Dynamics of Complex Hénon Maps Eric Bedford Stony Brook U.

Complex Hénon Maps. Generalization of the quadratic family X-> X+C $H(x, y) = (x^{2} + c - ay, x); \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}$ $H^{\prime}(X,Y) = \begin{pmatrix} Y, & Y^{2} + C - X \\ - & - & - \end{pmatrix}$ Or more generally H(x,y) = (p(x) - ay, x)polynomical A depres $d \ge 2$ In analogy with ID: $\alpha \neq 0$ K+={(x,y): 3H'(x,y), n202 bounded { $K = K^+ \cap K^-$

Rete Descape to infility
$G^{+}(x,y) = \lim_{n \to \infty} \frac{1}{d^{n}} \log \left\ H^{n}(xy) \right\ $
Then (Hubbard) $G^{\pm}: \mathbb{C}^2 \longrightarrow \mathbb{R}_{+}$ is continuous 1. $G^{\pm} \circ H = d \cdot G^{\pm}$ $G^{\pm} \circ H = \frac{1}{d}, G^{\pm}$ 2. $\{G^{\pm} = 0\} = K^{\pm}$
Aubbard's "Invitation": study 12 in
terms of the tribresting Cet i U (0,00) Wis an interesting set from point A view Nomplex analysis, My "previous" telk

D'gression: Can me extend It to a compact, complex manifold? Extend to projective space. $C \gg (x,y) \longrightarrow [x;y;i] \in \mathbb{P}^2$ $H(x,y) = (x^2 + C - ay x)$ becomes $H[x', y', z] = [x^2 + cz^2 - ayz', xz', zz]$ Line at ao, Los = { Z=0} invariant under Ut = forward basin of [1:0:0] c Lx H, H' $H_{\mathcal{A}}\left(\begin{array}{c} \\ \\ \\ \end{array} \right) = 1 \quad \left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right]$

Aynamical degree is $S(f) = lin (deg(f^n))^n$ -Favre) them (Diller-Farre) S(f) is algunaic, biretional invariant IF F automorphism J compact surface and J S(F)>1, then f is irrational. $TSut: S(H) = deg P \ge 2$ integer. Thus: No Hénor map His birati mally conj. to compact Surface automosphism.

The Let F: P~~> P2 be birotional, f is birotionally conjugate to a poly and of C² I Line LCIPE invariant under fff L= Loois palar locus for 6° Soz: Having global potential Q± possible only in Henris case Compact senface antomorphisms have invariant currents TT- Theory is almost same as for Henen case, Here me focus on properties related to Gt

Goal - Apply complex analytic methods to obtain dynamical results. At the same time the dynamical context should lead to interesting situations for complex analysis, N. Sibory and I responded to Hubbard's invitation from the point of view of geh functions as potentials Def n is pshig it is subharmonic in any coordinate system, ie X biholo => uoX s.h. Language JOka - Such functions are pseudo convex,

If V is an electric potential (voltage), then $\Delta V = 4 \frac{2}{3232} V$ is the charge distribution invariant in C² (even for linear (20)) Invariant currents; Mt = dd Gt $\mathcal{M}^{-} = \partial \partial^{2} \mathcal{J}^{-} \mathcal{G}^{-}$ $H^{\dagger} M^{\dagger} = \partial - M^{\dagger}$ $H_{\mathcal{A}} = \frac{1}{2} \left(\frac{1}{2} - \frac{$

What is the structure of μ^2 ? $\mathbb{I}_{\mathcal{I}} \xrightarrow{\mathcal{I}} \mathbb{A} \xrightarrow{\mathcal{I}} \xrightarrow{\mathcal{I}} \mathbb{A} \xrightarrow{\mathcal{I}} \xrightarrow{\mathcal{I}} \mathbb{A} \xrightarrow{\mathcal{I}} \xrightarrow{\mathcal{I}} \mathbb{A} \xrightarrow{\mathcal{I}} \xrightarrow$ complex disk = "intrinsic Laplacian on D" Slice measure on D $(\mathcal{A}\mathcal{A}^{+}) = (\mathcal{A}\mathcal{A}^{+}) = (\mathcal{A$ Prop. pt is (defined by) the family of slice measures pt] d.

