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Potts/Tutte Polynomials

Recall some relevant definitions and results from Lecture 1:

Consider a graph G = G(V,E), where V is the set of vertices (sites) and E is the
set of edges (bonds). Denote n = n(G) = |V | as the number of vertices,
e(G) = |E| as the number of edges, k(G) as the number of connected components,
and c(G) as the number of linearly independent circuits in G.

Let T = temperature, β = 1/(kBT ), J = spin-spin coupling. The Hamiltonian of
the Potts model is

H = −J
∑

eij

δσiσj

The couplings J > 0 and J < 0 favor FM and AFM spin ordering, respectively.

The Potts model partition function is (with K = βJ)

Z =
∑

{σi}
e−βH =

∑

{σi}
e
K

∑

eij
δσiσj =

∑

{σi}

∏

eij

e
Kδσiσj



A spanning subgraph G′ of G is G′ = (V,E′), where E′ ⊆ E. Define y = eK and
v = y − 1. An equivalent, graph-theoretic expression for Z is (don’t confuse v, V )

Z(G, q, v) =
∑

G′⊆G

qk(G′)ve(G′)

This shows Z(G, q, v) is a polynomial in q and v (with positive coeffs).

At T = 0 in the AFM case, K = −∞, so y = 0 and v = −1. The T = 0 Potts
antiferromagnet (AFM) partition function Z(G, q,−1) = P (G, q), the chromatic
polynomial P (G, q), which enumerates the number of ways of assigning q colors to
the vertices of G such that no two adjacent vertices have the same color (proper
q-coloring of G). Minimum number of colors needed for proper q-coloring of G is the
chromatic number, χ(G).

Def. The degree of a vertex is the number of edges connecting to it. For a
vertex-transitive lattice graph, this is the coordination number.

Def. A planar graph is one that can be drawn in the plane without any edges crossing.

Def. If G(V,E) is a planar graph, then the (planar) dual graph G∗ is the graph
obtained by associating each vertex of G with a face of G∗ and each face of G with a
vertex of G∗.



The Tutte polynomial of a graph G is

T (G,x, y) =
∑

G′⊆G

(x − 1)k(G
′)−k(G)(y − 1)c(G

′)

This is equivalent to the Potts model partition function:

Z(G, q, v) = qk(G)vn(G)−1 T (G, x, y)

with
x = 1 +

q

v
, y = v + 1 , so q = (x − 1)(y − 1)

Recall some specific types of graphs:

• empty graph (n vertices, no edges): En

• tree graph Tn: connected graph with n vertices, no circuits; e.g., line graph

• cyclic graph Cn

• strip graphs of lattices with fixed transverse width Ly vertices and variable length
Lx vertices, with various boundary conditions

• complete graph, Kn: each vertex connected to every other vertex by an edge

• hierarchical graphs, e.g., Sierpinski graphs, Diamond hierarchical graphs



Method for Calculations of Potts/Tutte Polynomials on
Recursive Families of Graphs of Arbitrary Size

Recall the deletion-contraction relation (DCR) from Lecture 1. Let G − e denote the
graph G with the edge e deleted and let G/e denote the graph G with the edge e
deleted and the two vertices which it connected identified, i.e., G contracted on the
edge e. Z(G, q, v) satisfies the DCR

Z(G, q, v) = Z(G − e, q, v) + vZ(G/e, q, v)

Def. A recursive family of graphs Gm is a family for which the (m + 1)’th member is
obtained from the m’th member graph either by simply gluing on some fixed subgraph
or by cutting through the m’th member, inserting the subgraph, and gluing the graph
together again. Denote formal limit m → ∞ as {G}.

Examples: (i) a line graph Lm with m vertices and m − 1 edges; to construct Lm+1,
one just adds an edge and vertex to the end of the line; (ii) a circuit graph Cm with m
vertices and edges; to construct Cm+1, one cuts the graph anywhere, inserts another
vertex and edge, and glues it together again; (iii) strip graph of a regular lattice, e.g.,
ladder graph.



For a variety of recursive families of graphs we have calculated Z and T via iterative
application of the DCR in a manner which does not lead to an exponential increase in
the number of terms. One way to proceed is to calculate a generating function for the
recursive family of graphs Gm which is a rational function in q, v, and an expansion
variable ξ, of the form

ΓZ(G, q, v; ξ) =
N (q, v; ξ)

D(q, v, ξ)

such that the Taylor series expansion in ξ about ξ = 0 yields Z(Gm, q, v):

ΓZ(G, q, v; ξ) =
∞
∑

m=0

Z(Gm+1, q, v) ξ
m

For the denominator, write

D(q, v, ξ) = 1 +

NZ,λ
∑

j=1

bjξ
j =

NZ,λ
∏

j=1

(1 − λZ,jξ)

This also means that the Z(Gm, q, v) satisfy a recursion relation with b0 ≡ 1:

NZ,λ
∑

j=0

bjZ(Gm+NZ,λ−j, q, v) = 0



For example, for the family of circuit graphs {C}, one has

ΓZ(C, q, v, ξ) =
q
[

(v + 1) − v(q + v)ξ]

[1 − (q + v)ξ][1 − vξ]
=

∞
∑

m=0

Z(Cm+1, q, v) ξ
m

Here D = 1 − (q + 2v)ξ + v(q + v)ξ2, i.e., b1 = −(q + 2v), b2 = v(q + v),
so NZ,λ = 2 and Z(Cm, q, v) satisfies the recursion relation

