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Abstract

We prove packing stability for rational symplectic manifolds. This
will rely on a general symplectic embedding result for ellipsoids which
assumes only that there is no volume obstruction and that the do-
main is sufficiently thin relative to the target. We also obtain easily
computable bounds for the Embedded Contact Homology capacities
which are sufficient to imply the existence of some volume preserving
embeddings in dimension 4.

1 Introduction

We will study symplectic embeddings, that is, embeddings f : (N, σ) →
(M,ω) between symplectic manifolds such that f ∗ω = σ.

We will be particularly interested in symplectic ellipsoids. LetE(a1, . . . , an) ⊂
R2n be the open ellipsoid

E(a1, . . . , an) =

{
n∑
i=1

π(x2i + y2i )

ai
< 1

}
.

Ellipsoids inherit a symplectic structure from the standard form ω0 =
∑n

i=1 dxi∧
dyi on R2n. In our notation, the ball of capacity c is written B2n(c) =
E(c, . . . , c) and λE(a1, . . . , an) = E(λa1, . . . , λan). Any given ellipsoid is
symplectomorphic to the same ellipsoid with its factors permuted. Unless
otherwise stated, when describing an ellipsoid we will list the factors in in-
creasing order. Our main theorem is the following.
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Theorem 1.1. There exists a constant S(b1, . . . , bn) such that if an
a1
> S and

a1 . . . an ≤ b1 . . . bn there exists a symplectic embedding

E(a1, . . . , an) −→ E(b1, . . . , bn).

This will be established using a technique from Buse-Hind [5] which gen-
erates higher dimensional embeddings from lower dimensional ones, together
with some new ellipsoid embeddings in dimension 4.

Remark 1.2. Some special cases of Theorem 1.1 are contained in our earlier
paper [5] which avoided the use of Embedded Contact Homology. However,
the paper [5] only claimed the existence of embeddings of arbitrarily large
compact subsets of our ellipsoids. It was pointed out to us by E. Opshtein
that in fact all of our embeddings exist between the open ellipsoids, see
Proposition 3.4 and Lemma 2.1 in [18]. In the case of our 4-dimensional
embeddings we rely on work of D. McDuff, see [14], [15], Corollary 1.6. This
says that the existence of embeddings of arbitrarily large compact subsets of
a 4-dimensional ellipsoid E into an ellipsoid E ′ implies that the full open el-
lipsoid E embeds into E ′. The higher dimensional analogue of this statement
remains unknown.

Combining with work of Biran [3] and Opshtein [19], we also have a full
filling result valid for general rational symplectic manifolds. Recall that the
manifold (M,ω) is rational if [ω] ∈ H2(M,Q) ⊂ H2(M,R).

Theorem 1.3. If (M2n, ω) (or (M2n, λω) for any λ > 0) is rational, then
there exist a constant S(M) > 0 such that for all ellipsoids E(a1, . . . , an) with
an
a1
> S(M) there exists a γ > 0 and a volume filling embedding γE(a1, . . . , an) −→

(M,ω).

We use the terms volume filling and full filling throughout to denote
symplectic embeddings between manifolds of equal volume.

In the paper [11], section 3, Cieliebak, Hofer, Schlenk and Latschev de-
fine generalized symplectic capacities defined in terms of a fixed symplectic
manifold (M,ω). If M has dimension 2n then we get a capacity on the space
of 2n dimensional ellipsoids defined by

c(M,ω)E(a1, · · · , an) := inf{c|E(a1, · · · , an) −→ (M, cω)}.
Our result can be interpreted as saying that c(M,ω)E(a1, · · · , an) coincides

with the normalized volume capacity
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v(M,ω)E(a1, · · · , an) := n

√
vol(E(a1 · . . . · an))

vol(M)

whenever M is rational and an
a1
> S(M), that is, whenever the ellipsoid is

sufficiently thin.
The existence of an embedding between 4-dimensional ellipsoids is deter-

mined by the Embedded Contact Homology (ECH) capacities of M. Hutch-
ings, see [12]. Namely, there is a sequence of numbersN (a, b)(k), n ≥ 0, asso-
ciated to a pair (a, b) and according to D. McDuff, [16], we have E(a1, a2) ↪→
E(b1, b2) if and only if N (a1, a2)(k) ≤ N (b1, b2)(k) for all k ≥ 0. Although
in principle this solves the problem of ellipsoid embeddings in dimension 4,
it remains a difficult question to determine if a particular embedding exists
since the N (a, b)(k) are given by quite complicated combinatorial formulas,
[12]. We will give quadratic bounds on a related piecewise linear function,
see Proposition 2.5. One consequence is the following.

