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Abstract. We completely solve the symplectic packing problem with equally sized balls for any

rational, ruled, symplectic 4-manifolds. We give explicit formulae for the packing numbers, the

generalized Gromov widths, the stability numbers, and the corresponding obstructing exceptional
classes. As a corollary, we give explicit values for when an ellipsoid of type E(a, b), with b

a
∈ N,

embeds in a polydisc P (s, t). Under this integrality assumption, we also give an alternative proof
of a recent result of M. Hutchings showing that the ECH capacities give sharp inequalities for

embedding ellipsoids into polydisks.
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1. Introduction and main results

1.1. Background. Let tkB(c) be the disjoint union of k standard 2n-dimensional balls of radius r
and capacity c = πr2. The kth packing number of a compact, 2n-dimensional, symplectic manifold
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2 Packing numbers

(M,ω) is

pk(M,ω) =
supc vol(tkB(c)

vol(M,ω)

where the supremum is taken over all c for which there exists a symplectic embedding of tkB(c)
into (M,ω). Naturally, pk(M,ω) ≤ 1. When pk(M,ω) = 1 we say that (M,ω) admits a full packing
by k balls, otherwise we say that there is a packing obstruction. An essentially equivalent invariant
is the generalized kth Gromov width wk(M,ω) defined by setting

wk(M,ω) = sup
c>0
{c | tk B(c) embeds symplectically into (M,ω)}

For a compact manifold of dimension 2n the width wk is thus bounded by

0 < wk(M2n, ω) ≤ cvol(M2n, ω) :=

√
n! vol (M2n, ω)

k

Although no general tools are known to compute those invariants for arbitrary symplectic manifolds,
some results can be derived from complex algebraic geometry. For instance, in [15], D. McDuff and L.
Polterovich computed pk(CP2), for k ≤ 9. They also proved that pk(CPn) = 1 whenever k = pn and
that limk→∞ pk(M,ω) = 1 for any compact symplectic manifold. In view of that later result, it is
natural to ask whether the sequence pk(M,ω) is eventually stable, that is, whether there is a number
Nstab(M,ω) such that pk(M,ω) = 1 for all k ≥ Nstab(M,ω). To date, this remains an interesting
open question (see [4] and [3] for a complete discussion). The only general result in that regard is
due to P. Biran ([1], [2]) who settled this question positively for all closed symplectic 4-manifolds
whose symplectic forms (after rescaling) are in rational cohomology classes. His techniques allowed
him to obtain some lower and upper bounds for Nstab(M4, ω) which can be explicitly computed in
some cases. In particular, he showed that Nstab(CP2) ≤ 9 which, in view of McDuff and Polterovich
results, is sharp.

The same techniques apply to rational ruled symplectic 4-manifolds. Recall that, after rescaling,
any such manifold is symplectomorphic to either

• the trivial bundle M0
µ := (S2 × S2, ω0

µ), where the symplectic area of the a section S2 × {∗}
is µ ≥ 1 and the area of a fiber {∗} × S2 is 1; or

• the non trivial bundle M1
µ := (S2 n S2, ω1

µ), where the symplectic area of a section of
self-intersection −1 is µ > 0 and the area of a fiber is 1.

In [1] Biran showed that

pk(M0
µ) = min

{
1,

k

2µ
inf

(
µn1 + n2

2n1 + 2n2 − 1

)2
}

(1)

where the infimum is taken over all naturals n1, n2 for which the Diophantine equations

2n1n2 =

(
i=k∑
i=1

m2
i

)
− 1 , 2(n1 + n2) =

(
i=k∑
i=1

mi

)
+ 1 (2)

admit a vector solution (m1, . . . ,mk) ∈ Nk, while

pk(M1
µ) = min

{
1,

k

2µ+ 1
inf

(
µn1 + n2

n1 + 2n2 − 1

)2
}

where the infimum is taken over all naturals n1, n2 for which the equations

n1(2n2 − n1) =

(
i=k∑
i=1

m2
i

)
− 1 n1 + 2n2 =

(
i=k∑
i=1

mi

)
+ 1
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admit a vector solution (m1, . . . ,mk) ∈ Nk (as we will see later, those equations simply ensure that
the exceptional classes in the k-fold blow-up of M i

µ have nonnegative symplectic areas). He also

obtained the following bounds for the stability number of M0
µ:

2µ ≤ Nstab(M0
µ) ≤ 8µ

Building on [1, 15], F. Schlenk [20] later computed the packing numbers pk(M i
µ), i = 0, 1, for

k ≤ 7 (those can be found in Appendix A), and proved that

max(8, 2µ+ 1) ≤ Nstab(M1
µ) ≤

{
8µ+ 4 if 1

2 ≤ µ
2µ+1
µ2 if µ < 1

2

The above results reduce, in principle, the computation of the packing numbers pk(M i
µ), k ≥ 8,

and of the stability numbers Nstab(M i
µ) to purely arithmetic problems. However, since their general

solutions are not known, they do not yield explicit formulae in terms of the parameters k and µ.

