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Abstract. The Three Gap Theorem states that for any α ∈ R and N ∈ N, the fractional parts of

{0α, 1α, . . . , (N − 1)α} partition the unit circle into gaps of at most three distinct lengths. We prove a

result about symmetries in the order with which the sizes of gaps appear on the circle.

Choose an irrational angle α measured in “turns,” where one turn corresponds to 2π radians, and plot
the points on the circle at angles

0, α, 2α, 3α, . . . , (N − 1)α.

For α =
√
2 and N = 27, one obtains Figure 1.

Figure 1. Illustration of the 3-gap theorem for α =
√
2 and N = 20. The short gaps

are labeled with a, the medium gaps with b , and the longest gaps with c. One example
of the reflectional symmetry that is proved in the Symmetry Theorem is indicated with
the center of symmetry being the red c between 10α and 15α, and the symmetric letters
shown in blue. The length of the symmetry is indicated by the next closest c gap, which
is also shown in red (between 11α and 16α).

A surprising observation is that for any choice of N and α, the distances (gaps) between consecutive
points on the circle attain only three values. This is the content of the famous Three Gap Theorem,
proved by Sós, Surányi, and Świerczkowski in the 1950s, and it can be seen in the special case of Figure
1. In this paper we present a curious symmetry in how the sizes of the gaps are distributed on the circle.
See the Symmetry Theorem and Figure 3 below.

0.1. Setup. In order to work more carefully, it is convenient to represent the circle as the interval [0, 1]
with the endpoints identified. We will now rephrase the setup in this context, and state the Three Gap
Theorem more precisely.
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Let α ∈ R \Q and N ∈ N, and for any real number x, denote the fractional part as {x}. We order the
numbers {mα}, where 0 ≤ m < N , into the sequence

0 = y0(N) < y1(N) < · · · < yN−1(N) < 1.

We then consider the differences between consecutive numbers in the sequence, called gaps (or spacings),

δj(N) = yj+1(N)− yj(N),

for j = 0, . . . , N − 2 and δN−1(N) = 1 − yN−1(N). Now, let D(N) be the number of distinct gaps and
let ∆j(N) be the ordered sequence of distinct gaps from the δj(N), so that

0 < ∆1(N) < · · · < ∆D(N)(N) < 1.

Figure 2. Illustration of the definitions of yj(N), δj(N), and ∆k(N) in the case of

α =
√
2 and N = 27 (these are the same values as in Figure 1). Only the left part of the

interval is shown, and the dependence on N is dropped from the notation.

Three Gap Theorem (Sós, Surányi, and Świerczkowski). D(N) ≤ 3 for any choice of α and N .

For the original references, see [8, 9, 10]. Since the original proofs, there have been many new proofs
and interpretations of the Three Gap Theorem. For example, see [5, 6, 7]. Note also the various higher-
dimensional versions of the problem that have been recently discussed, see [1, 2, 3, 4].

0.2. Words in the Gap Lengths. We will describe the order with which the sizes of gaps occur on
the circle with a word W in the letters a, b , and c. More specifically, we define the jth letter Wj , of the
word W , to be a, b or c corresponding to the gap δj(N), with a corresponding to the smallest gap, b
the medium-sized gap, and c the largest gap. We interpret the word cyclically so that Wj = Wj mod N .
When it is necessary to indicate the dependence on N , we will denote the word W as W (N).

Symmetry Theorem. Fix any α ∈ R \ Q and N ∈ N, and let W be the word generated by the
corresponding gaps on the circle. Then for any c in W , the kth letter to the right of it is always the same
as the kth letter to the left of it, so long as the index k is smaller than the index of the first c occurrence
on either side.

More precisely, if WJ = c, then WJ−k = WJ+k for k = 0, . . . , ℓ where ℓ+ 1 is the smallest index such
that WJ−(ℓ+1) = c or WJ+(ℓ+1) = c.

