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Abstract. We consider the ergodic theory of plane rational maps that preserve the natural
holomorphic volume form on the algebraic torus. Specifically we construct natural invariant
probability measures for a large class of such maps by intersecting the equilibrium currents
we constructed in our previous work [DR]. We show further that these measures are mixing
and that each admits an underlying geometric product structure. The main result of [DDG3]
then implies that the topological entropy of each map covered by our results is the log of its
first dynamical degree. In light of examples presented in [BDJ], this implies in particular
that the entropy of a rational map can equal the log of a transcendental number.

1. Introduction

Let T ∼= (C∗)2 ⊂ P2 denote the two dimensional complex algebraic torus and η := dx1∧dx2

x1x2

denote the natural T-invariant holomorphic two form on T. Here we call a rational self-map
f : P2 99K P2 toric (short for ‘toric volume preserving’) if it satisfies f ∗η = ρη for some
constant ρ = ρ(f) ∈ C∗. Our goal in this article and its predecessor [DR] is to shed light
on the ergodic theory of such maps, especially in cases where f exhibits pathological degree
growth.

Let deg(f) := deg f ∗L be the degree of the divisor obtained by pulling back a line L ⊂ P2.
The (first) dynamical degree of f is then the asymptotic growth rate

λ1(f) := lim
n→∞

deg(fn)

of deg(fn). Though the limit defining λ1(f) always exists, it was observed in [DL1] (see
Theorem F and Example 8.5) that the degree sequence (deg(fn))n≥0 can behave erratically.
This point was amplified in [BDJ], which gave explicit examples of toric maps f for which
λ1(f) is a transcendental number.

The first dynamical degree λ1(f) should be compared with the topological degree λ2(f) of
f , i.e. the number of preimages of a general point in P2. We will focus on the case when f
has small topological degree, i.e. λ2(f) < λ1(f). A central motivation for this paper, and an
easily stated consequence of our main result is the following.

Theorem 1.1. Suppose that f : P2 99K P2 in [BDJ, Main Theorem] has small topological
degree. Then the topological entropy of f is given by htop(f) = log λ1(f). In particular,
ehtop(f) can be transcendental.

The foundational result [DS2, Théorème 1] gives htop(f) ≤ log λ1(f) for any plane rational
map with small topological degree. Here we construct natural invariant measures µ of
maximal metric entropy hµ(f) = log λ1(f) for a large class of toric maps including the ones
in Theorem 1.1. The opposite inequality htop(f) ≥ hµ(f) = log λ1(f) then follows as in the
proof of the classical variational principle [KH, Theorem 4.5.3].
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The series of papers [DDG1, DDG2, DDG3] are an important precedent for us. They
construct and analyze measures of maximal entropy for a broad class of (not necessarily
toric) rational self-maps of P2 with small topological degree. For instance, they establish
the analogue of Theorem 1.1 for polynomial maps f : C2 → C2. However, these articles
limit attention to maps that are ‘algebraically stable’, or at least those that become so
after suitably modifying the domain P2. The toric maps that we consider here all fail the
stabilizability hypothesis, and this leads us to lean much more heavily on the toric context to
accomplish our aims. In the remainder of this introduction, we present and provide context
for our main result, describing among other things the particular class of maps to which it
applies and discussing the main ingredients of the proof.

It is important for our arguments to consider a toric map f not only as a self-map of P2

but also a rational map f : X 99K Y between any two toric surfaces X, Y → P2 obtained
by T-invariant blowups of P2. A lift fX : X 99K X of f to some particular surface X is
called algebraically stable if the induced pullback operator f ∗ : H1,1

R (X) → H1,1
R (X) satisfies

(f ∗)n = (fn)∗ for all n ≥ 0. To cope with unstabilizable maps, we introduce in §2 the inverse

limit T̂ of all toric blowups of P2. The toric limit space T̂ is compact and Hausdorff, and
it decomposes into a closed nowhere dense subset of T-invariant points and the toric limit
surface T̂◦, a (non-compact, non-algebraic) complex manifold obtained from T by adjoining
countably many mutually disjoint poles, i.e. one dimensional complex tori Cτ

∼= C∗ indexed
by the rational rays τ ⊂ R2. All other properly embedded complex curves C ⊂ T̂◦ are
compact with C \ T finite, so we call them internal.

For many purposes T̂◦ is as natural a domain for a toric map as any particular T-invariant
blowup X → P2. Specifically, a toric map f induces a meromorphic self-map of f : T̂◦ 99K T̂◦

whose important properties include the following.

• The indeterminacy set Ind(f) ⊂ T̂◦ of f is finite, and the image f(p) of each p ∈
Ind(f) is a finite union of internal curves;

• The exceptional set Exc(f) ⊂ T̂◦ of f consists of finitely many internal curves C,

each contracted to a point f(C) ∈ T̂◦ \ T;
• There is a positively homogeneous, continuous and piecewise linear map Af : R2 → R2

of f such that f(Z2) ⊂ Z2 and f(Cτ ) = CAf (τ) for every pole Cτ ⊂ T̂◦.

We call Af the tropicalization of f . In §3 we explain (see Theorem 3.6) that beyond merely
encoding the action of f on poles, Af serves as a good approximation of f |T; i.e. away from
the exceptional set Exc(f) the natural map Log : T → R2 approximately semiconjugates
f |T to Af . This fact is central to our analysis.
All examples of toric maps that we know exhibit two further properties, which we will

adopt as assumptions below: Ind(f)∩T = ∅; and more importantly, Af is a homeomorphism.
Homogeneity implies that Af descends to a self-map of the unit circle; hence Af has a well-
defined rotation number whenever it is a homeomorphism. It was shown in [DL1] that the
rotation number of Af is rational if and only if there is a smooth rational surface X with a
birational morphism X → P2 that lifts f to an algebraically stable self-map of X.

In contrast, even when Af is a homeomorphism with irrational rotation number, f often

satisfies a weaker condition that we call ‘internal stability.’ Let D+
1,1(T̂) denote the cone

of positive closed (1, 1)-currents on T̂◦ and D1,1(T̂) = D+
1,1(T̂) − D+

1,1(T̂) denote its linear

span. Let H1,1
R (T̂) denote the (infinite dimensional) quotient obtained by identifying S, T ∈
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D1,1(T̂) when S − T is ddc-exact. As with rational maps on smooth compact surfaces,

a toric map f induces linear pushforward/pullback operators f∗ and f ∗ on D1,1(T̂) and

H1,1
R (T̂). We call f internally stable if, again, (f ∗)n = (fn)∗ for all n ∈ Z≥0. Equivalently,

fn(Exc(f)) ∩ Ind(f) = ∅ for all n ≥ 0.
We can state our main result as follows.

Theorem 1.2. Let f be an internally stable toric map with small topological degree. Assume
further that Af is a homeomorphism with irrational rotation number and that Ind(f)∩T = ∅.
Then there is a Borel probability measure µ on T̂◦ with the following properties.

(1) µ(C) = 0 for every properly embedded curve C ⊂ T̂◦.
(2) µ is f -invariant and mixing.
(3) The metric entropy of f relative to µ is given by hµ(f) = log λ1(f).

Consequently, the topological entropy f is also given by htop(f) = log λ1(f).

Conclusion (1) and the fact that T̂◦ \T is a countable union of poles imply that the domain
of the map f in Theorem 1.2 is flexible; i.e. the theorem remains valid if we consider f as a
self-map of the algebraic torus T, of P2, of T̂◦ or of some other compact toric surface.

1.1. Proof of the main result. To prove Theorem 1.2, we follow a general approach [BS]
created by Bedford and Smillie to understand the complex dynamics of plane polynomial
automorphisms. By Theorems 10.1 and 10.6 in [DR], a toric map satisfying the hypotheses of

Theorem 1.2 admits a pair of equilibrium currents T ∗, T∗ ∈ D+
1,1(T̂). These are distinguished

by invariance f ∗T ∗ = λ1T
∗, f∗T∗ = λ1T∗ and the fact (Corollary 4.12) that neither dominates

the integration current associated to any curve C ⊂ T̂◦. In particular, both are internal, with
no mass outside T. We normalize so that the classes [T ∗], [T∗] ∈ H1,1

R (T̂), have intersection
numbers [T ∗]2 = [T ∗] · [T∗] = 1. Then we realize µ as an ‘intersection’ T ∗ ∧ T∗ of T ∗ and T∗.
However, T ∗ and T∗ are distributional rather than pointwise objects, so we need to take a
great deal of care when defining and employing this intersection. There are three main steps
in our approach.

1.1.1. Regularity of potentials. The first step is to prove the following, a consequence of
Theorem 5.1 below.

Theorem 1.3. Let f be as in Theorem 1.2 and p ∈ T̂◦ be a point whose forward orbit
{fn(p) : n ≥ 0} does not meet Ind(f). Then there is a neighborhood U ∋ p and a continuous
function u : U → R such that T = ddcu near p.

Theorem 1.3 guarantees that uT∗ is a well-defined current on U and allows us to use
the classical idea of Bedford and Taylor [BT1], setting T ∗ ∧ T∗|U equal to the weak de-
rivative ddc(uT∗). The hypotheses of Theorem 1.2 ensure that the countable set of points

Ind(f∞) :=
⋃
f−n(Ind(f)) excluded in Theorem 1.3 is closed and discrete in T̂◦. Hence an

integrability result (see Proposition 6.3) for potentials with isolated singularities implies that
this definition of T ∗ ∧ T∗ applies even near points in Ind(f∞).

The proof of Theorem 1.3 occupies §5 and relies heavily on some key preliminary results.
The first (see Theorem 2.6 and the preceding discussion) is that the class [T ] ∈ H1,1

R (T̂◦)

of any internal current T ∈ D1,1(T̂) includes a canonical ‘homogeneous’ representative T̄ ∈
D1,1(T̂). By definition of H1,1

R (T̂), we have T − T̄ = ddcφT for some function φT ∈ L1
loc(T̂◦).
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The potential φT is unique up to additive constants, and homogeneous currents have con-
tinuous local potentials about any point in T̂◦ (Proposition 2.11). Hence T has continuous

local potentials on an open set U ⊂ T̂◦ if and only if φT |U is continuous. In the case of
interest T = T ∗, we constructed T ∗ in [DR] by proving L1

loc-convergence

φT ∗ = lim
n→∞

φλ−n
1 fn∗T̄ ∗ .

Moreover, the potentials φλ−n
1 fn∗T̄ ∗ on the right are all continuous away from Ind(f∞). To

prove Theorem 1.3, we use our tropical approximation result Theorem 3.6 to go further and
demonstrate that the limit is achieved uniformly on compact subsets. The starting point
is Theorem 4.3 which implies that though T̂◦ is not compact, the potentials φλ−n

1 fn∗T̄ ∗ are

decreasing in n and uniformly bounded off any neighborhood of Ind(f∞).

1.1.2. Mass and energy. The second step in constructing the measure µ = T ∗ ∧ T∗ in Theo-
rem 1.2 is to show the result is a probability measure, i.e. that in accord with the normal-
ization ([T ∗] · [T∗]) = 1, we get total mass µ(T̂◦) = 1. The difficulty here is that T̂◦ is not
compact, so that the relationship between mass and intersection number is not (or at least
not obviously) as close as in the compact setting. On the other hand, the currents T ∗, T∗
restrict to well-defined positive closed (1, 1) currents on any given toric surface X. The in-
tersection number ([T ∗]X · [T∗]X) and mass of the product T ∗ ∧X T∗ of the restrictions on X
are easily seen to agree. Moreover, the intersection numbers ([T ∗]X · [T∗]X) converge by defi-

nition to ([T ∗] · [T∗]) as X converges to T̂. So the problem becomes to establish convergence

of measures T ∗∧X T∗ → T ∗∧T∗. More precisely, we have a natural inclusion X◦ ↪→ T̂◦ of the
open set X◦ ⊂ X obtained by removing T-invariant points, and the measures T ∗ ∧X T∗|X◦

increase to T ∗ ∧ T∗ as X◦ increases to T̂◦. However, T ∗ ∧X T∗ assigns non-zero mass to each
of the T-invariant points of X, so we need to argue that the sum of those masses diminishes
to zero as X increases.

It is fairly straightforward to do this if we replace T ∗ and T∗ with their homogeneous
counterparts T̄ ∗ and T̄∗ (see Conclusion (3) in Theorem 6.19). In that case, the limiting

measure T̄ ∗ ∧ T̄∗ on T̂◦ is just Haar measure on the maximal real subtorus TR ⊂ T. The
next step (Conclusion (4) in 6.19) is to show that convergence succeeds for T̄ ∗∧T∗, i.e. if we
homogenize only T ∗ in the product. Here we employ Theorem 4.15 which says that T∗ is not
in some sense too far from its homogenization (see Definition 2.7). This allows us to relate
point masses of T ∗ ∧X T̄∗ at T-invariant points of X directly to Lelong numbers of T̄ ∗ and
use that the Lelong numbers disappear in the limit (Proposition 2.10). The most difficult
step is to argue from T̄ ∗ ∧ T∗ to T ∗ ∧ T∗. The main ingredient for this is the following.

Theorem 1.4. The potential φT ∗ for T ∗ − T̄ ∗ has weakly finite T∗-energy on T̂◦.

Definitions 6.15 and 6.21 specify the meaning of weakly finite energy on a compact surface
X and on T̂◦, respectively. This notion builds on the idea of Dirichlet energy relative to a
positive closed current (see (22) and (25) below) that was introduced to complex dynamics
in [BD1] and enlarged upon in [DDG2]. The main novelty here is that the notion of Dirichlet
energies defined in those papers applies only to functions that are not far from plurisubhar-
monic, whereas our more delicate notion applies to differences u − v of plurisubharmonic
functions even when neither u nor v separately have finite Dirichlet energy. In any case, we
use Theorem 1.4 to tie point masses of (T ∗−T̄ ∗)∧XT∗ to Lelong numbers of T∗ at T-invariant
points which can, again, be seen to disappear as X increases to T̂.
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1.1.3. Geometry and dynamics of µ. Beyond its use in establishing the mass of T ∗ ∧ T∗,
Theorem 1.4 also plays an important role in §8 where we prove the three enumerated con-
clusions of Theorem 1.2. Our arguments for invariance and mixing follow precedents in [BS]
and [DDG2]. The computation of hµ(f) depends on Conclusions (1) and (2) together with
a geometric structure theorem for µ modeled on [Duj3, Theorem 5.2]. To state the theorem,
we recall from [DR, Theorem 1.4] that T ∗ can be approximated arbitrarily well by so-called
‘uniformly laminar’ currents T ∗

ϵ ≤ T ∗, obtained by averaging currents of integration over a
family of mutually disjoint analytic disks. Likewise we have arbitrarily good approximations
T∗,ϵ ≤ T∗ by ‘uniformly woven’ currents, obtained by averaging a family of disks that are
allowed to intersect each other. The intersections T ∗

ϵ ∧T∗,ϵ ≤ T ∗∧T∗ therefore have a natural
product structure based on intersections between disks in the two families. This is discussed
at greater length in §8.2 where we prove

Theorem 1.5. The wedge product T ∗ ∧ T∗ is ‘geometric’, equal to an increasing limit of
the measures T ∗

ϵ ∧ T∗,ϵ obtained by intersecting the uniformly laminar and uniformly woven
approximants of T ∗ and T∗, respectively.

Given this and Conclusions (1) and (2) of Theorem 1.2, the entropy bound in Conclu-
sion (3) then follows immediately from the main result Theorem B of [DDG3]. We stress
that unlike Theorem A in the same paper, Theorem B requires only that f be a rational
map with small topological degree and that µ be an f -invariant Borel probability measure
that is f -invariant and mixing and has the geometric structure guaranteed by Theorem 1.5.

1.2. Context and related work. Dynamical systems that are stable under perturbation
and/or whose dynamics can be described well, e.g. Axiom A diffeomorphisms, often have
topological entropy equal to the log of an algebraic number. On the other hand, in a family of
maps where entropy is non-constant and varies continuously with parameters, e.g. d-modal
piecewise linear interval maps, the Intermediate Value Theorem guarantees that most maps
will have entropy equal to the log of a transcendental number. The dynamics of rational
maps f : P2 99K P2 with given degree deg(f) = d is very poorly understood at present, but
the quantity htop(f) seems nevertheless quite rigid. There is substantial evidence supporting
the conjecture (see [G, Conjecture 3.2]) that when λ1(f) ̸= λ2(f), one has

htop(f) = logmax{λ1(f), λ2(f)}.(1)

Since there are only countably many possible values for λ1(f) and λ2(f) (see [BF00]), it
is a priori less obvious that there should exist rational maps f : P2 99K P2 with ehtop(f)

transcendental. Theorem 1.2 confirms (1) for a new class of rational maps, and in doing so
identifies specific rational maps for which ehtop(f) is transcendental. For instance, it applies
to the map from f = g ◦ h given by

g(x1, x2) =

(
−x1

1− x1 + x2
1− x1 − x2

,−x2
1 + x1 − x2
1− x1 − x2

)
and h(x1, x2) = (x1x

2
2, x

−2
1 x2),

which is shown in [BDJ] to have transcendental first dynamical degree λ1(f) > λ2(f).
Spaces created by performing infinitely many blowups on a compact complex surface have

previously been used in several ways to study dynamics of rational maps. We mention in
particular the work of Hubbard and Papadappol [HP] on Newton’s method for polynomials
in two variables; of Cantat [Can1] on groups of plane birational maps; and of Boucksom,
Favre and and Jonsson [BFJ], Favre and Jonsson [FJ], and Blanc and Cantat [BC] aimed
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at better understanding dynamical degrees of various classes of plane rational maps; and
of [dT] which proposes the space obtained by resolving all points of indeterminacy of all
iterates of a rational map f as an appropriate setting for understanding the entropy of f .
As far as we know, this article and its predecessor [DR] are the first to effectively use an
infinitely blown up space to construct and investigate a measure of maximal entropy for a
rational map. What makes this possible, and what distinguishes the toric limit surface T̂◦

from the spaces used in earlier works is that T̂◦ is a complex manifold in its own right. This
allows us to work directly with T̂◦ much of the time rather than only with, say, classes in
H1,1

R (T̂) or toric surfaces that approximate T̂◦.

1.3. Organization of the paper. Following is a quick summary of the rest of this article.

• §2 provides background on toric surfaces, on the non-compact surface T̂◦ and on the
associated spaces D1,1(T̂) and H1,1

R (T̂) of currents and classes.
• §3 reviews facts about toric maps and proves the tropical approximation result The-
orem 3.6.

• §4 discusses pullbacks and pushforwards of toric currents, including several facts
about the equilibrium currents and their classes which were not observed in [DR].

• §5 establishes the continuity result Theorem 5.1 for potentials of T ∗.
• §6 reviews the Bedford-Taylor approach to defining wedge products and energy pair-
ings for positive closed (1, 1) currents on compact Kähler surfaces. While this mate-
rial is well-known in some quarters, we hope that it will be useful to readers less ac-
quainted with pluripotential theory. In §6.2, we adapt everything to the non-compact
surface T̂◦.

• §7 constructs the wedge product µ = T ∗ ∧ T∗ of interest.
• §8 establishes the dynamical and geometric properties of µ, completing the proof of
Theorem 1.2.

Acknowledgment. We thank Eric Bedford for his interesting comments. Both authors grate-
fully acknowledge support from the NSF, the first by grant DMS-2246893 and the second by
grant DMS-2154414.

2. Inverse limits of toric surfaces, divisors and currents

In this section, we review toric surfaces and their inverse limits. For substantially more
detail we refer readers to [CLS] and §3 in our previous paper [DR] on this subject.
Let T ∼= (C∗)2 denote the two dimensional complex algebraic torus and η be the canonical

invariant holomorphic 2-form on T. As usual, we let N ∼= Z2 denote the dual of the character
latticeM of T, NR = N⊗ZR ∼= R2, and Log : T → NR (the logarithm map) be the surjective
group homomorphism that assigns to a point p ∈ T the linear functional

Log(p) : m ∈MR 7→ − log |m(p)|.

The real (i.e. maximal compact) subtorus of T is then the set TR := Log−1(0).
A ray τ ∈ NR is rational if τ ∩N is non-empty, and the unique primitive vector v ∈ τ ∩N

is its generator. A sector for us will be a closed, strictly convex two dimensional cone
σ ⊂ NR. We say that σ is rational if its bounding rays are rational, and then call σ
regular if the generators for these rays form a basis for N . Identifying the generators of
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a regular rational cone σ with the standard basis for Z2, we obtain a unique isomorphism
xσ = (x1, x2) : T 7→ (C∗)2 satisfying

Log(p) = (− log |x1(p)|,− log |x2(p)|).
We call (x1, x2) the σ-coordinates for T, observing that in these coordinates

• Log−1(σ) = {0 < |x1|, |x2| ≤ 1} is the intersection of (C∗)2 with the closed unit
polydisk;

• η = 1
4π2

dx1∧dx2

x1x2
.

If σ̃ ∈ NR is another regular rational sector, then we have the change of coordinate formula
xσ̃ = hA ◦ xσ, where A = (aij) ∈ SL(2,Z) is the change of coordinate matrix from the basis
for NR determined by σ to the basis determined by σ̃ and hA : (x1, x2) 7→ (xa111 xa122 , xa211 xa222 )
is monomial map determined by A.

