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Automata – transducers

V (T ) = X ∗, X = {0, . . . , d − 1} – alphabet

G < AutT
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Action on T given by finite initial automaton

Definition (By Example)

S2 = {ε, σ} acts on X = {0, 1}.PSfrag repla
ements
00 01 11 11 1 11

0; 10; 1a
b 
 d

y �
A — noninitial automaton,
Aq — initial automaton, q ∈ {a, b, id}.

Aq acts on X ∗ (and on T )
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Definition of automaton group

Given an automaton A every state q defines an automorphism Aq of X ∗

Definition

The automaton group generated by automaton A is a group

G (A) = 〈Aq | q is a state of A〉 < AutX ∗
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Definition of automaton group

Given an automaton A every state q defines an automorphism Aq of X ∗

Definition

The automaton group generated by automaton A is a group

G (A) = 〈Aq | q is a state of A〉 < AutX ∗

Example PSfrag repla
ements a�0; 1
a(w) = w . Thus a2 = 1 and G (A) ≃ C2.
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Motivation

Burnside problem on infinite periodic groups
(Aleshin group, Grigorchuk group, Gupta-Sidki group,. . . )

Milnor problem on groups of intermediate growth
(Grigorchuk group, Gupta-Sidki group,. . . )

Day problem on amenability
(Grigorchuk group, Gupta-Sidki group,. . . )

Atiyah conjecture on L2 Betti numbers
(Lamplighter group)

Connection to holomorphic dynamics via Iterated Monodromy Groups

Connection to combinatorics via Hanoi Towers groups
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History

Notation: (m, n)-automata — m-state automata over n-letter alphabet

(2000 Grigorchuk, Nekrashevych, Sushchansky) Groups generated by
(2,2)-automata were classified: {1}, Z2, Z2 × Z2, Z, D∞ and the
Lamplighter group.

(2001 Reznykov, Sushchansky) Semigroups generated by
(2,2)-automata were classified: additionally 29 nonisomorphic
semigroups, including a semigroup of intermediate growth

(2007 Bondarenko,Grigorchuk, Kravchenko, Muntyan, Nekrashevych,
S., Šunić) Groups generated by (3,2)-automata were studied: up to
115 non-isomorphic groups generated by 194 “non-symmetric”
automata. No Burnside groups.

(2014 Caponi, S.) There are 7471 “non-symmetric” (4,2)-automata.
No Burnside groups (4 groups pending).
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Lamplighter Group

Definition

The lamplighter group is

L2 = Z2 ≀ Z
∼= (· · · ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ · · · )⋊Z,
∼= 〈a, b | a2 = [a, ab

i

] = 1, i ≥ 1〉

where Z acts on B = ⊕i∈ZZ2 by “shifting the index”.

We have 〈a〉 ∼= Z2 and

〈ab
i

, i ∈ Z〉 ∼= · · · ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ · · ·

and we have Z-worth of commuting elements in L2.
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How do we get many commuting elements in AutT?
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How do we get many commuting elements in AutT?

Definition

An automorphism of X ∗ is called spherically homogeneous if it acts on
the k-th letter of each word by a permutation depending only on k .

SHAut(X ∗) ∼= Sym(X )∞ – spherically homogeneous automorphisms

Z
∞

d < SHAut(X ∗)

Observation

Known instances of lamplighters have ⊕i∈ZZ2 inside SHAut(X ∗).

So we need to understand what normalizes Z∞

d < SHAut(X ∗).
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Automorphisms of X ∗ coming from boundary actions

Definition

The boundary X∞ of the tree X ∗ consists of all infinite words over X
(that correspond to all infinite paths from the root of X ∗)

X∗

X∞
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Automorphisms of X ∗ coming from boundary actions

Definition

The boundary X∞ of the tree X ∗ consists of all infinite words over X
(that correspond to all infinite paths from the root of X ∗)

X∗

X∞

Each automorphism of X ∗ induces a transformation of X∞

Some transformations of X∞ induce automorphisms of X ∗
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Boundary as the ring of power series Zd [[t]]

To define transformations of X∞ we can use different structures.

For X = Zd the elements of X∞ become power series in Zd [[t]].
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Boundary as the ring of power series Zd [[t]]

To define transformations of X∞ we can use different structures.

For X = Zd the elements of X∞ become power series in Zd [[t]].

X∞ ∋ a0a1a2 . . .←→ a0 + a1t + a2t
2 + · · · ∈ Zd [[t]]

Example

For a fixed power series g(t) ∈ Zd [[t]] the transformation of Zd [[t]]

f (t) 7→ f (t) + g(t)

induces a element of SHAut(X ∗).
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Starting point

Theorem (Grigorchuk, Nekrashevych, Sushchansky 2000)

The group generated by automatonPSfrag repla
ements �a b 001 1
isomorphic to the lamplighter group is induced by transformations

f (t) 7→ (1 + t)f (t) + 1
f (t) 7→ (1 + t)f (t)

of Z2[[t]].
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The language of power series turned out to be very fruitful:

Silva and Steinberg (2005) realized G ≀ Z as automaton group for
each finite abelian G

