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Introduction

Cubic polynomials can be parametrized by

pa,b(z) = z3 − 3a2z + b,

with critical points at ±a.
The parameter space is C2, parametrized by a, b.

So the cubic polynomials with one critical point periodic
of period dividing k are formed by the plane curve of equation

p◦ka,b(a) = a.

This is a plane curve of degree 3k ,
and is reducible, as it has irreducible components

corresponding to periods dividing k .
Let Ck be the union of the irreducible components

where generically the critical point a has period exactly k .



The topology of moduli spaces

Is Ck connected? Irreducible? What is its genus?
One can imagine many similar questions about the topology

of spaces of dynamical systems,
(polynomials or rational functions).

But they have proved inaccessible to algebraic methods.
I will propose an alternative transcendental approach,

based on Teichmüller spaces.
There are many contributors to these ideas:

Adam Epstein, Bill Thurston, Mary Rees, Sarah Koch,
Eriko Hironaka, Tanya Firsova, Jeremy Kahn, Xavier Buff,

Ahmad Rafiqi, Jan Kiwi, Harry Baik,
Xiaoguang Wang, Nikita Selinger

and I hope I haven’t forgotten too many names.



Teichmüller spaces

Let S be a compact oriented surface (usually a sphere in this
lecture) and Z ⊂ S a finite subset. We will suppose that the Euler

characteristic of S − Z is negative. The Teichmüller space

TS ,Z

modeled on (S , Z ) is the space of pairs (X ,φ), where

• X is a Riemann surface, and
• φ : S → X is a homeomorphism

up to the equivalence that (X1,φ1) ∼ (X2,φ2) if

• there exists an analytic isomorphism α : X1 → X2 such that
• α ◦ φ1 and φ2 coincide on Z , and
• α ◦ φ1 is isotopic to φ2 rel Z .



Some properties of Teichmüller spaces

The space TS ,Z is a complex manifold of dimension 3g(S)−3+ |Z |.
The cotangent space T ∗(X ,φ)TS ,Z is the space

Q1(X − φ(Z ))

of integrable holomorphic quadratic differentials on X − φ(Z ).

It is also a metric space (in many ways, but only one will concern
us here):

d((X1,φ1), (X2,φ2)) = log inf
f

K (f ),

where f : X1 → X2 is a C 1 diffeomorphism where

• f ◦ φ1 and φ2 coincide on Z ,
• f ◦ φ1 is isotopic to φ2 rel Z , and

K (f ) is the maximum over x ∈ X1 of the ratio Jac f (x)/‖Df (x)‖2.



Some properties of Teichmüller spaces II

Thus a point of Teichmüller space consists of two kinds of data:

• Analytic data: the Riemann surface X , the positions of the
marked points φ(z), z ∈ Z ;

• Topological: the marking φ, that is only defined up to
homotopy rel Z .

Example

Let S is a sphere, and |Z | > 3. Then TS ,Z is the universal covering
space of the subset of C|Z |−3 where no coordinate is 0 or 1, and all
coordinates are distinct. Indeed, we can put 3 points of Z at
0, 1,∞ by a Moebius transformation, and then the positions of the
others give the coordinates in C|Z |−3.

There is a whole field of mathematics devoted understanding these
spaces: Enumerative Geometry.



Why study Teichmüller spaces?

The definition is pretty elaborate. Why carry along φ?
Why not just study moduli space,

the space of isomorphism classes of Riemann surfaces,
perhaps with marked points.

The topology of moduli spaces is apparently of interest to
physicists.

I can’t claim to understand why, but the problem is central to
conformal field theory.

The direct study of moduli spaces has proved intractable,
and what is understood about them is largely due

to the study of Teichmüller spaces. These have a rich geometry
with many questions solved, and many others still open.



The geometry of Teichmüller spaces

T(S ,Z) is complete under the Teichmüller metric.

T(S,Z) is contractible, homeomorphic to R6g(S)−6+2|Z |.

The metric is Finsler, defined by a norm on the tangent spaces.
Here the norm is dual to the L1-norm

‖q‖ =
∫
X−φ(Z)

|q| on the cotangent space.

The Teichmüller metric is also the Kobayashi metric:
the unit ball TX ,φT(S,Z) is the set of f ′(0)

for all analytic f : D→ TS,Z with f (0) = (X ,φ).

There is a unique geodesic joining any pair of points of T(S,Z).



The deformation space

From here on, S will be a sphere.
We will write TZ instead of TS ,Z .

Suppose f : S → S is a ramified covering map, with critical set
Crit(f ) for the critical set of f .

Let A and B be finite subsets of S such that

B ⊃ A ∪ f (A) ∪ f (Crit(f )).

In particular, B must contain all the critical values.
There are then two analytic maps

TB

iA,B−→−→
σf

TA.



The deformation space, II

Let φ(S , B)→ P1 represent a point in TB .
The forgetful map iA,B simply forgets φ(x) when x ∈ B − A.
The pull-back map σf requires the uniformization theorem:

restrictions of φ ◦ f are an atlas on S , making it isomorphic to P1;
let φ ′ : (S , A)→ P1 be such an isomorphism. Then σf (φ) = φ

′.

It isn’t absolutely clear that we have a complex structure on S near
a critical point x ∈ Crit(f ), but it is easy to show using an
appropriate dth root, where d is the local degree of f at x .
The map φ ′ is only defined up to post composition with an
automorphism of P1, but that is allowed in our definition of

Teichmüller space.

DefAB(f )is the equalizer of these two maps:

DefAB(f = {τ ∈ TB | i(A,B)(τ) = σf (τ)}.)



The deformation space, III

Let φ represent an element of TB .
Another way to say that DefAB(f )is the equalizer is to say that

there exists a commuting diagram

(S , A)
φ ′−→ P1

f ↓ ↓ fφ

(S , B)
φ−→ P1

with fφ analytic, and φ ′ a homeomorphism agreeing with φ on A.