Z(Cm+2, q, v) + b1Z(Cm+1, q, v) + b2Z(Cm, q, v) = 0

Corresponding generating function and recursion relation for T (Gm, x, y) with
bT1 = −(1 + x), bT2 = x,

ΓT (C, q, v, ξ) =
y − x(y − 1)ξ

[1 − xξ][1 − ξ]
=

∞
∑

m=0

T (Cm+1, x, y) ξ
m

T (Cm+2, x, y) + bT1T (Cm+1, x, y) + bT2T (Cm, x, y) = 0



We consider strip graphs of various lattices Λ, of length Lx = m and width Ly

vertices, with various boundary conditions (BC’s). We take the width to be fixed and
the length to be variable and arbitrarily great. Lattice types include square, triangular,
honeycomb, kagomé, etc. BC types are denoted F = free, P = periodic, T = twisted.

• free: FBCx, FBCy

• cyclic: PBCx, FBCy

•Möbius: TPBCx, FBCy

• cylindrical: FBCx, PBCy

• toroidal: PBCx, PBCy

• Klein-bottle: TPBCx, PBCy

We have also done calculations for other types of recursive graphs, such as

• self-dual strips of the square lattice with free and periodic longitudinal BC; e.g., for
the periodic case, one adjoins a single external vertex to all of the vertices on one
side of the strip.

• hammock graphs, Hk,r with two endpoints, r “ropes” each of length k − 1 edges,
joining these two endpoints.

• augmentations of strip graphs, in particular, necklace graphs containing polygons
joined by line graphs.



Some Calculational Results

For a cyclic strip graph of length Lx = m, denoted Gm, Z(Gm, q, v) has a
structure consisting of a sum of m’th powers of certain functions λZ,Ly,d,j depending

on q and v multiplied by coefficients c(d)(q) that are polynomials of degree d in q:

Z(Gm, q, v) =

Ly
∑

d=0

c(d)
nZ(Ly,d)
∑

j=1

(λZ,Ly,d,j)
m

where

c(d) =

d
∑

j=0

(−1)j
(

2k − j

j

)

qd−j

so c(0) = 1, c(1) = q − 1, c(2) = q2 − 3q + 1, etc.



Essentially the same structural formula holds for the Tutte polynomial T (Gm, x, y):

T (Gm, x, y) =
1

x − 1

Ly
∑

d=0

c(d)
nT (Ly,d)
∑

j=1

(λT,Ly,d,j)
m

where nT (Ly, d) = nZ(Ly, d) and the λT,Ly,d,j’s are obtained from the λZ,Ly,d,j’s
by the transformation of variables (q, v) → (x, y).

The λ’s are the roots of D(q, v, ξ) in the generating function as a polynomial in ξ:

D(q, v, ξ) =

NZ,G,λ
∏

j=1

(1 − λZ,G,jξ)

The total number of λ’s that enter is

NZ,Ly,λ =

Ly
∑

d=0

nZ(Ly, d)



For a given strip and boundary conditions, the number of λ’s is independent of the
length Lx = m, but it grows rapidly with the width Ly.

For example, for the cyclic strips, the total number of λ’s, NZ,Λ,Ly,λ, which we have
shown is the same for strips of the square, triangular, and honeycomb lattices, is

NZ,Λ,Ly,λ =

(

2Ly

Ly

)

Thus, for Ly = 1, 2, 3, 4, 5, this total number is 2, 6, 20, 70, 252 and as
Ly → ∞, it grows asymptotically like

NZ,Λ,Ly,λ ∼ L−1/2
y 4Ly as Ly → ∞



Table of numbers nZ(Ly, d) and their sums, NZ,G,λ, for strips of width Ly and
arbitrary length of the sq, tri, and hc lattices.

Ly ↓ d → 0 1 2 3 4 5 6 NZ,Ly,λ

1 1 1 2

2 2 3 1 6

3 5 9 5 1 20

4 14 28 20 7 1 70

5 42 90 75 35 9 1 252

6 132 297 275 154 54 11 1 924

We have obtained exact results for strips for which Z or P involve up to 70 λ’s. See
references in bibliography.

The Ly = 1 strip is just Cm, for which nZ(1, 0) = nZ(1, 1) = 1, so NZ,C,λ = 2.
The λ’s are λZ,Ly=1,d=0,j=1 = q + v and λZ,Ly=1,d=1,j=1 = v:

Z(Cm, q, v) = (q + v)m + (q − 1)vm = c(0)(λZ,1,0,1)
m + c(1)(λZ,1,1,1)

m



For the cyclic square strip with Ly = 2, denoted sq(2 × m, cyc.), we calculated Z
in Shrock, Physica A283, 388-446 (2000). It has nZ(2, 0) = 2, nZ(2, 1) = 3, and
nZ(2, 2) = 1, for a total of NZ,2,λ = 6 and is Z(sq(2 × m, cyc.), q, v) =

2
∑

j=1

(λZ,sq,2,0,j)
m + c(1)

3
∑

j=1

(λZ,sq,2,1,j)
m + c(2)(λZ,sq,2,2,1)

m

where the λ’s are

λZ,sq,Ly=2,d=0,j=(1,2) =
1

2

[

q2 + 3qv + 4v2 + v3 ±
√

RS12

]

where RS12 = q4+6q3v+13q2v2+16qv3+12v4− 2q2v3− 2qv4+4v5+ v6,

λZ,sq,Ly=2,d=1,j=1 = v(q + v)

