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Necessity of Random Graphs

The study of complex networks plays an increasingly important
role in the sciences. Some examples:

• Electrical power grids
• Telecommunication networks
• Social relations
• WWW, Internet (pages vs. routers)
• Collaboration of scientists (Erdös Number of

Mathematicians)

The structure of these networks affects performance.
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Small-World Phenomenon

These networks have the common feature that they are big,
really big. Studying their global properties directly is impossible,
and so we use random graphs to study local properties a
network (probably) has.
Some examples of graphs with "small-world phenomenon":

• 6 degrees of Kevin Bacon
• 8 degrees of Paul Erdös
• 2 webpages are, on average, 16 clicks away from one

another
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The small-world phenomenon occurs in numerous existing
networks, and refers to two different properties:

• 1. Small Distance: between any two pair of nodes, there is
a short path

• 2. The Clustering Effect: Two nodes are more likely to be
adjacent if they share a common neighbor

A "good" graph model must account for both of these properties
in order to be "realistic"

Danielle Larcomb Random Graphs 4/26



Outline

1. Graph Theory Basics
2. What is a Random Graph?
3. The Erdös Rényi Random Graph Model
4. Limitations of the ER Model
5. Exponential Random Graph Model
6. Graph Limits
7. Main Result

Danielle Larcomb Random Graphs 5/26



Graph Theory Preliminaries
Some definitions

• G = (V,E), V = [n], E = {(u, v) | there is an edge between
u and v}

• The degree of a vertex u, du, is the number of edges
containing u

• A path is a sequence of vertices v0, v1, ..., vk such that vi−1
is adjacent to vi for i = 1, 2, ..., k, with length k

• If v0 = vk, then the path is called a cycle
• A graph with no cycles is called a tree
• A graph is connected if any two vertices can be joined by a

path
• If a graph is not connected, then we can consider a

connected component, a subset of the graph that is
connected. Thus, a graph is connected if there is only one
connected component
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Definition Picture
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What is a Random Graph?

A random graph may be viewed as a random variable defined
on a probability space with a probability distribution.

• If we first put all graphs on n vertices in a box and then
choose a graph from that box, then the graph we chose
was a random graph

• Goal: To be able to say that a random graph (in some
model) has a certain property

• Since real life networks are LARGE, we can use random
graphs to describe local and probabilistic rules by which
vertices are connected to another
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Origins: Erdös
“In random graph theory, we consider asymptotic statistical
properties of random graphs for n (vertices) approaching
infinity”

• What is the probability of G(n,N) (N ≤
(
n
2

)
) being

completely connected?
• What is the probability that the greatest connected

component of G(n,N) should have n− k vertices?
• What is the probability that G(n,N) should consist of

exactly k + 1 connected components?
• If the edges of a graph with n vertices are chosen

successively so that after each step every edge which has
not yet been chosen has the same probability to be chosen
as the next, and if we continue this process until the graph
becomes completely connected, what is the probability that
the number of necessary steps V will be equal to a given
number L?
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Erdös and Rényi: 2 models

F(n,m): Random graph defined on n vertices, and each graph
in F(n,m) has m edges.

• A graph is chosen uniformly at random from F(n,m)

• Example: In F(3, 2), each of the three possible graphs on 3
vertices with 2 edges are chosen with probability 1

3 .

G(n, p): Random graph defined on n vertices, and each edge is
chosen independently with probability p. (Edgar Gilbert)

• Each edge is assigned independently of other edges with
probability p

• A graph in G with m edges is chosen with probability
pm(1− p)(

n
2)−m
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Erdös and Rényi: G(n, p)

• The simplicity of G(n, p) arises from the basic probability
result: P (A1 · · ·An) = P (A1) · · ·P (An) when events A1, ...,
An are independent

• This means computing is very simple compared to other
models (e.g. F(n,m))

Example: The probability of a random graph in G(n, 12)
containing a fixed triangle is 1

8 .

Since edges in F(n,m) are not independently chosen,
calculations are more difficult. It is this reason why G(n, p) has
risen to such mathematical fame.
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Properties of G(n, p): Phase
Transition

What is a Phase Transition?

→Water exhibits a phase transition at 0 degrees Celsius (at
standard pressure):

• Below 0 degrees, water exists in solid state
• Above 0 degrees, water exists in a liquid state

For varying p, graphs in G(n, p) exhibit a phase transition.
Below a certain p, graphs in G are a disjoint union of trees (no
cycles). Above this p, graphs in G have one giant connected
component and all others are quite small.
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Limitations of Erdös Rényi

• Doesn’t model "small world phenomenon", which we know
exists in many realistic networks

• The very thing that makes it easy to deal with, the
independence, is what makes it unrealistic

• If p ≥ log(n)
n , all degrees are similar and close to pn
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Exponential Random Graph Model

• ERGMs are able to represent a wide range of common
network tendencies by using structural elements from the
network incorporated into the model

• For example, if we believe that edges and triangles are an
important network feature, then we can include the number
of edges and the number of triangles in our model
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Intro: ERGM
Consider the set Gn of all simple graphs Gn on n vertices.

