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Rational Surfaces

A rational surface is a surface birationally equivalent to a
projective plane P2,

If X is a rational surface, then there is a sequence of blowups of a
point :

Tn—1
T X=X, 5 X — 0 Xy 5 Xy =P?

where 7; : X; — X;_1 is a blowup of a point p; € X;_1.



Theorem (Cantat)

Let X be a compact complex surface. If there is an automorphism
f on X with hyop(f) > 0 then X must be birationally equivalent to
one of the followings

» a complex torus C/A\
> a K3 surface
» the projective plane P?(C)

Theorem (Yomdin, Gromov)

If X is a compact complex surface and f is holomorphic, then
htop(f) = log p(f*|H*(X,C) = H*(X, C))

where p is the spectral radius.



If f is an automorphism on X,
htop(f) = log A(f)
where \(f) = p(f*|HY1(X,C) — HY(X,C)) is the dynamical
degree of f.
If f € Aut(P?(C)), then f is linear.

M) =1 = hp(f) =0

If f is an automorphism on a rational surface, then we can have

A(F)>1



Theorem (Nagata)

If F: X — X is an automorphism on a rational surface X with
A(f) > 1, then there is a birational map f : P?>(C) --» P?(C) such
that f =moFom 1

X ——

™

P2(C)

F X
fy P2(C)
Theorem (Diller-Favre,Blanc-Cantat)

F is an automorphism on a rational surface if and only if \(F) is a
Salem number.

Dynamical degree is a birational invariant. [Diller-Favre]
Find birational maps whose dynamical degrees are Salem number.



Birational Maps on P?

f is a birational map on P2

» f =[f:f:f] where f/s are homogeneous polynomials of
the same degree.

» There is a rational inverse.

» There is no common divisor of f, f», f5.

» There are points of indeterminacy :
I(f) = ni{f; = 0}
» There are exceptional curves which map to points.

E(f) = {Det(Df) = 0}



Theorem (Ncether Decomposition)

If f : P?(C) --» P2(C) is a birational map, then f can be written

as a composition of the Cremona Involution J and automorphisms
on P?(C).

f=LgoJolio---olk_10JolLy, LjGAUt(Pz(C))

The Cremona Involution

J: P?(C) --» P(C)
1 1 1

Ji[xiixixz] = [— 0 — 1 —] = [xex3: x1x3 1 x1x2]
X1 X2 X3

J is not defined at three points [1:0:0],[0:1:0],[0:0: 1]



The Cremona Involution

J i [x1:x0  x3] = [xox3 t x1x3 1 x1x0]

1 .Nn-.0]
_<]/lJ..U.UJ {X]_:O}

» the Indeterminacy locus for J : Z(J) = {e1, &, e3}
» the Exceptional locus for J : £(J) = U;{x; = 0}



The Cremona Involution

J i [x1 Xt x3] = [xex3 1 x1x3 0 Xx1x2]

N\

,./[1:0:01



The Cremona Involution

J i [x1x2 1 x3] = [xox3 1 x1x3 : X1x2] on the Blowup of [1:0:0]

{f§X2 = x3}

e = ko)

{x1 =0}

E‘[‘l:O:O]



The Cremona involution J lifts to an automorphism on a rational
surface X = B{pP?(C) where
P={e1=[1:0:0],eo=[0:1:0],e3=1[0:0:1]}

If f = Lo J with L € Aut(P?(C)),
» Each line {x; = 0} maps to a point p; = Le;
» Each point e; blows up to a line L{x; = 0}.
» If there are three positive integers and a permutation o € 53
such that

(c =1 (pi) = ey(;), and
7\ dimfi(p;) =0forall 0 <j<nj—1

then f lifts to an automorphism an a rational surface.



f=LoJ L= (a,'J) S GL(3,(C)7 J{Xi = 0} =€

» { has three exceptional lines
pi = f{x; = 0} = i-th column of L

pr=e €I(f) < a1 =az =0

» The second iteration f(p1) = L[ap1a31 : a11a31 : a11a21] is
given by degree 3 polynomials in aj;

aiiar1asi + aipaiias: + azaiias =0

flpr) =e <
as1a21a31 + a32ai1as1 + azzaiiaz =0

» The third iteration is given by degree 7 polynomials.