Theorem 1.4. Let β ≥ 1 and α ≥ (5β+16)2

16β
. Then there exists a full filling

E(1, α) −→
√

α
β
E(1, β).

Finally we discuss packing stability. The kth packing number of a com-
pact, 2n-dimensional, symplectic manifold (M,ω) is

pk(M,ω) =
supc Vol(tkB(c))

Vol(M,ω)
,

where the supremum is taken over all c for which there exist a symplectic
embedding of tkB(c), the disjoint union of k balls of capacity c, into (M,ω).
Naturally, pk(M,ω) ≤ 1. The identity pk(M,ω) = 1 is equivalent to saying
that (M,ω) admits a full filling by k identical balls, otherwise we say that
there is a packing obstruction.

The symplectic manifold (M,ω) has packing stability if there exists an
integer Nstab(M,ω) such that pi(M,ω) = 1 for all i ≥ Nstab(M,ω).

Theorem 1.5. If (M2n, ω) (or (M2n, λω) for any λ > 0) is rational, then it
has packing stability.

This is due to P. Biran, [4], in the case that M is a closed four dimensional
symplectic manifold with a rational cohomology class.
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Bounds on Nstab(M,ω) can be derived from Theorem 1.1, although in
specific examples we can obtain much sharper estimates.

Let CP n be equipped with its Fubini-Study symplectic form, and de-
note by Hn

d a smooth hypersurface of degree d in CP n+1 with the induced
symplectic form.

Theorem 1.6. (i) Nstab(CP n) ≤ d(8 1
36

)
n
2 e.

(ii) Nstab(Hn
d ) ≤ d(25

16
d+ 10d−

(n−2)
n + 16d−

2(n−1)
n )

n
2 e.

Of course, statement (i) here is just a refined estimate of statement (ii)
valid for hyperplanes.

One can also consider packing with other symplectic manifolds, typically
replacing the ball by other open subsets of (R2n, ω0). Fixing a symplectic
(D,ω0) of dimension 2n we define the kth packing number with respect to D
of a 2n-dimensional symplectic manifold (M,ω) by

pDk (M,ω) =
supc Vol(tk(D, cω0))

Vol(M,ω)
,

where the supremum is taken over all c for which there exist a symplectic
embedding of tk(D, cω0) into (M,ω). Similarly to the above, we say that
(M,ω) has packing stability with respect to (D,ω0) if pDk (M,ω) = 1 for all
k sufficiently large. Taking D to be an ellipsoid, we can generalize Theorem
1.5 as follows.

Theorem 1.7. If (M2n, ω) (or (M2n, λω) for any λ > 0) is rational, then it
has packing stability with respect to any symplectic ellipsoid.

We know of no manifolds which have packing stability with respect to
other domains in R2n, for example polydisks.

Outline of the paper.
In section 2 we discuss the ECH capacities, deriving our quadratic bounds

and in particular proving Theorem 1.4. Section 3 gives the proof of Theorem
1.1. In section 4 we describe how to obtain Theorem 1.3 and packing stability,
Theorems 1.5 and 1.7, from Theorem 1.1 together with a construction of E.
Opshtein, [18]. In section 5 we compute some examples and prove Theorem
1.6.

Acknowledgements.
The first author would like to thank Dusa McDuff for suggesting Op-

shtein’s paper as a potential starting point towards adressing the packing
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problems in higher dimension, and Michal Misiurewicz and Rodrigo Pérez
for several fruitful discussions.

Both authors thank Emmanuel Opshtein for some very useful remarks
made after reading the first version of this paper, see in particular Remark
1.2, Proposition 3.4 and section 4.1. We also thank Jin Hong Kim for pointing
out a mistake in the original proof of Theorem 1.1.

2 Ellipsoid embeddings in dimension four

In this section we consider the embedding capacity function

fβ(α) := inf{c|E(1, α) −→ cE(1, β)}
which is a natural extension of the function f1 considered by McDuff and
Schlenk in the paper [17], see Theorem 1.1.2.

We will show that fβ(α) coincides with the normalized volume capacity
of the ellipsoid E(1, β) for sufficiently large values of α.