λZ,sq,Ly=2,d=1,j=(2,3) =
v

2

[

q + v(v + 4) ±
√

RC12

]

where RC12 = q2 + 4qv − 2qv2 + 12v2 + 4v3 + v4, and

λZ,sq,Ly=2,d=2,j=1 = v2



For the Ly = 2 Möbius strip of the square lattice, the λ’s are the same, but there are
some switches in the coefficients (and their signs), so that

Z(sq(2 × m, cyc.), q, v) =
2

∑

j=1

(λZ,sq,2,0,j)
m

+c(1)
[

− (λZ,sq,2,1,1)
m + (λZ,sq,2,1,2)

m + (λZ,sq,2,1,3)
m
]

−(λZ,sq,2,2,1)
m

Although the λ’s can be algebraic functions of q and v, they are the roots of algebraic
equations with coefficients that are polynomials in q and v. Z involves symmetric
polynomials of these λ’s, and these are polynomials in the coefficients of the algebraic
equations, and hence in q and v. This is guaranteed by the general cluster formula for
any Z(G, q, v).

We have obtained a similar structural formula for self-dual strips (Chang and Shrock,
Physica A301, 301-329 (2001); Phys. Rev. E64, 066116 (2001). These involve slightly
different coefficients.



Functions Defined in the Limit n → ∞

Since our results apply for arbitrary strip length Lx = m, we can consider the limit
n → ∞ obtained by taking the length Lx → ∞. Following our general notation, for
a given type of strip graph we denote this as {G}. Recall the resultant definition of a
dimensionless free energy (per site) of the Potts model,

f({G}, q, v) = lim
n→∞

1

n
lnZ

with G = −kBTf . Given that Z(Gm, q, v) =
∑

j cjλ
m
j for a recursive family of

graphs, in the limit m → ∞, the λj with the largest magnitude |λdom.| (given that
the corresponding cj 6= 0), which we denote λdom., will dominate this sum over j, and
will hence determine f (early work by Beraha, Kahane, and Weiss). For a Lx × Ly

strip with n = LxLy, (λ
Lx
dom.)

1/n = (λdom.)
1/Ly and generically

f =
1

Ly

lnλdom.

For example, for the tree graph, since there is only one λ, f = q + v. For the circuit
graph, there are two λ’s, and f = q + v if |q + v| > |v|, while f = v if
|v| > |q + v|.



In general, for some special q values, qs, there is noncommutativity of limits (Shrock
and Tsai, Phys. Rev. E55, 5165-5179 (1997); Shrock, Physica A283, 288 (2000)):

lim
q→qs

lim
n→∞

[Z(Gm, q, v)]1/n 6= lim
n→∞

lim
q→qs

[Z(Gm, q, v)]1/n

e.g., Z(Tn, q, v) = q(q + v)n−1, so

lim
n→∞

[Z(Tn, q, v)]
1/n = q + v, ⇒ lim

q→0
lim
n→∞

[Z(Tn, q, v)]
1/n = v

while

lim
q→0

Z(Tn, q, v) = 0, ⇒ lim
n→∞

lim
q→0

[Z(Tn, q, v)]
1/n = 0



Our calculations give exact results for Z(G, q, v) and T (G,x, y) for recursive
families of graphs of fixed width and arbitrary length. We have calculated Z and T for
strips of various lattices, including square, triangular, honeycomb, etc., and also for
wider strips. Much of this work was with thesis students S.-H. Tsai and S.-C. Chang.

Our results apply for arbitrary q and temperature variable v = eJ/(kBT ) − 1 and thus
complement other types of exact calculations, such as Onsager’s calculation of the
partition function for a special value of q, namely q = 2 (the Ising value) for the square
lattice, and subsequent calculations of the Ising partition function for other 2D lattices.

We have evaluated the various special cases of Z and T for lattice strips, including the
chromatic polynomial and other special cases. See refs. at end. We next discuss further
the special case of P (G, q).



Chromatic Polynomials of Recursive Families of Graphs

Recall that Z(G, q, v = −1) = P (G, q), the chromatic polynomial of G. Hence,
for cyclic lattice strip graphs with members Gm, P (G, q) has the form

P (Gm, q) =

Ly
∑

d=0

c(d)
nP (Ly,d)
∑

j=1

(λP,Ly,d,j)
m

The total number of λ’s is

NP,Ly,λ =

Ly
∑

d=0

nP (Ly, d)

For 1 ≤ Ly ≤ 5, NP,Ly,λ = 2, 4, 10, 26, 70, to be compared with 2, 6, 20, 70, 252
for NZ,Ly,λ. For all but the lowest case Ly = 1, the numbers of λ’s entering into the
chromatic polynomial are less than those in the full Potts model partition function.
Asymptotically,

NP,Ly,λ ∼ L−1/2
y 3Ly as Ly → ∞

This is exponential growth, but ∼ 3Ly, hence slower then the growth ∼ 4Ly for Z.



Table of numbers nP (Ly, d) and their sums, NP,Ly,λ for cyclic strips of width Ly and
arbitrary length of the square (sq), triangular (tri), and honeycomb (hc) lattices.

Ly ↓ d → 0 1 2 3 4 5 6 NP,Ly,λ

1 1 1 2

2 1 2 1 4

3 2 4 3 1 10

4 4 9 8 4 1 26

5 9 21 21 13 5 1 70

6 21 51 55 39 19 6 1 192

Recall that from P (G, q) one can calculate the ground state degeneracy, per site, of
the Potts AFM:

W ({G}, q) = lim
n→∞

P (G, q)1/n

On {G}, the associated g.s. entropy per site is S0 = kB lnW . The q-state Potts
AFM at T = 0 exhibits nonzero S0, equiv. W > 1 for sufficiently large q

We have calculated W functions for a variety of limits of {G}’s and studied their
behavior as a function of lattice type and q. Here we will generalize q from N to C.