1.2. Main results. In this paper, we use a modified version of Li-Li’s reduction algorithm [10],[11],
to compute the packing numbers, the generalized Gromov widths, and the stability numbers of
rational ruled symplectic 4-manifolds. We also identify the exceptional homology classes that give
the obstructions to symplectic embeddings of k balls in M i

µ, for k ≥ 8. We observe that our method

can be used, in principle, to compute the packing numbers of any k-fold symplectic blow-up of CP2.
We also note that D. McDuff and F. Schlenk used a similar method in [12] to fully describe the
embedding functions of four dimensional ellipsoids into standard balls.

1.2.1. The Trivial bundle. For the trivial bundle M0
µ, our computations of the generalized Gromov

widths wk(M0
µ) reveal that the obstructions to the embeddings of k ≥ 8 balls in M i

µ depend in an
essential way on the parity of k. Indeed, fixing k ≥ 8 and viewing wk = wk(µ) as a function of
µ ≥ 1, we show that there are only finitely many obstructions for k odd, while there are infinitely
many obstructions for k even.

Theorem 1.1. Let M0
µ = (S2 × S2, µσ ⊕ σ) with µ ≥ 1.

(1) When k = 2p+ 1 is odd, the generalized Gromov width w2p+1(M0
µ) is given by

w2p+1(M0
µ) =


cvol =

√
2µ

2p+1 if µ ∈
[
1, p+ 1−

√
2p+ 1

)
µ+p
2p+1 if µ ∈

[
p+ 1−

√
2p+ 1, p+ 1

)
1 if µ ∈ [p+ 1, ∞)

(2) When k = 2p is even, there exist a decreasing sequence {δn} with limit λ =
p−2+

√
p2−4p

2 and
intervals In given by I0 = [p, ∞), In = [δn, δn−1), and I∞ = [1, γ), as well as a sequence
of linear functions wn : R→ R, n ≥ 1, such that

w2p(M
0
µ) =


cvol =

√
µ
p if µ ∈ I∞

wn(µ) if µ ∈ In, n ≥ 1

1 if µ ∈ I0

In Section 3, Proposition 3.6 gives explicit formulae for the functions wn, as well as complete
descriptions of the even generalized Gromov widths w2p as piecewise linear functions of µ. As
an immediate corollary, we get the packing numbers of M0

µ (see Corollaries 3.4 and 3.16) and we

compute the stability numbers of M0
µ, namely
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Corollary 1.2. The odd stability number of M0
µ is

Nodd(M0
µ) =


7 if µ = 8

7

9 if µ ∈
[
1, 8

7

)
∪
(
8
7 , 2

]
2
⌈
µ+
√

2µ
⌉

+ 1 if µ ∈ (2, ∞]

while its even stability number is given by

Neven(M0
µ) = 2

⌈
µ+ 2 +

1

µ

⌉
Since Nodd(µ) > Neven(µ), it follows that

Nstab(M0
µ) = Nodd(M0

µ)− 1

Before we move on to describe our results in the twisted case, let us explain the following conse-
quence of Theorem 1.1. Given positive real numbers a, b, s, t, recall that the standard 4-dimensional
ellipsoid E(a, b) is defined by setting

E(a, b) :=

{
z ∈ C2 | π|z1|

2

a
+
π|z2|2

b
≤ 1

}
while the standard 4-dimensional polydisk P (s, t) is given by

P (s, t) :=
{
z ∈ C2 | π|z1|2 ≤ s, π|z2|2 ≤ t

}
Recently D. Muller [17] showed that the problem of embedding an ellipsoid into a polydisc is equiv-
alent with embedding a collection of balls of various sizes into the polydisc. Using this, we can
state

Corollary 1.3. Let k be any integer greater than 8 and a, s, t any positive real numbers with s < t.
Denote by µ = a

s . The following are equivalent:

i) E(a, ka) ↪→ P (s, t)
ii) If k = 2p+1 then a

s ≤ wk = min{1, cvol, µ+p2p+1}. If k = 2p then a
s ≤ wk = minn∈N{1, cvol, wn}.

Moreover, there is an n ∈ N ∪ {∞} so that µ = a
s ∈ In and the precise value of this wk is

given by Theorem 1.1 part (ii).

The proof of that corollary is given at the end of the paper. In that section, we also give an
alternative proof, valid only for the case when b/a is an integer, of a recent result of M. Hutchings [5],
[7] stating that the embedded contact homology (ECH) capacities give sharp conditions under which
an ellipsoid of type E(a, b) embeds in a polydisk P (ν, µ).

1.2.2. The Nontrivial bundle. One would expect results similar to those of Theorem 1.1 to hold for
the twisted bundle M1

µ. However, it turns out there is no essential difference between odd and even
widths. Instead, all the complexity appears at the special value k = 8.