2.1 Description of ECH and some new estimates

The key ingredients for our study are results of Hutchings [12] and McDuff
[16] on Embedded Contact Homology which together give necessary and suf-
ficient conditions for a four dimensional ellipsoid embedding.

A four dimensional Liouville domain is a compact exact symplectic man-
ifold (X,ω) such that there exists a contact form on ∂X which is a primitive
of ω|∂X . Hutchings associates to such (X,ω) an increasing sequence of real
numbers ck(X,ω) for k ≥ 0 called the ECH capacities. The term capacity is
justified by the following.

Theorem 2.1. (Hutchings [12]) Let (X,ω) and (X ′, ω′) be two Liouville
domains as above. If there exist a symplectic embedding φ : (X,ω) −→
(X̊ ′, ω′) then ck(X,ω) ≤ ck(X

′, ω′) for all integers k > 0.

In the same paper, Hutchings proceeds to compute the capacities of el-
lipsoids E(a, b):

Proposition 2.2. Given 0 < a ≤ b consider the sequence N (a, b)(k) obtained
by arranging in increasing order, with repetitions, all the numbers of the type
a`+ bp with `, p any nonnegative integers. Then ck(E(a, b)) = N (a, b)(k− 1)
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Following this, McDuff showed that the necessary condition for ellipsoid
embeddings coming from Theorem 2.1 is also sufficient:

Theorem 2.3. (McDuff [16]) There exists a symplectic embedding E̊(a, b) −→
E(a′, b′) if and only if N (a, b)(k) ≤ N (a′, b′)(k) for all natural numbers k.

Comparing Theorems 2.1 and 2.3 we remark that E̊(a, b) → E(a′, b′) if
and only if E(a, b)→ E̊(λa′, λb′) for all λ > 1, see [16] Remark 1.3.

We will refer to N (a, b)(x) as being the piecewise linear function built by
joining by line segments the points of N (a, b)(k). It is clearly sufficient to
compare two such piecewise functions and moreover, if one defines, for any
y ≥ 0

R(a, b)(y) = sup{k|N (a, b)(k) ≤ y} (1)

then we have

Corollary 2.4. (see Hutchings [12], Bauer [2]) E(a, b) ↪→ E(a′, b′) if and
only if

R(a, b)(y) ≥ R(a′, b′)(y) (2)

for all y > 0.

To prove theorem 1.4 by using this corollary, we will first need the fol-
lowing estimates:

Proposition 2.5. For any y > 0, and a < b we have that

y2

2ab
+

y

2a
≤ Ra,b(y) ≤ y2

2ab
+

y

2a
+
y

b
+

b

8a
+ 1. (3)

Proof. As pointed in [12], Ra,b(y) is interpreted geometrically as the number
of non-negative integer vectors (m,n) in the closed triangle bounded by m =
0, n = 0, and the diagonal am + bn = y. Equivalently, this represents the
area of the union of unit squares with lower-left corners (m,n) such that

am+ bn ≤ y. The triangular area y2

2ab
under the diagonal is then an obvious

lower estimate for Ra,b(y), but it omits the sizable area of the staircase-shaped
region S above the diagonal. Let {y/b} = y

b
− by/bc denote the fractional

part of y
b
.
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m = y
a

n = y
b

Figure 1: Triangles Tk and the region S

To estimate the area of S, let p0 = (0, y/b), and let p1, . . . , pdy/be be the points
of integer height along the diagonal, indexed from left to right. For every
k with 1 ≤ k ≤ dy/be, let Tk be the triangle formed by pk−1, pk, and the
point one unit above pk. Every triangle Tk ⊂ S rests atop the diagonal, these
are the darkest triangles in Figure 1. They all have (vertical) base of length
1, and their (horizontal) heights add up to y/a; thus, the total area of the
triangles is y/2a, and

y2

2ab
+

y

2a
≤ Ra,b(y).

For the upper estimate, add unit squares to the right of T1, . . . , Tdy/be, see
Figure 2. These have total area dy/be, and cover the remainder of S, except
(sometimes) for a thin triangle above T1 sitting at the top left of Figure 2.