(Earlier) Pluri-Potential Theory Jacompact KCO2 psh Green function $G_{K} = \sup \{ \mathcal{U} : \mathcal{U} \text{ psh}, \mathcal{U} \leq 0 \text{ on } k \}$ $\mathcal{U} \leq \log^{+} || \mathbf{z} || + C$ Pluri-complex equilibrium measure $M_{\pm} := (dd^{c}G_{\pm})^{2} (BA, Taylor)$ Thin (B-Tayloz) Supp M = Osk Shilov boundary (= smallest compact ECK such that max/pl=max/pl fr EX al paynomials p)

Potential theory in case of Henon maps Thm: (B-S, bory) GK = may (Gt, G⁻) $M_{1} = M_{1} + M_{1} + M_{2} + M_{1} + M_{2} + M_{2$ ME is H-invariant measure

Fatou sets (forward/back ward)
F = open set where {H, n≥o} is normal (equi continuous)
Julia sets
$\mathcal{D}_{\frac{1}{2}} := \mathcal{D}_{\frac{1}{2}} + \mathcal{D}_{\frac{1}{2}} = \mathcal{D}_{\frac{1}{2}} + \mathcal{D}_{\frac{1}{2}} = \mathcal{D}_{\frac{1}{2}}$
tem = Supp Mt
$\overline{\mathcal{J}}_{\mathbf{a}}^{\mathbf{a}} = \overline{\mathcal{J}}_{\mathbf{a}}^{\mathbf{a}} + \mathcal{$
$(K) := K \times (K) \times (K)$

Shilor boundary - examples $(1) \rightarrow (1) \rightarrow (1)$ is a complex disk $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$ $(f_{2}) = \mathcal{O}_{2} (f_{2}) =$ $\sum_{s} \sqrt{2} = \frac{1}{s} \sqrt{2} = \frac{1}{s}$ (2) $M_{z} = \frac{5}{2}(z^{2}, z^{3}) \in \mathbb{C} |z^{2}| = |z^$ 3 Them (Joericke) These exist compact sets SCQ2 int (S) 70 such that shilov bdry Is a contor set. Compact, perfect, totally disconnected.

Another Julia Set (1-D case: J= 2k)
$2^{\star} = 0^{\circ} K = \operatorname{supp} W_{K}$
Crearly = 2x - 2
$\frac{T_{\text{Lyubich}} - S_{\text{millie}} II}{J \times} = closure & saddle (periodic) points } \\ z. Ib Bq saddles \\ J^{\times} = closure \left(W^{s}(p) \cap W^{u}(q)\right)$
Question: $D = D \star \zeta \zeta$
are both Julia sets the same.
· · · · · · · · · · · · · · · · · · ·

Cases where J = J *worth so hand in Them (B-Smillie II) If Kis totally disconnected, then J= JX compact set S is hyperbolic of I invariant splitting Tr C' = Ex & E Ex X X & X & S', and DH is uniformly expanding/contracting in Ex much deeper and more recently The (Dujardin) Ib J× is a hyperbolic set then J = J K (and me say H is hyperbolic)

Stable set of a point x : $M_{s}(x) = \frac{1}{2}A$, $\lim_{n \to +\infty} q_{ist}(t_{n}x^{2}t_{n}A) = 0$ Stable Mangeld Theren s 21 X II a hyperholic set, then $\mathcal{W} = \mathcal{W} + \mathcal{W}$ $\sim e X$ is a Kiemann surface lamination; locally homeo to a product SXA compact x disk

Henon map His hyperbolic of Jis a hyperbolic set. Thm (B-Smillie I) If His hyperbolic, then 1. I has local product structure 2. Mt slices measures measure 25⁵/11 $3. \quad J = J *$ Local prodetructure? $J_{1\circ}^{s} = J_{0} \mathcal{W}_{1\circ\circ}^{s}(x_{0}) \qquad \mathbf{J}_{1\circ\circ}^{z}(x_{0}) \qquad \mathbf{J}_{1\circ\circ}^{z}(x_{0})$ (X) (X) $\mathcal{J}_{loc}^{\mathsf{v}} = \mathcal{J}_{\mathsf{n}} \mathcal{W}_{\mathsf{n}} \mathcal{J}_{\mathsf{s}}(\mathsf{x})$ Jn (nbhd) xo) = Jloc × Jloc

slice measures measure WS holowomy map $X : D, NU^{s} \longrightarrow D_{2} NU^{s}$ $\mathcal{M}^{\dagger} |_{\mathcal{D}_{2}} = \mathcal{K}_{\star} \left(\mathcal{M}^{\dagger} |_{\mathcal{D}_{2}} \right)$