» and so on..

» To have positive entropy, we need n; + ny + n3 > 10



» The condition (C,) is given by 6 algebraic equations in 6
variables with HUGE degrees and finitely many non-equations.

fi=Y(p;) = ey(iy, and
) { ()

dimfi(p))=0forall 0 <j<n—1

» Are there non-empty solution sets for all possible ny, ns, n3
and o € 537

» When do we have solution sets of dimension > 17
e.g. If ng = ny =1, n3 =7 with a cyclic permutation, the
solution set has dimension 1.



Orbit dataof f = Lo J

Suppose there are ny, ny, n3 € N and a permutation o € S3 such
that

> fi{x = 0} = ey(j)

» Dim (F/{x;=0})=0forall 1<j<n;,i=1,23
We call these numerical information Orbit data for f.
Theorem (Nagata)

Suppose F : X — X is an automorphism with positive entropy on
a rational surface X.

Then there is a natural identification between the induced action
F*: HYY(X) — HY(X) and an element of a Coxeter group
generated by certain reflections.

The orbit data describe the induced action of, its lift, i.e. the
corresponding element in a Coxeter group.



Rational surface automorphisms with positive entropy:
Construction

To have positive entropy, we need ny + np + n3 > 10.

Using invariant curves
» McMullen : Existence of maps with n; = n, = 1, n3 > 8 with
a cyclic permutation.
» Diller : construction of (almost all) quadratic maps fixing a
cubic with one singular point.
» Blanc : construction of higher degree maps with a curve of
fixed points.



Diller's construction

Let C be a cubic curve with one singularity
(a cubic with a cusp, a conic and its tangent, the lines joining at a
single point)

Suppose f = L o J such that
» All points of indeterminacy for both f and f~! lie on C.

> F(C\I)=C

In this case, we say f properly fixes C.

f|c.s together with the locations of points of indeterminacy and
critical images determines f : P2 --» P?



Not very good explanation

» each column ¢; of L corresponds to a point of indeterminacy
for f1
li = Ajpi

» since f fixes C, we have enough conditions to determine A;'s.

Better explanation
» Any line £ passing through exactly one point e; of
indeterminacy is mapped to a line.
» 40N C =3 (counted with multiplicity)
> #0N{x; =0} = 1. Thus f(¢) passes through p;.
» three points of indeterminacy are not collinear.

» One can determine the image of any point p & C using three
lines p €;



Diller's construction

We need to determine the locations of points of indeterminacy.

» Specify orbit lengths n1, np, n3 and a permutation o to
guarantee that the resulting birational map lifts to an
automorphism with positive entropy.

» Using the group law on Elliptic curves, determine the
restriction map f|¢ and points of indeterminacy.



Diller's construction

Very explicit!!
n = ny =1,n3 = 8 and a cyclic permutation 1 -2 -3 — 1

Suppose f properly fixes a cubic curve C with a cusp.

f =LoJ where

0 0 1
L= [a®—af—a*+1 0 —a%+ab+a* ],
0 a4+ —ad-a?+1

J[x1:x2:x3] = [x2x3: x1x3: x1x2]

where a® + 0 —a’ —a® —®—a* - +a+1=0

Fle :y(t) = y(1/at +b),  Creg ={7(t),t € C}



6 5

()=t 42—t -t P41

X(t) has exactly one real root A outside the unit circle,
exactly one real root 1/\ inside the unit circle. All other roots
are non-real complex numbers of modulus 1.

A~ 1.1762

Each root « of x(t) determines a birational map f, such that
the multiplier of the restriction map is 1/a.

(t — 1)x(t) is the characteristic polynomial of the induced
action on cohomology. The dynamcial degree of f = X > 1.

there are two maps fy, f/\_l with real coefficients.

fy : P2(C) --» P%(C)
fy : P2(R) --» P2(R)



fy lifts to an automorphism F : X — X on a rational surface. We
have two related dynamics.