For our purposes, a toric surface will be a smooth complex manifold X that compactifies
T and to which the action of T on itself extends to a holomorphic action of T on X. Any such
X is determined by its fan Σ(X) = {0}∪Σ1∪Σ2, a collection of closed and strictly convex 0,
1 and 2 dimensional cones whose relative interiors partition NR. Concretely, X =

⋃
σ∈Σ2

Uσ,

where xσ : Uσ → C2 are coordinate charts that extend the above σ-coordinates on T. Letting
τ1, τ2 ∈ Σ1(X) denote the boundary rays of σ, we have that the coordinate axes in C2 are
the images by xσ of T-invariant curves (which we call poles for short) Cτ2 , Cτ1 ⊂ X \ T that
meet in a single T-invariant point pσ ∈ X \T. If distinct sectors σ, σ̃ ∈ Σ2 share a boundary
ray τ then Uσ ∩Uσ̃ = T∪C◦

τ where C◦
τ := Cτ \ {pσ, pσ̃} denotes the complement of the torus

invariant points in Cτ . We similarly write X◦ = X \ {pσ : σ ∈ Σ2}.
If X and Y are both toric surfaces, we let πXY : X 99K Y denote the canonical transition—

i.e. the birational extension of the identity map on T. The map πXY is a morphism if and
only if Σ(X) refines Σ(Y ), in which case we write X ≻ Y . In any case πXY contracts
precisely those poles Cτ ⊂ X for which τ is an interior ray of σ ∈ Σ(Y ). For any two toric
surfaces X1, X2 there is another X ≻ Xj that dominates both. We therefore define the toric

limit space T̂ to be the inverse limit of all toric surfaces with respect to transitions. The
following summarizes the discussion in §3.1 of [DR].

Theorem 2.1. The toric limit space T̂ is a Hausdorff topological compactification of T on
which T acts by homeomorphisms compatible with the natural map T̂ → X onto any toric
surface X. The complement T̂ \ T consists of

• a T-invariant irrational point pτ for every irrational ray τ ⊂ NR,
• two T-invariant points and a pole Cτ

∼= C∗ for each rational ray τ ⊂ NR.

Distinct poles and T-invariant points are disjoint from each other, and every pole Cτ is
compactified to P1 by the two rational T-invariant points indexed by the same ray τ .

For any toric surface X, the natural projection T̂ → X may be (partially) inverted to give

an inclusion X◦ ↪→ T̂. The complement of the T-invariant points of T̂ is a (non-compact,

non-algebraic) complex manifold T̂◦ equal to the union of the images of all such inclusions.

We call T̂◦ the toric limit surface. For simplicity, we will writeX◦ ⊂ T̂◦ for any toric surface
X, implicitly identifying X◦ with its image in T̂◦. Given R > 0 and a finite collection of
rational rays τj ⊂ NR, 1 ≤ j ≤ J we define the star of width R along τ1, . . . , τJ to be the
TR-invariant set

Q = Q(τ1, . . . , τJ , R) := {p ∈ T : dist(Log(p), τj) ≤ R for some 1 ≤ j ≤ J}.
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The closure here is understood to take place in T̂.

Corollary 2.2. Every star is a compact subset of T̂◦, and every compact subset of T̂◦ is
contained in a star.

Proof. If X is a toric surface whose fan includes the rays τ1, . . . , τJ , then the closure Q̄X of
Q∩T in X is a TR invariant compact subset of X◦ ⊂ T̂◦. If K ⊂ T̂◦ is some other compact
set, then in fact K ⊂ X◦ for some toric surface X, since the sets X◦ form an open exhaustion
of T̂◦. The proof is therefore completed by observing that any given X◦ is exhausted by the
interiors of stars of increasing width R directed by the rays in Σ1(X). □

2.1. Currents and divisors. The following mostly just summarizes §’s 2, 6 and 7 in [DR],

with a shift in viewpoint that places greater emphasis on the complex manifold T̂◦. We refer
readers to that article for more details and arguments.

Given a complex surface X, we let D+
1,1(X) denote the set of positive closed (1, 1) currents1

on X and D1,1(X) denote the set of differences S−T of elements S, T ∈ D+
1,1(X). There are

of course many closed (1, 1) currents that cannot be expressed this way, so our definition of
D1,1(X) is a little non-standard. We regard the set Div(X) of R-divisors on X as a subset
of D1,1(X) by identifying each divisor D with the current obtained by integrating over D.

If X is projective (in particular, compact and Kähler), then each T ∈ D1,1(X) represents a

class [T ]X ∈ H1,1
R (X) ⊂ H2(X,R). The class [T ]X is trivial precisely when T = ddcφ (in the

distributional sense) for some φ ∈ L1(X); locally φ = u− v is a difference between two psh
functions u, v. The class [T ] is effective if it is represented by a positive current) and Kähler
if it is represented by a Kähler form. A limit [T ] of Kähler classes is nef, characterized by
the fact that its intersection number (T ·D)X with every effective class is non-negative.

Abusing notation slightly we write D1,1(T̂) in place of D1,1(T̂◦) and call its elements toric
currents. If X is a toric surface and T a toric current, then standard extension theorems
(see e.g. [Sib1]) for positive closed currents imply that the restriction T |X◦ extends uniquely
(by zero) to a current TX ∈ D1,1(X), which we continue to call the restriction of T to X.

One checks easily that for toric surfaces X ≻ Y , we have πXY ∗TX = TY . Though T̂◦ is not
compact, or even an open subset of a compact complex manifold, we continue to declare
toric currents S and T to be cohomologous in T̂◦ if S − T = ddcφ for some real-valued
φ ∈ L1

loc(T̂◦). We let H1,1
R (T̂) denote the resulting quotient of D1,1(T̂), writing [T ] for the

class of T in H1,1
R (T̂).

Proposition 2.3. S, T ∈ D1,1(T̂) are cohomologous if and only if SX and TX are cohomolo-

gous in every toric surface X. In either case, relative potentials φ ∈ L1
loc(T̂◦) for S − T and

φX ∈ L1(X) for SX − TX are unique up to additive constants and so can be chosen so that

φX = φ|X◦ .

Proof. It was shown in [DR, Proposition 7.4] that if SX and TX are cohomologous in every

X, then S and T are cohomologous in T̂◦. For the other direction, we suppose without loss
of generality that S and T are positive, and suppose that S − T = ddcφ for some locally
integrable φ : T̂◦ → R. Fix a toric surface X and let SX , TX ∈ D+

1,1(X) be the restrictions
of S and T to X. Let U ⊂ X be a union of pairwise disjoint coordinate balls centered at the

1When X is not compact, we allow currents with non-compact support; hence currents act on compactly
supported test forms.
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finitely many T-invariant points of X. Then we have psh functions u, v : U → R such that
ddcu = SX and ddcv = TX . Let U

◦ = X◦ ∩ U . Then restriction gives on U◦ that

ddc(u− v) = (SX − TX) = S − T = ddcφ.

Hence h = φ− u− v is pluriharmonic on U◦. Hartog’s extension gives that h and therefore
φ = h+ v− u extends to a potential for SX − TX on all of U . Since φ is already a potential
for SX − TX on X − U ⊂ X◦, it follows that SX − TX = ddcφ on X. □

From this discussion, it follows that D1,1(T̂) and H1,1
R (T̂) are the inverse limits of the

corresponding objects D1,1(X) and H1,1
R (X) on toric surfaces. We will therefore say that

α ∈ H1,1
R (T̂) is effective (or nef, or Kähler) if the same property adheres to its restriction

αX ∈ H1,1
R (X) in each toric surface X. This is non-standard since e.g. we are not saying

that the Kähler classes in H1,1
R (T̂) correspond to Kähler forms on T̂◦.

We adopt the convention that, unless otherwise noted, a curve in a complex surface X is
a reduced and irreducible, properly embedded, one dimensional analytic subvariety C ⊂ X.
With this convention, every curve corresponds to a current of integration on X, so the above
discussion implies that every curve C ⊂ T̂◦ is either

• internal, i.e. compact and given by C = C ∩ T; or
• the complement C◦

τ := Cτ ∩ T̂◦ ∼= C∗ of the T-invariant points in the pole associated
to some rational ray τ ⊂ N .

A toric divisor D ∈ Div(T̂) is then given by D = Dint + Dext, with internal part Dint

supported on finitely many internal curves, and external part Dext =
∑

τ cτC
◦
τ , where the

sum is (countably) infinite, over all rational rays τ ⊂ NR.

Similarly, any current T ∈ D1,1(T̂) decomposes as T = Tint+Text where Text is an external

divisor and Tint ∈ D1,1(T̂) is internal, equal to the trivial extension to T̂◦ of T |T. The
cohomology class of a positive internal current T = Tint is always nef [DR, Corollary 6.10].

Every internal current T ∈ D1,1(T̂) can be averaged by the action of TR to produce a
TR-invariant internal current Tave representing [T ].

Proposition 2.4. For any internal current T ∈ D1,1(T̂), there is a continuous function
ψT : NR → R, unique up to the addition of an affine function, such that

Tave|T = ddc(ψT ◦ Log).
We call ψT a support function for T . Where possible, we will choose support functions

to be partially normalized, satisfying ψT (0) = 0. We have the following characterization of
support functions for positive internal currents.

Theorem 2.5 (See [DR], Theorem 6.9). A function ψ : NR → R is the support function of

a positive internal current T ∈ D1,1(T̂) if and only if it is convex and has ‘linear growth’, i.e.

∥ψT (v)∥
∥v∥ + 1

is uniformly bounded on NR.

We call an internal current T ∈ D1,1(T̂) homogeneous if it is TR-invariant and its support
function is positively homogeneous, satisfying ψT (tv) = tψ(v) for all v ∈ NR and t > 0. We
will usually signify that a current is homogeneous by writing T̄ instead of T . Homogeneous
currents serve as canonical proxies for the cohomology classes that they represent.
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Theorem 2.6 (See [DR], Theorem 1.3). Any internal current T ∈ D1,1(T̂) is cohomologous

to a unique homogeneous current T̄ ∈ D1,1(T̂). If T is positive, then so is T̄ . In any case, if
ψT is a support function for T , then the limit

(2) ψT̄ (v) := lim
t→∞

ψT (tv)

t

converges uniformly on compact subsets of NR to a support function for T̄ . If T is positive
and ψT (0) = 0, then

• ψT ≤ ψT̄ on NR;
• ψT − ψT̄ is non-increasing along each ray τ ⊂ NR, i.e. if v ∈ τ is non-zero, then
t 7→ (ψT − ψT̄ )(tv) is non-increasing for t > 0.

It follows from this theorem that any internal current T ∈ D1,1(T̂) can be written

T − T̄ = ddcφT ,

where the potential φT : T̂◦ → R is unique up to additive constants and varies continuously
with T if we normalize by e.g. φT (0) = 0.

As a global function on T̂◦, the composition ψT̄ ◦ Log is locally integrable even about
points in T̂◦ \ T. More precisely ψT̄ has a logarithmic singularity along each pole C◦

τ ⊂ T̂◦,

and if we regard ψT̄ ◦ Log as a locally integrable function on the larger domain T̂◦, we have
the following enhancement of the formula in Proposition 2.4.

ddc(ψT̄ ◦ Log) = T̄ −D,

where the external divisor D is given by

D =
∑
τ

ψT̄ (vτ )Cτ .

The sum is, as usual, over rational rays τ ⊂ NR and vτ is the primitive vector in τ ∩N . For
the same divisor D, we also have

ddc(ψT ◦ Log) = Tave −D.

It follows that φTave := (ψT − ψT̄ ) ◦ Log ∈ L1
loc(T̂◦) is a potential for Tave − T̄ .

In what follows we will take advantage of a distinction that was not remarked on in [DR].

Definition 2.7. We say that a support function ψT for a positive internal current T ∈
D+

1,1(T̂) is nearly homogeneous if |ψT −ψT̄ | is uniformly bounded on NR. Here ψT̄ is assumed

to be the support function for T̄ derived from ψT via (2).

Not all positive internal currents T ∈ D+
1,1(T̂) have nearly homogeneous support functions.

But since the difference ψT −ψT̄ is unique up to additive constants, one support function for
T is (nearly) homogeneous if and only if all of them are. Since ψT − ψT̄ ≤ 0 is continuous
on NR and decreasing along every ray, one can verify that ψT is nearly homogeneous by
checking it on a ‘large enough’ subset of NR.

Proposition 2.8. The support function ψT for T ∈ D+
1,1(X) is nearly homogeneous if there

exists a constant C > 0 and a dense set S of rays τ ⊂ NR such that for each ray τ ∈ S, we
have |ψT − ψT̄ | ≤ C outside a compact subset of τ .
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Proposition 2.9. If T ∈ D+
1,1(T̂) represents a nef class and Y ≻ X are toric surfaces, then

we have

π∗
Y XTX = TY +D

where D is an effective external divisor with suppD ⊂ Exc(πY X). If [T ] is Kähler then
suppD = Exc(πY X), and in particular π∗

XY TX > TY when Y ̸= X.

Proof. It suffices to consider the case where πY X is the blowup of a single T-invariant point
pσ ∈ X. Let E = π−1

XY (pσ) denote the contracted curve. Then TY = π∗
XY TX + cE for some

c ∈ R, and since [TY ] is nef, we have

0 ≤ (TY · E) = (π∗
XY TX · E)− c (E · E) = (TX · πXY ∗E) + c = c.

If [TX ] is Kähler, the inequality is strict. □

As discussed in [DR], we have a well-defined intersection product on a subspace L2(T̂) ⊂
H1,1

R (T̂) that includes all nef (hence all internal) classes. Indeed if α, β ∈ H1,1
R (T̂) are nef

classes, then the intersection (α · β)X of αX , βX ∈ H1,1
R (X) decreases as the toric surface X

increases, and we have

(α · β) := inf
X

(α · β)X .

Given a positive closed current T on a surface X and a point p ∈ X, let u be a local
potential for T near p. The Lelong number of T at p is the quantity

ν(T, p) := max{s : u(·)− s log dist(·, p) is bounded above near p} ≥ 0,

which is finite and does not depend on the choice of u. A deep theorem of Siu [Siu] asserts
that p 7→ ν(p, T ) is upper semicontinuous in the Zariski topology on X.

Proposition 2.10. Let T ∈ D+
1,1(T̂) be an internal current. Given ϵ > 0 we have∑

σ∈Σ2(X)

ν(TX , pσ) < ϵ

for sufficiently dominant X. If [T ] ∈ H1,1
R (T̂) is Kähler, then we also have ν(TX , pσ) > 0 for

all T-invariant pσ ∈ X.

Proof. Fix an initial toric surface X and let −KX :=
∑

τ∈Σ1(X)Cτ denote the anticanonical

divisor on X. Since [T ] is nef, we have (−KX · TX) ≥ 0. Now let π : Y → X denote the
blowup of X at some T-invariant point pσ ∈ X and Cτ ⊂ Y be the pole contracted by π.
Then KY = π∗KX + Cτ , and since the restriction of an internal current to a toric surface
does not charge poles,

π∗TX = TY + ν(TX , pσ)Cτ .

If in particular, [T ] is Kähler, then π∗TX > TY by Proposition 2.9, so ν(TX , pσ) > 0 in that
case. Regardless, we infer

0 ≤ (−KY · TY ) = (−KX · TX)− ν(TX , pσ).(3)

So (−KX · TX) is uniformly bounded below and non-increasing in X. If (−KX · TX) is within
ϵ of infX(−[KX ] · [TX ]), then (3) shows that

∑
σ∈Σ2(X) ν(TX , pσ) < ϵ. □

The following restates the second conclusion of [DR, Theorem 6.7].
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Proposition 2.11. A homogeneous current T̄ ∈ D+
1,1(T̂) has continuous local potentials

about all points in T̂◦.

3. Toric maps

As noted in the introduction, we will call a rational map f : P2 99K P2 toric if it preserves
the canonical two-form up to scale, i.e. if f ∗η = ρ(f)η for some ρ ∈ C∗. Such a map extends
naturally to a meromorphic self-map fXY : X 99K Y between any two toric surfaces X and
Y . Passing to the limit, we obtain that f extends to a meromorphic self-map (which we

will continue to denote by f) of the complex manifold T̂◦. Even though T̂◦ is not compact,
this extension behaves much like a rational self-map of a compact projective surface. Let
Ind(f) ⊂ T̂◦ denote the indeterminacy set of f : T̂◦ 99K T̂◦ and Exc(f) denote the exceptional
set, i.e. the union of curves contracted by f to points.

Theorem 3.1 ([DR] Theorem 4.3 through Corollary 4.7). If f : P2 99K P2 is toric, then

the induced map f : T̂◦ 99K T̂◦ has the following properties

(1) Ind(f) is a finite subset of Exc(f); and f(Ind(f)) is a finite union of internal curves.

(2) Exc(f) consists of finitely many internal curves C, each with image f(C) := f(C \ Ind(f))
equal to a point in T̂◦ \ T.

(3) If p ∈ T \ Exc(f), then f(p) ∈ T and Df(p) is non-singular.
(4) If C ̸⊂ Exc(f) is an internal curve, then so is f(C).

(5) If Cτ ⊂ T̂◦ \ T is a pole, then so is f(Cτ ).

(6) f extends continuously to a self-map f̂ : T̂ \ Ind(f) → T̂ for which T̂ \ T̂◦ is totally
invariant.

Corollary 3.2. If f : T̂◦ 99K T̂◦ is a toric rational map, then

(1) f : T̂◦ 99K T̂◦ is proper in the following sense: for any compact K ⊂ T̂◦ the set

{p ∈ T̂◦ : f(p) ∩K ̸= ∅} is compact.

(2) f : T̂◦ \f−1(f(Ind(f))) → T̂◦ \f(Ind(f)) is a finite holomorphic covering with branch

locus contained in T̂◦ \ T.

Definition 3.3. A toric map f : T̂◦ 99K T̂◦ is internally stable if fn(Exc(f)) ∩ Ind(f) = ∅
for all n ≥ 0.

If f is internally stable, then Ind(fn) =
⋃n−1

j=0 f
−j(Ind(f)) and Exc(fn) =

⋃n−1
j=0 f

−j(Exc(f)).

In particular, fn is also internally stable. We further set Ind(f∞) =
⋃

n>0 f
−n(Ind(f)) and

Ind(f−∞) =
⋃

n>0 f
n(Exc(f)).

3.1. Tropical Approximation. An important feature of toric maps is that they are almost
semiconjugate, via the logarithm map, to piecewise linear real maps of NR. The following
is Theorem 4.8 in [DR] and mostly taken from [DL1].

Theorem 3.4. If f : T̂◦ 99K T̂◦ is a toric map, then there exists a finite set Σ1(f) of rational
rays τ ∈ NR and a continuous self-map Af : NR → NR with the following properties.

(1) Af is ‘integral’, i.e. Af (N) ⊂ N .
(2) If σ ⊂ NR is a sector that omits all τ ∈ Σ1(f), the restriction Af |σ is linear with

detAf |σ = ±ρ(f). Hence ρ(f) is an integer.

(3) For any pole Cτ ⊂ T̂ \ T, we have f(Cτ ) = CAf (τ).
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(4) If v, v′ ∈ N are the primitive vectors generating the rational rays τ, Af (τ) ⊂ NR,
then the ramification of f about the pole Cτ is given by

Ram(f, Cτ ) =
∥Af (v)∥
∥v′∥

,

and f : C◦
τ → C◦

Af (τ)
is a covering of degree |ρ(f)|/Ram(f, Cτ ). Hence f has local

topological degree ρ(f) on a neighborhood of any pole.
(5) Af : NR \ {0} → NR \ {0} is a covering map with degree λ2(f)/|ρ(f)|.

We call Af the tropicalization of f . If g : T̂ 99K T̂ is another toric map, then Af◦Ag = Af◦g.
The tropicalization of a monomial or birational toric map f is always injective (i.e. a
homeomorphism), and in fact all other examples of toric maps we know are obtained as
finite compositions of these. So as far as we know, Af is always injective. In any case, when
Af is a homeomorphism, it induces a homeomorphism on the parameter space S1 of rays in
R2, and we refer to the rotation number of this quotient map as the rotation number of Af .

To demonstrate just how well Af approximates f , we make a few further observations.

Proposition 3.5. The following hold for any toric map f : T̂ 99K T̂.
(1) If Af is injective, then every component of Exc(f) meets Ind(f) \ T.
(2) For each p ∈ Ind(f) ∩ T, we have f(p) \ T ⊂ f(Exc(f)).
(3) For each p ∈ Ind(f) \ T, let Cτ be the unique pole containing p and q = f |Cτ (p) ∈

CAf (τ). Then f(p) \ T ⊂ f(Exc(f)) ∪ {q}.

Proof. If C ⊂ Exc(f) is irreducible, then C meets at least two distinct poles Cτ , Cτ ′ ∈ T̂
by [DR, Corollary 3.4]. If neither intersection is indeterminate for f , then both map to the
same point f(C) ∈ f(Exc(f)). This implies, however, that both Cτ and C ′

τ map onto the
pole containing f(C), which contradicts injectivity of Af . This proves the first assertion.

To prove the last two assertions, we fix p ∈ Ind(f) and let π : S → T̂◦ be a modification

that resolves that indeterminacy of f at p. That is, π : S \ π−1(p) → T̂◦ \ {p} is an

isomorphism and f̂ := f ◦ π is holomorphic on a neighborhood of π−1(p). The fact that f is

toric implies f̂ ∗η = ρ π∗η, and in particular [DL1, Proposition 5.3] that the poles of π∗η are

precisely the strict transforms of the poles of η by both π and f̂ .
Now let q ∈ f̂(π−1(p)) ∩ Cτ be a point in some pole Cτ ∈ T̂. We may suppose that

q /∈ f(Exc(f)). Hence we can choose an open set U ∋ p such that U \ {p} contains no

points in Ind(f) and no preimages of q. It follows that Z := f̂−1(q)∩π−1(U) is a non-empty
(possibly reducible) subvariety of π−1(p). Since q ∈ Cτ , we have that Z meets an irreducible

component C ⊂ S of the strict transform of Cτ by f̂ . Since f̂(C) = Cτ , we have C ̸⊂ π−1(q).

Hence π(C) ⊂ T̂◦ is a curve rather than a point, and f(π(C)) = Cτ . Hence by Theorem 3.1,

π(C) is a pole containing π(Z ∩C) = p, and f |π(C) : π(C) → Cτ maps p to f̂(C ∩Z) = q. □

Our main approximation result is the following. A version of this was given in [DR], but
the proof given there is incomplete in a couple of places, so we take the opportunity to prove
it fully here.