For the n → ∞ limit of Cn, W = q − 1 if |q − 1| > 1, i.e., for real q, if q > 2 or
q < 0. If |q − 1| < 1, i.e., for real q, if 0 < q < 2, then P can be negative, so
only the magnitude of W is determined. We obtain |W | = 1 if |q − 1| < 1. There
are thus nonanalytic changes in W at q = 0 and q = 2 in this case, with qc = 2.

For the Lx → ∞ limit of the cyclic or Möbius Ly = 2 strip of the square lattice,

W =
√

q2 − 3q + 3 if q > 2 or q < 0

and
|W | = |q − 3| if 0 < q < 2

Thus, also qc = 2 for the Lx → ∞ limit of this Ly = 2 strip of the square lattice.

For the Ly = 3 cyclic or Möbius strip of square lattice, we obtain the following (from
Shrock and Tsai, Phys. Rev. E60, 3512 (1999); Shrock, Phys. Lett. A261, 57 (1999)).
Define intervals on the real axis R1: q > qc, where qc ≃ 2.34 or q < 0; R2:
2 < q < qc; R3: 0 < q < 2. Here, qc is a solution of the degeneracy equation
|λdom,R1| = |λdom,R2|, namely 2q4 − 16q3 + 51q2 − 86q + 67 = 0.

Then for q ∈ R1,



W = 2−1/3

[

(q−2)(q2−3q+5)+
[

(q2−5q+7)(q4−5q3+11q2−12q+8)
]1/2

]1/3

For q ∈ R2, |W | = |q− 4|1/3, and in R3, W is the root of a certain cubic equation.

Since P (G, q) is the T = 0 Potts antiferromagnet (AF) partition function, the
nonanalyticity at q = qc in W ({G}, q) is connected with a nonanalyticity of the
q = qc-state Potts AF free energy, as a function of temperature, at T = 0.

From our calculations of W for the Lx → ∞ limit of the Ly = 4 (NP,λ = 26) and
Ly = 5 (NP,λ = 70) cyclic or Möbius strips of the square lattice, we obtain
qc ≃ 2.49 and 2.58, respectively. The qc values that we have calculated for the
infinite-length cyclic/Möbius strips exhibit a monotonic increase as a function of Ly,
consistent with approaching 3 from below as Ly → ∞.

We have calculated W for Lx → ∞ limits of strips of the square lattice that are
self-dual, and thus incorporate a property of the full 2D square lattice, and these exhibit
qc = 3, consistent with an inferred T = 0 critical point in the q = 3 Potts AF at
T = 0. For Ly = 1, we find Bq: circle |q − 2| = 1; also, see figures below.



From our exact calculations of P (Gm, q) and hence W ({G}, q), we find that, for a
given Ly and q, W decreases as the vertex degree ∆ increases. For example,
restricting to real q ≥ χ(G), for the Ly = 2 square-lattice strip,

W (sq(2 × ∞), q) =
√

q2 − 3q + 3

while for the Ly = 2 strip of the triangular (tri) lattice,

W (tri(2 × ∞), q) = q − 2

So, e.g., W (sq(2 × ∞), q = 3) =
√
3, larger than

W (tri(2 × ∞), q = 3) = 1, etc.

We have made corresponding comparisons for wider lattice strips and have proved a
number of rigorous upper and lower bounds on W for infinite limits of 2D lattices.
Refs. Shrock and Tsai, Phys. Rev. E55, 6791-6794 (1997); Phys. Rev. E56, 2733-2737
(1997); Phys. Rev. E56, 4111-4124 (1997); Shrock and Xu, Phys. Rev. E81, 031134
(2010); Chang and Shrock, Phys. Rev. E91, 052142 (2015).

This ordering in the W values for a given q on different lattices can be understood as a
consequence of the greater constraints on the proper q-coloring on a lattice with a
greater vertex degree (coordination number).



Zeros of Chromatic and Potts/Tutte Polynomials and their
Accumulation Sets as n → ∞

Since Z(G, q, v) is a polynomial in q and v, it is of interest to analyze its zeros. We
have analyzed the zeros of Z(G, q, v) in the complex q plane for fixed v, and in the
complex v plane for fixed q for various families of graphs (as well as on submanifolds
defined by φ(q, v) = 0 such as v2 − q = 0).

Since the coefficients of the polynomial terms of Z(G, q, v) in q and v are real
(actually positive integers), the sets of zeros (i) in q for fixed real v and (ii) in v for
fixed real q are invariant under complex conjugation.

One can study the behavior of these zeros in the limit n → ∞. One finds that in this
limit, zeros accumulate to form certain curves and possible line segments, generically
denoted as the loci Bq for fixed v and Bv for fixed q. These are determined by the
condition that two dominant λ’s are equal in magnitude, which defines algebraic curves
for these recursive families of graphs.

For a long but finite-length strip, many zeros lie close to the asymptotic locus Bq or
locus Bv on which they merge as n → ∞.



As one crosses a boundary on Bq or Bv, the dominant λ, and hence the analytic
expression for W , changes. This was evident in the illustrative W functions given
above.