F: X(C) — X(C)
Fr: X(R) = X(R)

> hiop(F) = log A =~ log 1.1762
> htop(FR) S htop(F)
» FRr has maximal entropy if hiop(FR) = hiop(F)

Let C be a curve with one singularity.
For each orbit data (with few exceptions), there exists two real
rational surface automorphisms properly fixing C.



Figure: Fr associated with 1,1, 8 with cyclic permutation: The Image of
a simple closed curve under 40 iterations.
Projected to P?(R)



Real Rational Surfaces

X(R) = a blow up of P?(R) along a finite set of points

X(R) = P2(R)#P*(R)# - #P*(R)

the connected sum of n+ 1 copies of P?(R)




Real Rational Surfaces
X(R) = a blow up of P?(R) along a finite set of points

X(R) \ D = a disk with n+ 1 twisted handles attached to the
boundary.

XCRIND

Figure: Each twisted handle is Mobius band



Real Rational Surfaces

X(R) = a blow up of P?(R) along a set of n points
= P2 (R)#P*(R)#--- #P*(R)

n+1 copies

> Hi(X(R)) = (ag, a1, ..., anla3a3 - -- a2 = 1,[a;, a)] = 1)
the finitely generated abelian group with one relation.

» 71(X(R),q) = (a0, a1, . ..,an|a3a3 - -- a2 = 1)
the finitely generated NON-abelian group with one relation.

» X(R) is a non-orientable surface!!



Entropy Estimation: Growth rate of homology classes.

Fr: X(R) — X(R) is a diffeomorphism associated with a
birational map f = L o J properly fixing a cusp cubic C

» The induced action Fr, on Hi(X(R)) is a linear action.

> there are three different types of generators:
P a3, : the class of generic line.

» a;, i % 0 : the class of an exceptional curve over a point of
indeterminacy.

» All other generators are mapped to + another generator.

» Two main issues
» the class of a curve with respect to the generators.

» the orientation.



The class of an oriented curve

Using the boundary
} of a bounded region, we have

» the boundary
s of the shaded region ~ 0

» [~ ag+ 2a3

» [~ —3y—2a; —2ap
using the unshaded region

Because of one relation

2ag + 2a; +2a, +2a3 ~ 0 = ag+2a3 ~ —ag — 2a; — 2a»



The Invariant cubic makes it easy

Every base point is between two fixed points in the invariant cubic.

The order of base points is determined by orbit lengths and the
permutation.

The intersection between a curve L and the invariant cubic C will
determine the bounded region with L as its boundary.

The orientation of the image of the exceptional curve over a point
of indeterminacy




Orientation for images of other generators

All other cases, we only need to determine the orientation.

We only need to consider 4 open triangles determined by
exceptional lines of f and f~!




We have the induced action on homology classes

For all most all choices of orbit data ny, np, n3, € S3 (Some can not
have a map fixing a cusp cubic), we have the induced action on
homology classes

Theorem (Diller - K)
» x(Frs) is reciprocal and x(Fr«) = X(FRfl)

*
» There are rational surface automrophisms F such that FR has
maximal entropy
» 1,1, n with a cyclic permutation
> 2.2.n with a cyclic permutation
» 2.3, n with the identity permutation
» 1,4, n with the transposition 1 <> 2

» There is a complex rational surface automorphism such that
all periodic cycles lie in the real locus.



» There is a family of maps such that their real restriction Fg
do not have maximal entropy.

e.g. 3,3, n with a cyclic permutation
> There are maps such that F%, = Id for some k.

1,4,8, with a cyclic permutation : period = 180

e.g.
& 2,3,5, with a cyclic permutation : period = 84

This does not mean Fgr has zero entropy.

We need better estimates



Entropy Estimation: Growth rate of homotopy classes.

Recall that we do have a natural choice for a set of generators for
the fundamental group for X(R)

XURIND

> We want to iterate the map. So let g = a non-cusp fixed
point (a saddle point) on the invariant cubic.