The (vertical) base of this triangle has length 1 − {y/b}. Its (horizontal)
height is the first coordinate of p1, that is, b

a
{y/b}. Therefore we get

Ra,b(y) ≤ y2

2ab
+

y

2a
+ dy

b
e+

b

2a
{y/b}(1− {y/b}) ≤ y2

2ab
+

y

2a
+
y

b
+

b

8a
+ 1.

where for the final inequality we note that {y/b}(1 − {y/b}) ≤ 1
4

since
0 ≤ {y/b} < 1.
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Figure 2: added squares covering S

2.2 A volume filing ellipsoid embedding in dimension
four

We can now give a proof of theorem 1.4:

Proof. Let us call c :=
√

α
β
> 1 by hypothesis. Assuming α ≥ (5β+16)2

16β

and β > 1 it is required to show that we have a volume filling embedding
E(1, α) ↪→ E(c, cβ). By Corollary 2.4 this is equivalent to showing

R1,α(y) ≥ Rc,cβ(y) (4)

for all y > 0.
As α > β it is easy to see that for 0 ≤ y ≤ cbβc < α we have R1,α(y) =

byc and Rc,cb(y) = by
c
c. Therefore the inequality (4) holds for values of

y ≤ cbβc. Our hypothesis also implies that bβc+ 1 ≤ bαc and so the graphs
of N (1, α)(x) and N (c, cβ)(x) are as shown in Figure 3 for small values of
x. Hence we can also observe directly that inequality (4) holds in the range
cbβc ≤ y ≤ cβ.

It remains to show that (4) holds for the remaining values y ≥ cβ. Using
the inequality (3) from Proposition 2.5 twice, once for R1,α(y) and again for
Rc,cβ(y), it is sufficient to show

y2

2α
+
y

2
≥ y2

2c2β
+

y

2c
+

y

cβ
+
cβ

8c
+ 1 (5)

for y ≥ cβ. Using the fact that α = c2β, this reduces to showing that
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bαc

cβ

bβcbβc+ 1 bαc

N(1, α)

N(c, cβ)

cbβc

Figure 3: graphs of the ECH capacity functions

y

2
(
cβ − β − 2

cβ
) ≥ β

8
+ 1 (6)

for all y ≥ cβ. But this is equivalent to our hypothesis α ≥ (5β+16)2

16β
.

3 Volume filling embeddings

Theorem 3.1. Define a constant S by S
1

n−1 = 6n20
n−2
2 maxk 20

k(k−1)
2

b1...bn
bnk

.

Then if an
a1

> S and a1 . . . an = b1 . . . bn there exists a volume preserving
embedding

E(a1, . . . , an) −→ E(b1, . . . , bn).

Proof. We will apply a series of volume preserving embeddings to the ellipsoid
E(a1, . . . , an). The factors of our ellipsoids will always be in increasing order.
First recall our key tools.

Let m(x) = (5x+16)2

16x
. Then m is decreasing on the interval {1 ≤ x ≤ 16

5
},

increasing on {x ≥ 16
5
} and m(16

5
) = 20. Theorem 1.4 gives the following.

Theorem 3.2. If b
a
> m(d

c
) and ab = cd then E(a, b) −→ E(c, d).
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Corollary 3.3. Let b
a
> 36 and 6a < d <

√
ab. Then E(a, b) −→ E(d, ab

d
).

Proof. The upper bound on d guarantees that the factors of our image ellip-
soid are in increasing order. Therefore by Theorem 3.2 we just need to check
that b

a
> m( ab

d2
). We compute

b

a
−m(

ab

d2
) =

b

a
− 25

16

ab

d2
− 10− 16d2

ab
≥ b

a
− 25

16

b

36a
− 26 ≥ 36− 25

16
− 26 > 0

as required.

We will also utilize the following.

Proposition 3.4 ([18] Lemma 2.1, [5] Proposition 2.1). If E(a, b) −→ E(c, d)
then

E(a, b, a3, . . . , an) −→ E(c, d, a3, . . . , an)

for any a3, . . . , an.

Note here that as the order of the factors is irrelevant analogous state-
ments hold for all other pairs of factors.

As mentioned in Remark 1.2 the paper [5] only established embeddings
between arbitrarily large compact subsets of the ellipsoids. We thank E.
Opshtein for remarking that the stronger version of Proposition 3.4 in fact
follows from [18] as we explain now. Proposition 3.4 is clearly a consequence
of the following.

Proposition 3.5. Suppose that

tiE
(
ai1, . . . , ain

)
−→ E

(
b1, . . . , bn

)
is a symplectic embedding of a disjoint union of ellipsoids. Then for any
c > 0 there exists a symplectic embedding

tiE
(
ai1, . . . , ain, c

)
−→ E

(
b1, . . . , bn, c

)
.

