuously with (¢, q) over Regions I and II, that they never leave (0,00), and on a
given region they are never equal. Therefore, the order with which wy(t,q),wa(t,q), and N_(t,q)
occur on [0,00) is constant in each of the two regions.

Region I: Consider (t,q) = (0.2, 3), which lies in Region I. For these parameters one can do explicit
calculations to find:

1
2= N_(02,3) = — (39 - \/21) ~ 0.95604,

36
1

wn(0.2,3) = ¢ (\/21 n 6) ~ 176376, and
1

wA(0.2,3) = (33 - Nﬁ) ~ 0.0768308.

12
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In particular, we find that for all (¢,¢) in Region I we have the following order
wA(tv('J) <z= N*(ta Q) < wN(t7Q)

In particular, since limy, o R; ¢ 4(w) is finite and since the graph of R, ;,(w) does not cross the
diagonal at wy(t,q) we find that R, ,(w) < w for all w € (wa(t,q),wn(t,q)). This implies that
the orbit of z = N_(t, ¢) under iteration of R, ;,(w) converges to wa(t,q), as claimed. This proves

Claim (ii)(a).
Region II: Consider (¢,q) = (1/6,6), which lies in Region II. For these parameters one finds:

1
2= N_(1/6,6) = 5o (=3) (\/ﬁ - 111) ~ 0.98677,

1
wn(1/6,6) = o <\/§+ 9) ~0.737228, and

1
wa(1/6,6) = - (69 - 11\/33) ~ 0.0726226.
In particular, we find that for all (¢,q) in Region I we have the following order

wal(t,q) <wn(t,q) < z=N_(t,q).

since limy, o0 R ¢ q(w) is finite we find that R, ,(w) < w for all w € (wn(t,q),00). This implies
that the orbit of z = N_(t, ¢) under iteration of R, ,(w) converges to wn(t,q), as claimed.

Note that if ¢ = ¢1(q) it is clear from the above calculations and continuity that z = N4 (¢,q) =
wn(t,q). Combined with the analysis of the parameters in Region II, this proves Claim (ii)(b).

Proof of Claim (iii): First suppose that z = N_(¢,q) for (¢,q) in Region II, as discussed in
Case (ii) above. Since the graph of R, ; ,(w) does not cross the diagonal at the fixed point wy (t, q)
we have that for all w € (wa(t, q),00) that R ,(w) < w with equality occurring at w = wy(t, q).
Decreasing the parameter z > 0 decreases the values of R, ; ,(w) and this will eliminate the neutral
fixed point wy(t,q). Meanwhile, if the decrease of the parameter z > 0 is by a sufficiently small
amount, then the then the attracting fixed point w4 (¢, q) will move continuously to an attracting
fixed point w’; for the perturbed map, and we will have that R, ;,(w) < w for all w € (w4, 00).
This implies that the orbit of the marked point w = z will now converge to the new attracting fixed
point w’y, as claimed in Part (iii) of the Lemma. O

APPENDIX B. DERIVATION OF THE RENORMALIZATION MAPPING (PROOF OF THEOREM D)

Proof of Theorem D. For each 0 < j < q — 1 we define the conditional partition functions of I',
conditioned on the spin o(r) at the root vertex equaling j as follows

Zy=Zi(zt) = ). Walo).
o s.t o(r)=j
Here W, (0) := e~ 47 s the Boltzmann-Gibbs weight of the configuration o.
(21) Notice that ZJ = ZF for any 1 < j k < q— 1.

To see why this is true, let p be a permutation on {0,1,---,¢ — 1} which fixes 0. Then H, (o) =
H,(p o o), implying the claim. The term Z9 is different from Z* for k = 1,--- ,q — 1 because of
the term —h ),y §(0(i),0) that corresponds to the interaction between the externally applied
magnetic field and the spins ¢(7) in (5). The full partition function then equals to

Zn = Zn(2,t) = Z0 + (¢ — 1) Z.

Computing Z and Z}: Notice that I',, is just the root vertex » when n = 0, so that H(o) = —h
when o(r) =0 and H(c) = 0 when o(r) = 1. Hence, we have

(22) Z)=eMT =271 and Z}=€"=1.
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Computing Z,.; in terms of Z) and Z!: We first compute Z_,, and Z},, in terms of Z)
and Z!. Let o : V41 — {0,---,q — 1} be a spin configuration. Let A,, be the graph that can
be obtained by joining a single new vertex (say «) to the root vertex r of I',, using a new edge
(see Figure 14). By A2 let us denote the graph that one can obtain by gluing two A, graphs
together at the vertex o (see Figure 15). In fact I',,;1 = A2. Recall from Equation (5) that H, (o)
denotes the Hamiltonian of the n** level Cayley rooted tree with branching number two for the
spin configuration 0. By Hy, (o), let us denote the Hamiltonian of A,, with spin configuration o.
Let Wy+1(0) be the Boltzmann-Gibbs weight of configuration o for the graph A,, and let Z-(i-al)
be the conditional partition function of A,,, supposing the spin at « is o(«). Here we extend the
domain of o from V,,4; to V41 U {a}. Thus, o(a) € {0,---,¢— 1}.