> We want to determine the image of each generator under the
action Fgs



Reading curves

ldea
» For each generator «, find a curve X, with [X,] = .
» Calculate the class [Fr(X,)] of the image curve

> With exceptional triangles and the invariant cubic, it is not
hard to find Fr(Xy)

XCRIND



For each i, let R,, denote a line segment joining the two sides of
the boundary of the handle traversed by the generator ;. Once we
put the removed open disk A back, we can extend each line
segment R, to a simple closed curve (which we continue to
denote by R,;) with base point x € A such that

» R, is a simple closed curve for all i,
» For each i, R,, intersects exactly one generator o, and
» {R,,} are pairwise disjoint on X \ {x}.
The curves {R,,} are referred to as reading curves for the
generators {«;}.



Generators and Reading curves on X = P2(R)#P?(R)#P?(R):
The left-hand side is X \ A and the right-hand side is a polygon
representation of X. In both figures, a1, ap, a3 are generators of
m1(X, x) and Ry,, Ra,, Ra, are corresponding reading curves.



A simple closed oriented curve C in X = P2(R)#P?(R)#P?(R):
On the left-hand side, the 7i-class of Cj is given by a3a3 = a;z.
And on the right-hand side the 7i-class of C, is given by ozl_lagl.



With E. Klassen, we compute the induced m; action for real
diffeomorphisms associated with birational maps fixing a cusp
cubic with orbit data ni, np, n3 and a cyclic permutation.



Eg. Formp =ny=1,n3=38

fR;l . e eagasazazcibiazale
ag e taytay bt
2, 1,1 —2p—
ar — biasajeag e “a; a2 b

ae > biasajeaia; tagle tayta, 2by

as — blagaleaga%agla;za§2eflal_la2_2b1_1

as — b taz2a, ?c; tascrazasby
as — bl_la3_2a;1a§b1

2222 -1,-2_-2_-2_-2 -1
ar > €aga7agasC1a3Cy ag g ay ag e

a1 — eagasazazcibia; thyte; tagtag % ag et
—-1,-2 —1_-2_-2_-2_-2 -1
b1}—>b1 a; ¢ ag“aga;“ag‘e

c1— by agal eagagagclaiagbl.

m1(X(R)) = (e, a;, b1, c1|e®aga3a2ac?aiasb?a3a? = 1)



> We want to Calculate the growth rate.

p(frelmy(x(R)) = sup{limsup({c(fi.g))* "}
geG n—x

where G is a set of generators, and {g(w) is the minimal
length among all words representing w with respect to G.

» m(X(R)) is a non-abelian group with a relator.



> We want to Caleulate Estimate the growth rate.

P(fRelm (x(r)) 7= sup {limsup(¢6(fig.g))"/"}

geG n—x

where G is a set of generators, and ¢g(w) is the minimal
length among all words representing w with respect to G.

» 7(X(R)) is a non-abelian group with a relator.

» For a € m1(X(R)), the minimum length ¢ () is obtained by
removing more than half-relators.



Theorem (E. Klassen -K)

There are real quadratic rational surface automorphisms with
maximal entropy such that the growth rate of homology classes is
strictly smller than the growth rate of homotopy classes

eg. n=1n=3n=9 with a cylcic permutation
n =1,n =4,n3 =8 with a cylcic permutation
ni=1,n =4,n3 =5 with a cylcic permutation

n =1,n =5,n3 =6 with a cylcic permutation

The exponential homology growth rates for the first two cases
above are zero.



How to estimate the growth rate: 1,1, 8 cyclic case

Fist, we examined the iterations under fgr,

Obviously, you see the clear pattern, right?



There are ten reduced elements
= {vi € m(X(R)),1 <i<10}
and a subset A of the set of ordered pairs
AcCA{(i,)H1<ij,<10}

such that
» There are no relations between ~;'s
» We say. v is A-admissible if v = 7,7, - - - i, with
(ij,ij+1) € A,j=1,...,n (mod n)

> If v is A-admissible then fr,y is also admissible up to cyclic
permutation.



The set 4 of admissible cyclic words is invariant under fry7y.

The action on the admissible set [ 4

» There is a subset ;1 C I and a finite set K of elements in
m1(X(R)) \ T such that

freYi = KiY' ki, ‘wherey; € Ta, ki, ki, € K
» For (i,j) € A, kj ki = s and

Yivs7j is A-admissible.



