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Ising model
 Hamiltonian of class spins:

 Partition function:

 Its knowledge gives all equilibrium properties (interested in N→∞)

Free energy density:

Magnetization:

Energy density:

[closed form rarely known]



Ising model
 For h=0 case, Onsager’s solution:

 Phase transition occurs at singularity of free energy
(or any physical quantities derived from it):



Yang-Lee zeros
 Yang and Lee (1952): zeros of partition function & transitions

 Zeros on complex plane governs the statistical mechanics of the 
system (on positive real axis)

zeros pinch in  phase transitionszero-free  no phase transitions



Lee-Yang circle theorem

 Density of zeros g(θ) [ β=1/T dependent]  governs equilibrium properties

 Lee and Yang (1952): zeros of ferromagnetic Ising
models lie on a unit circle of complex field plane

Zeros located @

 Partition function:

 Consequence (in thermodynamic limit): 

 Partition function zeros: Alternative approach for statistical mechanics    
(but needs unphysical complex plane)



Fisher Zeros
 Generalization to zeros on complex-temperature plane by 

Fisher ’65  Fisher zeros (also Abe, Suzuki, …)

 See e.g. from McCoy, Advanced Stat Mech

P.B.C. Brascamp-Kunz 
B.C.

on 18x18 lattice



Further development of YL zeros
 Behavior of density of zeros 
 distinguish order of transitions (1st vs. 2nd)
 relations of critical exponents in higher-order transitions

 Zeros on finite system may be probed by coupling to a quantum spin 
[evolution of quantum spin will give an effective imaginary part of field] 

[B-B Wei & R-B Liu, 2012]

[Janke & Kenna ‘02, 
Janke, Johnson & Kenna ‘06]

m=2

 Experimentally measured for up to N=9 [Peng et al. 2015]



Further development of YL zeros (cont’d)
 Zeros (Yang-Lee and Fisher) of Ising model 

on diamond hierarchical Lattice

See also Talks on Tuesday 

[Derrida, De Seze & Itzykson ’83]

[Roeder, Lyubich & Bleher, arXiv ‘10 & ‘11]

[Gefen, Mandelbrot &Aharony ‘79-84]
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Tensor-Network methods
 No stranger to Stat Mech community: 

vertex model
& transfer matrix:

[figures taken from 
B. McCoy, Advanced 
Statistical Mechanics]

partition function = contraction of a 
tensor network



Other Stat-Mech Models

spin model:

face model:

vertex model: [figures taken from 
B. McCoy, Advanced 
Statistical Mechanics]



Numerical Tensor-Network methods

 Recent revival due to ideas from quantum information

 Understands why 1d DMRG works

 Generalization to 2d and higher dimensions

 Aim to overcome the issue of sign problem in 
quantum Monte Carlo method

 Some success in frustrated spin systems 
and topological order 

 Progress in 2d Hubbard model



Example tensor-network (quantum) states

 MPS=
Matrix Product States

s1 s2 sN

 e.g. DMRG [White; Verstraete, Porras & Cirac] 

 MERA=
Multiscaled Entanglement 
Renormalization Ansatz

 Can deal with scale 
invariance [Vidal]; 
AdS-CFT [Schwingle]

 Wavefunction norm square
 classical partition functionPEPS=

Projected Entangled 
Pair States

 2D generalization of MPS
[Verstraete & Cirac]



Selected activities of own interest
Detecting transition w. entanglement
[Orus, Wei, Garcia-Saez, Buershcaper, 
PRL’14]

2D Z2 symmetric SPT phases 
[Huang& Wei, arXiv ‘15]

μ

λ

SPT phases in A4 symmetric H
[Prakash, West, Wei, arXiv ‘16]

Gap of 2D AKLT models 
[Garcia-Saez, Murg & Wei, PRB‘13]



Ising partition function: tensor network

nb = # of nbrs:
2 in 1d, 4 in 2d, etc

 Turn Z to contraction of local 
weight A in vertex-like model 

 Hamiltonian of class spins

W: matrix for local Boltzmann 
weight in spin model

 Partition function

W
W (0)



How to evaluate such a tensor network?