Proof. Indeed, let (E,ω0) = E(b1, . . . , bn) be a symplectic ellipsoid and D be
the unit disk. Let α be a 1-form on E × (D \ {0}) such that dα = −π∗ω0

and α|π−1(x) = cdθ for all x ∈ E, where π denotes the projection on the E
factor and (r, θ) are polar coordinates on the D factor. Then Lemma 2.1 from
[18] says that E(b1, . . . , bn, c) is symplectomorphic to (E ×D,ω), where ω =
π∗ω0 + d(r2α). It follows that if φ : E(a1, . . . , an) −→ E(b1, . . . , bn) is a sym-
plectic embedding then (imφ×D,ω) is symplectomorphic to E(a1, . . . , an, c)
and the proposition follows.
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Returning to Theorem 1.1, we start with the following lemma.

Lemma 3.6. There exists a volume preserving embedding E(a1, . . . , an) ↪→
E(a′1, . . . , a

′
n) such that

(i). a′n = an;

(ii).
a′k
a′k−1

< 20 for all 1 ≤ k ≤ n− 1;

(iii). a′n
a′k
> 20−

n−2
2 S1/n−1 for all 1 ≤ k ≤ n− 1.

Proof. We perform a sequence of embeddings fixing throughout the largest
factor an of the ellipsoid.

Theorem 3.2 implies that if ak
ak−1

> 20 then there exists an embedding

E(ak−1, ak) −→
√

5ak−1ak
16

E(1, 16
5

).

We will apply the embedding of Proposition 3.4 induced by this four
dimensional embedding to any consecutive pair of factors ak−1, ak for which
k < n and whose ratio is greater than 20. After such an operation the product

of the first k − 1 factors will increase by a factor of at least
√

100
16

, but the

product of the first n − 1 factors is fixed throughout. Thus after a finite
number of steps we arrive at an ellipsoid E(a′1, . . . , a

′
n) satisfying condition

(ii).
For condition (iii) we estimate(

a′n
a′k

)n−1
≥
(

a′n
a′n−1

)n−1
≥ (a′)n−1n

20(n−1)(n−2)/2 ·
20 · 202 · . . . · 20n−2

(a′)n−1n−1

≥ (a′)n−1n

20(n−1)(n−2)/2 · a′n−1 · a′n−2 · · · · · a′1
using property (ii). Now, as all our embeddings are volume preserving and
fix an, the product of the first n−1 terms is also preserved under our sequence
of embeddings. Thus we have(

a′n
a′k

)n−1
≥ an−1n

20(n−1)(n−2)/2 · an−1 · an−2 · . . . · a1
≥20−

(n−1)(n−2)
2 S,
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where for the final inequality we used simply that ak ≤ an for all k < n and
that by hypothesis an > Sa1. Our lemma follows.

Now we drop the primes from the ellipsoid resulting from Lemma 3.6 and
write simply E(a1, . . . , an) for our new range.

Lemma 3.7. bk > 6ak for all 1 ≤ k ≤ n− 1.

Proof. For any k we have

1 =
a1 . . . an
b1 . . . bn

≥ a1 . . . ak−1a
n−k
k an

b1 . . . bn

≥ an−kk

b1 . . . bn

ak
20k−1

. . .
ak
20

20−
n−2
2 S1/n−1ak

using properties (ii) and (iii) from Lemma 3.6

= (
ak
bk

)n
20−

n−2
2 S1/n−1(bk)

n

20k(k−1)/2b1 . . . bn
≥ (

ak
bk

)n6n

and our Lemma follows.

Now we complete the proof of Theorem 3.1. We will proceed by induction
on k = 1, . . . , n−1. After the kth stage we will have found a volume preserv-
ing embedding into an ellipsoid of the form E(b1, . . . , bk, ak+1, . . . , an−1, an,k)
where the ai are the factors of our latest ellipsoid above and an,k will be a
decreasing sequence with an,0 = an and an,k =

an,k−1ak
bk

. It is decreasing by
Lemma 3.7.

For our inductive step, we claim that there exists an embedding

E(ak, an,k−1) −→ E(bk,
an,k−1ak

bk
) = E(bk, an,k)

for all 1 ≤ k ≤ n − 1. Thus by repeated applications of Proposition 3.4 we
can conclude by induction. After the (n − 1)st step we will automatically
have an,n−1 = bn by the hypothesis a1 . . . an = b1 . . . bn and the fact that all
of our embeddings are volume preserving.