We have calculated Bq and Bv for the n → ∞ limits of many families of graphs. The
study of these boundaries ties together graph theory, complex analysis, and algebraic
geometry, and also relates these to statistical physics.

For the Lx → ∞ limit of a family of strip graphs of a certain type, {G}, the maximal
point at which Bq crosses the real q axis is denoted qc({G}).

One particularly interesting subcase is Bq for v = −1, the continuous accumulation
set of the zeros of the chromatic polynomials.

The form of Bq depends on both the type of strip (e.g., type of lattice, sq, tri, hc...)
and the boundary conditions.

We have shown that free b.c. yield loci Bq that consist of arcs and possible line
segments.

We have found that a sufficient (not necessary) condition that Bq separates the q plane
into regions is that the longitudinal b.c. are periodic or twisted periodic (here, B



denotes the boundaries between these regions). This is also a sufficient (not necessary)
condition that Bq crosses the real axis, defining a qc({G}).

We have characterized these regions for v = −1 and for other values of v; recall that
v ∈ [−1, 0] is Potts antiferromagnet (J < 0), while v ∈ [0,∞] is Potts
ferromagnet (J > 0).

Correspondingly, one can analyze Bv, or equivalently, By, where y = v + 1 = eK. In
the thermodynamic limit, the curves on By separate complex-y extensions of physical
phases of the q-state Potts model. These phases include the paramagnetic phase,
where the Sq permutation symmetry is realized explicitly, the ferromagnetic phase,
where the Sq symmetry is spontaneously broken by a nonzero uniform magnetization
(preference for one value of σi), and can also include an antiferromagnetic phase.

Some illustrative figures for regular lattice strips follow. For others, see refs.
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Figure 1: Locus Bq in the q plane for the n → ∞ limit of the circuit graph Cn. Chromatic zeros for Bn with n = 19 are shown for comparison. From R. Shrock
and S.-H. Tsai, Phys. Rev. E55, 5165 (1997).
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Figure 2: Locus Bq in the q plane for the Lx → ∞ limit of the cyclic or Möbius strip of the square lattice with width Ly = 2. Chromatic zeros for the cyclic strip
with Lx = 19 and thus n = 38 vertices are shown for comparison. From R. Shrock and S.-H. Tsai, Phys. Rev. E55, 5165 (1997).
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Figure 3: Locus Bq for the Lx → ∞ limit of the cyclic or Möbius strip of the square lattice with width Ly = 3. Chromatic zeros for the cyclic strip with Lx = 20
and thus n = 60 vertices are shown for comparison. From R. Shrock and S.-H. Tsai, Phys. Rev. E60, 3512 (1999).



−1 0 1 2 3
Re(q)

−3

−2

−1

0

1

2

3

Im(q)

Figure 4: Locus Bq for the Lx → ∞ limit of the strip of the square lattice of width Ly = 4 strip with cyclic or Möbius) boundary conditions. For comparison,
chromatic zeros calculated for the cyclic strip with Lx = 20 and thus n = 80 vertices are shown. From S.-C. Chang and R. Shrock, Physics A290, 402 (2001),
Physica A316, 335 (2002).
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Figure 5: Comparison of loci Bq for the Lx → ∞ limits of the strip of the square lattice with cyclic or Möbius boundary conditions with widths Ly = 3 and Ly = 4.
From S.-C. Chang and R. Shrock, Physica A292, 307 (2001).
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Figure 6: Locus Bq for the Lx → ∞ limit of the cyclic or Möbius strip of the square lattice of width Ly = 5. For comparison, chromatic zeros calculated for the
cyclic strip with Lx = 20 and thus n = 100 vertices are shown. From S.-C. Chang and R. Shrock, Physica A316, 335 (2002).
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Figure 7: Locus Bq for the Lx → ∞ limit of the strip of the square lattice with toroidal or Klein Bottle boundary conditions, of width Ly = 3, with chromatic zeros
for a finite Lx shown for comparison; see N. Biggs and R. Shrock, J. Phys. A (Letts) 32, L489 (1999).



0 1 2 3
Re(q)

−3

−2

−1

0

1

2

3

Im(q)

Figure 8: Locus Bq for the Lx → ∞ limit of the strip of the square lattice with toroidal or Klein bottle boundary conditions, of width Ly = 4, with chromatic zeros
for a finite Lx shown for comparison, from S.-C. Chang and R. Shrock, Physica A292, 307 (2001).
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Figure 1: Example of a strip graph GD(Ly × Lx) for the case Ly = 3, Lx = 4.
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Figure 9: Locus Bq for the Lx → ∞ limit of GD(2 × Lx). For comparison, chromatic zeros are shown for Lx = 30, i.e., n = 61. For the Lx → ∞ limit of the
wheel graph GD(1 × Lx), B is the circle |q − 2| = 1. This figure and the others on GD strips are from S.-C. Chang and R. Shrock, Physica A301, 301 (2001).
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Figure 10: Locus Bq for the Lx → ∞ limit of GD(3 × Lx). For comparison, chromatic zeros are shown for Lx = 30, i.e., n = 91.
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Figure 11: Locus Bq for the Lx → ∞ limit of GD(4 × Lx). For comparison, chromatic zeros are shown for Lx = 20, n = 81.
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Figure 12: Locus Bq for the Lx → ∞ limit of the square-lattice strip of width Ly = 3 with free boundary conditions, together with chromatic zeros on a finite-Lx