Similar ideas: Bartholdi and Šunić (2006) produced a different
representation of Zk

d ≀ Z

Gives rise to families of (bi)reversible automata generating Z
k
d ≀ Z

(Bondarenko, S. – in preparation)
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The language of power series turned out to be very fruitful:

Silva and Steinberg (2005) realized G ≀ Z as automaton group for
each finite abelian G

Similar ideas: Bartholdi and Šunić (2006) produced a different
representation of Zk

d ≀ Z

Gives rise to families of (bi)reversible automata generating Z
k
d ≀ Z

(Bondarenko, S. – in preparation)

But it still is not rich enough to describe all lamplighters.
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For X = Zd , X
∞ = Z

∞

d has a natural structure of right CFM(Zd )-module
(we can multiply “vectors” by column finite matrices on right).
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For X = Zd , X
∞ = Z

∞

d has a natural structure of right CFM(Zd )-module
(we can multiply “vectors” by column finite matrices on right).

Let

A =















a11 a12 a13 a14 . . .

a21 a22 a23 a24 . . .

a31 a32 a33 a34 . . .

a41 a42 a43 a44 . . .
...

...
...

...
. . .















be a column finite matrix over Zd and b ∈ Z
∞

d be a (row) vector.

Definition

A transformation
πA,b : Z

∞

d −→ Z
∞

d

x 7→ b+ xA

is called an affine transformation of Z∞

d .
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Proposition

Let

A =















a11 ∗ ∗ ∗ . . .

0 a22 ∗ ∗ . . .

0 0 a33 ∗ . . .

0 0 0 a44 . . .
...

...
...

...
. . .















be an upper unitriangular (aii is a unit in Zd) matrix and b ∈ Z
∞

d be a
vector.
Then the affine transformation πA,b of Z∞

d induces an automorphism of
X ∗ (also denoted by πA,b).

Definition

Automorphism πA,b of X ∗ is called affine.

Aff(X ∗) – the group of all affine automorphisms of X ∗.
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Example

The group of shifts Aff I (X
∗) = {πI ,b | b ∈ Z

∞

d }
∼= Z

∞

d is a normal abelian
subgroup of Aff(X ∗) consisting of spherically homogeneous
automorphisms.

Example

For a power series g(t) = a0 + a1t + a2t
2 + · · · the transformation of

Zd [[t]] defined by
f (t) 7→ g(t)f (t)

is equal to πAg ,0, where

Ag =















a0 a1 a2 a3 . . .

0 a0 a1 a2 . . .

0 0 a0 a1 . . .

0 0 0 a0 . . .
...

...
...

...
. . .














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Theorem (S., Sidki, 2015)

NAut(X∗)(Aff I (X
∗)) = Aff(X ∗)

Corollary

In the case |X | = 2,

NAut(X∗)(SHAut(X
∗)) = Aff(X ∗)

Moreover

Theorem

Each faithful automaton representations of L2 ∼= Z2 ≀ Z on the binary tree
is conjugate to the one with the base group inside SHAut(X ∗).
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Theorem (S., Sidki)

The group Aff(X ∗) is generated by an automaton with transitions:

πA,b
x / (b1 + xa11)

πσ(A), x·σ([1,0,0,...]A)+σ(b)

Corollary

An automorphism πA,b of X ∗ is defined by finite automaton ⇔ matrix A,
its rows, and vector b are eventually periodic.

[Note: Similar result was obtained also by Oliynyk and Sushchansky]
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Principal Example

a

bc

d

0/0 0/0

1/1

1/1

0/1, 1/0

0/0, 1/1

Theorem (S., Sidki)

G ∼=
(

Z
2
2 ≀ Z

)

⋊ Z2 =
(

〈x , y〉 ≀ 〈t〉
)

⋊ 〈a〉,

where the action of a on x , y , t is defined as follows: xa = x, ya = y t
−1
,

ta = t−1.
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Proposition

The automorphism t = ac normalizes SHAut(X ∗) and is equal to πA,b for
the matrix A

and b = [(1, 0, 0, 1, 1, 1, 0, 0)∞ ].
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Idea of the proof

Conjugates of any z ∈ SHAut(X ∗) by powers of t are also in SHAut(X ∗),
so we can define

z t
i1+t i2+···+t in := z t

i1
z t

i2
· · · z t

in

Proposition

Elements x := ab and y = cd are in SHAut(X ∗), so xp(t) and yp(t) are
defined for each Laurent polynomial p(t) ∈ Zd [t, t

−1].

Proposition

〈x , y , t〉 ∼= Z
2
2 ≀ Z.

To prove this we need to show xp(t)yq(t) is not trivial for all
p(t), q(t) ∈ Zd [[t]].
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Define
φn(t) := 1 + t + t2 + · · ·+ tn−1.

For each polynomial p(t) =
∑k

i=0 ai t
i ∈ Z2[t] define also

ψp(t) =
k

∑

i=1

aiφi (t).

Lemma

For all pairs of polynomials p(t), q(t) ∈ Z2[t]

the state of xp(t)yq(t) at each vertex of the first level is
xψp(t−1)+q(t−1)yp(t

−1).

the state of xp(t
−1)yq(t

−1) at each vertex of the first level is
x tψp(t)+q(t)yp(t).

This defines a dynamical system on (Z2[t])
2 whose analysis yields the

result.
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Thank You!
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