To justify the claim, we will apply Corollary 3.3 with a = ak, b = an,k−1
and d = bk. There are three conditions to check. First

b

a
=
an,k−1
ak

≥ an,n−2
an−1

=
ana1a2 . . . an−2
b1 . . . bn−2an−1

=
bn−1bn
a2n−1

> 36
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where the equalities follow from the definitions of the an,k and the fact that
our ellipsoids have equal volume, and the final inequality follows from Lemma
3.7. Secondly, d = bk > 6ak again by Lemma 3.7. Finally, d2 = b2k ≤ bkbn <
akan,k−1 = ab as our ellipsoids have equal volume but bk > ak for all k < n.

4 Full filling by an ellipsoid

In this section we present Opshtein’s result, which is a refinement of Biran’s
polarization theorem, that any rational symplectic manifold can be fully filled
by an ellipsoid, that is, we prove the following.

Theorem 4.1 ([18] [19]). Let (M,ω) be rational. Then there exist b1, . . . , bn
such that there exists a full filling E(b1, . . . , bn) −→ (M,ω).

Given Theorem 4.1 we can prove Theorems 1.5 and 1.7. Theorem 1.3 is
also a direct application of Theorems 4.1 and 1.1.

Proof of Theorem 1.5. Given (M,ω) rational, we consider the fully filling
ellipsoid E(b1, . . . , bn) given by Theorem 4.1. By Theorem 1.1 there exists
a constant S(b1, . . . , bn) such that there exists a full filling γE(1, . . . , 1, k) −→
E(b1, . . . , bn) for any k ≥ S. However the 2-dimensional embedding tkD(1) −→
D(k) combined with Proposition 3.5 implies that there exists a full filling

tkB(1) −→ E
(
1×(n−1), k

)
for any k ∈ N (see also [5], Lemma 4.1). Putting the two maps together, we
obtain a full filling of E(b1, . . . , bn), and hence (M,ω), by k balls of capacity
γ. This means that (M,ω) has packing stability as required.

Proof of Theorem 1.7. Fix an ellipsoid D = E(a1, . . . , an). We follow
an identical line of argument to the proof of Theorem 1.5 above, letting
E(b1, . . . , bn) be the filling ellipsoid for (M,ω) from Theorem 4.1.

Lemma 4.2. There exists a full filling

tkE
(
a1, . . . , an

)
−→ E

(
a1, . . . , an−1, kan

)
for any k ∈ N.
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This follows immediately from Proposition 3.5 given the 2-dimensional
embedding tkD(an) −→ D(kan) (see Lemma 5.3.1(i) from [20] for a different
approach).

But by Theorem 1.1 there exists a constant S(b1, . . . , bn) such that there
exists a full filling γE(a1, . . . , an−1, kan) −→ E(b1, . . . , bn) for any k ≥ Sa1

an
.

This map and the embedding from our lemma together give packing stability
for (M,ω) with respect to D.

Now we proceed to prove Theorem 4.1 by induction on the dimension of
the manifold M . Observe that Moser’s theorem implies a surface can be fully
filled by any number of balls, so we assume that the theorem holds for all
manifolds of dimension 2(n− 1) and let (M,ω) be rational of dimension 2n.

Using the rationality assumption, a theorem of S. K. Donaldson, [7],
says that (M,ω) can be polarized in the sense that there exists a connected
symplectic codimension 2 submanifold N which is Poincaré dual to m[ω] for
a suitable multiple m. Let τ = ω|N .

Let SDB(N, τ,m) be a standard symplectic disk bundle over N . This
is a symplectic manifold whose underlying smooth manifold is the disk bun-
dle over N with Euler class [mτ ] ∈ H2(N,Z) and which has a symplectic
form restricting to τ on N and with fibers of area 1

m
. As a symplectic man-

ifold, SDB(N, τ,m) is well defined up to isotopy. For more details see [3],
section 2, or [19], section 1. Given the above, we can now state the Biran
decomposition.

Theorem 4.3 (Theorem 1, [19],[3]). There exists a full filling SDB(N, τ,m) −→
(M,ω).

By our induction hypothesis, there exits b1, . . . , bn−1 and a full filling
E(b1, . . . , bn−1) −→ (N, τ). Now we apply the construction of Opshtein.

Lemma 4.4 (Lemma 2.1, [18]). A symplectic embedding E(b1, . . . , bn−1) −→
(N, τ) can be extended to a symplectic embedding E(b1, . . . , bn−1,

1
m

) −→
SDB(N, τ,m).