strip shown for comparison. From M. Roček, R. Shrock, and S.-H. Tsai, Physica A252, 505 (1998).
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Figure 13: Locus Bq for the width Ly = 5 strip of the square lattice with cylindrical boundary conditions. For comparison, chromatic zeros calculated for the strip
length Lx = 16, i.e., n = 80 vertices are shown. From S.-C. Chang and R. Shrock, Physica A290, 402 (2001).
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Figure 14: Boundary Bq for the Lx → ∞ limit of the cyclic or Möbius strip of the triangular lattice with width Ly = 2. Chromatic zeros for the cyclic strip with
Lx = 20 and thus n = 40 vertices are shown for comparison. From R. Shrock and S.-H. Tsai, Physica A275, 429 (2000).
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Figure 15: Locus Bq for the Lx → ∞ limit of the cyclic or Möbius strip of the triangular lattice with width Ly = 3. Chromatic zeros for the cyclic strip with
Lx = 20 and thus n = 60 vertices are shown for comparison. From S.-C. Chang and R. Shrock, Ann. Phys. 290, 124 (2001).
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Figure 16: Locus Bq for the Lx → ∞ limit of the cyclic or Möbius strip of the triangular lattice with width Ly = 5. Chromatic zeros for the cyclic strip with
Lx = 20 and thus n = 100 vertices are shown for comparison. From S.-C. Chang and R. Shrock, Physica A 346, 400 (2005).
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Figure 17: Locus Bu for the Lx → ∞ limit of the cyclic or Möbius strip of the square lattice with width Ly = 3, in the plane of the variable u = y−1, with partition
function zeros for a finite Lx shown for comparison. From S.-C. Chang and R. Shrock, Physica A 296, 234 (2001).



Potts Model on Hierarchical Lattices

Examples of hierarchical (lattice) graphs Gm: Sierpinski triangles Sm, Diamond
hierarchical lattice (DHL) graphs, Dm. In each case, one starts with a given graph Gm

and interatively constructs Gm+1 by a specified procedure of adding vertices and edges;
see figure.

In the theory of phase transitions and critical phenomena, the renormalization group
(RG) has played a very important role (K. Wilson, M. Fisher, A. Migdal, L. Kadanoff..).

Real-space RG: apply blocking transformation with blocking factor b; calculate effective
Hamiltonian after blocking. Iterate. This generates an RG flow in the space of
couplings. Look for fixed points of this RG flow and associated basin(s) of attraction;
calculate RG trajectories. A second-order phase transition is a nontrivial fixed point of
the RG.

An appeal of hierarchical lattice graphs is that because of their self-similar nature, one
can describe the RG transformation exactly in closed form.



However, spin models on fractals do not exhibit the sort of universality that they do on
(thermodynamic limits of ) regular lattices.

For example, a discrete spin system (without frustration or disorder) on a regular lattice
of dimensionality d > 1 exhibits a order-disorder phase transition at Tc > 0, but this
is not necessarily true on a fractal (Gefen, Mandelbrot, Aharony, 1980). In particular,
the m → ∞ limit of the Sierpinski triangular graphs, S∞, has fractal (Hausdorff)
dimension D = (ln 3)/(ln 2) = 1.585 > 1, but Tc = 0.

Nevertheless, it is of interest to study the zeros of Z(Sm, q, v) in the q plane for
various v and in the v plane for various q, and we have done this (Chang and Shrock,
Phys. Lett. A377, 671-675 (2013))

Among other results, we infer that qc(S∞) = 3, which means, from the C2

perspective, that just as the singular locus Bq for the T = 0 Potts AFM on S∞
crosses the real q axis at the maximal point q = 3, equivalently, the singular locus By

passes through y = 0, i.e., the q = 3 Potts AFM on S∞ has a zero-temperature
critical point.



Figure 18: Sierpinski graphs Sm and Diamond hierarchical lattice graphs Dm
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Figure 19: Zeros of the chromatic polynomial P (S6, q) in the q plane (366 zeros).
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Figure 20: Zeros of Z(S5, q, v) in the q plane for v = 0.5.
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Figure 21: Zeros of Z(S5, q, v) in the y plane for q = 3.



Diamond hierarchical lattice: many studies of zeros in v and µ (complex-temp. and
complex-field), including Gefen, Mandelbrot, and Aharony, 1979-1984; Griffiths and
Kaufman, 1981-1982; Derrida, De Seze, Itzykson, 1983; Bleher, Zalys, 1989; Bleher,
Lyubich, 1991; Qin- Z. Yang, 19921; Qiao, 2001-2011...; Gao-Qiao; Bleher, Lyubich,
Roeder: BLR1, Lee-Yang Zeros for DHL, arXiv:1009.4691; BLR2, Lee-Yang-Fisher
Zeros for DHL, arXiv:1107.5764.

By carrying out the summation over the spins at intermediate vertices at each stage,
one finds the RG transformation

Z(Dm+1, q, v) = Z(Dm, q, v′)(q + 2v)2·4
m

where

v′ =
v2(2q + 4v + v2)

(q + 2v)2

or equivalently,

y′ =
[

q + y2 − 1

q + 2(y − 1)

]2

The RG has fixed points where v′ = v, i.e., v(q2 + 2qv − v3) = 0; sols.: v = 0,
i.e., the trivial β = 0 (T = ∞) fixed point, and the PM-FM critical point of the
Potts model, vPM−FM , given by physical sol. of cubic eq. q2 + 2qv − v3:



vPM−FM = yPM−FM − 1 = 2−1/3
[

q2 +
√

q3(q − (32/27))
]1/3

+
24/3 q

3
[

q2 +
√

q3(q − (32/27))
]1/3

For example, the q = 2 Potts (Ising) model has PM-FM phase transition at
yPM−FM = 3.3830 and, since D∞ is bipartite, also PM-AFM phase transition at
yPM−AFM = 1/yPM−FM = 0.2956.