Theorem 1.4. There exist three functions u1(µ, n), u2(µ, n), u3(µ, n), depending on µ ∈ (0,∞)
and n ∈ Z \ 0, all linear in µ, such that

w8

(
M1
µ

)
= min
n∈Z\{0}

{
cvol =

√
2µ+ 1

8
, u1(µ, n), u2(µ, n), u3(µ, n),

6µ+ 6

17

}
In Section 4, we give explicit formulae for the functions ui(µ, n), as well as complete descriptions

of the generalized Gromov width w8 as a piecewise linear functions of µ. As a corollary, we show
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that there exist infinitely values of µ for which we can fully pack the nontrivial bundle with 8 disjoint
balls. Indeed, if we define the set S ⊂ (0,∞) by setting

S =

{
8n2 − 8n+ 1

16n2
,

1

2
,

8n2 + 8n+ 1

16n2

}
, n ≥ 1

then we have

Corollary 1.5. There is a full packing of the nontrivial bundle M1
µ by 8 balls if, and only if, µ ∈ S.

The general case k ≥ 9 is easier to deal with as the number of obstructions is always finite, namely

Theorem 1.6. Given k ≥ 9, let us write k = 2p or k = 2p+ 1 depending on the parity of k, and let
µ ∈ (1/2,∞). Then the kth generalized Gromov width of M1

µ is given by:

w2p(M
1
µ) =


cvol =

√
2µ+1
2p if µ ∈

[
1/2, p−

√
2p
)

p+µ
2p if µ ∈

[
p−
√

2p , p
)

1 if µ ∈ [p, ∞)

and

w2p+1(M1
µ) =


cvol =

√
2µ+1
2p+1 if µ ∈

[
1/2, p3−2p2+1−(p−1)

√
2p+1

p2

)
p(p+µ−1)
2p2−p−1 if µ ∈

[
p3−2p2+1−(p−1)

√
2p+1

p2 , p(p−1)
p+1

)
p+µ
2p if µ ∈

[
p(p−1)
p+1 , p

)
1 if µ ∈ [p, ∞)

The previous results allow us to compute the stability numbers of the nontrivial bundle, namely

Corollary 1.7. The stability number Nstab of M1
µ is

Nstab =


8 if µ ∈ S
9 if µ ∈

(
0, 3

2

)
Neven − 1 if µ ∈

[
3
2 , ∞

)
To conclude this introduction, we want to point out that our presentation is written with a dual

purpose in mind. First, we obtained our results through an hybrid process of mathematical reasoning
and computer-aided symbolic computations using SAGE [18], and our exposition replicates part of
that process. Secondly, although we don’t discuss the arithmetic aspects of the reduction process in
the present paper, we advance the idea that the reduction algorithm is an effective computational
tool that can be used in many other instances where one must deal with Diophantine approximation
problems involving hyperbolic lattices.

Acknowledgments. The authors would like to thank Yael Karshon and Dusa McDuff for their
interest in this work and for many useful comments and suggestions. Many thanks to Michael
Hutchings for providing us with an early version of [5] and sharing with us his computations for the
ECH capacities of polydiscs. We thank MSRI where part of this work was completed.

2. Embedding balls in symplectic 4-dimensional rational manifolds

2.1. Symplectic embeddings of balls and symplectic blow-ups. Using the correspondence
between ball embeddings and blow-ups, the problem of deciding whether a collection B = tiB(δj) of
k disjoint balls of capacities δj embeds symplectically in M i

µ reduces to the question of understanding

the symplectic cone of the k-fold blow-up of M i
µ (see, for instance, McDuff-Polterovich [15]). Because

the k-fold blow-up of M i
µ is diffeomorphic to CP2 blown-up (k + 1) times, this is in turn equivalent

to understanding the symplectic cone of the rational surfaces CP2# (k + 1)CP2, for k ≥ 1.
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2.2. Reduced classes and symplectic cones of rational surfaces. Given n ≥ 1, let us denote
by Xn := (Xn, ωλ;δ1,...,δn) the n-fold symplectic blow-up of (CP2, ωλ) at n disjoint balls of capacities
δ1, . . . δn. Let {L,E1, · · · , En} be the standard basis of H2(Xn;Z) consisting of the class of a line L,
and the classes Ei, 1 ≤ i ≤ n, of the exceptional divisors. Using Poincaré duality, the cohomology
class of the symplectic form on Xn is identified with λL −

∑
i δiEi while, given any compatible

almost-complex structure J on Xn, the first Chern class c1 := c1(J) ∈ H2(Xn;Z) is identified with
the homology class K := 3L−

∑
iEi.

The intersection product gives H2(Xn;Z) the structure of an odd unimodular lattice of type
(1, n), while H2(Xn;R) becomes an inner product space of signature (1, n). Let P and P+ denote,
respectively, the positive cone and the forward cone in H2(Xn;R):

P := {A ∈ H2(Xn;R) | A 6= 0, and A ·A ≥ 0} ,

P+ :=

{
a0L−

∑
i

aiEi ∈ P | a0 ≥ 0

}
.