Currents k-dim currents are the dual space to the test k-forms (Smooth k-forms w. compact supp.) M = oriented real serface C C², locally finite [m] = current djintegration area $\langle [m] \rangle \langle \varphi \rangle = \langle \varphi \rangle$ UV T Complex magic canonical orientation Vn iv = orientation 2-vector 2 positivity Example $x \in ky^2$, $k \rightarrow \infty$ ved care Complex care

3 complex surfaces locally minimize area any bump will increase area 4. Wirtinger Formula standard Kähler form = standard symplectic rændard Kähver Torvin - ---- $\beta = \frac{1}{2} \left[dz, nd \overline{z}, t dz nd \overline{z} \right] = dx, ndy, t dx_n dy_z$ Area $(m) = \int \beta$ Conversely: if & M = Euclidean area form then m is complex 5, (very weak) topology "Zero area]]] [m] ~ [m] 2 $M_{1} = M_{1} = M_{1$ $\int \varphi \varphi \varphi = \frac{1}{2} \sum_{i=1}^{n} \varphi = \frac{1}{2}$ M Ž

Our interest: M = W²(p) Then (B-Smillie I) Il H is hyperbolic, then locally M_t = component ? stable manifold containing t transversal T $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{$ $t \in \mathbf{T}$ pt represents W as a current Gt continuous > Jt "thick > isolated disks pt (v is reducible

For non-hyperbolic maps, 25 is not a lamination (later), but still me have Then (B-Lyubich-Smillie IV) There are uniformly laminar currents Sj', j=1,2,3 on (small) open sets Uj such that $M_{n} = M_{n} + M_{n} + M_{n} = M_{n} + M_{n$

In general, Thm (B-Smillie I) Let p = saddle pt Dp = stable disk about p. $\frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right] \xrightarrow{\sim} c \mu^{+},$ $C = MQSL\left(\int_{a} \int_{a}$ $W^{s}(p) = \bigcup_{N=1}^{\infty} H^{n}(\overline{D})$ is dense in \overline{J}^{t} C_{UZ} Rink analogous result for USU

Irreducibility/Engodicity of Mt Then (Fornaess-Sibony) ID T is a positive, losed current with supp(T) C Kt flien $\overline{1} = C \mu^{\dagger}$ The theory MM, M, M=MAM works in almost the same way for compact seeface anto morphisms with $\sum_{i} \left(f_i \right) > 1$ Cantat, Dujardin

Hyperbolicity not preserved under J-conjugacy Cauliflower map conjugate on J to S= Parabolic Z > Z² (not hyperfolic) For an example: The (Redu-Tanase) I semi-parcholic H (not hyperbolic) which is conjugate on J to hyperbolic $H = (x^2 - \varepsilon y, x)$ In this case, J 20 Real Solensid. HIJ ~ angle doubling

But i conjugate in a non-invariant germ "about J: In ting neighborhood I fixed point: . .). <u>Thim</u> (B-Dujardin) Let H, H2 be Henon maps. Suppose that there is a continuous map $\phi: \mathcal{U} \xrightarrow{\operatorname{open}} \mathbb{O}^2$, $\mathcal{U} \ge \mathcal{J}_{\mathcal{H}_1}$, such short $\phi:\mathcal{H}_1 = 1+2 \cdot \phi$ whenever defined Then H, hyperbolic => Hz hyperbolic

Is there some good (useful way) checking for hyper bolicity ?? " you can observe a lot just by watching. J. Berra Can you observe hyperbolicity? Is hyperbolicity revealed by glowetry?

Ingredients for by perbolicity Spectral splitting / transversality NE², E⁴ Duniform expansion scontraction Possible "weakenings" of hyperbolicity Keep) ~> partial hyperbolicity Leep and quasi hyperbolicity.

S= } saddle (periodic) points } "PH" expands. Contracts But we went uniform expansion on S at each step $W^{2} = \psi^{2} + \psi^{2$ Uniformization $\psi_{p} : \mathbb{D} \longrightarrow \mathcal{W}^{\prime}(p)$ unique modulo -> x 5 + B normalize the $\psi_{P}(o) = p$ • max $G^+(\psi_p \lfloor s)) = 1$ $|\xi| \leq 1$ tpunique up to rotation ≥ → é^b ≥ D'= ? normalized? p pESA

For pES' define metric on VEEF $\| v \|_{p}^{\#} := \frac{|v| euclid}{|\psi(0)| euclid}$ $\exists \lambda_{\mu} = (\forall_{\mu} (z) = \psi (\lambda_{\mu} \zeta)$ $\gamma^{b} = \|D^{j}f^{b}\|_{\mathcal{H}}^{P}$ $G^+ = \partial - G^+ = \lambda_p > 1$