Theorem 3.6. Suppose that f is toric. Let U,U ′, V ⊂ T̂ be neighborhoods of Exc(f), Ind(f),
and f(Exc(f)) respectively. Then there exists C > 0 such that for any p ∈ T,

(1) ∥Log ◦f(p)− Af ◦ Log(p)∥ ≤ C unless p ∈ U .
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(2) ∥Log ◦f(p)∥ ≥ ∥Af ◦ Log(p)∥ − C unless p ∈ U ′.
(3) ∥Log ◦f(p)∥ ≤ ∥Af ◦ Log(p)∥ + C unless p ∈ U and f(p) ∈ V .

Proof. Recall that if p ∈ T \ Exc(f) then f(p) ∈ T. In order to compare the behavior of f
with that of Af , we choose toric surfaces X and Y whose fans have the following properties.

• Σ1(f) ⊂ Σ1(X).
• for each sector σ ∈ Σ2(X) there is a sector σ′ ∈ Σ2(Y ) such that Af (σ) ⊂ σ′.

• if Cτ ⊂ T̂ is a pole that meets Ind(fXY ) or Exc(f), then τ ∈ Σ1(X); i.e. Cτ ⊂ X.

• if C ′
τ ⊂ T̂ is a pole that meets f(Ind(f)) or f(Exc(f)), then τ ′ ∈ Σ1(Y ); i.e. Cτ ′ ⊂ Y .

Since X is covered by the finitely many closed polydisks Log−1(σ), σ ∈ Σ2(X), it will suffice
to work in local coordinates to prove each of conclusions (1)-(3) of Theorem 3.6 on such a
polydisk.

Fix σ ∈ Σ2(X) and σ′ ∈ Σ2(Y ) such that Af (σ) ⊂ σ′, and let (x1, x2), (y1, y2) be the
σ, σ′-coordinates on T. Under the above assumptions, we have that Af |σ is linear, and fXY

is well-defined and locally finite near pσ ⊂ X, given by

(4) (y1, y2) = fσσ′(x1, x2) = (g1(x)x
a
1x

b
2, g2(x)x

c
1x

d
2).

where

• A = Aσσ′ =

(
a b
c d

)
is the non-negative 2 × 2 integer matrix that represents Af in

the bases for NR determined by σ and σ′;
• g1, g2 : C2 99K C are rational functions, well-defined and non-vanishing near (0, 0);
• the zeroes and poles of g1, g2 are the components of Exc(f).

In the coordinates on NR
∼= R2 determined by identifying σ with the first quadrant, we have

Err(p) := Log ◦f(p)− Af ◦ Log(p) = Log ◦fσσ′(x(p))− ALog(x(p))

= (− log |g1(x)|,− log |g2(x)|).
Hence if U ⊂ X is any neighborhood of Exc(f), we have that ∥Err∥ is uniformly bounded
on Log−1(σ) \ U . This is conclusion (1) of Theorem 3.6.
For the conclusion (2), we note first the following special case.

Lemma 3.7. For any point q ∈ Exc(f) \ T that is not indeterminate for f , there exists a
neighborhood Uq ∋ q such that conclusion (2) holds for p ∈ Uq.

Taking Lemma 3.7 for granted momentarily, we finish verifying conclusion (2). Lemma 3.7
provides an open neighborhood U ′′ of (Exc(f) \ T) \ Ind(f) on which the desired estimate

holds. Shrinking the neighborhood U of Exc(f), we may suppose that U \ (U ′ ∪ U ′′) is

compact in T and therefore K := Log(U \ (U ′ ∪ U ′′)) is compact in NR. So since p /∈ U ′ by
hypothesis, if p ̸∈ U ′′, then either p /∈ U or Log(p) ∈ K. In the first case, Conclusion (2)
follows from Conclusion (1). In the second case ∥Af ◦ Log(p)∥ ≤ R for some R = R(K)
independent of p; i.e. conclusion (2) holds for p ∈ K with constant C = C(K) = R.

Proof of Lemma 3.7. By our choice of X, q ∈ Cτ for some ray τ ∈ Σ1(X). Let σ ⊂ Σ2(X) be

the sector with τ as its ‘righthand’ boundary ray, i.e. so that q ∈ Log−1(σ) has σ-coordinates
x(q) = (0, α) where 0 < |α| ≤ 1. By choice of Y , we further have that Af (τ) ∈ Σ1(Y ) and
fXY (q) ∈ C◦

Af (τ)
. Necessarily Af (τ) is one of the rays bounding the sector σ′ ∈ Σ2(Y ) that

contains Af (σ). We suppose for argument’s sake that this is again the righthand ray so that
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f(q) has σ′-coordinates y(f(q)) = (0, β) for some 0 < |β| < 1. Since fσσ′ preserves (0, 0) and

maps {x1 = 0} onto {y1 = 0} implies that the matrix A in (4) has the form

(
a b
0 d

)
where

a, d > 0 and b ≥ 0. Finally, since q ∈ Exc(f) \ Ind(f), we must have that g1(0, α) = 0 and
(0, α) is not a zero or pole of g2.
If, in σ-coordinates, Uq ⊂ X is a small ball about (0, α), then

∣∣g1|Uq

∣∣ is bounded above
by 1 and Uq ∩ Exc(f) = {g1 = 0}. For p ∈ Uq \ Exc(f), we have that

ALog(x1, x2) = (−a log |x1| − b log |x2|,−d log |x2|) ≈ (−a log |x1| − b log |α|,−d log |α|)
is uniformly near (−a log |x1|, 0); moreover,

Log ◦fσσ′(x1, x2)− Af (x1, x2) ≈ (− log |g1|,− log |g2(0, α)|)
is uniformly near (− log |g1|, 0). Since −a log |x1| and − log |g1| are both positive on Uq, the
lemma follows. □

It remains to establish the third conclusion of Theorem 3.6. Since f−1(V ) contains a
neighborhood of Exc(f) \ Ind(f), Conclusion (1) reduces the problem to verifying Conclu-
sion (3) on a small enough neighborhood Uq of each of the finitely many points q ∈ Ind(f).
When q ∈ T, we have from Proposition 3.5 that f(q) \ T ⊂ f(Exc(f)). Hence Conclusion
(3) holds near q if the constant C is large enough that f(q) ∩ {∥Log∥ ≥ C} ⊂ V .

If, on the other hand, q ∈ Ind(f)∩Cτ is external, then again by Proposition 3.5 the same
argument works except that the point q′ := f |Cτ (q) ∈ f(q) \ T need not lie in f(Exc(f)).
That is, we have reduced to verifying Conclusion (3) at all points p ∈ W ∩ T, where W :=
Uq ∩ f−1(Vq′) and Uq and Vq′ are small coordinate neighborhoods of q and q′, respectively.
As in the proof of Lemma 3.7 our choices of X and Y allow us to choose sectors σ ∈ Σ2(X),
σ′ ∈ Σ2(Y ) such that q has σ-coordinate x(q) = (0, α) and q′ has σ′-coordinates (0, β) where
0 < |α|, |β| ≤ 1.

The matrix A in (4) again has entries a, d > 0, b ≥ 0 and c = 0; therefore ALog(x1, x2)
is uniformly close to (−a log |x1|, 0) for p = (x1, x2) ∈ Uq. If also, (y1, y2) ∈ fσσ′(x1, x2) ∈
Vq′ , then | log |y2|| is bounded by definition. Likewise, log |y1| is bounded above. Hence
Log ◦f(p) = Af ◦ Log(p) + Err(p), where Err(p) is uniformly close to (− log |g1|, 0) for p ∈
W ∩ T, and the proof of Theorem 3.6 concludes with the following.

Lemma 3.8. If Uq, Vq′ are small enough, then |g1| is uniformly bounded below on W ∩ T.

Proof. Since p ∈ Ind(f), g1 need not be defined at (0, α) or finite on Uq∩T. Let π : X̂ → X be

a (necessarily non-toric) blowup of X at p chosen so that neither f̂ := f ◦π−1 and ĝ1 = g◦π−1

have points of indeterminacy in π−1(Uq). From here the argument resembles the one used

to obtain the last two assertions in Proposition 3.5. Let Ŵ = π−1(Uq)∩ f̂−1(Vq′) = π−1(W ).

Note that f̂ maps {ĝ1 = 0} into {y1 = 0}, i.e. outside T.
On the other hand {ĝ1 = 0} properly intersects the proper transform of the pole {x1 = 0}.

Hence {ĝ1 = 0} consists of components of π−1(q) together with components of the strict

transforms of Exc(f). The latter map by f̂ outside Vq′ and so do not meet Ŵ . Hence

{ĝ1 = 0} ∩ Ŵ ⊂ π−1(q) is a compact subset of Ŵ and must therefore be empty by the same
reasoning used in the third paragraph of the proof of Proposition 3.5. Shrinking Uq and Uq′

a bit if necessary, we conclude that |ĝ1| is bounded away from 0 on Ŵ ; i.e. |g1| is bounded
away from 0 on W . □
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4. Pushing forward and pulling back

Any toric map f : T̂◦ 99K T̂◦ induces linear operators f ∗, f∗ : D1,1(T̂) → D1,1(T̂). In [DR,
§8] we defined these indirectly, working first on toric surfaces and then passing to inverse
limits. Here we give an equivalent definition using local potentials and working directly on
T̂◦.

Let T ∈ D1,1(T̂) be a toric current. Since, by definition, T is a difference of positive toric

currents, we can assume T ≥ 0. Given p ∈ T̂◦ \ Ind(f), let U, V ⊂ T̂◦ be neighborhoods
of p, f(p) small enough that f(U) ⊂ V and T |V = ddcu for some u ∈ PSH(V ). Then

f ∗T |U := ddc(u ◦ f). The resulting current on T̂◦ \ Ind(f) extends trivially across the finite

set Ind(f) to give a toric current f ∗T ∈ D+
1,1(T̂). Similarly, if p ∈ T̂◦ \ f(Exc(f)), we choose

neighborhoods V ⊃ p and U ⊃ f−1(V ) small enough that T = ddcu for some u ∈ PSH(U)
and then set f∗T |V = ddcf∗u, where

f∗u(p
′) :=

∑
f(q)=p′

m(f, q)u(q),

and m(f, q) denotes the local multiplicity of f at q. The resulting current on T̂◦ \ f(Exc(f))
extends again to a toric current f∗T ∈ D+

1,1(T̂).

Proposition 4.1 ([DR], Proposition 8.3). If T ∈ D1,1(T̂) is internal, so are f ∗T and f∗T .
If T is an external divisor, then f ∗T = D + E, where D is an external divisor and E is
an internal divisor supported on Exc(f). Likewise, f∗T = D′ + E ′, where D′ is an external
divisor and E ′ is an internal divisor supported on f(Ind(f)).

With these definitions it is readily apparent that f ∗, f∗ preserve cohomological equivalence
and so descend to operators f ∗, f∗ : H1,1

R (T̂) → H1,1
R (T̂). These preserve effective and nef

classes and are adjoint for the intersection product (f ∗α · β) = (α · f∗β) between classes

α, β ∈ L2(T̂).

Proposition 4.2 ([DR], Proposition 8.6). The following are equivalent for a toric map f

• f is internally stable;
• (f ∗)n = (fn)∗ for all n > 0;
• (f∗)

n = (fn)∗ for all n > 0.

4.1. Pullbacks and pushforwards of homogeneous currents. The next result, which
ensures good control of potentials for pullbacks and pushforwards of homogeneous currents,
will play a key role in allowing us to construct measures of maximal entropy for toric maps.

Theorem 4.3. Let f : T̂◦ 99K T̂◦ be a toric map, T ∈ D1,1(T̂) be an internal current and T̄
be its homogenization.

(1) The potential φf∗T̄ for f ∗T̄−f ∗T is continuous and bounded outside any neighborhood
of Ind(f).

(2) If T is positive, then φf∗T̄ can be chosen to be negative.
(3) Any support function ψf∗T̄ for f ∗T̄ is nearly homogeneous.

Note that since each class in H1,1
R (T̂) has a unique homogeneous representative, we have

for any internal T ∈ D1,1(T̂) that f ∗T = f ∗T̄ and f∗T = f∗T̄ .
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Proof. Any internal toric current is a difference of two positive internal currents, so we can
assume that T is positive. Thus [T ] is nef, and ψT̄ is convex.

We have on T̂◦ that ddc(ψT̄ ◦ Log) = T̄ −DT and ddc(ψf∗T ◦ Log) = f ∗T −Df∗T , where

DT , Df∗T ∈ D1,1(T̂) are nef external divisors. Hence

(5) ddcφf∗T̄ = f ∗T̄ − f ∗T = ddc(ψT̄ ◦ Log ◦f − ψf∗T ◦ Log) + f ∗DT −Df∗T .

In particular f ∗DT is cohomologous to Df∗T . So Proposition 4.1 tells us that f ∗DT −Df∗T =
E −DE, where E is an internal divisor supported on Exc(f), and DE is an external divisor
cohomologous to E.

Lemma 4.4. Let Ē be the homogeneous internal current cohomologous to E. Then the
potential φE for E− Ē is bounded outside any neighborhood U ⊂ T̂◦ of suppE, in particular
outside a compact subset of T̂◦.

Proof. Since suppE is compact in T̂◦, we can choose a toric surface X be a such that E
is compactly contained in X◦. It follows that the TR-average Eave of E is also compactly
supported in X◦. Formula (2) implies that supp Ē \ T ⊂ suppEave \ T, so it further follows
that Ē is compactly supported in X◦. Thus, φE|X◦ extends to X as a function that is
pluriharmonic in a neighborhood of each T-invariant point of X. On the other hand, local
potentials for Ē are continuous near any point in X◦, so it follows that φE is continuous on
X \ suppE and therefore bounded outside any open U ⊂ X that contains suppE. Shrinking

so that U ⊂ X◦ ⊂ T̂◦ concludes the proof. □

We return to the proof of Theorem 4.3. Potentials on T̂◦ are unique up to additive
constants, so adding and subtracting Ē on the right side of (5), applying Lemma 4.4 and
dropping ddc’s, leads to the identity

φf∗T̄ = ψT̄ ◦ Log ◦f − ψf∗T ◦ Log+φE − ψĒ ◦ Log+C1

for some constant C1 and support function ψĒ for Ē. Rearranging gives

(6) φf∗T̄ − v − φE = (ψT̄ ◦ Af − ψf∗T + ψĒ) ◦ Log,

where the function in parentheses on the right is positively homogeneous; and on the left
side

v := ψT̄ ◦ Log ◦f − ψT̄ ◦ Af ◦ Log−C1.

We claim that both sides of (6) actually vanish.
To see this, note that the left side of (6) must also be homogeneous. Hence it does not

change if we average with the action of TR and then homogenize (as in (2)) each of the three
terms on the left side. On the other hand, ddcφf∗T and ddcφE are internal currents repre-

senting the trivial class in H1,1
R (T̂). Since 0 is the unique homogeneous current representing

this class, it follows that the homogenizations of φf∗T and φE both vanish.
Concerning v, we note that since ψT̄ is convex and positively homogeneous, it is uniformly

Lipschitz on NR. Let C2 <∞ be the Lipschitz norm. Since Exc(f) is internal and therefore

compactly supported in T̂◦, Corollary 2.2 tells us that it lies in the interior of a star Q
directed by finitely many rays in NR. We invoke Theorem 3.6 to obtain a constant C3(Q)
such that

|v| ≤ C1 + C2 ∥Log ◦f − Af ◦ Log∥ ≤ C1 + C2C3.



18 September 4, 2025

on T\Q. It follows that the homogenization of v vanishes outside Log(Q∩T). In particular,
it vanishes asymptotically along all but finitely many rays of NR. By homogeneity and
continuity it vanishes altogether, proving our claim about the left side of (6). Thus

φf∗T̄ = φE + v.

Proposition 2.11 tells us that local potentials for T̄ are continuous, so local potentials for f ∗T̄
are also continuous except at points in Ind(f). Thus φf∗T̄ is continuous on T̂◦ \ Ind(f). On
the other hand, we have already seen that φE and then v are bounded outside the compact
set Q ⊂ T̂◦. Hence φf∗T̄ is bounded outside Q. Since Q is compact, and φf∗T̄ is continuous
away from Ind(f), we conclude that φf∗T̄ is bounded outside any neighborhood of Ind(f),
which is the first conclusion of Theorem 4.3.

Assume now, to get the second conclusion that T is positive. Then T̄ and f ∗T̄ ≥ 0 are
positive, too, so that local potentials for each are bounded above on compact sets. On the
other hand, we have from Proposition 2.11, that local potentials for T̄ ∗ are also uniformly
bounded below on compact sets. It follows that we can subtract a constant from φf∗T̄ ∗ to
arrange φf∗T̄ ∗ ≤ 0 on a neighborhood of each of the finitely many points of Ind(f). By the

first conclusion we can increase the constant so that φf∗T̄ ∗ ≤ 0 everywhere on T̂◦.
To obtain the third conclusion, we recall from the discussion after Theorem 2.6 that if

φf∗T̄ ,ave is the TR-average of φf∗T̄ , then (up to an additive constant)

ψf∗T̄ ,ave ◦ Log = ψf∗T ◦ Log+φf∗T̄ ,ave.

Hence ψf∗T̄ differs from a positively homogeneous support function by a function that is
bounded outside Log(Q ∩ T) for the compact star Q. So Proposition 2.8 implies that ψf∗T̄

is nearly homogeneous. □

The analog of Theorem 4.3 for pushforwards also holds.

Theorem 4.5. Suppose that f : T̂◦ → T̂◦ is a toric map whose tropicalization Af : NR → NR

is injective (hence a homeomorphism). Let T ∈ D1,1(T̂) be an internal current and T̄ be its
homogenization.

(1) The potential φf∗T̄ for f∗T̄ −f∗T is continuous and bounded outside any neighborhood
of f(Exc(f)).

(2) If T is positive, then φf∗T̄ can be chosen to be negative everywhere on T̂◦.
(3) The support function ψf∗T̄ for f∗T̄ is nearly homogeneous.

Proof. Mostly the argument is the same as for Theorem 4.3, with f ∗ replaced by f∗ through-
out. The extra hypothesis gives us the necessary control of the difference

v = f∗(ψT̄ ◦ Log)− λ2(A
−1
f ψT̄ ) ◦ Log

as follows. If U ⊂ T̂◦ is any neighborhood of f(Ind(f)), then by Theorem 3.1(1) there is a

neighborhood V ⊂ T̂◦ of Exc(f) such that f(V ) ⊂ U . Hence any p ∈ T \ U has exactly λ2
distinct preimages q ∈ T̂◦, and all such q lies in T \ V . Hence by Theorem 3.6

∥Af ◦ Log(q)− Log(p)∥ ≤ C

for some constant C = C(V ). Since Af is a piecewise linear homeomorphism, it has an
inverse that is piecewise linear and therefore uniformly Lipschitz. Hence, after scaling C by
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the Lipschitz constant of A−1
f , we obtain∥∥Log(q)− A−1

f ◦ Log(q)
∥∥ ≤ C.

Thus for p ∈ T \ V the definition of pushfoward of a function gives us

v(p) =

∥∥∥∥∥∥
∑

q∈f−1(p)

ψT̄ ◦ Log(q)−
∑

q∈f−1(p)

(ψT̄ ◦ A−1
f ) ◦ Log p

∥∥∥∥∥∥
≤ Lip(ψT̄ )

∥∥∥∥∥∥
∑

q∈f−1(p)

(Log(q)− A−1
f ◦ Log(p))

∥∥∥∥∥∥ ≤ Cλ2,

where Lip(ψT̄ ) denotes the Lipschitz constant of ψT̄ . □

4.2. Equilibrium currents. Following ideas of [BFJ] we showed in [DR] that when f is
internally stable, the first dynamical degree λ1(f) described in §1 is the leading eigenvalue

of the operators f ∗ and f∗ on H1,1
R (T̂◦). With more restrictions, we showed that this can be

seen in a particularly strong way on the level of currents.

Theorem 4.6. Let f : T̂◦ 99K T̂◦ be an internally stable toric rational map with small topo-
logical degree whose tropicalization Af is a homeomorphism with irrational rotation number.

Then there are internal currents T ∗, T∗ ∈ D+
1,1(T̂) uniquely determined by the following con-

ditions

• (T ∗ · T ∗) = (T ∗ · T∗) = 1.

• for any other internal current T ∈ D1,1(T̂), we have

lim
n→∞

fn∗T

λn1
= (T · T∗)T ∗ and lim

n→∞

fn
∗ T

λn1
= (T · T ∗)T∗

We will call T∗ and T ∗ the forward and backward equilibrium currents for f . The hy-
potheses imposed on f by Theorem 4.6 will be default assumptions for the remainder of this
section and throughout the rest of this paper. The condition λ1(f) > λ2(f) implies among
other things that f is not a monomial map. The condition that Af has irrational rotation
number implies that f is not invertible, i.e. that λ2(f) > 1.
Our goal in this subsection is to prove several results about the equilibrium currents T ∗

and T∗ that will be used below but were not established in [DR].

Proposition 4.7. Both currents T ∗ and T∗ in Theorem 4.6 represent Kähler classes in
H1,1

R (T̂).

Proof. We give the argument for [T ∗]. The argument for [T∗] is identical. Fix a toric surface
X. Since T ∗ is positive, non-trivial and internal, we have (T ∗ · Cτ ) > 0 for some pole

Cτ ⊂ T̂◦. So for every n ≥ 0, we have(
T ∗ · CAn

f (τ))

)
= (T ∗ · fn(Cτ )) = cn (T

∗ · fn
∗ Cτ ) = cn (f

n∗T ∗ · Cτ ) = cnλ
n
1 (T

∗ · Cτ ) > 0,

where cn = deg(fn|Cτ )
−1. Since Af has irrational rotation number, we conclude that T ∗ has

positive intersection number with poles indexed by a dense set of rational rays in NR.
Now fix a Kähler surface X, a sector σ ∈ Σ2(X), and n ≥ 0 such that An

f (τ) lies in the
interior of σ. Let Y ≻ X be a toric surface such that fn(τ) ∈ Σ1(Y ). If τ ′ ∈ Σ1(X) is one
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of the rays bounding σ, then π∗
Y XCτ ′ ∈ Div(Y ) is an effective Z-divisor that includes Cfn(τ)

in its support. Hence

(T ∗
X · Cτ ′)X = (πY X∗T

∗
Y · Cτ ′)X = (T ∗

Y · π∗
Y XCτ ′)Y ≥

(
T ∗
Y · Cfn(τ)

)
Y
≥
(
T ∗ · Cfn(τ)

)
> 0.