Let CK ⊂ H2(Xn;R) be the K-symplectic cone, that is,

CK = {A ∈ H2(Xn;Z) | A = PD[ω] for some ω ∈ ΩK},

where ΩK is the set of orientation-compatible symplectic forms with K as the symplectic canonical
class. Similarly, let EK ⊂ H2(Xn;Z) be the set of symplectic exceptional homology classes, that is,

EK := {E | E · E = −1 and E is represented by some embedded ω-symplectic sphere, ω ∈ ΩK} .

Building on the work of Taubes on Seiberg-Witten and Gromov invariants, T.-J. Li and A.-K. Liu
characterized the symplectic cone of smooth, closed, oriented 4-manifolds with b+ = 1 in terms of
exceptional classes. In the case of Xn, this gives

Theorem 2.1 (see [9], Theorem 3).

CK = {A ∈ P+ | A · E > 0 for all E ∈ EK}.

Since EK is not explicitly known for n ≥ 10, this characterization cannot be used directly to
show that a given class A ∈ P+ belongs to CK . However, the group Diff+ of orientation preserving
diffeomorphisms acts on H2(Xn;Z), and any diffeomorphism preserving K also preserves the sets
EK and CK . Let us write O(1, n) for the group of orthogonal transformations of H2(Xn;Z), D(1, n)
for the image of Diff+ in O(1, n), and DK(1, n) for the subgroup of D(1, n) fixing K. Recall that
if a class A ∈ H2(Xn;Z) of self-intersection ±1 or ±2 is represented by a smooth embedded sphere,
then the reflection about A

rA(B) := B − 2

(
A ·B
A ·A

)
A

belongs to D(1, n). Assume n ≥ 3 and set

α0 = L− E1 − E2 − E3

αi = Ei − Ei+1 , 1 ≤ i ≤ n− 1.
(3)

For n ≥ 3, those classes are represented by smooth embedded spheres, and since αi · αi = −2
and K · αi = 0, the reflections rαi belong to DK(1, n). The reflexion rα0 , classically known as the
Cremona transformation, takes a class (a0 ; a1, . . . , an) to the class

(a0 − d ; a1 − d, a2 − d, a2 − d, a3 − d, a4 . . . , an)

where d = a1 + a2 + a3 − a0, while the reflexion rαi , i ≥ 1, permutes the coefficients ai and ai+1.
The key ingredient to understand the action of DK(1, n) on the symplectic cone CK is the notion

of a reduced class:
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Definition 2.2. Let k ≥ 3. A class A = a0L −
∑
i aiEi is said to be reduced with respect to the

basis {L,E1, . . . , Ek} if a1 ≥ a2 ≥ · · · ≥ ak ≥ 0 and a0 ≥ a1 + a2 + a3.

Theorem 2.3. Assume n ≥ 3.

(1) (see [11], Theorem 3.1) The group D(1, n) is generated by the reflections {rL, rE1 , rα0 , . . . , rαn}.
In particular, it follows that the group DK(1, n) is generated by the reflections {rα0

, . . . , rαn
}.

(2) (see [10], Theorem D and [9], Theorem 1) The group DK(1, n) acts transitively on EK .
(3) (see [21], Proposition 2.2) The orbit of an element A ∈ P under the action of D(1, n)

contains a unique reduced class.
(4) (see [9], Proposition 4.9 (3)) A reduced class A = a0L −

∑
i aiEi belongs to CK if and only

if ai > 0 for all i.

Combining Theorem 2.1 with Theorem 2.3 (2), we have

Corollary 2.4. Let C0 denote the set of reduced classes a0L−
∑
i aiEi with ai > 0.

(1) A class A ∈ P+ belongs to CK if and only if its orbit under DiffK(1, n) only contains classes
A = a0L−

∑
i aiEi with ai > 0.

(2) The set C0 is a fundamental domain of CK under the action of DK(1, n). In particular,

CK = DK(1, n) · C0

2.3. The reduction algorithm. Theorem 2.3 and Corollary 2.4 lead to a simple algorithm to
decide whether a given class in P+ belongs to CK . To simplify notation, let us write (a0 ; a1, . . . , an)
for the class a0L−

∑
i aiEi.

Step 1. Set ` = −1 and pick v0 := (a00 ; a01, . . . , a
0
n) ∈ P+.

Step 2. Increment ` by one. If a`1 ≥ · · · ≥ a`n, set v̂` = v` and go to Step 3. Otherwise, using
reflections rαi

∈ DK(1, n) about αi = Ei − Ei+1, 1 ≤ i ≤ n− 1, permute the coefficients of
v` so that a`1 ≥ a`2 ≥ · · · ≥ a`n and write v̂` for the reordered vector.