His quasi-expanding of I's a normal family of entire mappings C -> C The Znormal limits I C > C2} Thm (B-Smille VIII) Quasi expansion is equivalent to several things, including; 1. 3 K>1 such that 2 > K Ype S uniform expansion JI 11# P>K Ype S 2. Locally proper, bounded area ZELOS, YPES AND (WY(P))Br(P)) BECOS + (WY(P))Br(P)) Closed in Br(P) W = (-p)· Avea S B P $\mathcal{B}_{r}(\gamma)$

Locally proper, bounded area Lounded local folding (zeometric) property local folding = degree of The = riember Jsheets Lamination <=> IS = 1

Thm (Lyubich-Peters) IG V & I'v, then V(C) is a nonsingular manifold Thm Hquasi-expanding, VE Tr $P_{\alpha} = \frac{1}{2} \frac{1}$ ang $\psi(c) \subset W'(p)$ \Rightarrow smooth manifold stable set "true" unstable mænifold $\langle \psi(c) = \omega^{2}(p) ??$

17 is quesi-contracting of 17 is q-expanding H is quasi-hyperbolic if it is both quasi expanding and quasi contracting. Thim (B-Querdni-Smillie) Suppose 17 is quasi-hyperbolic. Then H hyperbolic >> No tangency between W and W Tangency is the obstruction to hyperbolicity

Thm Ther	LB-Querini-Smillie) H quasihyperbolic
	laminated in a nbhd J J*
	laminated in a n6hd J JX
· · · · · · · · ·	by perbolic
· · · · · · ·	
· · · · · · · ·	
· · · · · · ·	. .
· · · · · · ·	

Unstable slice picture - " The	Habbard
Þ saddle point	Shapsnot
PEDCWM(p) unstable disk	· · · · · · · · · · · · · · · · · ·
Computer: draw level sets	$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
unstable slice DOK+ - Do	$S \cap t$
<pre></pre>	· · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · ·

 $H(x,y) = (x^2 - 1.1 - .15y, x)$ pertubation of x -> x -(Basilica) t has saddles $P_A \sim (A, A)$ $\mathbb{P}_{\mathcal{B}} \sim \mathbb{P}\left(\mathbb{P}_{\mathcal{B}} \mid \mathbb{P}\right)$ unstable slice pictures ν A 515

Gradient lines landing at J (from thesis of R. Oliva, 1998) we can read My the binary solenoidal address of the landing point.

Ihm (B-Smillie VI) Suppose H is volume-decreasing, i e 19/<1 The following are equivalent: 1. I saddle p: the unstable slice W²(p) 2. J's connected 3 Gt / welpout has no critical point. The (Dijardin) J connected (=> K connect. thus me can 'observe' connectivity.

John condition Zo = John "center" $\exists \mathcal{E} > 0 \quad \forall \mathcal{E} \in \mathcal{O} < \mathcal{E}$ 38 the disk of radius [10-2]] · 11 · carrot " and center w is disjoint from OK is "open" at each

This (B-Smillie VII), Suppose His hyperbolic, and J is connected, Then the unstable slice satisfies the bourtie condition (variant on # John center John condition) can connect 5, J2 with carrots C, C2 $Length(C_j) \leq const \left| \xi_{-\xi_j} \right|$

The Hubbard snepshot can show the failure of Hyperbolicity cusp k k Do quasi-hyperbolic maps satisfy the bowtie endition?? Bow the condition => quasi-hyperbolicity ??

Can me describe the shape of J. J. B. Is there a model? Complex solenoid $\sum_{t} = \sum_{t} \sum_{n=1}^{\infty} \sum_{n \in \mathbb{Z}} \sum_{n \in \mathbb{Z}}$ $z_{r} \in \mathbb{C}, \quad [z_{r}] > 1$ $\zeta_{n+1} = \zeta_n \zeta_n \zeta_n$ Real Solenoid $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$ Dissipative (volume decreasing), hyperbolic and J connected: $(\widetilde{\mathcal{I}},\widetilde{\mathcal$ J «> Zo/~ finite quotoent

K connected and hyperbolic have Böttcher coordinate $\gamma : \mathbb{C} - \mathbb{K} \xrightarrow{\cong} \mathbb{C} - \overline{A}$ J(w) = w d $\left(\right)$ pradient lines) @ (external nays) radial lines \rightarrow phyperbolic => rays land at J J = S/~