Thus [T ∗] has positive intersection with every pole of X, which implies that [T ∗
X ]X is Kähler.

We conclude that, by our definition, [T ∗] is Kähler in H1,1
R (T̂). □

To prove existence of the equilibrium currents in [DR], we first established the existence

of invariant classes [T̄ ∗], [T∗] ∈ H1,1
R (T̂◦) and then employed a telescoping series argument,

which goes as follows for T ∗. By uniqueness of the homogeneous current T̄ ∗ representing

[T ∗] and invariance, we have that f ∗T̄ ∗ = λ1T̄
∗. Let, therefore, φ := φλ−1

1 f∗T ∗ be a potential

for λ−1
1 f ∗T ∗ − T̄ ∗. We showed that the sum

(7) φT ∗ :=
∞∑
n=0

φ ◦ fn

λn1

converges in L1
loc(T̂◦), and that the backward equilibrium current is then T ∗ := T̄ ∗+ ddcφT ∗ .

Theorem 4.3 allows us to assume that φ is negative. Since all partial sums Sn of the
series (7) satisfy ddcSn ≥ −T̄ ∗, we have the following strengthening of the results in [DR].

Corollary 4.8. The partial sums of the series (7) defining φT ∗ are monotone decreasing
and converge pointwise to φT ∗. The same is true of the analogous series defining T∗.

Recall the ‘extended indeterminacy sets’ Ind(f∞) and Ind(f−∞) defined for internally
stable toric maps after Definition 3.3.

Corollary 4.9. Under the hypotheses of Theorem 4.6, we have the following for any pole
Cτ ⊂ T̂◦.

(1) The intersections Cτ ∩ Ind(f∞) and Cτ ∩ Ind(f−∞) are finite.
(2) φT ∗|Cτ is continuous off Ind(f∞) and φT∗|Cτ is continuous off Ind(f−∞).
(3) There is a uniform constant C, independent of τ , such that if Cτ does not meet

Ind(f∞), then |φT ∗ | ≤ C on Cτ , and if Cτ does not meet Ind(f−∞) then |φT∗ | ≤ C
on τ .

We will prove a much stronger version of this result for φT ∗ below (see Theorem 5.1).

Proof. The hypothesis that Af is a homeomorphism with irrational rotation number implies
that every ray in the bi-infinite sequence (An

f (τ))n∈Z is distinct. Since there are only finitely
many points in Ind(f) and f(Exc(f)), and fn(Cτ ) = CAn

f (τ)
, we see that fn(Cτ ) contains

points in Ind(f) and f(Exc(f)) for only finitely many n. This proves the first assertion.

Given p ∈ Cτ \ Ind(f∞), it further follows that there are neighborhoods U, V ⊂ T̂◦ of
p and Ind(f) and such that fn(U ∩ Cτ ) ∩ V = ∅ for all n ∈ Z≥0. Theorem 4.3 tells us
that φ is continuous off V , so φ ◦ fn is continuous on U ∩ Cτ for all n ≥ 0. Moreover, the
values |(φ◦fn)(q)| are uniformly bounded in both n and q. The series (7) therefore converges
uniformly to a continuous function φT ∗ on U . In the particular case that fn(Cτ )∩Ind(f) = ∅
for all n ≥ 0, we have that fn(Cτ ) = CAn

f (τ)
can only intersect a pole Cτ ′ containing some

point of Ind(f) at one of the two T-invariant points of Cτ ′ . We therefore can choose U to
contain all of Cτ and V to be any neighborhood of Ind(f) that meets only poles containing
points in Ind(f). So V is independent of τ in this case, which implies that the series (7) is
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uniformly bounded by a constant that does not depend on τ . This proves the second and
third assertions for φT ∗ . The arguments for φT∗ are identical. □

Remark 4.10. Theorem 4.3 and Corollary 4.9 together give an alternative proof of the exis-
tence of the equilibrium current T ∗, i.e. of the convergence of the series (7). As noted above,
Theorem 4.3 allows one to assume that the partial sums of (7) are decreasing. Corollary 4.9

shows that the limit is not −∞ everywhere on T̂◦. The fact that the partial sums are all
T̄ ∗-psh and Hartog’s Compactness Theorem [GZ, Theorem 1.26] for psh functions therefore
imply that the series (7) converges both pointwise and in L1. While this is shorter than
the argument in [DR], it is not sufficient for our purposes. We need that pullbacks of more
general positive internal currents, in particular those not cohomologous to multiples of T̄ ∗,
converge to multiples of T ∗. Showing this still seems to require the methods of our earlier
paper.

Proposition 4.11. Suppose that f is a toric map satisfying the hypotheses of Theorem 4.6
and C ⊂ T̂◦ is a curve. Then for all n ≥ 0 large enough, we have

(fn(C) \ T) ∩ Ind(f∞) = ∅ = (f−n(C) \ T) ∩ Ind(f−∞).

Proof. The restriction f̃ : T̂◦ \ T → T̂◦ \ T of f to the countably many poles of T̂◦ is a

well-defined (even at points in Ind(f)) finite holomorphic map satisfying f̃(Cτ ) = CAf (τ) for
each pole Cτ . And for any n ≥ 0, we have

fn(C) \ T ⊂ f̃n(C \ T) ∪ fn(Exc(fn)).

By internal stability fn(Exc(fn))∩ Ind(f∞) = ∅. So Ind(fn)∩ (fn(C) \T) ⊂ f̃n(C \T). On
the other hand, only finitely many poles meet Ind(f), and since Af has irrational rotation
number no pole is periodic. So for any pole Cτ that there exists N ≥ 0 such that CAn

f (τ)
is

disjoint from Ind(f) for all n ≥ N . Since C itself meets only finitely poles of T̂◦, it follows

that f̃n(C \T)∩ Ind(f) = ∅ for all n large enough. Hence (fn(C) \T)∩ Ind(f∞) = ∅ for all
such n. The proof that f−n(C) \ T is disjoint from Ind(f−∞) for large n is similar. □

Corollary 4.12. Suppose that f is a toric map as in Theorem 4.6 and C ⊂ T̂◦ is a curve.
Then the restrictions φT ∗|C, φT∗|C are not identically −∞. In particular neither T ∗ nor T∗
charge curves in T̂◦.

Proof. This time we focus on T∗ instead of T ∗. Suppose to get a contradiction that φT∗|C ≡
−∞. By invariance of T∗, we have that (up to additive constants)

λ1φT∗ = φf∗T∗ = λ1f∗φT∗ + φf∗T̄∗ .

The function φf∗T̄∗ is continuous everywhere on T̂◦ \ f(Exc(f)) by Theorem 4.5. Hence
f∗φT∗|C ≡ −∞. From the definition of pushforward, we infer that φT∗ |C1 ≡ −∞, for some
curve C1 (an irreducible component of f−1(C)) such that f(C1) = C0. Repeated application
of the same argument gives a sequence of curves (Cj)j≥0 with C0 = C, such that f(Cj+1) = Cj

and φT∗|Cj
≡ −∞ for all j. But Proposition 4.11 implies that Cn\T is disjoint from Ind(f−∞)

when n is large enough. Hence Corollary 4.9 tells us that φT∗ cannot be infinite at any point
of Cn \ T. Since every curve contains some point outside T, we have our contradiction. It
follows immediately that T∗ does not charge C. □

In the case of T ∗ we can improve a bit on Corollary 4.12.
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Corollary 4.13. The Lelong numbers ν(T ∗, p) of the equilibrium current T ∗ vanish except

when p ∈ Ind(f∞). Hence T ∗ does not charge analytic disks in T̂◦.

Proof. The statement about Lelong numbers is [DR, Theorem 10.2]. Hence the Lelong

numbers of T ∗ are positive at most countably many points in T̂◦. This is inconsistent with
the fact that a positive closed (1, 1) current that charges a non-trivial analytic disk if and
only if its Lelong number is positive at all (uncountably many) points in the disk. □

Remark 4.14. It seems likely to us that, since f has small topological degree, Lelong numbers
of T∗ vanish except at points in Ind(f−∞). One can at least show without difficulty that
these numbers vanish except at points in the forward orbit of Ind(f) (a countable union of
curves). This weaker fact plus Corollary 4.12 is sufficient to verify that T∗ doesn’t charge
analytic disks either. But we do not use this in the sequel.

Theorem 4.15. Support functions ψT ∗ and ψT∗ for the currents T ∗ and T∗ in Theorem 4.6
are nearly homogeneous.

Proof. Again, we prove the result only for T ∗. Let ψT ∗ be a support function for T ∗ and
(then) ψT̄ ∗ be the support function for T̄ ∗ obtained by homogenizing ψT ∗ . Let T ∗

ave be the

TR-average of T
∗. Recall that φT ∗

ave
:= (ψT ∗ −ψT̄ ∗)◦Log extends from T to T̂◦ as a potential

for T ∗
ave − T̄ ∗. Recall from Theorem 2.6 and Proposition 2.4 that ψT ∗ − ψT̄ ∗ is continuous,

non-positive and non-increasing along every ray τ ⊂ NR. Our goal is to prove that it is
uniformly bounded below. By Proposition 2.8, it suffices to prove this only on a dense set
of rays τ ⊂ NR.
Let Cτ be (as in e.g. Corollary 4.12) a pole such that CAn

f (τ)
∩Ind(f) = ∅ for all n ≥ 0. Since

moreover, Af has irrational rotation number, the rays An
f (τ) are dense in NR. Corollary 4.9

tells us that the potential φT ∗ for T ∗− T̄ ∗ given by (7) is uniformly bounded on
⋃

n≥0CAn
f (τ)

.

Hence the the TR-average φT ∗,ave of φT ∗ is uniformly bounded on the same set. Since φT ∗,ave

is another potential for T ∗
ave− T̄ ∗ it differs from the function φT ∗

ave
in the previous paragraph

by a constant. On the other hand, we have for any v ∈ N that

lim
t→∞

(ψT ∗ − ψT̄ ∗)(tv) = φT ∗,ave(p),

where p = limz→0 γv(z) ∈ CAn
f (τ)

for γv : C
∗ → T the one parameter subgroup associated to v.

It follows that ψT ∗−ψT̄ ∗ is uniformly bounded along An
f (τ) by a constant that does not depend

on n. Proposition 2.8 now yields that the support function ψT ∗ is nearly homogeneous. □

5. A continuity result

From now until the end of the paper, we take f : T̂◦ 99K T̂◦ to be a toric rational map
satisfying the hypotheses of Theorem 1.2. That is,

(1) f is internally stable.
(2) λ2(f) < λ1(f).
(3) Af is a homeomorphism with irrational rotation number.
(4) Ind(f) ∩ T = ∅.

Assumption (1) implies that the forward and backward indeterminacy orbits Ind(f∞) and
Ind(f−∞) are disjoint from each other. Assumption (4) implies they are also disjoint from
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T. Assumption 3 implies that they meet each pole of T̂◦ in at most finitely many points.
Hence Ind(f∞) and Ind(f−∞) are each closed and discrete in T̂◦.
The results about equilibrium currents in §4 all apply more or less equally to T ∗ and T∗.

The main result of this section, which directly implies Theorem 1.3 above, is specific to T ∗.
We do not know whether the analogue for T∗ is also true.

Theorem 5.1. If f : T̂◦ 99K T̂◦ is a toric map satisfying the hypotheses of Theorem 1.2,
then the series (7) defining a potential φT ∗ for T ∗ − T̄ ∗ converges uniformly on any compact

subset of T̂◦ \ Ind(f∞) to a continuous function.

For the remainder of this section, we fix an R-linear identification NR
∼= C. We let ∥·∥

denote the norm and ∢(·, ·) the angle measure induced by the standard Euclidean metric on
C. As the next result makes precise, the condition on the rotation number of Af guarantees
that the tropicalization Afn = An

f is nearly conformal for large n. On the other hand, all of
the hypotheses of Theorem 5.1 remain true if we replace the map f by an iterate, so we will
be able to assume henceforth that Af itself is almost conformal.

Lemma 5.2. For any fixed δ > 0, we may replace f in Theorem 5.1 with an iterate fn in
order to arrange that

(1) for any v ∈ NR

e−δλ
1/2
2 ≤ ∥Afv∥

∥v∥
≤ eδλ

1/2
2 ;

(2) and consequently for any v, v′ ∈ NR.

∢(Afv,Afv
′) ≤ eδ∢(v, v′).

Proof. Conclusion (1) follows from [DR, Theorem 5.5], so it remains to show how this implies
the second conclusion. Recall from Theorem 3.4 that NR decomposes into a finite union of
closed sectors σ such that Af is linear on each. Since Af is a homeomorphism, the second
and last conclusions of Theorem 3.4 give us that λ2(f) = | detAf | on each σ.
It suffices to prove (2) when ∢(v, v′) is small. In particular, we can assume v, v′ lie in some

sector σ where Af is linear. Using our identification NR
∼= C, we obtain a, b ∈ C such that

(without loss of generality) |a| > |b|
Af (z) = az + bz̄

on σ. Conclusion (1) then gives

1 + 2
|b|
|a|

≤ |a|+ |b|
|a| − |b|

< e2δ.

and hence 1 + 3|b|/|a| < e3δ. Let θ > ϕ be the arguments of v and v′. Then

∢(Afv,Afv
′) = (θ − ϕ) + arg

(
1 + e−i2θb/a

1 + e−i2ϕb/a

)
≤ (θ − ϕ) + arg

(
1 + (b/a)(e−i2θ − e−i2ϕ) + · · ·

)
≤ (θ − ϕ) + 3|b/a|(θ − ϕ) = (1 + 3|b/a|)∢(v, v′) < e3δ∢(v, v′).

Replacing δ with δ/3 completes the proof. □

With Lemma 5.2 we derive some consequences of Theorem 3.6 for ‘tropical approximation’
of forward iterates of f .
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Proposition 5.3. Suppose that the toric map f in Theorem 5.1 satisfies the conclusions of
Lemma 5.2. Given open sets U ⊃ Ind(f) and V ⊃ f(Exc(f)), there exist C1, C2 > 0 such
that the following hold for any p ∈ T.

(i) If f j(p) ̸∈ U for all 0 ≤ j ≤ n− 1, then

∥Log ◦fn(p))∥ ≥
(
e−δλ

1/2
2

)n
(∥Log(p)∥ − C1) .

(ii) If f j+1(p) ̸∈ V for all 0 ≤ j ≤ n− 1, then

∥Log ◦fn(p))∥ ≤
(
eδλ

1/2
2

)n
(∥Log(p)∥ + C1) .

(iii) If f j(p) ̸∈ U , f j+1(p) ̸∈ V for all 0 ≤ j ≤ n − 1 and ∥Log(p)∥ ≥ 2C1, then for any
τ ∈ NR we have

∢(Log ◦fn(p)),An
f (τ)) ≤ eδn

(
∢(Log(p), τ) +

C2

∥Log(p)∥

)
.

Proof. Concerning (i), let C > 0 be the constant from (2) of Theorem 3.6 (with U ′ := U).
Iteratively applying that estimate together with conclusion (1) of Lemma 5.2 gives (i) with

C1 = C
∞∑
j=0

(
e−δλ

1/2
2

)−j

.

The proof of (ii) is similar.
Concerning (iii), we have from Conclusion (2) of Lemma 5.2 that

∢(Log ◦f(p),Af (τ)) ≤ ∢(Log ◦f(p),Af ◦ Log(p)) + ∢(Af ◦ Log(p),Af (τ))

≤ ∢(Log ◦f(p),Af ◦ Log(p)) + eδ∢(Log(p), τ).

Meanwhile, the conditions p ̸∈ U , f(p) /∈ V , and Conclusion (1) of Theorem 3.6 give
∥Log ◦f(p)− Af Log(p)∥ ≤ C and therefore

∢(Log ◦f(p),Af Log(p)) ≤ arcsin

(
C

∥Log ◦f(p)∥

)
≤ π

2

C

∥Log ◦f(p)∥
,(8)

where we have used that arcsin(x) ≤ π
2
x for all x ∈ [0, 1]. Thus

∢(Log ◦f(p),Af (τ)) ≤ eδ∢(Log(p), τ) +
π

2

C

∥Log ◦f(p)∥
.

Repeating this estimate with f(p), . . . fn−1(p) in place of p, we obtain

∢(Log ◦fn(p)),An
f τ) ≤ ∢(Log(p), τ)eδn +

Cπ

2

n∑
j=1

eδ(n−j)

∥Log ◦f j(p))∥

≤ eδn

(
∢(Log(p), τ) +

n∑
j=1

Cπ

2λ
j/2
2 (∥Log(p)∥ − C1)

)

≤ eδn
(
∢(Log(p), τ) +

C2

∥Log(p)∥

)
.

The second inequality follows from the assumption Log(p) ≥ 2C1 and the lower bound on
∥Log ◦f j(p))∥ from (i). The third inequality follows from ∥Log(p)∥ − C1 ≥ 1

2
∥Log(p)∥ and

taking C2 := Cπ
∑∞

j=0 λ
−j/2
2 . □
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Proof of Theorem 5.1. Since f has small topological degree, we may choose δ > 0 so that

e3δλ2(f) < λ < λ1(f).(9)

We have λ2(f
n) = λ2(f)

n and, by internal stability, λ1(f
n) = λ1(f)

n, so (9) holds with the
same δ if we replace f with a forward iterate fn. Likewise, fn satisfies the hypotheses of
Theorem 5.1 whenever f does. So since the equilibrium currents T ∗, T∗ are the same for fn

as they are for f , we may begin by replacing f with an iterate in order to assume that the
conclusions of Lemma 5.2 hold for δ in (9).

Let K ⊂ T̂◦\Ind(f∞) be a given compact set. By Corollary 2.2, K ⊂ Q ≡ Q(τ1, . . . , τJ , R)

for some star Q ⊂ T̂◦. Increasing R and adding to the finite set Σ1(Q) := {τ1, . . . , τJ} of
rational rays τj ⊂ NR that direct Q, we may assume that Q contains the finite sets Ind(f)
and f(Exc(f)).

Let φ := φλ−1
1 f∗T̄ ∗ be as in (7). Fix a point q ∈ Ind(f) and a local coordinate z centered

at q. Then (see e.g. [BD1, Proposition 1.2]) φ(z) ≥ −C log ∥z∥ for some constant C > 0.
Theorem 4.3 tells us |φ| is bounded on the complement of any neighborhood of Ind(f), so it

will suffice to fix a Riemannian distance function on T̂◦ and show that
∞∑
j=0

log dist(f j(p), Indf)

λj1
(10)

converges uniformly on K. Each term of this series is continuous on K, so it will further
suffice to prove this only on the dense subset K ∩ T.

Since Af has irrational rotation number and Σ1(Q) is finite, we can choose n0 ∈ N suffi-
ciently large so that An

f (τ) ̸∈ Σ1(Q) for any τ ∈ Σ1(Q) and n ≥ n0. We then choose an open
set U ⊂ Q such that

(11) Ind(f) ⊂ U and U ∩
n0⋃
j=0

f j(K) = ∅.

Similarly, since f is internally stable, we can choose an open set V ⊂ Q such that

(12) f(Exc(f)) ⊂ V and U ∩
n0⋃
j=0

f j(V ) = ∅.

These are the ‘excluded’ neighborhoods we will use when applying Proposition 5.3.
Fix a number λ ∈ (e3δλ2, λ1) and suppose to get a contradiction that the series (10) does

not converge uniformly on K ∩ T. Then for arbitrarily large n ∈ N there exists p = p(n) ∈
K ∩ T such that

| log dist(fn(p), Ind(f))| ≥ λn.(13)

Hence (for n large enough) fn(p) ∈ U , and there is a constant C3 > 0 such that

∥Log ◦fn(p)∥ ≥ C3λ
n(14)

for all such n. Finally, by Conclusion (1) of Corollary 4.9, Ind(f−∞) neither intersects nor
accumulates on Ind(f), so we may assume that fn(p) /∈ Ind(f−∞). Hence the orbit segment
p, . . . , fn(p) is completely contained in T.

From here the general idea is that since Log ◦f is well-approximated by Af ◦ Log, the
fact that p and fn(p) both lie in Q suggests that there are arbitrarily large n and rays
τ, τ̃ ∈ Σ1(Q) such that An

f (τ) = τ̃ . But this is impossible, because the set Σ1(Q) of rays
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directing Q is finite, whereas no ray in NR is periodic by Af . Proposition 5.3 allows us to
make this idea precise, but the details become a little involved since the relationship between
f and Af breaks down for orbits that pass near Ind(f) and/or f(Exc(f)). In any case, to
proceed we fix a positive integer n as in (13). All statements and inequalities that follow
will be understood to hold for ‘sufficiently large’ such n. The meaning of ‘sufficiently large’
will become clear gradually, increasing several (but finitely many!) times as the argument
progresses. All constants Cj that appear will be otherwise independent of n and will remain
the same from the moment they are introduced.

We let q = fn−k(p) be the last point in the orbit segment p, f(p), . . . , fn(p) that lies in
the open set V from (12). If no such point exists we take q = p, i.e. k = n. Our choice of q
allows us to apply Proposition 5.3 to obtain

C3λ
n ≤ ∥Log ◦fn(p)∥ =

∥∥Log ◦fk(q)
∥∥ ≤

(
eδλ

1/2
2

)k
(∥Log(q)∥ + C1).