Y1 = a;lbl_las_lefl, Yo = az_lbl_la;la8_2e*
A bflaglagla;za§2e_1

= al_lag2b1_233_la7_la§2e*1

v = aglbfzaglagla;2a§2e_l

v = b1—183—135—136—237—23§26—1

v = a;lagzbfzaglagla;zagze_l

e = 31—132—2 bfzagza;laglag23;2a§2e_l

Yo = 31_132_2b1_233_2.a;2c1_1.aglag2a7_2a§2efl

N 31—182—2 b1_23§2321Cf135_236_237_238_2€_1

G = 3231, G = baja

_ -2 -1_-1_-2_-2_-2 -1
H1 = a; a2 b1 a; ag a5 a; ‘ag‘e



A={(1,4),(1,7),(1,10), (2,8), (2, 10), (3,2),
(3,8),(3,9). (4,10),(5,2),(5.8),(5,9), (6, 1), (6,5),
(7,2),(8,1), (9,1), (9, 2), (10, 3), (10, 5), (10, 6)}.

fae 1t = (e 'aYmoGa(are), il = (e taymioi(are)
fo 13 = (e7'ay om(are), foya = (et Duai(are)
fols = (e lay sm(are),  folve = (e 'ay)rer2(are)
few V7 (e7ta Dmm(ate),  fillye = (e7ta ma(are)
fo e = (e7'ayva(are), for Y10 = CRERLHETY

B =0y, Y5=C0v, and 6 = (1



Since there is no relation, We can get the length growth by
counting number of ;s

V =R with a basis {71,...710}
W = RIMHKL with a basis T UK

Theorem (Klassen-K)
There are two linear maps S, T : V. — W such that

TofRir, =S

and there is a unique vector v € V such that Sv = ATv where X is
the dynamical degree of f

We observed that the same phenomenon occurs in other orbit data.



TofRir, =S

where S, T : V — W are linear.
Is fr«|r, (almost) linear?



There are ten A-admissible words S = {si, ..., sio} where the
action. fry|gp+g on the positive span of S is "Linear”

S1 = 71710750 5,78

fR*|Sp+5 1SS +S+S3+ 54+ S5
S) —> S1 + Se + S7
S$3—>S1+ S+ 53+ S3+ 51+ S5
S4 — S1+ S2+ S4+ S10 + Se + So
S5 > S1 + S4 + S5 + S7
Se —> S1 + Se + So + S5 + S7
S7 > S1+ S+ Sg + Sg
Sg > S1 + Sp+ S4+ S10 + S + Sg + S5 + S7
Sg > S1+S2+Sg+ 53+ 54+ 510+ S6+ S9
S10+> S1+ 5S4+ S5



Sequence of Admissible Words

Since the cubic is invariant and all base loci lie between two fixed
points on the cubic, the X(R) can be drawn as following:




Sequence of Admissible Words

Starting with an admissible word 7, under f,%* we see

R —

i Yo Y o Yz ¥q ¥



Sequence of Admissible Words

Starting with an admissible word ~y, under fr‘%* we see

YiYa Wi Y5 Yy Y Ve Yo Ve s Vg



Sequence of Admissible Words

Starting with an admissible word ~, under frf* we see

Y YT o VoV ¥ Vi ¥s
Y2 Ko Y ¥e Ta ¥ U3 e 7.0 ¢



Sequence of Admissible Words

Starting with an admissible word ~y, under frf* we see

7 Ry —



Sequence of Admissible Words

Starting with an admissible word ~y, under frf* we see




It "seems” that with any choice of an initial word, we get the same
picture with increasing weight (the number of arcs).

» [Kitchens-Roeder] Is this a Plykin attractor?
» We know this grows exponentially.
» There is a repelling fixed point whose basin has full Area.
[Bedford-K]
> Are we seeing a pseudo-anosov map on non-orientalbe surface
with genus 11 and no puncture?
» s this a Train Track (a Ribbon Map)?
» Can we use Nielson-Thurston Classification?



Thank you!!

ZAREILICH