Gt is pluvi-harminic on Ut so I has a (local) harmonic conjugate Gtih, $P = e^{t}$ $P^+ \circ H = (P^+) \circ q$ Thm (Hulbard Oberste-Vorth) May define $(\chi_n, \gamma_n) = H^n(x, y)$ $\overline{\mathcal{R}}$ (x)and opt is the root such that γto X

Thm (B-Smillie VI) I J is connected, then qt has a holo mozphic extension to a neighborhood D $\mathcal{I}^+ := \mathcal{I}^- \mathsf{K}$ V to i= 2 - K -Have induced map to the complex solenoid $\overline{\Phi}^{+}: \overline{\mathcal{I}}^{+} \longrightarrow \overline{\mathcal{I}}^{+}$ $\overline{\Phi}^{+}(\overline{P}) = (\varphi^{+}(14^{n}(\overline{P})))$

Ihm (B-Smillie VII) Suppose His hyperbolic, J connected. There exists m, (m, q) = 1a bijection $\widehat{\Phi} : \stackrel{i}{\longrightarrow} \widehat{J}_{+} \stackrel{i}{\longrightarrow} \stackrel{i}{\longrightarrow} \widehat{J}_{+} \stackrel{i}{\longrightarrow} \stackrel{i}{\longrightarrow} \widehat{\Sigma}_{+} \stackrel{i}{\longrightarrow} \stackrel{i}{\longrightarrow} \widehat{\Sigma}_{+} \stackrel{i}{\longrightarrow} \stackrel{i}{\longrightarrow} \stackrel{i}{\longrightarrow} \widehat{\Sigma}_{+} \stackrel{i}{\longrightarrow} \stackrel{i}$ such that · · · ~ · · · $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$ $\int \frac{d}{dt} \int \frac{d}{dt$ Induced map I takes radial lines in Z₁ to gradient lines (external rays) Inside My

 $\sum_{i=1}^{n} \frac{1}{i} = \left(\left(1, 0, 0 \right) \times \left(2, 0 \right) \right)$ The set of varys in Z+ is Zo EI (r, s); Isr< 00 { is a gradient line $\frac{1}{2} + \frac{1}{2} + \frac{1}$ The (B-Smillie III) H hyperbolic, J connected Gradient line lands at endpoint P(E) E J e: Zo -> J is continuous surjective, fonite - to - one. The quotient Zo/~ = J is given by external may pairs landing at the same point. Look at Oliva's pratures again.

Dlive conjectures the identification pairs for two maps	•
Computer picture confirms t.	•
Canyou prove it?	•