If E(b1, . . . , bn−1) −→ (N, τ) is a full filling then the embeddingE(b1, . . . , bn−1,
1
m

) −→
SDB(N, τ,m) of Lemma 4.4 is also a full filling. Thus, combining Theorem
4.3 and Lemma 4.4 we have a full filling E(b1, . . . , bn−1,

1
m

) −→ (M,ω) and
we conclude the proof of Theorem 4.1 by induction.
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4.1 Full fillings without ECH

In fact, as was also explained to us by Opshtein, a similar argument can
generalize Theorem 4.1 as follows.

Theorem 4.5 (Opshtein). Let (M,ω) be integral, that is, [ω] ∈ H2(M,Z),
and let V = vol(M). For all sufficiently large l we can fully fill M by the
ellipsoid 1

l
E(1, . . . , 1, n!lnV ).

Given this, following the same lines as above, to establish packing stability
we need only show that for all large k there exists a γ > 0 and a full filling
γE(1, . . . , 1, k) −→ E(1, . . . , 1, n!lnV ) for an l which is also sufficiently large
for Theorem 4.5 to hold. But this follows directly from the methods of [5], in
particular avoiding ECH. Indeed, formulas (19) and (20) together imply that

γE(1, . . . , 1, k) can fully fill any E(1, . . . , 1, z) provided (2
3
)

n
2(n−1)k

n−2
2(n−1) < z <

k
n−2

2(n−1) and we can check that there exist numbers z = n!lnV in this range
with l→∞ as k →∞.

Outline of the proof of Theorem 4.5 Let L be a complex line bundle overM
with first Chern class [ω]. Donaldson’s theorem has been generalized by Don-
aldson [8] and D. Auroux, [1] Theorem 5.1 to show that for all l sufficiently
large we can find approximately holomorphic sections s1, . . . , sn−1 of L⊗l

which intersect the zero section transversally in submanifolds H1, . . . , Hn−1
such that all intersections Ni = H1∩· · ·∩Hi for 1 ≤ i ≤ n−1 are transversal
and Ni gives a polarization of Ni−1.

Now, as Nn−1 is Poincaré dual to ln−1[ω]n−1 it is a symplectic surface of
area n!ln−1V and hence is fully filled by a ball B(n!ln−1V ). Next each Ni gives
a polarization of Ni−1 Poincaré dual to l[ω]|Ni−1

and so arguing by induction
as above we get a full filling of M by an ellipsoid E(1

l
, . . . , 1

l
, n!ln−1V ) as

required.

5 Examples

5.1 CP n

Complex projective space CP n is fully filled by a ball. Recall also that
E(1, . . . , 1, k) can be fully filled by k balls, see [5], Lemma 4.1. Therefore
we can establish our stability bound for CP n by producing an embedding
E(1, . . . , 1, k) ↪→ B(k

1
n ) for all k ≥ (8 1

36
)
n
2 .
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We consider the following sequence of n− 1 potential embeddings.

E(1, . . . , 1, k) −→ E(k
1
n , 1, . . . , 1, k

n−1
n )

−→ E(k
1
n , k

1
n , 1, . . . , 1, k

n−2
n ) −→ . . . −→ E(k

1
n , . . . , k

1
n , 1, k

2
n )

−→ E(k
1
n , . . . , k

1
n ) = B(k

1
n ).

The first n − 2 embeddings will exist by Theorems 3.2 and Proposition
3.4 provided we have

k
n−i
n ≥ (5k

n−i−2
n + 16)2

16k
n−i−2

n

=
25

16
k

n−i−2
n + 10 + 16k

−(n−i−2)
n (7)

for all 0 ≤ i ≤ n− 3.
For the final embedding, as the target is a ball, we get an improved

bound by appealing directly to [17], Theorem 1.1.2 (iv). This says that

E(1, k
2
n ) −→ B(k

1
n ) whenever k

2
n ≥ 8 1

36
. Therefore by Proposition 3.4 the

final embedding will also exist provided k
2
n ≥ 8 1

36
.

For the first n− 2 embeddings we require

25

16
k
−2
n + 10k

−(n−i)
n + 16k

−2(n−i−1)
n ≤ 1 (8)

for all 0 ≤ i ≤ n− 3. The left hand side is an increasing function of i, so
it suffices that

25

16
k
−2
n + 10k

−3
n + 16k

−4
n ≤ 1.