Step 3. Let a`n be the last coefficient in v̂`. If a`n < 0, then v` 6∈ CK . Thus v0 6∈ CK and the algorithm
stops.

Step 4. Let d` := a`1 + a`2 + a`3 − a`0. If d` ≤ 0, then the class v̂` is reduced. In that case

– If a`n > 0, then v̂` ∈ CK , hence v0 ∈ CK as well, and the algorithm stops.

– If a`n = 0, then v̂` is in the boundary of CK , hence v0 is in the boundary of CK as well,
and the algorithm stops.

Step 5. The class v̂` has non-negative coefficients but is not reduced. Apply the reflexion rα0
∈

DK(1, n) about α0 = L− E1 − E2 − E3 to obtain the class vector

v`+1 = (a`0 − d` ; a`1 − d`, a`2 − d`, a`3 − d`, a`4, . . . , a`n)

= (2a`0 − a`1 − a`2 − a`3; a`0 − a`2 − a`3, a`0 − a`1 − a`3, a`0 − a`1 − a`2, a`4, . . . , a`n)

= (a`+1
0 ; a`+1

1 , . . . , a`+1
n )

and go back to Step 2.

We claim that the algorithm stops after finitely many iterations. To see this, first note that the
self-intersection of all the vectors v̂` is constant (since every v̂` is obtained from v0 by applying an
element of DK(1, n)). Because v0 ∈ P+, this implies that

v̂` · v̂` = (a`0)2 −
∑
i

(a`i)
2 ≥ 0,

so that |a`0| ≥ |a`i |, for all 1 ≤ i ≤ n. Note also that since a00 ≥ 0, we must have a`0 ≥ 0, for all ` ≥ 0.

This follows from the fact that in Step (4) above, a`+1
0 = 2a`0 − a`1 − a`2 − a`3 < a`0 is negative if and
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only if 2a`0 < a`1 + a`2 + a`3. But since

0 ≤ A ·A = (a`0)2 −
∑
i

(a`i)
2 and (a`1 + a`2 + a`3)2 ≤ 3

(
(a`1)2 + (a`2)2 + (a`3)2

)
,

that would imply

(a`1)2 + (a`2)2 + (a`3)2 ≤ (a`0)2 ≤ 3
4

(
(a`1)2 + (a`2)2 + (a`3)2

)
.

Hence a`+1
0 must be non-negative.

Since the algorithm stops whenever the smallest coefficient of some v̂` is negative, let us suppose
that, starting with some v0 ∈ P+, we obtain an infinite sequence of vectors v̂` with non-negative
coefficients a`0 ≥ a`1 ≥ · · · ≥ a`n ≥ 0. By Corollary 2.4, all the vectors v̂` are in the closure of CK .
Note also that none of the vectors v̂` is reduced, so that d` > 0, for all ` ≥ 0.

Suppose that v0 ∈ CK , that is, all the coefficients a`i are strictly positive. In that case, there exists
a symplectic form ω0 such that [ω0] = v0. The process produces a sequence ω` of symplectic forms
which are, by construction, diffeomorphic to the initial symplectic form ω0 and such that, for at least

one index i ≥ 1, a
(`)
i := 〈[ω`], Ei〉 is a strictly decreasing sequence of positive numbers. By Taubes

results on the equivalence of Seiberg-Witten and Gromov invariants, the Gromov invariant of Ei
only depends on the underlying smooth structure of Xn. Thus, the class Ei contains an embedded
ω`-symplectic sphere whose size is a`i . The diffeomorphism from (Xn, ω`) to (Xn, ω0) carries this
sphere to an embedded symplectic sphere in (Xn, ω0) of size a`i . However, the set of symplectic areas
of exceptional spheres does not have accumulation points, see for instance [8] Lemma 4.1. Thus,
the sequence a`i , being a decreasing sequence of positive numbers that does not have accumulation
points, must be finite.

If v0 is in the boundary of CK , then all v̂` belong to ∂CK and there are integers N ≥ 0 and
2 ≤ m ≤ n− 1 such that, for all ` ≥ N , we have a`m 6= 0 and

v̂` = (a`0 ; a`1, a
`
2, . . . , a

`
m, 0, . . . , 0)

Because v̂` · v̂` ≥ 0 and d` > 0, we must have m ≥ 2. If m = 2, then aN3 = 0, so that a`+1
3 =

a`2 − d` = −d` < 0, which contradicts the fact that a`i ≥ 0, for all ` ≥ 0. Hence, m ≥ 3. The vectors
(a`0 ; a`1, . . . , a

`
m), ` > N , have strictly positive coefficients and thus represent classes in H2(Xm;Z)

which, by Corollary 2.4, must be in CK(Xm). By the previous argument, the sequence v̂` must be
finite.