	•	•		•	٠	•		• •	•			٠	• •	•	•	٠			٠		٠	• •	•	•	• •		٠	• •	٠	٠		٠	٠	•	• •	٠	٠	•
•	•	٠		•		٠	٠	• •	*	٠	•	•	• •	٠	٠	٠		•	٠	*				•			٠			٠		٠		•	• •	•		•
٠	٠			•				• •	٠				• •		٠							• •					0	• •				٠		٠	• •			•
	٠	•		•	•	٠		• •	٠		٠				٠			•	٠	٠	•	• •	•	٠		•	٠					٠	٠	٠	• •		٠	
	•	•		•			•				٠				٠	•		•			•			٠		•							٠				•	•
	•	•	• •	•				• •					• •				• •	•			•				• •	•								•			•	•
•		٠		• •		•	٠	• •	•	٠	•	٠	• •	٠	•	٠	• •	•	•	•	•					•	•	• •		٠		•		•	• •	٠	*	•
•	•		• •	•	•	٠	٠	• •	٠	٠	•	٠	• •	٠	٠	٠	• •	•	٠	٠	•	• •	•	•	• •		٠	• •	٠	٠	• •	٠		٠	• •	٠		•
•	٠	•		•	٠	٠		• •	٠		٠		• •		٠				٠	٠	•	• •	•	٠		•		• •				٠	٠	٠	• •			•
•	٠	٠		•	•	٠	•	• •	*		٠	•	• •		٠	٠		•	٠	٠	٠	• •	•	٠		•	٠	• •	٠	•		*	٠	•	• •		٠	•
٠	•	•		•	•		•		•	•	•	•	• •			•		•						•		•	•	• •						•	• •	•	•	•
٠	•	•	• •	• •		•	•	• •		•			• •	•	٠	•	• •	•	•	•	•			•	• •	•	•	• •				٠		•	• •	•	•	•
•		•	• •	• •		•	٠	• •	•	٠		٠	• •	٠		٠	• •	•	٠	•	•	• •				•	٠	• •		٠	• •	•		•		•	*	•
•	•		• •	•	•	٠		• •	٠	٠	•	٠	• •	٠	٠		• •	•	٠	٠	•	• •	٠	٠	• •	•	٠	• •	٠	٠	• •	٠		٠	• •	٠		•
٠	٠	•		•	٠	٠	•	• •	٠	•	٠	•	• •	•	٠	•		•	٠	٠	•	• •	•	٠	• •	•	۰	• •	•	•		٠	٠	٠	• •	•	٠	•
٠	•	•		•	•	•	•	• •	٠	•	٠	•	• •		٠	•		•	•		•		•	٠				• •	•	•		٠	٠	•	• •	•	٠	•
٠		•	• •	•		٠	٠	• •		٠		٠	• •	٠			• •	•	٠	•	٠	• •			• •		٠	• •		٠	• •	•		٠	• •	٠		•
٠		٠	• •	•		•	٠	• •	•	٠	•	٠	• •	٠	•	•	• •	•	•	•	•	• •		•		•	•	• •		٠	• •	•	•	•	• •	٠	*	•
٠	٠		• •		٠		٠	• •	٠	٠	٠	٠	• •	٠	٠		• •		٠		*	• •	٠	٠	• •		٠	• •	٠	٠		٠	٠	٠	• •	٠		•
٠	٠	•	• •	•	٠			• •	٠	•		•	• •	•	٠		• •		٠		•	• •	•	٠	• •			• •	•	•		٠	٠	٠	• •			•
•	•	•	• •	•	•	٠	•	• •	*	•	٠	•	• •	•	٠	*	• •	•	٠	٠	•	• •	•	٠			٠	• •	•	•		٠	٠	•	• •	•	٠	•
•		•			•		•	• •	•	•	•	•	• •	•		•		•			•		•	*		•		• •	•	•			٠	*	• •	•	•	•
•		•	• •	•		٠	•	• •	•	٠		٠	• •	٠	•	•	• •	•	٠	•	٠	• •			• •	•	٠	• •		٠	• •	•		•	• •	٠	•	•
•	•	•	• •	• •	•	•	٠	• •	٠	٠	•	٠	• •	٠	•	*	• •	•	٠	*	•	• •	•	•	• •	•	٠	• •	•	٠	• •	•	•	•	• •	*	٠	•
•	٠	•	• •		٠	٠		• •	٠	•		•	• •	•	٠		• •		٠		•	• •	•		• •	•	0	• •	•	•		۰		٠	• •	•	•	•
•	٠	•		• •	•	٠	•	• •	٠	•		•	• •	•	٠	•	• •	•	٠	٠	•	• •	•	•	• •	•	٠	• •	•	•		٠	٠	٠	• •	•	•	•
•		•	• •	• •		•	٠	• •	•	•	•	•	• •	•	•	٠	• •	• •	•	•	•	• •			• •	•	•	• •	•	•	• •	•		•	• •	•	٠	•
•	•	۰	• •		•	٠	0	• •	٠	٠	•	٠	• •	٠	٠	•	• •	•	•	٠	•	• •	•	•	• •	•	٠	• •	•	٠	• •	٠		٠	• •	٠		•
•	•	•	• •	• •	•		•	• •	*	•	•	•	• •	•	٠	٠	• •	•	٠		٠	• •	•	•	• •	•	٠	• •	•	•		*	٠	٠	• •	•	٠	•
٠	•	۰	• •	• •	·	•	•	• •	•	•	•	•	• •	•	٠	٠	• •	• •	•	•	٠		·	•	• •	• •	•	• •	•	•		•	•	÷	• •	•	•	•
•	•	•	• •		•	•	•	• •	•	•	•	•	• •		•	•	• •		•		•	• •	•	•	• •	•		• •		•		0		÷	• •	•	•	•
•	•	•	• •	• •	•	•	•	• •	*	•	•	•	• •	•	*	•	• •	• •	•	*	•		•	•	• •	•	•			•		*	*	٠	• •	•	٠	•
÷	·		• •		·	÷	0	• •	·	*		*	• •	*	·		• •	• •	÷		•	• •	·	·	• •		÷	• •	·	÷	• •	•		÷	• •	*	•	•
					•	-			•	•	-			•		-		•	•	-	-		•	-		•	-		•	•		•		-			-	
-					•	-			*	•				•		-			*	-			•				-		•			•		-			-	
	•			-		٠										0		-								-	٠					-		•			0	