 real-space coarse-graining or RG



HOTRG: higher-order tensor RG

 Coarse-grained one step (alternating 
horizontally and vertically subsequently):

 Coarse-grained many times  free energy

Merge 
2 sites

Truncate 
& rescale 
tensor A

also applies 
to 3d:

[Z. Xie et al.   
PRB ‘12]

~



Magnetization from HOTRG
 Ratios of two tensor-network contractions

W
W (0)

partition fcn:

W
W (0)

’ ’ ’magnetization:



Density of zeros & conjugate observables 
 Consider complex p plane (with its conjugate variable Θ)

e.g. Yang-Lee                                   ,  Fisher

 Assume zeros zn lie on a curve C with density g

C

 Density of zeros is proportional to jump of conjugate variable

(Would be interesting to consider zeros lie in extended 
region or fractal structure; see e.g. Matveev & Shrock)
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Results for zero & imaginary fields

 Compare well with Onsager’s & Yang’s results



Free-energy density & magnetization
on complex-field plane



Zeros & discontinuity in magnetization

or

 Three different regimes:
(1) T << Tc , density is essentially flat

(3) T > Tc , repulsion from real axis &
edge singularity

(2) T = Tc , density rises algebraically

2d:



@ Transition temperature T=Tc
2D 3D

vs Monte Carlo 
(evaluated on real plane):

vs δ=15 



Edge of zeros @ T>Tc

2d:

3d:

Edge θe(T)

 Zeros get pushed toward θ=π as T increases

 2D has divergence but not in 3D

 Agree w. Kortman-Griffiths [PRL’71]



Yang-Lee edge singularity at 2D

 Difficult to estimate 
accurately with TN: vs σ = -1/6 from CFT



Yang-Lee edge singularity at 2D
 Fisher [PRL ‘78]: critical φ3 Landau theory

 Cardy [PRL ‘83]: 2D case the singularity is a 
minimal model M(5,2) of conformal field theory

 Central charge c= -22/5, one nontrivial primary field 
with Δ= -2/5, hence σ= -1/6

(no divergence in 3D)



Outline

IV. Summary

I. Introduction: Yang-Lee zeros & Lee-Yang circle theorem

III. Yang-Lee zeros from HOTRG

Ising model: 2D & 3D

Potts models: 2D & 3D

II. Tensor-network method: Higher-Order-Tensor-RG



Potts models

 2D: @h=0, ∃ 2nd order transition for q ≤ 4, 1st order for q >4
[Baxter ‘73, Nienhuis et al. PRL‘79 (using RG)]

 Kim & Creswick [PRL’98]: Yang-Lee zeros not on unit circle 
(based on finite-size results)

 Challenged by Monroe, arguing 
system too small [PRL ’99] q=3 @ T=Tc



Our results in ∞-size limit

2D Potts

 Zeros clearly NOT on unit circle r =1

3D Potts

R
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@ T=Tc



Zeros approach unit circle asymptotically
2D at θ=π

 Examine e.g. zeros at θ=π farthest among all angles

D
ev
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n 
fro

m
 r=

1

 Zeros approach unit circle in the limit T→0 (meaning of exponent?)



Further preliminary results

The following are some preliminary 
results with Dr. Ching-Yu Huang

 Density of Fisher zeros

 Zeros of hard hexagon model



Fisher Zeros
 From Pascal’s limaçon to two circles:

Zeros lie on



Free-energy density @ complex T

x

x
x



Density extracted from energy jump

Qualitatively agrees (but 
still needs more work) with
exact density from Lu-Wu ‘01

Angle θ along the circles:

(Fisher zeros)



Hard hexagon model

[p.458, McCoy, Advanced Stat Mech]



Attempt at hard 
hexagon model:
Particle number density

From poster of workshop 
organized by McCoy et al.



Zero density 
extracted from 
particle density jumpFrom poster of workshop 

organized by McCoy et al.



Summary
 Introduced Yang-Lee zeros & Fisher zeros

 Introduced Tensor-Network Methods

 Applied them to extract density of zeros

 Needs more work on Fisher zeros and other 
models such hard-hexagon & hard-square

 Obtain good locations of edge of zeros

 But edge singularity exponent not accurate enough

 May use more sophisticated tenor renormalization methods