Since λ > e3δλ2 > eδλ
1/2
2 , this implies for sufficiently large n that

∥Log(q)∥ ≥ C3

2

λn

(eδλ
1/2
2 )k

≥ max(R, 2C1).(15)

Since q ∈ V ⊂ Q, we also have a ray τ ∈ Σ1(Q) such that dist(Log(q), τ) ≤ R, where R is
the width used in defining Q. From this and (15), we infer

∢(Log(q), τ) ≤ arcsin

(
2R

C3

· (e
δλ

1/2
2 )k

λn

)
≤ πR

C3

· (e
δλ

1/2
2 )k

λn
.(16)

Now let ℓ be the smallest positive integer such that f ℓ(q) ∈ U . Since q ∈ V and fk(q) =
fn(p) ∈ U , we have n0 < ℓ ≤ k by (12). Then U ∩T ⊂ Q implies dist(f ℓ(q), τ̃) < R for some
τ̃ ∈ Σ1(Q). So since {f ℓ+1(q), . . . , fn(q)} ∩ V = ∅, we can repeat the argument for (16) to
obtain

∢(Log ◦f ℓ(q), τ̃) ≤ arcsin

(
2R

C3

· (e
δλ

1/2
2 )k−ℓ

λn

)
≤ πR

C3

· (e
δλ

1/2
2 )k−ℓ

λn
.(17)

Moreover, by construction, the orbit segment {q, f(q), . . . , f ℓ(q)} meets V only at q and U
only at f ℓ(q). So (15) and the last conclusion of Proposition 5.3 give
(18)

∢(Log ◦f ℓ(q),Aℓ
f (τ)) ≤ eδℓ

(
∢(Log(q), τ) +

C2

∥Log(q)∥

)
≤ C4e

δℓ · (e
δλ

1/2
2 )k

λn
≤ C4

(e2δλ
1/2
2 )k

λn
.

Together (17) and (18) imply that

(19) ∢(Aℓ
f (τ), τ̃) ≤ C5

(e2δλ
1/2
2 )k

λn
.

But τ̃ ∈ Σ1(Q), whereas ℓ ≥ n0 implies that Aℓ
f (τ) /∈ Σ1(Q), so we claim (19) is impossible

for n large.
To see this, let v ∈ N \{0} be the primitive vector on τ . Note that since τ is one of finitely

many rays in Σ1(Q), we have ∥v∥ ≤ C6 for some constant C6 depending on Q but not on
the particular ray τ (i.e. not on n). Finiteness of Σ1(Q) also implies that

min{dist(ṽ, τ̃) : ṽ ∈ N \ τ̃} ≥ C7 > 0
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for some constant C7 depending on Q but not on the particular ray τ̃ . Hence

∢(Aℓ
f (τ), τ̃) = ∢(Aℓ

f (v), τ̃) ≥
C7∥∥Aℓ
fv
∥∥ ≥ C7

C6(eδλ
1/2
2 )ℓ

.

Putting this together with (19), rearranging and using that ℓ ≤ k ≤ n, we obtain that

λn ≤ C8(e
3δλ2)

n

for all sufficiently large n. This contradicts λ > e3δλ2, justifying our claim, and completing
the proof of Theorem 5.1. □

For later reference we note the following consequence of Theorem 5.1.

Corollary 5.4. Let f be as in Theorem 5.1 and dist denote a Riemannian distance on T̂◦.
Then for any curve C ⊂ T̂◦, the intersection Ind(f∞)∩C is finite, and there exist constants
A,B > 0

φT ∗(p) ≥ min{−B,A log dist(p, Ind(f∞) ∩ Cτ )}.
for all p ∈ C.

Proof. Corollary 4.9 gives that Ind(f∞) ∩ C is finite when C is a pole. Finiteness holds for
internal C because under the hypotheses of Theorem 5.1 Ind(f∞) ∩ C ⊂ C \ T, and the
latter set is always finite. If in either case, C ∩ Ind(f∞) = ∅, then φT ∗|C is bounded. When
C is a pole, this is the final conclusion of Corollary 4.9. When C is internal (and therefore

compact in T̂◦), this is an immediate consequence of Theorem 5.1.
For a general curve C, we apply Proposition 4.11 to obtain n > 0 such that fn(C) ∩

Ind(f∞) = ∅. By invariance of T ∗, we have

λn1φT ∗ = φT ∗ ◦ fn + φfn∗T̄ ∗ ,

where the first term on the right is bounded on C by our choice of n, the second term is
bounded above everywhere on T̂◦ by Theorem 4.3, and

φfn∗T̄ ∗ ≥ max{−A log dist(·, Ind(fn)),−B}.
for some A,B > 0 by Conclusion (1) of Theorem 4.3 and e.g. [BD1, Proposition 1.3] □

6. Wedge products and energy

We begin this section by reviewing a general potential theoretic approach for intersecting
positive closed (1, 1) currents that was initiated by Bedford and Taylor [BT1] and further
developed by many others. Our treatment suffices for the purposes of this article, but
nearly all of the results below hold in substantially greater generality (see e.g. [DDG2]). In

Subsection 6.2 we extend the wedge product to be considered on the toric limit surface T̂◦.

6.1. Wedge product on a compact Kähler surface. Let X,ω be a compact Kähler
surface and PSH(ω) denote the set of functions u ∈ L1(X) such that ω + ddcu ≥ 0. Note
that PSH(ω) ⊂ PSH(Cω) for any C > 1 and if ω′ is any other Kähler form, then there exists
C > 1 such that PSH(C−1ω) ⊂ PSH(ω′) ⊂ PSH(Cω′). Hence QPSH(X) :=

⋃
C>0 PSH(Cω)

is independent of the choice of ω.

Definition 6.1. A regularizing sequence for u ∈ PSH(ω) is a decreasing sequence (uj) ⊂
PSH(ω) ∩ C∞(X) that converges pointwise to u.
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A proof of the following can be found in the book by Guedj and Zeriahi [GZ, Proposition
8.16]

Theorem 6.2. Any u ∈ PSH(ω) admits a regularizing sequence.

For the remainder of this subsection, we fix a positive closed (1, 1) current S on X and let
L1(S) denote the set of Borel measureable functions on X that are integrable with respect
to the trace measure ω ∧ S. Then L1(S) is independent of ω and includes e.g. all bounded
Borel measurable functions, hence all bounded qpsh functions on X. Less obviously L1(S)
includes qpsh functions that are unbounded on small enough sets. The following particular
case of [Dem2, III, Theorem 4.5] will be useful to us in the sequel.

Proposition 6.3. If I ⊂ X is a finite set and u ∈ L1(X) is a qpsh function that is locally
bounded on X \ I, then u ∈ L1(S) for any positive closed (1, 1) current S on X.

The main idea of the Bedford-Taylor construction (in our context) is that for any u ∈
PSH(ω) ∩ L1(S), the product uS is itself a (1, 1) current and we can formally set

(20) T ∧ S := ω ∧ S + ddc(uS),

where T := ω + ddcu. We say in this case that ‘the wedge product of T and S is well-
defined’. If, moreover, (uj) regularizes u, then the monotone convergence theorem gives us
that ujS → uS as currents. Hence (ω+ddcuj)∧S → T ∧S, and T ∧S is therefore a positive
Borel measure with total mass equal to that of ω ∧ S.

Lemma 6.4. Suppose that X is a Kahler surface and π : Y → X is a birational morphism.
Suppose T is a closed positive (1, 1) current on Y , that u ∈ QPSH(X) and that u◦π ∈ L1(T ).
Then

π∗ (dd
c(u ◦ π) ∧Y T ) = ddcu ∧X π∗T.

Here, the π∗ on the left hand side of the equation denotes the pushforward of Borel measures.

Proof. Since u ∈ QPSH(X) we can suppose that u ≤ 0. It suffices to prove for any smooth
test function g that ∫

Y

(g ◦ π) ddc(u ◦ π) ∧ T =

∫
X

g ddcu ∧ π∗T.

Integration by parts gives that this is equivalent to∫
Y

(u ◦ π)ddc(g ◦ π) ∧ T =

∫
X

u ddcg ∧ π∗T.

We can write ddcg = ω1 − ω2 where ω1 and ω2 are Kahler forms on X. Therefore it suffices
to show for any Kahler form ω on X that∫

(u ◦ π)π∗ω ∧ T =

∫
u ω ∧ π∗T.(21)

If u is smooth this follows from the definition of the proper pushforward π∗T . Otherwise,
one can choose a regularizing sequence (uj) for u. Equation (21) holds with u replaced by
uj for each j ∈ N and the result then follows for u by applying the monotone convergence
theorem to both sides. □

The next result guarantees (among many other things) that when both currents involved
represent Kähler classes, the Bedford-Taylor definition (20) of wedge product is symmetric.
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Theorem 6.5. Given Kähler forms ω, ω′ on X, u ∈ PSH(ω) and v ∈ PSH(ω′), let T =
ω + ddcu and T ′ = ω′ + ddcv. Then u ∈ L1(T ′) if and only if v ∈ L1(T ). If either (and
therefore both) of the integrability conditions hold and (uj), (vj) are regularizing sequences
for u and v, then we further have

T ∧ T ′ = lim
j→∞

Tj ∧ T ′
j

weakly as Radon measures.

We will obtain Theorem 6.5 as a special case of a more general result. In order to state
and prove the latter, we associate to the above current S a non-negative and symmetric
bilinear form on C∞(X):

⟨u, v⟩S :=

∫
du ∧ dcv ∧ S =

∫
−u ddcv ∧ S =

∫
−v ddcu ∧ S.(22)

We let ∥u∥S := ⟨u, u⟩1/2S denote the associated S-energy seminorm. When restricted to ω-psh
functions the pairing ⟨u, v⟩S has a useful monotonicity property.

Proposition 6.6. For any smooth functions u, ũ ∈ PSH(ω) and v, ṽ ∈ PSH(ω′) such that
u ≥ ũ and v ≥ ṽ, we have

⟨u, v⟩S ≤ ⟨ũ, ṽ⟩S + ∥u− ũ∥L1(S∧ω′) + ∥v − ṽ∥L1(S∧ω) .

In particular

∥u∥2S − ∥u− ũ∥L1(S∧ω) ≤ ⟨u, ũ⟩S ≤ ∥ũ∥2S + ∥u− ũ∥L1(S∧ω) .(23)

Proof. Integration by parts gives the following identity.

(24) ⟨u, v⟩S − ⟨ũ, ṽ⟩S =

∫
(ũ− u) ddcv ∧ S +

∫
(ṽ − v) ddcũ ∧ S.

Since ddcv ≥ −ω′, ddcũ ≥ −ω and u ≥ ũ, v ≥ ṽ, we obtain

⟨u, v⟩S − ⟨ũ, ṽ⟩S ≤
∫
(u− ũ)ω′ ∧ S +

∫
(v − ṽ)ω ∧ S.

This gives the first inequality. The second inequality follows from applying the first twice
with ω = ω′:

⟨u, u⟩S ≤ ⟨u, ũ⟩S +

∫
(u− ũ)ω ∧ S ≤ ⟨ũ, ũ⟩S + 2

∫
(u− ũ)ω ∧ S.

□

Corollary 6.7. Given u, v ∈ QPSH(X) ∩ L1(S) with regularizing sequences (uj) and (vj),
we have

lim
j→∞

⟨uj, vj⟩S =

∫
−u ddcv ∧ S =

∫
−v ddcu ∧ S ∈ R ∪ {+∞}.

In particular, u ∈ L1(ddcv ∧ S) if and only if v ∈ L1(ddcu ∧ S).

The wedge products in the conclusion should be interpreted in the Bedford-Taylor sense:
i.e. technically,

ddcu ∧ S = ddc(uS),

which is a signed measure with finite total mass on X.
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Proof. Since any two Kähler forms on X are comparable, we may suppose that u, v, uj, vj
are all ω-psh for the same Kähler form ω. Given indices j < k, we apply the estimate in
Proposition 6.6 to obtain

⟨uj, vj⟩S − ∥vj − vk∥L1(ω∧S) ≤ ⟨uj, vk⟩S ≤ ⟨uk, vk⟩S + ∥uj − uk∥L1(ω∧S) .

Since uj → u and vj → v in L1(S), the L1 norms on both sides tend to 0 as j → ∞. In
particular ⟨uj, vj⟩S is asymptotically increasing with j and must converge to its supremum
(which might be ∞). Moreover,

lim
j→∞

⟨uj, vj⟩S ≤ lim
j→∞

lim
k→∞

⟨uj, vk⟩S ≤ lim
k→∞

⟨uk, vk⟩S.

The middle term may be rewritten as

lim
j→∞

lim
k→∞

∫
−uj ddcvk ∧ S = lim

j→∞

∫
−uj ddcv ∧ S =

∫
−u ddcv ∧ S,

where the first equality is from weak convergence of vk ∧S to v ∧S and the second is by the
monotone convergence theorem. Hence ⟨uj, vj⟩S →

∫
−u ddcv ∧ S. Switching the roles of u

and v gives the other inequality in the corollary. □

Proof of Theorem 6.5. That u ∈ L1(T ′) if and only if v ∈ L1(T ) follows from taking S = ω
in the final assertion in Corollary 6.7. If ψ ∈ C∞(X) is a test function, then ddcψ = ω1 −ω2

can be written as a difference of Kähler forms. We then have

lim
j→∞

∫
ψ ddcuj ∧ ddcvj = lim

j→∞

∫
uj dd

cvj ∧ ddcψ =

∫
u ddcv ∧ ddcψ =

∫
ψ ddcu ∧ ddcv,

with the middle equality justified by Corollary 6.7 (with S equal to each ωk for k = 1, 2)
and the other equalities being integration by parts. Hence∫

ψ Tj ∧ T ′
j =

∫
ψ Tj ∧ ω′ +

∫
ψ ω ∧ ddcvj +

∫
ψ ddcuj ∧ ddcvj

→
∫
ψ T ∧ ω′ +

∫
ψ ω ∧ ddcv +

∫
ψ ddcu ∧ ddcv =

∫
ψT ∧ T ′,

which concludes the argument. □

Theorem 6.2 and Corollary 6.7 allow us to extend ⟨·, ·⟩S to all of QPSH(X) ∩ L1(S) via

(25) ⟨u, v⟩S :=

∫
−u ddcv ∧ S

Since u ∈ QPSH(X) is bounded above by some constant and ddcv is bounded below by a
negative multiple of the trace measure ω∧S of S, the integral is well-defined, though possibly
equal to +∞. Approximating u and v with regularizing sequences shows that ⟨·, ·⟩S remains
non-negative and symmetric. Hence the Cauchy-Schwarz inequality implies it is finite on the
real cone

E1(S) := {u ∈ L1(S) ∩QPSH(X) : ∥u∥S <∞},
which includes all bounded qpsh functions onX. Theorem 6.2 and Corollary 6.7 immediately
imply the following.

Corollary 6.8. The identity (24) holds for all u, v, u′, v′ ∈ E1(S). Hence so do all conclu-
sions of Proposition 6.6.
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With a bit more effort, we can also broaden the scope of Corollary 6.7.

Corollary 6.9. Let (uj) ⊂ E1(S) ∩ PSH(ω) be a decreasing sequence with limit u ∈ L1(S).
Then

lim
j→∞

∥uj∥S = ∥u∥S .

Hence ⟨·, ·⟩S is similarly continuous with respect to decreasing limits on E1(S) ∩ PSH(ω).

Proof. Since u ̸≡ −∞, it follows from Hartog’s Compactness Lemma (e.g. [GZ, Theorem
1.46]) that u ∈ PSH(ω) and by Monotone convergence that uj → u in L1(S ∧ ω). Hence, in
particular, (uj) is Cauchy in L1(S ∧ ω). Corollary 6.8 and (23) therefore imply that ∥uj∥S
is essentially increasing and in particular that limj→∞ ∥uj∥S = sup ∥uj∥S exists.
We first show that lim ∥uj∥S ≤ ∥u∥S. This is immediate if ∥u∥S = ∞. Otherwise,

u ∈ E1(S). Since each uj ∈ E1(S) as well, Corollary 6.8 and Equation (23) give

∥uj∥2S ≤ ∥u∥2S + 2 ∥uj − u∥L1(S∧ω) .

The inequality therefore follows from uj → u in L1(S ∧ ω).
For the reverse inequality lim ∥uj∥S ≥ ∥u∥S, let (vj) ⊂ C∞(X) ∩ PSH(ω) be another

sequence decreasing to u. By Hartog’s Lemma we can replace vj with vj + 2−j and pass to
subsequences to arrange that uj ≤ vj for all j. Hence by Corollary 6.8 again

∥vj∥2S ≤ ∥uj∥2S + 2 ∥vj − uj∥L1(ω∧S) ,

for each j ∈ N. Letting j → ∞, applying Corollary 6.7 on the right side, and using uj, vj → u
in L1(S ∧ ω) on the left, we obtain ∥u∥S ≤ lim ∥uj∥S, as desired.
Continuity of ⟨·, ·⟩S under decreasing limits in E1(S) ∩ PSH(ω) follows from the Cauchy-

Schwarz inequality. □

The following is a (less general) version of [DDG2, Proposition 1.8], and we refer the reader
to the proof given there.

Proposition 6.10. Given u ∈ E1(S)∩PSH(ω) and uj = max{u,−j}, let T = ω+ ddcu and
Tj := ω + ddcuj be the associated positive closed (1, 1) currents. Then we have for all k > j
that

(26) 1{u>−j} Tj ∧ S = 1{u>−j} Tk ∧ S.
Consequently, the measures 1{u>−j}Tj ∧ S are increasing with j and converge strongly as
Borel measures to T ∧ S.

Corollary 6.11. Suppose that T = ω+ ddcu for some u ∈ E1(S)∩PSH(ω) and that P ⊂ X
is a complete pluripolar set not charged by S. Then T ∧ S does not charge P either.

Proof. We suppose as usual that u ≤ 0. By hypothesis P = {v = −∞} for some negative
function v ∈ PSH(ω). Since ω∧S(P ) = 0, we may replace v with χ◦v, where χ : [−∞, 0] →
[−∞, 0] is a (very slowly) increasing convex bijection, in order to suppose that v ∈ L1(S).
Now given a positive integer j, let uj = max{u,−j}. Then Tj := ω + ddcuj ≥ 0 and∫
−v Tj ∧ S =

∫
−v ω ∧ S +

∫
−v ddc(uj + j) ∧ S =

∫
−v ω ∧ S +

∫
(uj + j) (−ddcv) ∧ S

≤
∫

−v ω ∧ S +

∫
(uj + j)ω ∧ S <∞.
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Corollary 6.7 justifies the integration by parts in the second equality and v ∈ PSH(ω) justifies
the final inequality. In any case, since v ≡ −∞ on P we infer from finiteness of this integral
that Tj ∧ S(P ) = 0 for every j. Hence T ∧ S(P ) = limj→∞ Tj ∧ S(P ) = 0 by Proposition
6.10. □

Corollary 6.12. If u, v ∈ PSH(ω) satisfy u ≥ v, then v ∈ E1(S) implies that u ∈ E1(S),
too.

Proof. Let uj, vj ∈ C∞(X) ∩ PSH(ω) be sequences that decrease to u and v, respectively.
Since u ≥ v, we may assume uj ≥ vj for all j. Using the hypothesis that u, v ∈ PSH(ω) and
Proposition 6.6 we obtain

∥u∥2S = lim
j→∞

∥uj∥2S ≤ lim
j→∞

(
∥vj∥2S + 2 ∥uj − vj∥L1(ω∧S)

)
= ∥v∥2S + 2 ∥u− v∥L1(ω∧S) <∞.

Note that ∥u− v∥L1(S) <∞ since v ∈ E1(S) implies v ∈ L1(S) and therefore u− v ∈ L1(S).
□

The following is a particularly useful application of Corollary 6.12

Corollary 6.13. Suppose that u ∈ PSH(ω) is continuous off a finite set I ⊂ X, that local
potentials for S are finite at each point in I, and that u(x) ≥ −A+B log dist(x, I) for some
constants A,B ≥ 0 Then u ∈ E1(S).

Proof. The bound on u means we can bound u from below by a an ω-psh function ũ that
is smooth off I and, near each p ∈ I, equal to ũ(z) + B log ∥z∥ for some smooth function ũ
and local coordinate z centered at p. It suffices to show therefore that ũ has finite S-energy.
This is accomplished in [BD1, Theorem 3.6]. □

By linearity, the pairing ⟨·, ·⟩S extends to differences u1 − u2 of functions u1, u2 ∈ E1(S).
However, there is no reason to expect that E1(S) is any sense complete with respect to ∥·∥S.
Hence it is necessary for us to allow a vector space larger than the one spanned by E1(S).

Definition 6.14. Let DPSH(X) denote the set of all differences u = u1−u2, where u1, u2 ∈
QPSH(X). We will say that ddcu admits a wedge product with S if the decomposition
u = u1 − u2 can be chosen so that u1, u2 ∈ L1(S) separately.

This guarantees that ddcu ∧ S is a signed Borel measure with finite total mass. We
introduce the following rather ad hoc terminology.

Definition 6.15. We say that u ∈ DPSH(X) has weakly finite S-energy, writing u ∈ E1
wk(S),

if ddcu admits a wedge product with S, and there is a constant C > 0 such that

−
∫
v ddcu ∧ S ≤ C ∥v∥S

for any v ∈ C∞(X).

If in the decomposition u = u1 − u2, both u1 and u2 have finite S-energy, then u has weakly
finite S-energy (with e.g. C = ∥u1∥S + ∥u2∥S). However, the point to Definition 6.15 is that
u might have weakly finite S-energy even when both ∥u1∥S and ∥u2∥S are infinite. In any
case, if u has weakly finite S-energy, then we let ∥u∥′S denote the smallest possible value of
C in this definition.
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In several places below, we will convert information about the Lelong numbers of a positive
closed current to information about how much mass its wedge product with another current
assigns to points. We rely on the bounds in the following result to do this.