We consider the exponential families,

pβ(G) = exp

(
k∑
i=1

βiTi(G)− ψ(β)

)
, (1)

where β = (β1, ..., βk) is a vector of real parameters, T1, ..., Tk
are functions on the space of graphs, and ψ is the normalizing
constant

• It is very difficult to estimate the parameters in these
models

• The normalizing constant is unknown, and very different β
values can give essentially the same distribution of graphs
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ERGM Cont.

• We want to find a way to evaluate the normalizing constant
so that we can determine the parameters (β1, ..., βk) (using
MLE, Bayseian Inference)

• Currently, methods for determining ψ only exist for relatively
small graphs (using computationally intensive algorithms)
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Approach
• The functions of the space, T1, ..., Tk are known
• The parameters, β = (β1, ..., βk), and the normalizing

constant, ψ, are unknown
• Using graph limits, we will arrive at an approximation of the

normalizing constant, ψ
• The limitation of this approach is that it only applies to

dense graphs due to the use of graphons (also called
graph limits)

A dense graph is one in which the graph density,

D =
2|E|

|V |(|V | − 1)
(2)

is close to 1, and more broadly, D scales like

O(|V |2). (3)
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Graphons: Motivation and Definitions
Graph Limits allow us to put all simple graphs into the same
Probability Space, regardless of the number of vertices
(limitation of the E-R model)

• Define H = {H1, ...,Hk} to be a fixed finite collection of
finite simple graphs.

• Define a homomorphism of a finite simple graph H into G
as an edge preserving map V (H)→ V (G)

• Let |hom(H,G)| be the number of homomorphism of H into
G

• We define the homomorphism density to be

t(H,G) =
|hom(H,G)|
|V (G)||V (H)| (4)
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Introduction: Graphons

• Define h ∈ W, whereW is the set of all symmetric
measurable functions from [0, 1]2 into [0, 1].

• Let Gn be a sequence of dense graphs that become more
similar as n→∞.

• If
lim
n→∞

t(Hi, Gn) = t(Hi, h)

for every Hi in the collection H, then the sequence of
graphs {Gn} converges to h ∈ W, and h is called a
graphon, or a graph limit.
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Interpretation of Graphons

• h(x, y) denotes the probability of an edge between x and y

Example For the Erdös Rényi model G(n, p), the limit function
is h(x, y) = p.
Since we use graphons, this method is only useful when p9 0
as n→∞. In other words, the method works only for dense
Erdös Rényi graphs. The natural notion for the graphon limit of
the Erdös Rényi graphs with fixed parameter p is the edge
density of the graphs, which converges to p.
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Every graphon has a sequence of
dense simple graphs converging to it

• A sequence of dense simple graphs converging means
that there is some graphon inW that the sequence
converges to. Conversely, for every h ∈ W, there is a graph
sequence {Gn} with h as its graph limit.

• A finite simple graph G on {1, 2, ..., n} can be represented
as a graph limit, fG : [0, 1]2 → [0, 1], by defining

fG(x, y) =

{
1 if (dnxe, dnye) is an edge in G,
0 otherwise.

(5)

• Therefore, t(H, fG) = t(H,G) for every simple graph H
and the constant sequence {G,G, ..., G} converges to the
graph limit fG.

This allows all simple graphs, no matter the number of vertices,
to be expressed as elements of the same probability space,W.
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Background of Main Result

• Convergence inW is determined by a metric onW called
the cut distance, denoted d∗

• Two graphons f ∼ g if f(x, y) = hσ(x, y) = h(σx, σy) for
some measure preserving bijection σ of [0, 1]. We may
think of σ as a relabeling of the vertices of a finite graph
and consider the resulting quotient space W̃ =W/ ∼.

• The cut distance onW induces a metric on the quotient
space and we have a metric space

(
W̃, δ∗

)
• Facts about the space W̃:

• W̃ is compact
• The homomorphism density t(H, ·) is continuous for any

finite simple graph H
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The Main Result

If T : W̃ → R is a bounded continuous function, then

ψ = lim
n→∞

ψn = sup
h̃∈W̃

(T (h̃)− I(h̃)) (6)

where
I(u) =

1

2
(u log u+ (1− u) log(1− u)) (7)

I : [0, 1]→ R.
We can extend the function I to W̃ as

I(h̃) =

∫ ∫
[0,1]2

I(h(x, y))dxdy (8)

where h is a representative of the equivalence class h̃.
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Consequences of Main Result

• Saying: there is a graph that is smaller that has
representative features of my bigger graph, and we are
taking that ψ that we can calculate because it is smaller,
and then applying it to the larger graph

• We use this smaller graph’s normalizing constant as an
approximation of the ψ that we can’t calculate for the larger
graph
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• Much easier to calculate probabilities from this space
• ERGMs good for modeling the clustering effect
• The use of graphons means we need graphs to be dense,

and not all complex networks are dense
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