Figure 3. Illustration of the Symmetry Theorem in the case of α =
√
2 and N = 27

(the same values as for Figures 1 and 2). The word in a, b , and c is symmetric about
either c. In the case of the leftmost one, the part of the word that is symmetric is shown
in blue.

The symmetry becomes more impressive for larger values of N . For example, the following is the word
generated when α =

√
2 and N = 67, and the “limiting” c happens to occur on both sides:

aababaababacababaababaabababaababaababacababaababacababaababaababab
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1. Proof of the Symmetry Theorem

Our proof closely follows the ideas and notations of van Ravenstein [7]. Let uj be the ordered sequence
such that {ujα} < {uj+1α}, that is, the order each point appears on the circle when identified by the
number realizing it. Specifically, (u0, . . . , uN−1) is a permutation of (0, 1, 2, . . . , N−1) and yj(N) = {ujα}.
Note that we are deviating from the conventions of [7] who uses (u1, . . . , uN ) instead. We interpret the
uj cyclically so that uj = uj mod N .

Remark that at certain choices of N there will be only two sizes of gaps corresponding to the symbols
a and b . When one more point is added, it will result in gaps of a new size, and the labelings will have
to be updated. Therefore, we will call such times N where there are only two sizes of gaps the relabeling
times, and denote the ordered sequence of relabeling times as (Rk)k≥1.

We will rely on three basic facts from van Ravenstein [7]:
Fact 1: N is a relabeling time if and only if N = u1 + uN−1. Indeed, in this case, adding the point
{Nα} results in a point closer to 0 than either {u1α} or {uN−1α}, and thus gaps of a new size appear.
Note that u1 and uN−1 depend upon N , and this is a somewhat subtle condition which can be expressed
nicely in terms of the continued fraction of α, but it is not needed in our paper.

Fact 2: At a relabeling time N , we have:

uj = j · u1 mod N j = 0, 1, . . . , N − 1.(1.1)

Fact 3: If N is not a relabeling time, then adding the point {Nα} results in splitting a gap labeled by
c into a gap labeled by a and a gap labeled by b in either possible order.

Facts 1 and 2 are found in [7][Lemma 2.1] and Fact 3 is found in [7][Theorem 2.2].

Proposition 1. Let W be the word of a’s and b’s at a relabeling time. Then the word satisfies the
following symmetry. Let J be such that uJ = N − 1. Then we have WJ−1WJ = “ab” or “ba” and
WJ−1−k = WJ+k for k = 1, . . . , N − 2.

Proof. Note that uJ ≡ (uJ−1+u1) (mod N) because of (Fact 2, Equation 1.1), and the choice of J gives
that uJ = uJ−1 + u1, and similarly uJ+1 = uJ + (u1 −N). This implies WJ−1 ̸= WJ .

We will now inductively prove that for k = 1, . . . , N − 2 that uJ−k + uJ+k = N − 2. For k = 1 it
immediately follows from the formula in the previous paragraph. Now, assume the equality holds at some
1 ≤ k < N − 2. Then, uJ−k − u1 ≥ 0 if and only if uJ+k + u1 ≤ N − 2. Therefore, uJ−(k+1) = uJ−k − u1

if and only if uJ+(k+1) = uJ+k + u1. (Note that it is impossible to have either uJ−(k+1) = N − 1 or
uJ+(k+1) = N − 1 since k < N − 1.) If both sides of the if-and-only-if are false, we have uJ−(k+1) =
uJ−k − (u1 − N) and uJ+(k+1) = uJ+k + (u1 − N). In either case, the sum is still preserved. Remark
that at each step of the induction,

uJ−k − uJ−(k+1) = uJ+(k+1) − uJ+k,

thus the gap sizes are the same and hence WJ−1−k = WJ+k. □

Now we describe the symmetry about other gaps in the word at relabeling times.