The relation to dynamical systems

It isn’t clear that DefAB(f )has any relation to dynamics.
But it does: it parametrizes a set of rational functions which have

finite sets with the dynamics exhibited by A under f .

Denote by Ratd the space of rational maps of degree d , and by
[Rat]d the quotient by AutP1 acting by conjugation.

Theorem
There exists a unique analytic map Φ : DefAB(f )→ [Rat]d and a

map Φ̃ : B × DefAB(f → P1 × [Rat]d)such that the diagram

A× DefAB(f )
Φ̃|A−→ P1 × [Rat]d

↓ ↓ F̃d

B × DefAB(f )
Φ̃−→ P1 × [Rat]d

commutes.



Thurston’s theorem

The inspiration for the definition of DefAB(f )is Thurston’s theorem,
which concerns the case A = B.

The condition B ⊃ A ∪ f (A) ∪ f (Crit(f ) implies that the
post-critical set

Pf = ∪n>0f ◦n(Crit f )

is finite, and that A = B is the union of Pn and some cycles and
their preimages.

Theorem (Thurston)

In that case either DefAA(f )consists of a single point, or it is empty.
In that case, there is an f -invariant multicurve Γ on S − A such
that the linear transformation

f Γ : RΓ → RΓ

has leading eigenvalue λΓ > 1.



Thurston’s theorem,II

A multicurve Γ on S − A is a collection of disjoint, non-peripheral,
non-homotopic simple closed curves.

It is f -invariant if every component of f −1(γ), γ ∈ Γ is homotopic
rel A to an element of Γ or peripheral.

In that case, f Γ : RΓ → RΓ is defined by

f Γ ([γ]) =
∑
δ∈Γ

 ∑
η component of f −1(γ) homotopic to δ

1

deg f : η→ γ

 [δ].

This is a non-negative matrix, so it has a unique leading eigenvalue
λΓ .

When λΓ > 1, we say that Γ is a Thurston obstruction.



DefA
B(f ) is a manifold

Theorem (Adam Epstein)

The space DefAB(f ⊂ TB)is a complex submanifold of dimension
|B − A|.
Its cotangent space is

T ∗(P1,φ) DefAB(f ) = coker ∇f

where

∇f = I − (fφ)∗ : Q1(P1 − σf (φ)(A))→ Q1(P1 − φ(B)).

Here (fφ)∗ is the direct image of an integrable quadratic
differential.



DefA
B(f ) is a manifold,II

Note that even if a quadratic differential q is holomorphic at a
critical point of fφ, the quadratic differential (fφ)∗q will likely have
a simple pole at the corresponding critical value. Thus the critical

values had to be in B for this to make sense.
The second part is more or less obviously the coderivative of
“I − σf ”, the equation of the equalizer. Then the fact that

DefAB(f )is a manifold follows from ‖(fφ)∗‖ < 1, which is true
except for some Lattès examples.



Why is this interesting?

Then DefAB(f )maps analytically and surjectively to the curve of
monic centered cubic polynomials for which both critical points are
ordinary (hence distinct), one is periodic of period k and the other

is not in the orbit of the first.

Theorem
DefAB(f )connected implies Ck irreducible.



Why is this interesting II?

Then DefAB(f )maps analytically and surjectively to the curve of
monic centered cubic polynomials for which both critical points are
ordinary (hence distinct), one is periodic of period k and the other

is not in the orbit of the first.

Theorem
DefAB(f )connected implies Ck irreducible.

One can easily imagine that this is just one case where and
appropriate choice of f , A, B will relate the topology of DefAB(f )to
the algebraic geometry of loci of rational functions whose critical

points have specified dynamical properties.



The topology of DefA
B(f )

What hope is there of understanding whether DefAB(f )is
connected, or contractible, or anything else?

Answer: quite a lot, because there is a vectorfield ξAB(f ) on TB

vanishing only on DefAB(f .)
I am not absolutely sure, but I believe that Mary Rees proved that
ξAB(f ) is Lipshitz, so it has a well-defined local flow. Because the
Teichmüller metric is the Kobayashi metric, along flow lines the
vector field gets shorter and shorter. It follows that the flow is

defined for all time, and all solutions must converge to DefAB(f )or
to infinity.

So either DefAB(f )is contractible, or there are loci at infinity that
are attracting.



The vector field ξA
B(f )

Choose τ ∈ TB Then iA,B(τ) and σf (τ) are two points of TA, and
if they coincide if and only if τ ∈ DefAB(f .)If they do not coincide,

they are joined by a unique geodesic Pτ in TA. Parametrize
lτ : R→ Pτ so that

lτ(0) = iA,B(τ) and lτ(1) = σf (τ).

The tangent vector l ′τ(0) to TA can be uniquely lifted to the
tangent vector ξAB(f )(τ) to TB at τ.

In fact, you can lift the whole geodesic isometrically to a map l̃τ
such that

iA,B (̃lτ(t)) = lτ(t).

The map τ 7→ l̃τ(1) is probably just as interesting as the flow of
ξAB(f ).



Loci at infinity

In the Thurston case where A = B, the space DefAA(f )is either a
point or empty.

In the case where DefAA(f ,)the flow of ξAB(f ) tends to infinity,
more specifically to a component of the extended Teichmüller space

corresponding to a Thurston obstruction Γ .
The eigenvalue λΓ measures whether the component

is attracting or repelling.

In the general case where A 6= B, if the space DefAB(f )is not empty
it is not compact, so must accumulate at infinity.

Where? Is this locus attracting or repelling?

I think there are people who know about these things, but it is
mainly

WORK IN PROGRESS.