Proposition 6.16. There is an absolute constant C > 0 such that the following hold for
any u ∈ DPSH(X) ∩ L1(S) and p ∈ X.

(1) If |u| ≤M in a neighborhood of p, then (ddcu ∧ S)(p) ≤ CMν(S, p).
(2) If u ∈ E1

wk(S), then (ddcu ∧ S)(p) ≤ C ∥u∥′S ν(S, p).

Proof. Fix a local coordinate x : U → B1(0) on X centered at p. Let ω be the Euclidean
Kähler form on B1(0) and χ : B1(0) → [0, 1] be a smooth, compactly supported function
equal to 1 near 0. For any r < 1, let χr(x) = χ(x/r). Then

(ddcu ∧ S)(p) = lim
r→0

∫
χr dd

cu ∧ S.

If |u| ≤M near p, integration by parts gives∣∣∣∣∫ χr dd
cu ∧ S

∣∣∣∣ = ∣∣∣∣∫ u ddcχr ∧ S
∣∣∣∣ ≤ M ∥χ∥C2

r2

∫
ω ∧ S → CMν(S, p)

for some constant C. Biholomorphic invariance of Lelong numbers implies that C does not
depend on the choice of local coordinate. This proves (1).

For (2) we have by definition of ∥u∥′S and ∥χr∥S that∣∣∣∣∫ χr dd
cu ∧ S

∣∣∣∣ ≤ ∥u∥′S

∣∣∣∣∫ χr dd
cχr ∧ S

∣∣∣∣ ≤ C ∥u∥′S
r2

∣∣∣∣∫ ω ∧ S
∣∣∣∣→ C ∥u∥′S ν(S, p)

as before. □

6.2. Wedge products of toric currents. Let us next extend the above discussion of wedge
products to the non-compact surface T̂◦. Rather than aim for maximum generality, we seek
only to establish a framework adequate for the purposes of this paper.

Definition 6.17. We will say that toric currents T, S ∈ D+
1,1(T̂) admit a wedge product if

[T ], [S] are Kähler classes, and in each toric surface X, we have T ∧X S := TX ∧ SX is
defined (in the Bedford-Taylor sense): i.e. given X, there are Kähler forms ωT,X , ωS,X on
X such that TX = ωT,X + ddcuX , SX = ωS,X + ddcvX , where uX ∈ L1(SX) (equivalently
vX ∈ L1(TX)).

Proposition 6.18. If T, S ∈ D+
1,1(T̂) admit a wedge product and Y ≻ X are toric surfaces,

then

(27) T ∧X S = πY X∗(T ∧Y S) + ν.

where ν is a positive measure with supp ν = πY X(Exc(πY X)).

Proof. It suffices to consider the case where πY X is the blowup of pσ ∈ X. If E = π−1
Y X(pσ),

then πY X : Y −E → X−pσ is an isomorphism. Hence πY X∗(T ∧Y S) = T ∧X S on X−{pσ}.
On the other hand, the total mass of T ∧Y S is given by

(TY · SY ) = (π∗
Y XTX + cE) · (π∗

Y XSX + c′E) = (TX · SX)− cc′ < (TX · SX)

by Proposition 2.9. Hence T ∧X S gives more mass to pσ than πY X∗(T ∧Y S) does. □
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Equation 27 tells us that when T and S admit a wedge product the mass of the measure
T ∧X S decreases as the surface X increases, converging to (T · S) as X → T̂. On the other

hand, for surfaces Y ≻ X, we have via the inclusions X◦ ⊂ Y ◦ ⊂ T̂◦ that (T ∧Y S)|X◦ =

(T ∧X S)|X◦ as measures on T̂◦. Hence

(T ∧X S)|X◦ ≤ (T ∧Y S)|Y ◦ ≤ T ∧Y S.

That is, the restricted measures increase with the surface, and their masses are bounded
above by (T · S). The restrictions therefore converge to a positive Borel measure on T̂◦ that

we denote by T ∧ S. Since (T ∧ S)(T̂◦) ≤ (T · S), we say that T ∧ S has full mass (on T̂◦)
when equality holds. This is equivalent to saying that the mass of T ∧X S on T-invariant
points of X decreases to 0 as X increases to T̂◦. In any case, if T ∧S does not charge curves
in T̂◦, then

T ∧ S = (T ∧ S)|T = (T ∧X S)|T = (T ∧X S)|X◦

for every toric surface X.

Theorem 6.19. Let T̄ , S ∈ D+
1,1(T̂) be positive internal toric currents such that T̄ is homo-

geneous and [T̄ ], [S] ∈ H1,1
R (T̂) are Kähler.

(1) T̄ and S admit a wedge product.

(2) If S does not charge a given curve C ⊂ T̂◦, then neither does T̄ ∧ S. Hence T̄ ∧ S =
(T̄ ∧ S)|T.

(3) Let S̄ be the homogenization of S. Then T̄ ∧ S̄ has full mass on T̂◦ and is equal to(
T̄ · S̄

)
times Haar measure on TR.

(4) If S has a nearly homogeneous support function, then T̄ ∧ S has full mass on T̂◦.

Proof. Fix a particular toric surface X and write T̄X = ω + ddcu, where ω is a Kähler form
and u ∈ PSH(ω). By Proposition 2.11, u is continuous on X◦. Hence u ∈ L1(SX) by
Proposition 6.3. This proves that T̄ ∧X S is defined in the Bedford-Taylor sense. Taking
uj = max{u,−j}, we have that uj ∈ E1(SX) agrees with u on any given compact subset of
X◦ when j is large enough. So given a curve C ⊂ X not charged by SX , Corollary 6.11 gives
that (ω + ddcuj) ∧ SX does not charge C for any j ≥ 0. The interiors of the compact sets
{uj = u} exhaust X◦ as j → ∞, so T̄ ∧X S does not charge C ∩X◦. In particular, since SX

is internal, T̄ ∧ SX does not charge X◦ ∩ C for any pole C ⊂ X. Letting X increase to T̂
gives the first two conclusions. For Conclusion (3) we first prove

Lemma 6.20. (T̄ ∧ S̄)|T = (T̄ ∧ S̄)|TR
is a multiple of Haar measure on TR.

Proof. Let ψT̄ , ψS̄ be support functions for T̄ and S̄. Let (τj)j≥0 be a sequence of rational rays
with

⋃
τj dense in NR. For n > 0 large, let ψT̄n

: NR → R be the support function defined
by setting ψT̄n

= ψT̄ on τ1 ∪ · · · ∪ τn and then extending linearly to the n disjoint sectors in
the complement. Then ψT̄n

decreases to ψT̄ uniformly on compact subsets of NR, and the
associated positive internal currents T̄n converge weakly to T̄ . We similarly approximate ψS̄

by support functions ψS̄n
associated to another dense sequence of rays entirely disjoint from

(τj)j≥0.
Then for any n and each point p ∈ T \ TR, we have that either ψT̄n

◦ Log or ψS̄n
◦ Log

is pluriharmonic on a neighborhood of p. It follows that T̄n ∧ S̄n|T is supported on TR. By
TR-invariance, T̄n ∧ S̄n|T must be a non-negative multiple of Haar measure on TR. On the
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other hand, continuity of the Monge-Ampère operator with respect to decreasing sequences
of locally bounded psh functions (see e.g. [GZ, Theorem 3.18]) gives us that

(T̄n ∧ S̄n)|T → (T̄ ∧ S̄)T.
□

It remains to show that (T̄ ∧ S̄)|TR
has (full) mass equal to

(
T̄ · S̄

)
. To do this we employ

the homogeneous approximation T̄ (X) ∈ D+
1,1(X) (see [DR, Theorem 6.7]) of T̄ on some

toric surface X. That is, ψT̄ (X) is linear on every sector in Σ(X) and agrees with ψT̄ on
each ray in Σ1(X). Hence ψT̄ (X) ◦ Log is pluriharmonic near the torus invariant points of

X, so supp T̄ (X) ∧X S̄ avoids T-invariant points. By Conclusion (2), T̄ (X) ∧ S̄ does not
charge curves. So it follows from the lemma that T̄ (X)∧X S̄ = (T̄ (X)∧ S̄)|T is exactly equal
to
(
T̄ (X) · S̄

)
X

times Haar measure on TR. Since T̄X is cohomologous in X to T̄ (X), we

further have that
(
T̄ (X) · S̄

)
X

=
(
T̄ · S̄

)
X

decreases to
(
T̄ · S̄

)
as X increases to T̂, hence

T̄ (X) ∧X S̄ decreases to
(
T̄ · S̄

)
times Haar measure on TR.

On the other hand, as X increases to T̂, the rays in Σ1(X) become dense in NR. Hence
as in the proof of the lemma, we have T̄ (X) ∧X S̄ → T̄ ∧ S̄ on any relatively compact open
subset of T. The third conclusion follows immediately.

For the final conclusion of Theorem 6.19 we observe that∑
σ∈Σ2(X)

T̄ ∧ S(pσ) =
∑

σ∈Σ2(X)

T̄ ∧ S̄(pσ) +
∑

σ∈Σ2(X)

T̄ ∧ ddcφS(pσ),

where φS is the S̄ potential for S. Since T̄ is TR-invariant, as is each pσ ∈ X \X◦, we may
suppose in the second sum on the right that S = Save is also TR-invariant. So when the
support function ψS for S is nearly homogeneous, φS = (ψS − ψS̄) ◦ Log is bounded. From
the first conclusion of Proposition 6.16 we infer that∑

σ∈Σ2(X)

T̄ ∧ S(pσ) ≤
∑

σ∈Σ2(X)

T̄ ∧ S̄(pσ) + C
∑

σ∈Σ2(X)

ν(T̄ , pσ).

But as X increases to T̂, the first term on the right tends to 0 because T̄ ∧ S̄ has full mass
on TR ⊂ T̂◦, and the second term tends to 0 by Proposition 2.10. Hence the left side tends
to 0, too, which is equivalent to the statement that T̄ ∧ S has full mass on T̂◦. □

Let C∞(T̂) denote the union of C∞(X) over all toric surfaces X modulo the identification
u ◦ πXY ∼ u for any u ∈ C∞(Y ) and any surface X ≻ Y . Then we have

C∞
0 (T̂◦) ⊂ C∞(T̂) ⊂ C∞(T̂◦).

That is on the one hand, if u ∈ C∞
0 (T̂◦), then suppu ⊂ X◦ for some surface X. Hence

u ∈ C∞(X) ⊂ C∞(T̂). And on the other hand, v ∈ C∞(T̂) implies that v|X◦ is well-defined

on all sufficiently dominant X. Since the open sets X◦ exhaust T̂◦ and the restrictions agree
with each other on overlaps, it follows that v is well-defined and smooth on all of T̂◦.
Any toric current S ∈ D+

1,1(T̂) defines a pairing on C∞(T̂) modeled on the one in (22).

Given u, v ∈ C∞(T̂), we choose a toric surface X in which both u and v are well-defined,
and set

⟨u, v⟩S := ⟨u, v⟩SX
=

∫
X

du ∧ dcv ∧ SX .
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Since πXY ∗SX = SY when X ≻ Y , this definition is independent of the choice of X. If at
least one of the two functions belongs to ∈ C∞

0 (T̂◦), then du∧dcv is a test form on T̂◦, giving
us the equivalent formulation

(28) ⟨u, v⟩S =

∫
T̂◦
du ∧ dcv ∧ S.

In any case, we let ∥·∥S denote the associated seminorm.

Definition 6.21. Let T1, T2, S ∈ D+
1,1(T̂◦) be currents such that T1 is cohomologous to T2

and both admit wedge products with S (in particular, [Tj] and [S] are Kähler classes). We

say that a potential φ ∈ L1
loc(T̂◦) for T1−T2 has weakly finite S-energy if there is a constant

C such that for all toric surfaces X and all u ∈ C∞(X), we have∫
X

u ddcφ ∧X S ≤ C ∥u∥S .

We let ∥φ∥′S denote the minimum possible value of C in this definition. Recall that if X
is a toric surface, then φ (or strictly speaking, the restriction φ|X◦) is a also potential for
T1,X − T2,X .

Proposition 6.22. Let φ be the potential in Definition 6.21 and X ≻ Y be toric surfaces.
Then ∥φ∥′SX

≥ ∥φ∥′SY
.

Proof. Suppose that u ∈ C∞(Y ) ⊂ C∞(T̂) and that X ≻ Y . Let π = πXY denote the
transition. Then∫

X

(u ◦ π) ddcφ ∧ SX =

∫
X

ddc(u ◦ π) ∧ (φSX) =

∫
Y

ddcu ∧ π∗(φSX)

=

∫
ddcu ∧ (φSY ) =

∫
Y

u ddcφ ∧ SY .

The first and last equalities hold by definition since u is smooth. Note that ddc(u ◦ π) ∧ SX

and ddcu∧SY are signed measures dominated above and below by constant multiples of the
trace measures of SY and SX . Hence the second inequality follows from the definition of
pushforward and integrability of φ with respect to the trace measures of SX and SY . Thus∣∣∣∣∫

Y

u ddcφ ∧ SY

∣∣∣∣ = ∣∣∣∣∫
X

(u ◦ π) ddcφ ∧ SX

∣∣∣∣ ≤ ∥φ∥′SX
∥u ◦ π∥SX

= ∥φ∥′SX
∥u∥SY

.

So ∥φ∥′SX
≥ ∥φ∥′SY

. □

Corollary 6.23. The potential φ in Definition 6.21 has weakly finite S-energy if and only
if ∥φ∥′SX

is finite and uniformly bounded as X ranges over all toric surfaces. In this case,

∥φ∥′S = sup
X

∥φ∥′SX
.

Theorem 6.24. Suppose that S, T ∈ D+
1,1(T̂) are internal and admit a wedge product. If the

support function ψS for S is nearly homogeneous and the potential φT for T − T̄ has weakly
finite S-energy, then T ∧ S has full mass on T̂◦.
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Proof. By hypothesis and Theorem 6.19, T̄ ∧S has full mass on T̂◦. Moreover, for each toric
surface X, we have from Propositions 6.16 and 6.22 that∑

p∈X\X◦

|(ddcφT ∧ S)(p)| ≤ C ∥φT∥′SX

∑
p∈X\X◦

ν(SX , p) ≤ C ∥φT∥′S
∑

p∈X\X◦

ν(SX , p).

By Proposition 2.10, the last sum decreases to 0 as the surface X increases, so we conclude
that T ∧ S = T̄ ∧ S + ddcφT ∧ S has full mass on T̂◦. □

7. Equilibrium measure: construction

Recall our standing assumption that f : T̂◦ 99K T̂◦ is a toric map satisfying the hypotheses
of Theorem 1.2. Our goal in this section is to apply the machinery from §6 to define and
investigate the Bedford-Taylor wedge product of the equilibrium currents T ∗ and T∗ asso-
ciated to f in §4.2. More precisely, we prove the following result, which amounts to all of
Theorem 1.2 except Conclusions (2) and (3) which are proven in §8.

Theorem 7.1. The internal currents T ∗ and T∗ admit a wedge product in the sense of
Definition 6.17. The resulting Borel measure T ∗ ∧ T∗ on T̂◦ has (full) mass equal to 1 and
does not charge curves.

Definition 7.2. We call µ := T ∗ ∧ T∗ the equilibrium measure of f .

Since µ does not charge curves in T̂◦, one can alternatively define µ to be the Borel probability
measure obtained by fixing some/any toric surfaceX and restricting the product µ = T ∗∧XT∗
to T.

The main ingredient in the proof of Theorem 7.1 is Theorem 1.4, which we take for granted
momentarily.

Proof of Theorem 7.1. Let X be a toric surface. By Proposition 4.7, there is a Kähler form
ωX and u ∈ PSH(ωX) such that T ∗

X = ωX + ddcu. Likewise, T̄ ∗
X = ωX + ddcv for some

v ∈ PSH(ωX). Hence φT ∗ = u− v is a potential for T ∗− T̄ ∗. Proposition 2.11 tells us that v
is continuous on X◦, and Theorem 5.1 tells us that φT ∗ is continuous on X◦\Ind(f∞). Hence
u = φ − v is continuous off the finite subset consisting of points in X that are T-invariant
and/or indeterminate for some iterate of f . Proposition 6.3 therefore implies u ∈ L1(T∗,X).
Hence the Bedford-Taylor wedge product T ∗∧X T∗ is well-defined in X. Since X is arbitrary,
we conclude that T ∗ and T∗ admit a wedge product on T̂◦.
By Theorem 4.15 any support function ψT∗ for T∗ is nearly homogeneous. By Theorem

1.4, the potential φT ∗ has weakly finite T∗-energy. So Theorem 6.24 tells us that T ∗ ∧ T∗
has full mass on T̂◦. Corollary 4.12 tells us that T∗ does not charge curves, so Theorem 6.19
tells us that T̄ ∗ ∧ T∗ does not charge curves either. It will suffice, therefore, to show that
ddcφT ∗ ∧ T∗ = ddc(φT ∗T∗) does not charge any curve C ⊂ T̂◦.
Let n be the largest integer such that f−n(Ind(f)) ∩ C is non-empty and X be a toric

surface sufficiently dominant that C ⊂ X◦. Then we may apply Corollary 6.11 as we did
in the proof of Conclusion (2) in Theorem 6.19 to see that ddcφT ∗ ∧X T∗ does not charge
C \ Ind(fn). On the other hand, Corollary 4.9 gives that local potentials for T∗ are finite
at points p ∈ Ind(fn) ∩ X◦, so Conclusion (2) of Proposition 6.16 shows that ddcφT ∗ ∧ T∗
assigns no mass to Ind(fn) either. □
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The rest of this section is devoted to proving Theorem 1.4. We caution from the outset
that if X is a given toric surface, both currents T ∗

X , T∗,X ∈ D+
1,1(X) have positive Lelong

numbers at each T-invariant point of X. Hence φT ∗ is not a difference of qpsh functions
each with finite T∗,X-energy. This forces us to accept the weaker conclusion that φT ∗ has
only weakly finite T∗-energy and leads to arguments that are longer and more delicate than
one might hope.

For any integer n ≥ 0, we set Tn := λ−n
1 fn∗T̄ ∗ ∈ D+

1,1(T̂) which is internal by Proposi-

tion 4.1 and cohomologous to T0 = T̄ ∗. We let ψn := ψTn denote a support function for Tn
and φn = φTn denote a potential for Tn − T0. Fixing a toric surface X and a Kähler form
ωX cohomologous on X to T ∗

X , we also have Tn,X = ωX +ddcun,X for some un,X ∈ PSH(ωX).
We normalize so that φn = un,X − u0,X . While un,X depends on the surface, φn does not. In
any case, we will suppress the subscript X when the surface is understood.

Theorem 4.3 Part (1) tells us that φn is not only continuous on X◦ \ Ind(fn) but also
bounded in a neighborhood of each point in X \ X◦. Since u0 is continuous on X◦ by
Proposition 2.11 we therefore also have that un = φn + u0 is continuous on X◦ \ Ind(fn).
Hence the Bedford-Taylor product Tn ∧X T∗ is well-defined for all n ≥ 0. As we noted in
§6.2, the measures Tn ∧X T∗, and even their masses, vary with X. Our next result shows,
however, that for different n,m ≥ 0 and sufficiently dominant toric surfaces X, the measures
Tn ∧X T∗ and Tm ∧X T∗ vary with X in exactly the same way.

Theorem 7.3. For any toric surface X such that Ind(fn) ⊂ X◦, the signed measure µn :=

(Tn−T0)∧X T∗ has no mass on any curve C ⊂ X. In particular, µn has full mass on T ⊂ T̂◦

and is independent of (sufficiently dominant) X.

Proof. Let C ⊂ X be a curve. Fix a neighborhood U of the T-invariant points X \ X◦,
chosen so that U ∩ Ind(fn) = ∅. Proposition 2.10 tells us that since [T ∗

n ] = [T ∗] is Kähler,
the potentials un have non-trivial logarithmic singularities near each T-invariant point of X.
For j ≥ 0 large, we let un,j ∈ PSH(ω) be equal to un off U and to max{u,−j} on U . Then
un,j is continuous except for logarithmic singularities at points of Ind(fn). Corollary 6.13
then tells us that ∥un,j∥T∗

is finite. Since T∗ does not charge curves, Corollary 6.11 further
implies that (ω + ddcun,j) ∧X T∗ does not charge curves either. The open set {un,j ̸= un}
decreases to X \X◦ as j → ∞, so we conclude that µn(C ∩X◦) = 0.
It remains only to show that µn(pσ) = 0 for each T-invariant pσ ∈ X. Since φn is bounded

away from Ind(fn), our choice of surface X guarantees that |φn| ≤M on a neighborhood of
X \X◦. The constant M does not change if we replace X by Y ≻ X. So given ϵ > 0, choose
Y ≻ X such that

∑
σ∈Σ2(Y ) ν(T∗,Y , pσ) < ϵ. Observe that∑

σ∈Σ2(X)

|µn(pσ)| =
∑

σ∈Σ2(X)

|(ddcφn ∧X T∗)(pσ)| =
∑

σ∈Σ2(X)

|(ddcφn ∧Y T∗)(π
−1
Y X(pσ))|

=
∑

σ∈Σ2(Y )

|(ddcφn ∧Y T∗)(pσ)| ≤ CM
∑

σ∈Σ2(Y )

ν(T∗, pσ) ≤ CMϵ.

The second equality comes from Lemma 6.4 and the identity πY X∗(dd
cφn∧Y T∗) = ddcφn∧X

T∗. The third equality follows from applying the first paragraph of this proof to curves in Y
instead of curves inX. The final inequality is obtained from item (1) in Proposition 6.16. The
constant C is independent of Y , so by letting ϵ decrease to 0, we find that

∑
σ∈Σ2(X) |µn(pσ)| =

0 as hoped. □
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Now fix two non-negative integers m,n ≥ 0 and let N = max{m,n}. Continuity of φm

on T̂◦ \ Ind(fN) implies that φm is measurable (in any toric surface X) with respect to µn.
Since µn does not charge curves the product φm µn has no mass outside T and is therefore
independent of X. That is, we can regard φnµm as a measure on T, on T̂◦, or on a given
toric surface X without distinction. The value

∫
φnµm is the same in any case.