The locus Bv (equiv. By) has been extensively studied (Julia set of RG transformation)
by physicists and mathematicians.

Much less attention has been paid to the zeros in the q plane. We are studying these
(work in progress with S.-C. Chang and R. Roeder). Example of zeros of P (D5, q):
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Figure 22: Zeros of the chromatic polynomial P (D5, q) in the q plane.



Potts Model with General External Magnetic Field

Recall from Lecture 1 that for the q = 2 Potts (i.e. Ising) model (with no external
magnetic field H), the locus of complex-temperature phase boundaries (accumulation
set of zeros) By is the set of two circles |y ± 1| = √

2, or equivalently, given the

y → 1/y invariance of this locus, |z ± 1| = √
2, where z = 1/y and the

limcçon-like curve in the η = y2 or u = z2 = 1/η plane.

The free energy f of the square-lattice Ising model can also be calculated for the
nonzero value h = βH = ±iπ/2, i.e., µ = −1, where µ = e2h. We have
determined the locus Bu for this case (Matveev and Shrock, J. Phys. A 28, 4859-4882
(1995)). It is the union of the unit circle |u| = 1 and the line segment on the negative
real u axis with endpoints at ue and 1/ue: 1/ue < u < ue, where
ue = −(3 − 2

√
2):

µ = −1 ⇒ Bu : {|u| = 1} ∪ {−(3 + 2
√
2) < u < −(3 − 2

√
2)}

It is also of interest to study the zeros of the Ising partition function for general nonzero
values of H and we have done this (Matveev and Shrock, Phys. Rev. E53, 254-267
(1996); J. Phys. A 41, 135002 (2008); McCoy..) These are not known exactly.



It was known that, in the n → ∞ limit, the continuous accumulation set of zeros in µ
(Lee-Yang zeros) of the Ising partition function form a closed unit circle |µ| = 1 as T
decreases below the critical temp. Tc, in the interval 0 ≤ u ≤ 3 − 2

√
2 (sq lattice)

and 0 ≤ u ≤ 1/3 (tri lattice).

We have shown that the Lee-Yang zeros remain on the unit circle in the µ plane as
u = e−4KI passes through zero to an interval of negative real values and have
determined this interval:

−uPM−FM,sq < u ≤ 0 (sq lattice)

where uPM−FM,sq = (3 − 2
√
2), and

−uPM−FM,tri < u ≤ 0 (tri lattice)

where uPM−FM,tri = 1/3 for the triangular lattice. (Matveev and Shrock, Phys.
Lett. A215, 271-279 (1996)).

As with zeros of Z and their accumulation sets in the q and v plane, it is also of
interest to study zeros of Z in the v (or z) and µ planes in a unified manner: zeros in
a C

2 space.



A further generalization is to consider the Potts model in a generalized external
magnetic field that favors or disfavors spin values in a subset Is = {1, ..., s} of the
total set of q possible spin values. Thus, let Hp = H for 1 ≤ p ≤ s and Hp = 0
for s + 1 ≤ p ≤ q. Define h = βH and w = eh.

The partition function is Z =
∑

σi
exp(−βH), where

−βH = K
∑

eij

δσiσj
+ h

∑

i

s
∑

p=1

δσi,p

It is desirable to obtain a generalization that expresses the partition function of the
Potts model in a general magnetic field partition function in a purely graph-theoretic
manner as a sum over spanning subgraphs without reference to the spin configurations.
We have done this (Chang and Shrock, J. Phys. A42, 385004 (2009); J. Stat. Phys.
138, 496 (2010); Shrock and Xu, J. Stat. Phys. 139, 27 (2010)).



We obtain

Z(G, q, s, v, w) =
∑

G′⊆G

ve(G′)
k(G′)
∏

i=1

(q − s + swn(G′
i))

where G′ has k(G′) components, denoted G′
i, i = 1, ...k(G′). The factor

q − s + swm for each connected component G′
i ∈ G′ can be understood since each

of the spins must have the same value σ in this term in the cluster sum; for the s cases
where σ ∈ Is, this gives sw

n(G′
i), while for the q − s cases where σ /∈ Is, this gives

q − s.

In the quantity um ≡ q − s + swm = q + s(wm − 1) note that

wm − 1 = (w − 1)

m−1
∑

j=0

wj

so s occurs in Z only in the combination s(w − 1). Hence, s = 0 is equivalent to
w = 1, i.e., H = 0, and for these values, Z(G, q, s, v, w) reduces to the zero-field
Potts model:

Z(G, q, 0, v, w) = Z(G, q, s, v, 1) = Z(G, q, v)



Clearly, if s = q, then all spin states are treated equally, so

Z(G, q, q, v, w) = wnZ(G, q, v)

For H → −∞, i.e., w → 0,

Z(G, q, s, v, 0) = Z(G, q − s, v)

Switching s → q − s yields the identity

Z(G, q, s, v, w) = wnZ(G, q, q − s, v, w−1)

The special case v = −1 is a weighted-set generalization of the chromatic polynomial,
Ph(G, q, s, w), describing a proper q-coloring of the vertices of G with a vertex
weighting w that either favors (for w > 1) or disfavors (for 0 ≤ w < 1) the colors in
the set Is.