Proposition 2. Let W be the word of a’s and b’s at some relabeling time N = Rq. Then the word
satisfies the following symmetry. Let J be such that uJ = N −p for some 1 ≤ p ≤ u1 = Rq −Rq−1. Then
we have WJ−1WJ = “ab” or “ba” and WJ−1−k = WJ+k for k = 1, . . . , ℓ, where ℓ + 1 is the smallest
index such that max{uJ−(ℓ+1), uJ+(ℓ+1)} ≥ uJ .

Proof. By Facts 1 and 3, since 1 ≤ p ≤ Rq −Rq−1 and since removing the point {(N − p)α} corresponds
to combining an “ab” or “ba” into a c, we have that WJ−1 ̸= WJ .

We will now inductively prove for k = 1, . . . , ℓ that

(1.2) uJ−k + uJ+k = N − 2p.

For k = 1, it immediately follows from the fact that WJ−1 ̸= WJ as in the proof of Proposition 1. Now,
assume the equality holds for some 1 ≤ k < ℓ.
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We claim that the following four statements are equivalent:

(1) uJ−(k+1) = uJ−k − u1,
(2) uJ+(k+1) = uJ+k + u1,
(3) uJ−k − u1 ≥ 0, and
(4) uJ+k + u1 ≤ N − 2p.

First, note that (1) is equivalent to (3) by Fact 2 (Equation 1.1). Moreover, (3) is equivalent to (4) by the
induction hypothesis (1.2). Finally, we show (2) is equivalent to (4). For the forward direction, note that
uJ+(k+1) ≥ N − p is impossible due to the choice of ℓ. Now suppose that N − 2p < uJ+k + u1 < N − p.
By the induction hypothesis (1.2) we have uJ−k − u1 = N − 2p− (uJ+k + u1), hence

N − 2p− (N − p) < N − 2p− (uJ+k + u1) < N − 2p− (N − 2p),

or equivalently, −p < uJ−k − u1 < 0. This means that uJ−(k+1) > N − p, which is again impossible by
the choice of ℓ. Meanwhile, the reverse direction follows immediately from Fact 2 (Equation 1.1).

Therefore, uJ−(k+1) = uJ−k − u1 if and only if uJ+(k+1) = uJ+k + u1, and hence (1.2) holds when k
is replaced by k + 1. Now the proof follows exactly as in the previous proposition. □

Remark that even though Proposition 1 is a special case of Proposition 2, we have included both to
make the exposition clearer.

Proof of the Symmetry Theorem. Let (Rj)j≥1 be the ordered increasing sequence of relabeling times. It
is clear that the word of length Rj satisfies the theorem: there are no c’s to center the symmetry around.
Now, remark that in moving from word W (Rj) to W (Rj − 1), the ab or ba centered at {(Rj − 1)α}
turns into a c, and the symmetry centered at this c must span the entire word, which it indeed does by
Proposition 1.

Now, consider W (Rj−k) where 1 < k < Rj−Rj−1. It is obtained from W (Rj) by removing {(N−i)α}
for 1 ≤ i ≤ k. As each point is removed, either an ab or ba turns into a c, and we must prove the asserted
symmetry about each c. However, this corresponds directly to the symmetry proved in Proposition 2.
Note that the condition max{uJ−(ℓ+1), uJ+(ℓ+1)} ≥ uJ corresponds to stopping the symmetry at the
closest occurring c to the left or right of the given one. □
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Ronnie Pavlov for their helpful comments. This work was supported by NSF grant DMS-1348589.

References

[1] Freeman J. Dyson. Nearest neighbor distances on a circle, IAS Preprint IASSNS-HEP-92/27.

[2] Pavel Bleher, Youkow Homma, Lyndon L. Ji, Roland K. W. Roeder and Jeffrey Shen. Nearest Neighbor Distances on a
Circle: Multidimensional Case. Journal of Statistical Physics 146 (2012): 446-465.

[3] Alan Haynes and Jens Marklof. Higher dimensional Steinhaus and Slater problems via homogeneous dynamics. Ann.
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