2.4. Strategy for the computation of wk(M i
µ) and pk(M i

µ). Recall that any rational ruled
4-manifold is, after rescaling, symplectomorphic to either

• the trivial bundle M0
µ := (S2 × S2, ω0

µ), where the symplectic area of the a section S2 × {∗}
is µ ≥ 1 and the area of a fiber {∗} × S2 is 1; or

• the nontrivial bundle M1
µ := (S2 n S2, ω1

µ), where the symplectic area of a section of self-
intersection −1 is µ > 0 and the area of a fiber is 1.

We identify the k-fold blow-up of M0
µ of equal sizes c = c1 = · · · = ck, with CP2 blown up

(k + 1) times endowed with a symplectic form ω0
µ,c which gives area µ + 1 − c to a line and areas

{µ − c, 1 − c, c, . . . , c} to the (k + 1) exceptional divisors. We represent the Poincaré dual of [ω0
µ,c]

by the vector

v0µ,c :=
(
µ+ 1− c ;µ− c, c×(k−1), 1− c

)
∈ H2(Xk+1;R) (4)

Similarly, we identify the k-fold blow-ups of M1
µ of equal sizes c = c1 = · · · = ck, with CP2 blown

up (k + 1) times endowed with a symplectic form ω1
µ,c which gives area µ + 1 to a line and areas
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{µ, c, . . . , c} to the (k + 1) exceptional divisors. The Poincaré dual of [ω1
µ,c] is thus represented by

the vector

v1µ,c :=
(
µ+ 1 ;µ, c×k

)
∈ H2(Xk+1;R) (5)

The existence of an embedding of k disjoint balls of capacity c into M i
µ is then equivalent to viµ,c

belonging to the symplectic cone CK of Xk+1, where K := (3 ; 1×(k+1)). Hence, given k ≥ 8, the
computation of the generalized Gromov widths wk(M0

µ) and of the packing numbers pk(M0
µ) reduces

to finding the largest capacity c > 0 such that

• viµ,c ∈ P+ (i.e., viµ,c · viµ,c ≥ 0);

• the orbit of viµ,c under DK(1, k+ 1) only contains non-negative vectors or, equivalently, the

reduction algorithm applied to viµ,c produces a reduced and non-negative vector.

A posteriori, once one knows the generalized Gromov widths given in Theorems 1.1 and 1.6, one
can easily check that those numbers are the right ones. Indeed, given µ and wk = wk(µ), it is enough
to find two automorphisms A1, A2 ∈ DK(1, k + 1) such that

• A1(vµ,wk
) is non-negative and reduced

• for each ε > 0, A2(vµ,wk+ε) contains a negative coefficient.

This can be done using the reduction algorithm. Our strategy is then to proceed backward: (i) use
the algorithm to find upper bounds wn = wn(µ) for the value of wk, (ii) find the smallest one,
say wn0

, and (iii) show that one gets a nonnegative reduced vector after setting c = wn0
in viµ,c.

Since the algorithm consists in applying elements of DK(1, k+ 1) to the initial vector viµ,c, a simple
dualization gives us an exceptional class E ∈ CK(Xk+1) that defines the obstruction. More precisely,
if A ∈ Dk is the automorphism corresponding to the upper bound wk = wn0 , then

0 = (Avµ,wk
, Ek+1) = (vµ,wk

, A∗Ek+1)

so that A∗Ek+1 is an obstructing exceptional class. Such a class is generally not unique and, in fact,
the reduction process often gives finitely many choices.

3. Embeddings of k ≥ 8 disjoint balls in the trivial bundle M0
µ

This section will be dedicated to proving the results in Theorem 1.1 as well as introducing several
immediate corollaries. As explained in Section 2.4, the computation of the generalized Gromov
widths wk(M0

µ) and of the packing numbers pk(M0
µ) reduces to finding the largest capacity c > 0

such that the vector

v0 := v0µ,c =
(
µ+ 1− c ;µ− c, c×(k−1), 1− c

)
belongs to the closure of the symplectic cone of Xk+1.

The initial step of the reduction algorithm already gives nontrivial results. Indeed, the vector v0
is non-negative only if c ≤ 1, which is equivalent to the fact that the Gromov width is w1(M0

µ) = 1.
This obviously gives an upper bound for wk, and we note that this bound is stronger than the
volume condition whenever µ ≥ k

2 . Now, the vector v0 is ordered only if we suppose c ≥ 1/2. When

0 < c ≤ 1
2 , the reordered vector v̂0 is

v̂0 =
(
µ+ 1− c ;µ− c, 1− c, c×(k−1)

)
,

which is positive and reduced (since its defect is zero). Now, we observe that cvol ≤ 1/2 if and only if
k ≥ 8µ. Hence, wk(M0

µ) = cvol whenever µ ≤ k
8 . That implies we have full packing by k balls for all

µ ∈ [1, k/8] while, for µ ∈ (k/8,∞), we have the lower and upper bounds 1/2 < wk ≤ min{1, cvol}.
Given n ∈ N, let us write

λn = µ+ 1− c− nd0
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where d0 = 2c− 1. Using this notation, we have

v0 =
(
λ0 ;λ0 − 1, ck−1, (1− c)

)
.