Proposition 7.4. φm is integrable with respect to µn.

Proof. Suppose that X is a toric surface such that Ind(fN) ⊂ X◦. Let U ⊂ X◦ be a union
of coordinate balls, centered at the points of Ind(fN). Let χ : X → [0, 1] be a smooth cutoff
function supported in U and equal to 1 on a neighborhood of Ind(fN). By construction and
Theorem 4.3, (1− χ)φm is bounded, so it is µn-integrable simply because µn has finite total
mass.

To show that χφm is also µn-integrable, recall that φm = um − u0, where as above um =
um,X denotes the potential for Tm −ωX on X. Hence it will suffice to show for any j, k ≤ N
that χuj is integrable with respect to Tk ∧X T∗. Since C ≥ uj ≥ A log dist(·, Ind(fN)) + B,
and since χ is supported on coordinate balls about points in Ind(fN), it suffices to show that∫

∥z∥<r

χ log ∥z∥ Tk ∧X T∗ > −∞,

where z is one of the local coordinates and r > 0 is small. To do this, we choose a regularizing
sequence (logℓ) ⊂ PSH(ω) for log ∥z∥ such that logℓ(z) = log ∥z∥ on supp dχ. Then by
monotone convergence∫

χ log ∥z∥ Tk ∧X T∗ = lim
ℓ→∞

∫
χ logℓ(z)Tk ∧X T∗ = lim

ℓ→∞

∫
uk dd

c(χ logℓ ∥z∥) ∧X T∗ +O(1)

since χ log ∥z∥ is integrable with respect to ω∧XT∗ by Proposition 6.3. Since logℓ(z) = log ∥z∥
is independent of ℓ on supp dχ, we have that

ddc(χ logℓ ∥z∥)− χddc logℓ ∥z∥
is smooth and independent of ℓ, bounded above and below by fixed multiples of ω. Hence
there exists C > 0 such that up to additive constants∫
χ log ∥z∥ Tk ∧X T∗ = lim

ℓ→∞

∫
χuk dd

c logℓ ∧XT∗ ≥ C lim
ℓ→∞

∫
χ log ∥z∥ ddc logℓ ∧XT∗

= C lim
ℓ→∞

∫
χ logℓ dd

c log ∥z∥ ∧X T∗ = C

∫
χ log ∥z∥ ddc log ∥z∥ ∧X T∗.

By Corollary 4.9 and the assumption (4) at the beginning of §5, local potentials for T∗ are
finite at z = 0, so we conclude that the last integral is finite by [BD1, Theorem 3.6]. □

Corollary 7.5. For any m ≥ n ≥ 0 we have that φm − φn is integrable with respect to
µm − µn = ddc(φm − φn) ∧ T∗, and∫

(φm − φn) dd
c(φm − φn) ∧ T∗ = λ−n

1

∫
φm−n dd

cφm−n ∧ T∗.

Proof. The first assertion is immediate from Proposition 7.4. For the second assertion,
observe that

ddc(φm − φn) = Tm − Tn = λ−n
1 fn∗(Tm−n − T0) = λ−n

1 ddc(φm−n ◦ fn).
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Hence φm − φn and λ−n
1 φm−n ◦ fn differ by a constant. Since ddc(φm − φn) ∧ T∗ is a signed

measure with net mass 0 we have∫
T̂◦
(φm − φn) dd

c(φm − φn) ∧ T∗ = λ−2n
1

∫
T̂◦
(φm−n ◦ fn) ddc(φm−n ◦ fn) ∧ T∗.

The proof will therefore be complete once we show that∫
T̂◦
(φm−n ◦ fn) ddc(φm−n ◦ fn) ∧ T∗ = λn1

∫
T̂◦
φm−n dd

cφm−n ∧ T∗.

Theorem 7.3 tells us that the integrands in this equation have no mass on any curve in T̂◦.
So given ϵ > 0 we can choose a relatively compact open set U ⊂ T \ fn(Ind(fn)) such that∫
T̂◦\U φm−n dd

cφm−n ∧ T∗ < ϵ. By Corollary 3.2 fn : T \ f−n(fn(Ind(fn)) → T \ fn(Ind(fn))

is a finite holomorphic covering map, so we have that f−n(U) is a relatively compact open
subset of T \ f−n(fn(Ind(f)), and by increasing U if necessary that∫

T\f−n(U)

(φm−n ◦ fn) ddc(φm−n ◦ fn) ∧ T∗ < ϵ.

Let χ : T → [0, 1] be a smooth compactly supported function such that χ ≡ 1 on U .
Since φm−n is continuous on T, we can choose a smooth function φ̃ : U → R such that
|φ̃− φm−n| < ϵ on U . Thus∫
T
(φm−n ◦ fn) ddc(φm−n ◦ fn) ∧ T∗ ≈3ϵ

∫
T
((χφ̃) ◦ fn) ddc(φm−n ◦ fn) ∧ T∗

=

∫
T
(φm−n ◦ fn) ddc((χφ̃) ◦ fn) ∧ T∗

≈2ϵ

∫
T
(φ̃ ◦ fn) ddc((χφ̃) ◦ fn) ∧ T∗ = λn1

∫
T
φ̃ ddc(χφ̃) ∧ T∗

≈2ϵ λn1

∫
T
φm−n dd

c(χφ̃) ∧ T∗ = λn1

∫
χφ̃ ddcφm−n ∧ T∗

≈3ϵ λn1

∫
T
φm−n dd

cφm−n ∧ T∗,

where ≈δ means that the two sides differ by at most ±δ. We have used that the signed
measure (Tm − Tn) ∧ T∗ has total mass 2 in each occurrence of ‘≈’. We have also used the
invariance fn

∗ T∗ = λn1T∗ on the right side of the second ‘=’. the proof concludes on letting
ϵ→ 0. □

Even though Corollary 7.5 guarantees that
∫
−(φm−φn) dd

c(φm−φn)∧T∗ is well-defined
and finite, it does not mean that φm − φn has finite T∗-energy (which would then be given
by the same integral). That is, because fm∗T̄ ∗, fn∗T̄ ∗ and T̄ ∗ all represent Kähler classes

in H1,1
R (T̂◦), their restrictions all have positive Lelong numbers at the T-invariant points of

any given toric surface X. Hence it is not clear whether we can express φm − φn in X as a
difference of qpsh functions in E1(T∗,X). Here we prove something a little more modest.

Theorem 7.6. For any m,n ≥ 0, the function φm − φn has weakly finite T∗-energy

∥φm − φn∥′T∗
=

(∫
T
−(φm − φn) dd

c(φm − φn) ∧ T∗
)1/2

.(29)
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Proof. We write ∆ = φm − φn throughout the proof. Then

ddc∆ ∧ T∗ = (Tm − Tn) ∧ T∗ = µm − µn,

and Proposition 7.4 guarantees that ∆ is integrable with respect to ddc∆∧T∗. Fix a relatively
compact neighborhood U of Ind(fm) in T̂◦. Assume U meets only those poles that contains
points of Ind(fm). Let M := supT̂◦\U |∆| which is finite by Theorem 4.3 Part (1).

Lemma 7.7. Let X be a toric surface such that Ind(fm) ⊂ X◦. Then ∆ has weakly finite
T∗,X-energy, and∣∣∣∣(∥∆∥′T∗,X

)2 −
∫

−∆ ddc∆ ∧ T∗
∣∣∣∣ ≤ 2M

∑
p∈X\X◦

(T̄ ∗ ∧X T∗)(p).

Taking this for granted momentarily, we note that since T∗ has a nearly homogeneous
support function, Theorem 6.19, Part (4) tells us that the sum on the right decreases to 0

as X increases to T̂◦. Theorem 7.6 follows. □

Corollary 7.8. For any n ∈ Z≥0, the currents Tn and T∗ admit a wedge product in the sense

of Definition 6.17. The resulting positive Borel measure Tn ∧ T∗ on T̂◦ has (full) mass equal
to 1 and does not charge curves.

Proof. The argument is identical to the above proof of Theorem 7.1, except that Theorem 7.6
takes the place of Theorem 1.4. □

Proof of Lemma 7.7. The hypothesis onX implies that U is a relatively compact open subset
of X◦. Hence we may choose coordinate neighborhoods Up of the T-invariant points p ∈
X \ X◦ whose closures are disjoint from each other and from U . For r > 0 small, we let
Bp(r) ⊂ Up denote the coordinate ball of radius r about p and set B(r) :=

⋃
p∈X\X◦ Bp(r).

As above, we write Tj = ωX + ddcuj, on X. For each (large) positive integer ℓ, we let
uj,ℓ ≥ uj be equal to max{uj,−ℓ} on each Up and equal to uj elsewhere. Again, since Tj
represents a Kähler class in H1,1

R (T̂◦), Proposition 2.10 tells us that uj(p) has a non-trivial
logarithmic singularity at p, so that uj,ℓ ∈ PSH(ωX) is continuous off Ind(fm). Corollary
6.13 and the fact that local potentials for T∗ are finite on Ind(fn) further imply that uj,ℓ has
finite T∗,X-energy

(∥uj,ℓ∥T∗,X
)2 =

∫
−uj,ℓ ddcuj,ℓ ∧X T∗.

Set ∆ℓ := um,ℓ − un,ℓ. Then for any fixed r > 0, we have that ∆ = ∆ℓ outside B(r) when ℓ
is large enough. Hence∣∣∣∣∫ ∆ℓ dd

c∆ℓ ∧X T∗ −
∫

∆ ddc∆ ∧X T∗

∣∣∣∣ ≤ ∣∣∣∣∫
B(r)

∆ ddc∆ ∧X T∗

∣∣∣∣+ ∑
p∈X\X◦

∣∣∣∣∣
∫
Bp(r)

∆ℓ dd
c∆ℓ ∧X T∗

∣∣∣∣∣ .
To estimate the integrals in the sum, we set Tj,ℓ := ωX + ddcuj,ℓ ∈ D+

1,1(X) and proceed.∣∣∣∣∣
∫
Bp(r)

∆ℓ dd
c∆ℓ ∧X T∗

∣∣∣∣∣ =

∣∣∣∣∣
∫
Bp(r)

∆ℓ (Tm,ℓ − Tn,ℓ) ∧X T∗

∣∣∣∣∣ ≤
∫
Bp(r)

|∆ℓ| (Tm,ℓ + Tn,ℓ) ∧X T∗

≤ M

∫
Bp(r)

(Tm,ℓ + Tn,ℓ) ∧X T∗ =M

∫
Bp(r)

(Tm + Tn) ∧X T∗.
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The final equality follows from Stokes’ Theorem and the fact that Tj,ℓ = Tj outside a compact
subset of Bp(r) for j = m,n. So for ℓ = ℓ(r) large enough,∣∣∣∣∫ ∆ℓ dd

c∆ℓ ∧X T∗ −
∫

∆ ddc∆ ∧X T∗

∣∣∣∣ ≤ ∣∣∣∣∫
B(r)

∆ ddc∆ ∧X T∗

∣∣∣∣+M ∑
p∈X\X◦

∣∣∣∣∣
∫
Bp(r)

(Tm + Tn) ∧X T∗

∣∣∣∣∣ .
As ℓ → ∞, we may let r → 0 and apply Theorem 7.3 and Proposition 7.4 to show that the
first term goes to zero. Thus

lim sup
ℓ→∞

∣∣∣∣∫ ∆ℓ dd
c∆ℓ ∧X T∗ −

∫
∆ ddc∆ ∧X T∗

∣∣∣∣ ≤ M
∑

p∈X\X◦

(Tm + Tn) ∧X T∗(p)

= 2M
∑

p∈X\X◦

T̄ ∗ ∧X T∗(p).

The final equality comes from Theorem 7.3; i.e. for each T-invariant p ∈ X and j ≥ 0, we
have Tj ∧X T∗(p) = T0 ∧X T∗(p) = T̄ ∗ ∧X T∗(p).

Now if κ ∈ C∞(X), we integrate by parts and apply Monotone convergence to um,ℓ and
un,ℓ separately to obtain∣∣∣∣∫ κ ddc∆ ∧X T∗

∣∣∣∣2 = lim
ℓ→∞

∣∣∣∣∫ ∆ℓ dd
cκ ∧X T∗

∣∣∣∣2 ≤ ∥κ∥2T∗
lim inf
ℓ→∞

∥∆ℓ∥2T ∗ .

Hence ∆ has weakly finite T∗,X energy, and

∥∆∥′2T∗,X
≤ lim inf

ℓ→∞
∥∆ℓ∥2T ∗ ≤

∫
−∆ ddc∆ ∧X T∗ + 2M

∑
p∈X\X◦

(T̄ ∗ ∧X T∗)(p).

For the complementary bound, we observe that Theorem 6.2 and Corollary 6.7 allow us
to trade our approximations uj,ℓ for smooth approximations ũj,ℓ ∈ PSH(ωX) such that
limℓ→∞ ∥uj,ℓ − ũj,ℓ∥TX,∗

= 0. By Hartog’s Lemma (see also Corollary 6.9) we can further

assume that ũj,ℓ decreases pointwise to uj. Hence if ∆̃ℓ = ũm,ℓ − ũn,ℓ, we have that

lim
ℓ→∞

∥∥∥∆ℓ − ∆̃ℓ

∥∥∥
TX,∗

= 0.(30)

So by Monotone convergence again,∫
−∆ ddc∆∧XT∗ = lim

ℓ→∞

∫
−∆̃ℓ dd

c∆∧XT∗ ≤ ∥∆∥′T∗,X
lim inf
ℓ→∞

∥∥∥∆̃ℓ

∥∥∥
T∗,X

≤ ∥∆∥′T∗,X
lim inf
ℓ→∞

∥∆ℓ∥T∗,X
.

Squaring both sides and substituting our above upper bound for the limit gives(∫
−∆ ddc∆ ∧X T∗

)2

≤ (∥∆∥′T∗,X
)2

∫ −∆ ddc∆ ∧X T∗ + 2M
∑

p∈X\X◦

(T̄ ∗ ∧X T∗)(p)

 .

This implies

(∥∆∥′T∗,X
)2 ≥

∫
−∆ ddc∆ ∧X T∗ − 2M

∑
p∈X\X◦

(T̄ ∗ ∧X T∗)(p).(31)

Since
∫
−∆ ddc∆∧X T∗ =

∫
T−∆ ddc∆∧T∗ does not depend on X, the proof is complete. □
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Before continuing we record a related technical result needed to prove Corollary 7.10 and
then in turn Theorem 8.9 below. Here ∆ is as in the proof of Theorem 7.6.

Proposition 7.9. Let S ≤ T∗ be a positive closed (1, 1) current on an open subset U ⊂ T
and χ : U → R be a smooth compactly supported function. Then∫

χddc∆ ∧ (T∗ − S) ≤ ∥∆∥′T∗

(∫
dχ ∧ dcχ ∧ (T∗ − S)

)1/2

.

Proof. Given ϵ > 0, Corollary 7.8 yields a toric surfaceX with 2M
∑

p∈X\X◦(T̄ ∗∧XT∗)(p) < ϵ.

Let ∆̃ℓ denote the smooth approximation of ∆ on X used to prove Lemma 7.7. Then
integration by parts, monotone convergence and Cauchy-Schwarz give∣∣∣∣∫ χddc∆ ∧ (T∗ − S)

∣∣∣∣ = lim
ℓ→∞

∣∣∣∣∫ ∆̃ℓ dd
cχ ∧ (T∗ − S)

∣∣∣∣ = lim
ℓ→∞

∣∣∣∣∫ −d∆̃ℓ ∧ dcχ ∧X (T∗ − S)

∣∣∣∣
≤ lim inf

ℓ→∞

(∫
d∆̃ℓ ∧ dc∆̃ℓ ∧X (T∗ − S)

)1/2(∫
dχ ∧ dcχ ∧X (T∗ − S)

)1/2

≤ lim inf
ℓ→∞

∥∥∥∆̃ℓ

∥∥∥
T∗,X

(∫
dχ ∧ dcχ ∧X (T∗ − S)

)1/2

.

Using Equations (30) and (31), we have ∥∆∥′2T∗,X
≥ lim inf

∥∥∥∆̃ℓ

∥∥∥2
T∗,X

− ϵ. Hence∣∣∣∣∫ χddc∆ ∧ (T∗ − S)

∣∣∣∣2 ≤
(∫

dχ ∧ dcχ ∧ (T∗ − S)

)(
∥∆∥′2T∗,X

+ ϵ
)

≤
(∫

dχ ∧ dcχ ∧ (T∗ − S)

)(
∥∆∥′2T∗

+ ϵ
)
.

Since ϵ > 0 is arbitrary, the proof is complete. □

We finally show that the series (7) defining φT ∗ converges in the seminorm ∥·∥′T∗
.

Proof of Theorem 1.4. Fix a toric surface X and a test function κ ∈ C∞(X). Then ddcκ∧T∗
is a signed Borel measure with finite total mass. Hence∣∣∣∣∫ κ ddcφT ∗ ∧ T∗

∣∣∣∣ =

∣∣∣∣∫ φT ∗ ddcκ ∧ T∗
∣∣∣∣ ≤∑

j≥0

∣∣∣∣∫ (φj+1 − φj) dd
cκ ∧ T∗

∣∣∣∣
≤ ∥κ∥T∗

∑
j≥0

∥φj+1 − φj∥′T∗

= ∥κ∥T∗

∑
j≥0

(∫
−(φj+1 − φj) dd

c(φj+1 − φj) ∧ T∗
)1/2

= ∥κ∥T∗

∑
j≥0

λ
−j/2
1

(∫
−φ1 dd

cφ1 ∧ T∗
)1/2

= ∥κ∥T∗

(∫
−φ1 dd

cφ1 ∧ T∗
)1/2

1− λ
−1/2
1

.
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The equality in the third line follows from Theorem 7.6 and the next equality follows from
Corollary 7.5. In any case, we conclude that

(32) ∥φT ∗∥′T∗
≤ ET ∗ :=

∥∥∥φλ−1
1 f∗T̄ ∗

∥∥∥′
T∗

1− λ
−1/2
1

<∞.

□

Adapting the proof of Theorem 1.4 gives further helpful bounds involving the same con-
stant.

Corollary 7.10. The following hold for any n ≥ 0.

(1)
∥∥∥φT ∗ − φλ−n

1 fn∗T̄ ∗

∥∥∥′
T∗

≤ ET ∗λ
−n/2
1 ;

(2) if U , S, and χ are as in Proposition 7.9, then∣∣∣∣∫ χ (T ∗ − λ−n
1 fn∗T̄ ∗) ∧ (T∗ − S)

∣∣∣∣ ≤ ET ∗λ
−n/2
1

(∫
dχ ∧ dcχ ∧ (T∗ − S)

)1/2

.

Proof. The first assertion follows from writing φT ∗ −φλ−n
1 T̄ ∗ =

∑∞
j=n φj+1−φj and repeating

the argument used to bound ∥φT ∗∥′T∗
. The second assertion follows from similar estimation

and Proposition 7.9:∣∣∣∣∫ χ (T ∗ − λ−n
1 fn∗T̄ ∗) ∧ (T∗ − S)

∣∣∣∣ =

∣∣∣∣∫ (φT ∗ − φλ−n
1 fn∗T̄ ∗) ddcχ ∧ (T∗ − S)

∣∣∣∣
≤

∞∑
j=n

∣∣∣∣∫ (φj+1 − φj) dd
cχ ∧ (T∗ − S)

∣∣∣∣
≤

(∫
dχ ∧ dcχ ∧ (T∗ − S)

)1/2 ∞∑
j=n

∥φj+1 − φj∥′T∗

= ET ∗λ
−n/2
1

(∫
dχ ∧ dcχ ∧ (T∗ − S)

)1/2

.

as in the proof of Theorem 1.4 □

7.1. Symmetry between the equilibrium currents. We can reverse the roles of T ∗ and
T∗ in nearly all of the above. The only ingredient peculiar to T ∗ is the continuity result
Theorem 5.1, but we used this only to establish admissibility of the product T ∗ ∧ T∗. Since
all the other results we used are symmetric in T ∗ and T∗, we obtain among other things
analogs of Theorems 1.4 and 7.6 as well as Corollaries 7.8 and 7.10.

Theorem 7.11. The function φT∗ has weakly finite T ∗-energy

∥φT∗∥
′
T ∗ ≤ ET∗ :=

∥∥∥φλ−1
1 f∗T̄∗

∥∥∥′
T ∗

1− λ
−1/2
1

.

The proof is the same as the one given for Theorem 1.4 except that one appeals to Theorem
6.5 (in addition to Theorem 5.1) to argue that ddcφT∗,X admits a wedge product with T ∗

X

(see Definitions 6.14 and 6.15).
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Theorem 7.12. Let φn denote the potential for λ−n
1 fn

∗ T̄∗ − T̄∗. Then for any n,m ≥ 0, the
function φn − φm has weakly finite T ∗-energy satisfying

∥φn − φm∥′T ∗ =

(∫
−(φn − φm) dd

c(φn − φm) ∧ T ∗
)1/2

,

where the integral on the right is well-defined and finite.

Corollary 7.13. For any n ∈ Z≥0 the toric currents fn
∗ T̄∗ and T ∗ admit a wedge product.

The positive Borel measure fn
∗ T̄∗ ∧ T ∗ has (full) mass equal to 1 on T̂◦ and does not charge

curves.

The proofs of Theorem 7.12 and Corollary 7.13 are essentially identical to those of Theorem
7.6 and Corollary 7.8.

8. Equilibrium measure: dynamics and geometry

In this section we investigate the dynamical and geometric properties of the measure
µ = T ∗∧T∗ from Theorem 7.1, proving Conclusions (2) and (3) in Theorem 1.2 among other
things. As before, f denotes a toric map satisfying the hypotheses of Theorem 1.2.

Proposition 8.1. µ is f -invariant.