We have used the cluster formula to compute Z(G, q, s, v, w) and Ph(G, q, s, w)
for various families of graphs (Chang and Shrock, op. cit. Shrock and Xu, J. Stat.
Phys. 139, 27 (2010); J. Stat. Phys., 141, 909 (2010); Chang and Shrock, J. Stat.
Phys. 161, 915 (2015)).



We have given results for various boundary conditions. In particular, we have found that
for a cyclic strip graph of a lattice Λ of width Ly and length Lx = m vertices,

Z([Λ, Ly×m, cyc.], q, s, v, w) =

Ly
∑

d=0

c̃(d)(q)

nZh(Ly,d,s)
∑

j=1

[λZ,Λ,Ly,d,j(q, s, v, w)]m ,

where

c̃(d)(q) ≡ c(d)(q̃) =
d

∑

j=0

(−1)j
(

2d − j

j

)

q̃ d−j

and q̃ = q − s, so, e.g., c̃(1)(q) = q̃ − 1 = q − s − 1,
c̃(2)(q) = q̃ 2 − 3q̃ + 1 = q2 − 2qs + s2 + 3(s − q) + 1, etc.

These results provide exact solutions of the Potts model in a general magnetic field for
arbitrary q on these families of graphs.



These results are also of interest for mathematical graph theory. We have shown that
Z(G, q, s, v, w) can distinguish between graphs that yield the same zero-field Z
(Tutte-equivalent graphs), such as different n-vertex tree graphs, Tn, for which

Z(Tn, q, v) = q(q + v)n−1, equiv. T (Tn, x, y) = xn−1

e.g., there are two types of tree graphs with n = 4: the line graph L4 and the star
graph S4. These have the same Potts/Tutte polynomial. But our Z(G, q, s, v, w)
can distinguish between them (recall: um = q − s + swm):

Z(S4, q, s, v, w) = u4
1 + 3vu2u

2
1 + 3v2u3u1 + v3u4 ,

Z(L4, q, s, v, w) = u4
1 + 3vu2u

2
1 + v2(2u3u1 + u2

2) + v3u4 .

so

Z(S4, q, s, v, w)−Z(L4, q, s, v, w) = v2(u3u1−u2
2) = v2s(q−s)w(w−1)2 .



Some Open Problems and Directions for Further Research

There are many open problems and directions for further research. These include the
following:

1. Further calculations of Z(G, q, v) and P (G, q) for various families of graphs, with
analysis of zeros and the accumulation set Bq for fixed v.

2. We have calculated S0 for various infinite-length, finite-width lattice strips; extend
these calculations to larger widths and study the approach to Ly = ∞ further.

3. Study properties of the Bq, e.g., topology and qc values for various infinite-length
limits of lattice strips.

4. We have found that, for the infinite-length limit of a lattice strip graph with arbitrary
transverse boundary conditions (or more generally, a necklace graph), a sufficient
condition for Bq to separate the complex q plane into regions and cross the real axis
is that the longitudinal b.c. should be periodic or twisted periodic (cyclic, Möbius,
toroidal, or Klein-bottle). Prove this in general.

5. It may happen for some families of graphs that even when the longitudinal boundary
conditions are not periodic or twisted periodic, Bq still separates the complex q
plane into regions. Carry out a general characterization of these families of graphs.



6. In all of the infinite-length limits of families of graphs with cyclic boundary
conditions, we have found that qc is a nondecreasing function of Ly. Prove this in
general. Note that we have shown that this monotonicity does not hold for
infinite-length limits of graphs with toroidal or Klein-bottle boundary conditions.

7. For the infinite-length limits of families of graphs for which Bq does separate the
complex q plane into several regions, give a precise characterization of the number
of regions. This amounts to a problem in algebraic geometry, but entails considering
not just one algebraic equation, but a set of them, since Bq is determined only by
the dominant λ’s, and these change from point to point in the q plane.

8. Extend calculations of Bv for general q and B with φ(q, v) = 0.

9. Extend the study of Z(G, q, s, v, w) for Potts model partition function in a
generalized magnetic field.

10. The zeros in µ do not lie on the unit circle for the Ising AFM and hence are not
described by the Lee-Yang circle theorem. Determine what can be said in general
concerning their location.

11. Give a rigorous proof of our inference that qc(S∞) = 3 for the m → ∞ limit of
the Sierpinski triangle family of graphs.

12. Elucidate properties of zeros and their accumulation sets in q, y, and µ planes for
Potts model on m → ∞ limits of hierarchical graphs.



Conclusions

The equivalence between the Potts model partition function and the Tutte polynomial,
and the identity of the partition function of the T = 0 Potts antiferromagnet with the
chromatic polynomial show deep connections between statistical physics, combinatorics,
and graph theory.

We have discussed how one can obtain exact calculations of the Potts model partition
function Z(G, q, v) for arbitrary q and temperature variable v and equivalent Tutte
polynomial T (G,x, y) for arbitrary x and y on recursive families of graphs, and have
presented some of the results.

Similarly, we have presented results for the chromatic polynomial on various families of
graphs and discussed the asymptotic limiting W function, with connection to
ground-state entropy of the Potts antiferromagnet.

Since our calculations apply for arbitrarily great strip length Lx, we have used them to
obtain limiting functions for Lx → ∞ and have studied analytic properties of these
functions. We have studied patterns of zeros of these polynomials and how they merge
to form loci Bq and Bv.

We have presented a generalization for the Potts model in an external magnetic field.
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