Given µ > k/8 and c ∈ (1/2, 1], the vector v0 is ordered, and has defect d0 = 2c− 1 > 0. Applying
a Cremona transformation, we get the vector

v1 =
(
λ1 ;λ1 − 1, c×(k−3), (1− c)×3

)
,

which is ordered if and only if λ1 − 1 = µ + 1 − 3c ≥ c. Assuming v1 ordered, its defect is also
d0 = 2c− 1 > 0, so that we can apply another Cremona move to get

v2 =
(
λ2 ;λ2 − 1, c×(k−5), (1− c)×5

)
provided k ≥ 5. Clearly, we can repeat this process n times to get a vector

vn =
(
λn ;λn − 1, c×(k−2n), (1− c)×(2n+1)

)
,

as long as 2n ≤ k and λn−1 − 1 = µ+ 1− c− (n− 1)d0 ≥ c.

Lemma 3.1. Given k ≥ 4, let us write k = 2p or k = 2p+ 1 depending on the parity of k. Choose
any µ ≥ 1 and c ∈ (1/2, cvol]. Then the following holds:

• If k is even, the vector vp−3 is ordered.
• If k is odd, the vector vp−2 is ordered.

Proof. Let k = 2p. Then the vector vp−3 is ordered if and only if λp−3 − 1 ≥ c, which is equivalent
to

µ+ p− 3

2(p− 2)
≥ c.

Clearly, it is sufficient to consider the case c = cvol for which the previous inequality becomes

µ+ p− 3

2(p− 2)
≥
√
µ

p
.

This is equivalent to f(µ) = p(µ + p − 3)2 − 4µ(p − 2)2 ≥ 0, which is a quadratic polynomial in µ
with positive leading coefficient, whose roots are

p2 − 5p+ 8± 4(p− 2)
√

4− p
p

.

So, for p ≥ 5, there are no real roots, while in the case p = 4, we have a double root at µ = 1.

Similarly, for k = 2p+ 1, the vector vp−2 is ordered if and only if

µ+ p− 2

2(p− 1)
≥ c.

For c = cvol, we get

µ+ p− 2

2(p− 1)
≥
√

2µ

2p+ 1
,

which is equivalent to f(µ) = (2p + 1)(µ + p − 2)2 − 8µ(p − 1)2 ≥ 0. Again, this is a quadratic
polynomial in µ with positive leading coefficient, whose roots are

2p2 − 5p+ 6± (p− 1)
√

8(4− p)
2p+ 1

So, for p ≥ 5, there are no real roots while, in the case p = 4, we have a double root at µ = 2. �
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Remark 3.2. Observe that the vector vi+1 is obtained from vi by applying a Cremona transformation
followed by the permutation R := (1, 2, k + 1, k + 2, 3, . . . , k). For convenience, we denote the
corresponding element of DK(1, k + 1) by RC. We can thus write vi = (RC)iv0.

We now differentiate our discussion depending on whether k is odd or even.

3.1. The odd case k = 2p+ 1. This subsection will provide the proof of part i) of Theorem 1.1.
By Lemma 3.1, we know that the vector

vp−2 =
(
λp−2 ;λp−2 − 1, c×4, (1− c)×(2p−3)

)
is ordered whenever k ≥ 4, µ ≥ 1, and c ∈ (1/2, cvol]. So, we can perform a Cremona move to get

vp−1 =
(
λp−1 ;λp−1 − 1, c×2, (1− c)×(2p−1)

)
We now consider two cases depending on whether vp−1 is ordered or not.

Case 1: Suppose vp−1 is not ordered, that is, λp−1 − 1 < c. Since λp−2 − 1 ≥ c, we must have

(λp−1 − 1)− (1− c) = λp−2 − (2c− 1)− 2 + c = (λp−2 − 1)− c ≥ 0,

so that

v̂p−1 =
(
λp−1 ; c×2, λp−1 − 1, (1− c)×(2p−1)

)
is ordered with defect dp−1 = 2c− 1 > 0. Performing another Cremona move gives

v̂p =
(
λp ; (1− c)×(2p+1), λp − 1

)
.

Since dp = 3(1 − c) − λp = 3(1 − c) − λp−1 + 2c − 1 = (1 − c) − (λp−1 − 1) ≤ 0, the vector v̂p is
reduced. It is positive if and only if λp − 1 ≥ 0. Solving for c in the equation λp − 1 ≥ 0, we obtain
a new upper bound for the generalized width w2p+1, namely

w2p+1 ≤
µ+ p

2p+ 1
.

We note that this bound is stronger than the previous bound w2p+1 ≤ 1 only when µ ≤ p+ 1, while
it is stronger than the volume condition whenever µ ∈ [α−, α+], where α± = p+ 1±

√
2p+ 1.