Root vertex a of the graph A,

Root Vertex r of the Cayley tree —_

n'? level Cayley tree with
branching number two

F1cURE 14. Graph A,,.

Two A,, graphs connected at the vertex a forms I';, 1

Two n'" level binary Cayley trees I',,

FIGURE 15. Graph I';,;1 = A2: two A, connected at their respective vertices a.

Computing Z° 41 in terms of Z9 and Z}: First, we compute the conditional partition function
20, of Ay in terms of z,t¢,Z) and Z}. Notice that the superscript 0 on Z_; indicates that we
will have o(a) = 0 throughout this entire subsection. We have two cases.
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Case 1: o(r) = 0. Then Hy, (c) = Hn(0) — h, implying that 3 ) _o Wni1 = 2170
Case 2: o(r) # 0. Then Hy, (o) = Hy(0o) + J — h, implying that 3,0 W1 = (¢ — 1)tz=120.
Here we have used Equation (21).
Thus
(23) 20, = (204 (g — 1)),
Notice that, when o(a) =0,

H, 1 = Hamiltonian of I'2 = Hy, (¢) + Hr, (o) + h.

Here the term “h” comes from the Hamiltonian of the graph of a single vertex a (subtracting the
energy of the single point «). Thus, ZSH = Z(Zg+1)2. This together with (23) this gives us

(24) Z8 =220+ (g - 1)tzh)”.

Computing Z% 41 in terms of 7% and Z}: First, we compute the conditional partition function
Z! ., of A, in terms of z,t,Z) and Z}. Notice that the superscript 1 on Z} ., indicates that we
will have o(«) = 1 throughout this entire subsection. We have three cases.

Case 1: o(r) = 0. Then Hy, (0) = Hn(0) + J, implying that >,y _o Wht1 = tZ9.
Case 2: o(r) = 1. Then Hy, (0) = Hyn(0), implying that > )4 Why1 = A
Case 3: o(r) # 0,1. Then Hy,(0) = Hyp(o) + J, implying that >, zr0 13 Wat1 = (¢ — 2)tZ}.
Here we have used Equation (21).
Thus
(25) 2l =t + Zp+ (g —2)tZ,.
Notice that, when o(a) = 1,
H, 1 = Hamiltonian of I'> = Hr, (¢) + Hr, (o).
Thus Z}, = (Z}LH)2. This together with Equation (25) gives us
(26) Zhy = (120 + 28+ (g - 2)t2})°.

Therefore, by (24) and (26) we have a formula for the full partition function of the rooted Cayley
tree with branching number two at level n + 1:

Zypi1 =201+ (q—1)Z 1y
—1(0 1\2 0 1 1 2
(27) =2 (Zy+ (¢—DtZ,)" + (¢ —1) (th +Z, + (g — 2)th> )

We are interested in the zeros of Z,,+1. Notice that Z,11 = 0 when

2
28) Zio (t20+ 2L + (g - 2)tZ})? 20 + 71 + (q — 2)tZ) 1
=2 = _—
Zy (29 + (¢ - l)tZ%)2 Z)+ (¢ — 1tz l—¢q
Let w, := Z4. Then by (28),

2
tZ0+ Z) + (¢ — 2)tZ}

Z)+ (q—1)tZ}

zZ1 VAR W)
t+ 7§ + (q — 2)tz—§
w =z —
i 1+ (¢ — Dtw,

2
t+wp + (¢ — 2)tw,
- .
1+ (g — Dt

Thus if we define

9

(29) R, iq(w): ==z

2
t+w+(¢—2)tw
14+ (¢ —1)tw
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then
Wy, = Rg,uq(wg).
Here, the superscript “n” indicates that we compose R, ;,(w) with itself n times (with respect to

the variable w while fixing parameters z,t and ¢). In other words, it denotes the nt" iterate of the

function R ;4.
1
By definition and (22) we have wg = %0 = 2%1 = z. So, wyp, = R}, (2). Therefore, by (27)

and (29) the Lee-Yang zeros of the g-state Potts model on the n'” level Cayley tree with branching
number two are the solutions to the equation

(30) RY;q(2) = T

This finishes the proof of Part (i) of Theorem D.

Case of the unrooted Cayley tree: We now explain how to prove Part (ii) of Theorem D about
the unrooted Cayley I',. Denote by ¢ the central vertex of ', i.e. the vertex at distance n from
the leaves of I',. For any 0 < 5 < g — 1 denote by Z3 the conditional partition function for I,
conditioned on o(c) = j. Like in the proof for the rooted tree, we again have Z = Zﬁ for any
1<j,k<q-—1
One obtains T',, by taking three copies of the rooted tree I';,_; and attaching each of their root
vertices by an edge to the central vertex c. In much the same way as we handled the rooted tree
above, one can prove that:
20 =220+ (q-1tz )’ and  ZL=(tZ0,+ (1 +(g-20) 2L )"

Therefore, Zn =29+ (¢—1)Z} = 0 if and only if

7V (20 + (A +(q-20)Zk )P A . 1
20 = Z( -1 ( ( ) ) 31) = Rz,t,q(wn—l) = (Rz,t,q ° Ri,t,q1)> (Z) =3 -
Zy (Z0_, + (q—1)tZ}_) 1—¢
This finishes the proof of Part (ii) of Theorem D. O
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