Proof. It will suffice to show that
∫
(κ◦f) dµ =

∫
κ dµ for any smooth, compactly supported

function κ : T̂◦ → R. Since µ does not charge curves, we can further assume that suppκ ⊂
T \ f(Ind(f)). Hence κ ◦ f is also smooth and compactly supported in T \ f−1(f(Ind(f)).
Let K ⊂ T be a compact set containing both suppκ and suppκ ◦ f in its interior. Recall
that T ∗|T = ddcg on T where g = ψT̄ ∗ ◦ Log+φT ∗ is continuous by Theorem 5.1. Hence∫
T̂◦
(κ ◦ f) dµ =

∫
T\f−1(f(Ind(f)))

(κ ◦ f) f
∗T ∗

λ1
∧ T∗ =

1

λ1

∫
T\f−1(f(Ind(f)))

(κ ◦ f) ddc(g ◦ f) ∧ T∗

=
1

λ1

∫
T\f−1(f(Ind(f)))

(g ◦ f) ddc(κ ◦ f) ∧ T∗ =
∫
T\f(Ind(f))

g ddcκ ∧ f∗T∗
λ1

=

∫
T\f(Ind(f))

κ ddcg ∧ T∗ =
∫
T̂◦
κ dµ.

The fourth equality holds because T∗ is a current of order zero; hence pushing forward T∗ by
the holomorphic covering f : T \ f−1(f(Ind(f))) → T \ f(Ind(f)) is adjoint to pulling back
continuous forms with compact support. □

8.1. Mixing. Next we set about proving that µ is mixing, closely following a strategy orig-
inating in [BS] and refined in [Sib2] (see particularly the proof and application of Corollary
2.2.13) and elsewhere. The particular context here leads to some technical modifications of
that argument, so we nevertheless give the full proof.

Theorem 8.2. Let α be a smooth function with compact support on T̂◦. Then we have weak
convergence

lim
n→∞

(α ◦ fn)T ∗ = T ∗ ·
∫
αµ.
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Before beginning the proof let us observe that since T ∗ does not charge points, Sn :=
(α ◦ fn)T ∗ is a well-defined (non-closed) (1, 1) current of order 0, acting on continuous (1, 1)
forms β via

⟨β, Sn⟩ :=
∫
T̂◦
(α ◦ fn) β ∧ T ∗.

By Corollary 3.2, f : T̂◦ 99K T̂◦ is proper, so Sn is compactly supported. We may assume
that 0 ≤ α ≤ 1 so that 0 ≤ Sn ≤ T ∗ is positive. Since T ∗ has finite total mass in any toric
surface, the sequence (Sn)n∈Z≥0

has uniformly bounded mass on any compact subset of T̂◦.
Hence (Sn) is pre-compact in the weak topology. We let S denote the set of all its limit
points.

Lemma 8.3. Every element of S is closed.

Proof. Any current S ∈ S is positive and bounded above by T ∗. In particular S does not
charge curves in T̂◦. So in order to show S is closed, it suffices by the Skoda-El Mir Theorem
and the fact that T ∗ has locally finite mass on T̂◦ to show only that S is closed in T.
Fix a smooth real and compactly supported 1-form γ on T. Since α ◦ fn is smooth on T,

we can estimate using Schwarz’s inequality:∣∣∣∣∫ γ d((α ◦ fn)T ∗)

∣∣∣∣2 ≤ (∫ γ ∧ Jγ ∧ T ∗
)(∫

d(α ◦ fn) ∧ dc(α ◦ fn) ∧ T ∗
)
,

where J denotes the complex structure operator on the real cotangent bundle of T̂◦. Ad-
ditionally, since T ∗ does not charge fn(Ind(fn)) and fn : T \ f−n(fn(Ind(fn))) → T \
fn(Ind(fn)) is a finite degree holomorphic covering (Corollary 3.2), we have∫

d(α ◦ fn) ∧ dc(α ◦ fn) ∧ T ∗ =
1

λn1

∫
T\f−n(fn(Ind(fn)))

fn∗(dα ∧ dcα ∧ T ∗)

=
λn2
λn1

∫
T\fn(Ind(fn))

dα ∧ dcα ∧ T ∗ =
λn2
λn1

∥α∥T ∗ ,

where ∥α∥T ∗ is defined by (28). All told, we see that∫
γ ∧ d((α ◦ fn) ∧ T ∗) ≤ C

(
λ2
λ1

)n/2

−→
n→∞

0.

It follows that any current S ∈ S is closed in T, hence as explained above, also closed in T̂◦.
□

Lemma 8.4. λ−1
1 f ∗S = S.

Proof. Let (Snj
) ⊂ (Sn) be a subsequence such that Snj

→ S and Snj+1 → S ′. It suffices to
show that f ∗S = λ1S

′, i.e. that
∫
β∧f ∗S = λ1

∫
β∧S ′ for any smooth compactly supported

(1, 1) form β on T̂◦. Since S, S ′ and f ∗S are all dominated by λ1T
∗, none of them charges

curves. So we can further assume that β is compactly supported in T \ f−1(f(Ind(f)).
Corollary 3.2 then implies that f∗β is smooth and compactly supported in T \ f(Ind(f)).
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Hence ∫
T̂◦
β ∧ f ∗S =

∫
T\f−1(f(Ind(f)))

β ∧ f ∗S =

∫
T\f(Ind(f))

f∗β ∧ S

= lim
j→∞

∫
T\f(Ind(f))

f∗β ∧ Snj
= λ1 lim

j→∞

∫
T\f−1(f(Ind(f)))

β ∧ Snj+1

= λ1

∫
T\f−1(f(Ind(f)))

β ∧ S ′ = λ1

∫
T̂◦
β ∧ S ′.

□

Lemma 8.5. Every S ∈ S satisfies (S · T∗) =
∫
αµ.

Proof. Fix ϵ > 0. By Corollary 7.13 we can choose a smooth function χ : T̂◦ → [0, 1] that is
supported in a compact subset of T \ f−n(fn(Ind(fn))) such that∣∣∣∣∫

T̂◦
(1− χ ◦ fn)T ∗ ∧ T̄∗

∣∣∣∣ < ϵ and

∣∣∣∣∫
T̂◦
(1− χ)T ∗ ∧

(
fn
∗ T̄∗
λn1

)∣∣∣∣ < ϵ.

Recall that T̄ ∗ = ddcu, where u = ψT̄ ∗ ◦ Log is continuous on T (and therefore bounded on
suppχ). So since Sn ≤ T ∗,∫

T̂◦
Sn ∧ T̄∗ ≈ϵ

∫
T
(χ ◦ fn)Sn ∧ T̄∗ =

∫
T
u
fn∗T ∗

λn1
∧ fn∗ddc(χα) =

∫
T

fn
∗ u

λn1
ddc(χα) ∧ T ∗

=

∫
T
χαT ∗ ∧ fn

∗ T̄∗
λn1

≈ϵ

∫
T̂◦
αT ∗ ∧ fn

∗ T̄∗
λn1

.

As in the proof of Corollary 7.5, the symbol ≈ϵ means that the two sides differ by at most
±ϵ. Letting ϵ→ 0, we obtain that∫

T̂◦
Sn ∧ T̄∗ =

∫
T̂◦
αT ∗ ∧ fn

∗ T̄∗
λn1

.

Letting φ = φλ−1
1 f∗T̄∗

, we apply this formula and the analog of Corollary 7.10 (1) with the

roles of T ∗ and T∗ reversed to obtain∣∣∣∣∫
T̂◦
αµ−

∫
T̂◦
Sn ∧ T̄∗

∣∣∣∣ =

∣∣∣∣∫
T̂◦
α

(
T∗ −

fn
∗ T̄∗
λn1

)
∧ T ∗

∣∣∣∣ ≤ ∥∥∥φT∗ − φλ−n
1 fn

∗ T̄∗

∥∥∥′
T ∗

∥α∥T ∗

≤ ET∗λ
−n/2
1 ∥α∥T ∗ −→

n→∞
0.

The lemma follows immediately. □

Proof of Theorem 8.2. It suffices to show that cT ∗ is the only limit point of Sn. The central
convergence result [DR, Theorem 10.1] in our previous paper, together with Lemmas 8.3 and
8.5, tells us that for every T ∈ S we have

lim
n→∞

λ−n
1 fn∗T = (T · T∗)T ∗ = cT ∗.

Though we did not note it there, the proof we gave for [DR, Theorem 10.1] is actually

uniform on compact subsets of D+
1,1(T̂). That is, if (Tn) ⊂ D+

1,1(T̂) is a relatively compact
sequence with c̃ = (Tn · T∗) independent of n, then we have the more general convergence

lim
n→∞

λ−n
1 fn∗Tn = c̃T ∗.
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This amplification of [DR, Theorem 10.1] holds because, first of all, when (Tn) is relatively
compact, so is the associated sequence (λ−n

1 fn∗Tn); and secondly, the constants in the key
volume estimate [DR, Theorem 6.11] used to prove [DR, Theorem 10.1] are uniform on
compact sets. Indeed, even the proof we gave there depended on this uniformity.

So given S ∈ S, we apply Lemma 8.4 to obtain a sequence (Tn) ⊂ S such that S =
limλ−n

1 fn∗Tn. Since Tn ≤ T ∗ for all n, this sequence is relatively compact, and we obtain
that

S = limλ−n
1 fn∗Tn = cT ∗

That is, cT ∗ is the only element of S. □

Theorem 8.6. The measure µ is mixing for f .

Proof. Since µ is a Borel measure with full, finite mass on T, it suffices to show for any
smooth compactly supported functions α, β : T → [0, 1] that

lim
n→∞

∫
T
(α ◦ fn)β µ =

(∫
αµ

)(∫
β µ

)
.

Lemma 8.7. For all n ≥ 0, we have ∥(α ◦ fn)β∥T ∗ ≤ ∥β∥T ∗ + ∥α∥T ∗ .

Proof. We have

∥(α ◦ fn)β∥2T ∗ =

∫
T
(α ◦ fn)2dβ ∧ dcβ ∧ T ∗ + 2

∫
T
(α ◦ fn)β d(α ◦ fn) ∧ dcβ ∧ T ∗

+

∫
T
β2d(α ◦ fn) ∧ dc(α ◦ fn) ∧ T ∗.

The first term is non-negative, bounded above by ∥β∥2T ∗ . We can re-write the last term and
estimate it as follows∫

T
β2d(α ◦ fn) ∧ dc(α ◦ fn) ∧ f ∗nT ∗

λn1
= λ−n

1

∫
T
(fn

∗ β)
2dα ∧ dcα ∧ T ∗ ≤

(
λ2
λ1

)n

∥α∥2T ∗ .

For the second term, we choose a smooth compactly supported function χ : T → [0, 1] such
that χ ≡ 1 on supp β and then use the Schwarz inequality∣∣∣∣∫

T
(α ◦ fn)β dα ∧ dcβ ∧ T ∗

∣∣∣∣2 ≤ ∥β∥2T ∗

∫
T
χd(α◦fn)∧dc(α◦fn)∧T ∗ ≤

(
λ2
λ1

)n

∥β∥2T ∗ ∥α∥2T ∗ .

Adding up these results and taking square roots we get

∥(α ◦ fn)β∥T ∗ ≤ ∥β∥T ∗ +

(
λ2
λ1

)n/2

∥α∥T ∗ ≤ ∥β∥T ∗ + ∥α∥T ∗

□

Lemma 8.8. Given ϵ > 0 and a relatively compact open set U ⊂ T, there exist a function
v ∈ DPSH(T̂◦), a Kähler form ω on T and a continuous function u ∈ PSH(ω) such that

• ∥v∥′T ∗ < ϵ.
• T∗|T = ω + ddc(u+ v).
• |u| < ϵ on U .
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Proof. Let T∗,n = λ−n
1 fn

∗ T̄∗ for n ≥ 0. Then on the one hand, Corollary 7.10 (with T ∗ and

T∗ reversed) tells us that for n large enough T∗ − T∗,n = ddcv for some v ∈ DPSH(T̂◦) with
weakly finite T ∗ energy satisfying ∥v∥′T ∗ < ϵ. On the other hand, we have

T∗,n|T = ddcgn,

where gn = λ−n
1 fn

∗ ψT̄∗ ∈ PSH(T) is continuous because fn(Exc(f)) ∩ T = ∅. Hence we can
regularize gn on T to obtain

gn = g̃ + u

where ω = ddcg̃ is Kähler on T and u ∈ PSH(ω) satisfies |u| < ϵ on U . □

Continuing the proof of Theorem 8.6, we choose ϵ > 0 and a relatively compact open
U ⊂ T containing supp β. With u, v, ω as in Lemma 8.8, we then have∫

(α ◦ fn)β µ =

∫
(α ◦ fn)β T ∗ ∧ (ω + ddcu+ ddcv).

We expand the right side into three integrals and deal with each separately. From Lemmas
8.7 and 8.8, we have∣∣∣∣∫ (α ◦ fn)β T ∗ ∧ ddcv

∣∣∣∣ ≤ ∥(α ◦ fn)β∥T ∗ · ∥v∥′T ∗ ≤ ϵ(∥α∥T ∗ + ∥β∥T ∗).

From Lemma 8.8 we further obtain∣∣∣∣∫ (α ◦ fn)β T ∗ ∧ ddcu
∣∣∣∣ =

∣∣∣∣∫ u ddc((α ◦ fn)β) ∧ T ∗
∣∣∣∣

≤
∣∣∣∣∫ u(α ◦ fn) ddcβ ∧ T ∗

∣∣∣∣+ ∣∣∣∣∫ uβ ddc(α ◦ fn) ∧ T ∗
∣∣∣∣+

2

∣∣∣∣∫ u dβ ∧ dc(α ◦ fn) ∧ T ∗
∣∣∣∣

≤ ϵ ∥β∥C2 + λ−n
1

∣∣∣∣∫ fn
∗ (uβ) dd

cα ∧ T∗
∣∣∣∣+ 2ϵ ∥β∥1/2T ∗ ∥α ◦ fn∥1/2T ∗

≤ ϵ ∥β∥C2 + ϵ

(
λ2
λ1

)n

∥α∥C2 + 2ϵ

(
λ2
λ1

)n

∥β∥1/2T ∗ ∥α∥1/2T ∗

≤ Cϵ,

where, since λ2 < λ1, the constant C depends on α and β but not on n ≥ 0.
For the remaining integral, Theorem 8.2 gives

lim
n→∞

∫
(α ◦ fn)β T ∗ ∧ ω =

(∫
β T ∗ ∧ ω

)(∫
αµ

)
.

But ∣∣∣∣∫ β T ∗ ∧ (T∗ − ω)

∣∣∣∣ ≤
∣∣∣∣∫ β T ∗ ∧ ddcv

∣∣∣∣+ ∣∣∣∣∫ β T ∗ ∧ ddcu
∣∣∣∣

≤ ∥β∥T ∗ · ∥v∥′T ∗ + sup
U

|u| · ∥β∥C2 ≤ Cϵ.

Letting ϵ→ 0 completes the proof. □
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8.2. Geometric intersection. Now we briefly describe an alternative, more geometric for-
mulation of the wedge product T ∗ ∧ T∗ that gives us the equilibrium measure µ. Our pre-
sentation and arguments are nearly the same as the ones in [Duj3, §5] and [Duj2, §4], so we
refer readers to those sources for full details.

A positive closed (1, 1) current S in an open set U ⊂ C2 is uniformly laminar if it can be
written S =

∫
[∆α] dν(α) where {∆α} is a family of mutually disjoint smooth analytic disks

properly embedded in U and ν is a positive measure on the underlying parameter space.
One says that a second positive closed (1, 1) current T on U is uniformly woven if we have
the same sort of representation T =

∫
[∆′

β]ν
′(β) but drop the condition that the disks be

disjoint from each other. If S ∈ L1
loc(T ) so that S ∧ T is defined, then [DDG2, Proposition

2.6] gives the following geometric reformulation:

S ∧ T =

∫
[∆α ∩∆′

β] ν(α)⊗ ν ′(β).(33)

The integrability hypotheses implies that ∆α meets ∆β properly for ν ⊗ ν ′ almost all (α, β),
and [∆α ∩∆′

β] denotes the discrete measure obtained by placing a point mass at each point
of intersection between ∆α and ∆′

β. One says in this circumstance that the wedge product
S ∧ S ′ is geometric.
The equilibrium currents T ∗ and T∗ are not themselves uniformly laminar or woven, but

they can be well approximated from below by such currents: i.e. in any toric surface X, we
have that T ∗ is laminar and strongly approximable [DR, Theorem 10.5], and T∗ is woven and
strongly approximable [DR, Theorem 10.6].

To make this more precise, fix the surface X and a Kähler form ω on X. Then there exists
a dense open set Uϵ ⊂ X, a uniformly laminar current T ∗

ϵ ≤ T ∗ on Uϵ and a uniformly woven
current T∗,ϵ ≤ T∗ on Uϵ such that∫

ω ∧X (T ∗ − T ∗
ϵ ),

∫
ω ∧X (T∗ − T∗,ϵ) < ϵ2.

Since T ∗ doesn’t charge analytic disks (Corollary 4.13), neither does T ∗
ϵ . Hence the transverse

measure ν in the laminar presentation of T ∗
ϵ has no atoms. This observation and the geomet-

ric formula for the wedge product (33) make clear that the measure T ∗
ϵ ∧T∗,ϵ ≤ T ∗∧X T∗ also

has no atoms, even though the right side of the inequality has atoms at each torus invariant
point of X. In particular, we have the sharper bound T ∗

ϵ ∧ T∗,ϵ ≤ (T ∗ ∧X T∗)|X◦ = T ∗ ∧ T∗,
since X \X◦ is finite.

The open set Uϵ is a (somewhat flexible) union of mutually disjoint polydisks ‘of size ϵ’.
The flexibility in the choice of Uϵ allows one to further ensure that for any δ > 0, there is a
smooth compactly supported function χ = χδ,ϵ : Uϵ → [0, 1] such that

(1)
∫
X
(1− χ)T ∗

ϵ ∧ T∗,ϵ ≤
∫
X
(1− χ) dµ ≤ δ;

(2) ∥dχ∥2∞ , ∥ddcχ∥∞ ≤ Cδϵ
−2, where Cδ does not depend on ϵ or Uϵ;

Since µ has full mass on T, we can multiply χ by an ϵ-independent cutoff to further arrange
that suppχ is contained in a fixed compact set K ⊂ T without affecting properties (1)
(especially) and (2).

Theorem 8.9. The wedge product µ = T ∗ ∧T∗ is geometric on any toric surface X; that is,
T ∗
ϵ ∧ T∗,ϵ ↗ µ as ϵ→ 0.
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Proof. Fix a constant δ > 0 and for any ϵ > 0, let χ = χδ,ϵ be as above. Then∫
X

dµ− T ∗
ϵ ∧ T∗,ϵ ≤ 2δ +

∫
T
χ (T ∗ ∧ T∗ − T ∗

ϵ ∧ T∗,ϵ)

≤ 2δ +

∫
T
χT ∗ ∧ (T∗ − T∗,ϵ) +

∫
T
χ (T ∗ − T ∗

ϵ ) ∧ T∗.

It therefore suffices to show that each of the last two integrals tends to zero with ϵ. We show
this only for the second integral. The details for the first are similar.

Let Tn = λ−n
1 fn

∗ T̄ . Then∫
T
χT∗ ∧ (T ∗ − T ∗

ϵ ) =

∫
T
χTn ∧ (T ∗ − T ∗

ϵ ) +

∫
T
χ(T∗ − Tn) ∧ (T ∗ − T ∗

ϵ ).

Corollary 7.10 (with T ∗ and T∗ switched) and properties (1) and (2) above allow us to bound
the second term as follows.∣∣∣∣∫

T
χ(T∗ − Tn) ∧ (T ∗ − T ∗

ϵ )

∣∣∣∣2 ≤ E2
T∗λ

−n
1

∫
T
dχ ∧ dcχ ∧ (T ∗ − T ∗

ϵ )

≤ E2
T∗λ

−n
1 ∥dχ∥2∞

∫
T
ω ∧ (T ∗ − T ∗

ϵ ) ≤ E2
T∗ · Cδλ

−n
1 .

So given ϵ′ > 0 and fixed n large enough, we have for all ϵ > 0 that∫
T
χT∗ ∧ (T ∗ − T ∗

ϵ ) ≤
∫
T
χTn ∧ (T ∗ − T ∗

ϵ ) + ϵ′.

We claim that the integral on the right tends to 0 with ϵ (which completes the proof). To
see this recall that Tn|T = ddcu for some continuous psh function u. We can use e.g. the
action of T to regularize u on a neighborhood of suppχ, obtaining a smooth function v such
that max |u− v| is as small as we like on suppχ. Thus,∫

T
χTn ∧ (T ∗ − T ∗

ϵ ) ≤
∫
T
χddcv ∧ (T ∗ − T ∗

ϵ ) +

∫
T
(u− v) ddcχ ∧ (T ∗ − T ∗

ϵ )

≤
∫
T
χddcv ∧ (T ∗ − T ∗

ϵ ) + (max
suppχ

|u− v|) · ∥ddcχ∥∞
∫
T
ω ∧ (T ∗ − T ∗

ϵ )

≤
∫
T
χddcv ∧ (T ∗ − T ∗

ϵ ) + Cδ max
suppχ

|u− v|.

Since χddcv is smooth and fixed, since χ ≤ 1 and since T ∗
ϵ ↗ T∗ on suppχ, the first term

on the right tends to 0 with ϵ. Moreover, the second term on the right is independent of ϵ
and can be made arbitrarily small, so our claim is proved. □

By now we have established all but the last conclusion of Theorem 1.2. Conclusions (1)
and (2) from that theorem and Theorem 8.9 are in fact the hypotheses of [DDG3, Theorem
B]. We can therefore invoke that result to infer the final conclusion of Theorem 1.2.

Corollary 8.10. The metric entropy of f with respect to µ is log λ1.
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