A calculation shows that this also holds when k
2
n ≥ 8 1

36
and so Theorem 1.6

(i) is proved.
There is in fact a better bound valid in dimension 6.

Proposition 5.1. Nstab(CP 3) ≤ 21

Proof. Part (i) of Theorem 1.6 already implies that Nstab(CP 3) ≤ 23. Thus
we just need to check that the same embeddings exist when k = 21 and
k = 22. Direct computation shows that the inequality 8 continues to hold for
these k, so we are reduced to showing E(1, k

2
3 ) −→ B(k

1
3 ) when k = 21, 22.

We appeal again to McDuff-Schlenk’s results from [17], Theorem 5.2.3 and
its corresponding Table 5.2. This says that f1(α) =

√
α on the interval

[71
9
, 8] with the exception of eight intervals that are explicitly provided in
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their statement. The numbers k
2
3 for k = 21, 22 do not lie in these intervals,

thus this embedding also exists and hence the whole sequence of embeddings
provided in the proof of Theorem 1.6.

5.2 Hn
d

We first make the following observation.
Fact. Hn

d embeds as a polarizing hypersurface in Hn+1
d Poincaré dual to

the symplectic form.
Indeed, Hn

d = Hn+1
d ∩ CP n+1 where Hn+1

d ⊂ CP n+2 and we think of
CP n+1 as a hyperplane intersecting Hn+1

d transversely.
Now, H1

d is a curve of degree d and so is fully filled by B2(d), normalizing
the Fubini-Study form on the CP n so that lines have area 1. Hence, com-
bining the above fact with Lemma 4.4 and arguing by induction we see that
E(1, . . . , 1, d) fully fills Hn

d .
Therefore, arguing as in case (i) by applying Lemma 4.1 of [5], to demon-

strate Theorem 1.6 (ii) it suffices to show that

E(1, . . . , 1, k) −→ k
1
n

d
1
n

E(1, . . . , 1, d)

for all integers k ≥ (25
16
d+ 10d−

(n−2)
n + 16d−

2(n−1)
n )

n
2 .

We now consider the sequence of (n− 1) potential embeddings

E(1, . . . , 1, k) −→ E(
k

1
n

d
1
n

, 1, . . . , 1, k
n−1
n d

1
n ) −→

E(
k

1
n

d
1
n

,
k

1
n

d
1
n

, 1, . . . , 1, k
n−2
n d

2
n ) −→ . . . −→ E(

k
1
n

d
1
n

, . . . ,
k

1
n

d
1
n

, k
1
nd

n−1
n )

=
k

1
n

d
1
n

E(1, . . . , 1, d).

By Proposition 3.4 the (i + 1)st embedding exists provided there exists
an embedding

E(1, k
n−i
n d

i
n ) −→ E(

k
1
n

d
1
n

, k
n−i−1

n d
i+1
n )

which by Theorem 3.2 exists provided

k
n−i
n d

i
n ≥ 25

16
k

n−i−2
n d

i+2
n + 10 +

16

k
n−i−2

n d
i+2
n
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or equivalently

25

16
k
−2
n d

i+2
n + 10k−

(n−i)
n d

−i
n + 16k−2

(n−i−1)
n d−2

(i+1)
n ≤ 1.

For k ≥ d and n fixed, the left hand side of this last inequality is an increasing
function of i. Therefore it suffices to check it when i = n − 2. In this case
we get

25

16
k
−2
n d+ 10k

−2
n d−

(n−2)
n + 16k

−2
n d−2

(n−1)
n ≤ 1

which is equivalent to

k
2
n ≥ 25

16
d+ 10d−

(n−2)
n + 16d−

2(n−1)
n

and so holds in our range as required.

Remark 5.2. Still following our methods here as well as those from [5],
the estimates for the upper bound on the stability numbers presented here
may be improved if we can improve, by a much more complicated number
theoretical investigation of the ECH vectors, the four dimensional embedding
result from Theorem 1.4. However, in the case when the target manifold is
CP 3 the inequality Nstab ≤ 21 cannot be improved in this way as it relies at
the last step on a sharp estimate from McDuff- Schlenk giving the precise
range for volume filling ellipsoids in the unit ball. It remains a very interesting
question to find methods to obstruct symplectic volume fillings of ellipsoids
or disjoint balls into the unit six dimensional ball. As will be shown in [6],
it appears that obstructions arising from symplectic field theory that have
been succesful in [13] when targets were cylinders fail here.
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