Case 2: Suppose that vp−1 is ordered. Performing a Cremona move yields

v̂p =
(
λp ;λp − 1, (1− c)×(2p+1)

)
with defect

dp = 2(1− c)− 1 = 1− 2c < 0.

Therefore, v̂p is reduced and positive, so that there is an embedding of 2p+1 balls of size c into M0
µ.

That occurs unless λp−1 − 1 < c. Solving for c in the equation λp−1 − 1 ≤ c, we get a new lower
bound for w2p+1, namely

µ+ p− 1

2p
≤ w2p+1.

We therefore have:

Proposition 3.3. Let k = 2p+ 1 ≥ 9 and consider µ ≥ 1. The (2p+ 1)th generalized Gromov width
of M0

µ is

w2p+1(M0
µ) =


cvol if µ ∈

[
1, p+ 1−

√
2p+ 1

)
µ+p
2p+1 if µ ∈

[
p+ 1−

√
2p+ 1, p+ 1

)
1 if µ ∈ [p+ 1, ∞)
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Proof. The previous discussion shows that w2p+1(M0
µ) = min

{
cvol, 1,

µ+p
2p+1

}
. �

An immediate consequence is the following

Corollary 3.4. Let k = 2p+ 1 ≥ 9 and consider µ ≥ 1. The (2p+ 1)th packing number of M0
µ is

p2p+1(M0
µ) =


1 if µ ∈

[
1, p+ 1−

√
2p+ 1

)
(µ+p)2

2µ(2p+1) if µ ∈
[
p+ 1−

√
2p+ 1, p+ 1

)
2p+1
2µ if µ ∈ [p+ 1, ∞)

In particular, the odd stability number of M0
µ is Nodd(µ) = 2p+ 1 where p =

⌈
µ+
√

2µ
⌉

Proof. The stability number is obtained by solving for p in the equation cvol = µ+p
2p+1 . �

As explained in Section 2.4, we can combine the above results with Remark 3.2 to find obstructing
exceptional classes in H2(X2p+2;Z). These results can be easily translated into curves in the 2p+ 1-
fold blow-up of M0

µ as well by using the identification of the two spaces.

Corollary 3.5. The exceptional classes in H2(X2p+2;Z) that give the obstructions to the embedding
of 2p+ 1 balls into M0

µ are of type(
1 ; 1×2, 0×(2p−1)

)
when µ ∈ [p+ 1, ∞) ;(

p ; p− 1, 1×2p, 0
)

when µ ∈
[
p+ 1−

√
2p+ 1, p+ 1

)
.

For µ ∈
[
1, p+ 1−

√
2p+ 1

)
, the only obstruction is given by the volume condition.

Proof. On each interval, the reduction algorithm defines an automorphism φ ∈ DK(1, k + 1) as a
composition of Cremona moves and reorderings. The obstructing exceptional class is then given by
φ∗Ek+1. In the present cases, the automorphism is

φ =

{
(RC)p for µ ∈ [p+ 1, ∞)

(RC)(SC)(RC)p−2 for µ ∈
[
p+ 1−

√
2p+ 1, p+ 1

)
where R and C are the automorphisms defined in Remark 3.2, and where S corresponds to the
permutation (1, 4, 2, 3, 5, . . . , k + 2). �

3.2. The even case k = 2p. This subsection is dedicated to proving the following proposition,
which is just a more precise formulation of part (ii) in Theorem 1.1

Proposition 3.6. There exist two sequences an and γn satisfying the recurrence relations

an+3 = (p− 1)an+2 − (p− 1)an+1 + an (6)

γn+3 = (p− 1)γn+2 − (p− 1)γn+1 + γn (7)

with initial conditions
a0 = 0, a1 = 1, a2 = (p− 1).

γ0 = 1, γ1 = p, γ2 = (p− 1)2

so that the generalized Gromov width w2p(M
0
µ) is given as a piecewise linear function by

w2p(M
0
µ) =


cvol =

√
µ
p if µ ∈

[
1,

p−2+
√
p2−4p

2

)
an−1µ+an

2(an+an−1)−1 if µ ∈
[
γn
γn−1

, γn−1

γn−2

)
, n ≥ 2

1 if µ ∈ [p, ∞)
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The greater part of this subsection is dedicated to the proof of this result. The computations of
the obstructing classes, as well as the stability numbers are immediate consequences of the whole
argument and thus only appear at the end of this subsection.

To start with, we know from Lemma 3.1, that the vector

vp−3 =
(
λp−3 ;λp−3 − 1, c×5, (1− c)×(2p−5)

)
is ordered whenever k ≥ 4, µ ≥ 1, and c ∈ (1/2,min{cvol, 1}]. Thus, we can perform a Cremona
move to get

vp−2 =
(
λp−2 ;λp−2 − 1, c×3, (1− c)×(2p−3)

)
If vp−2 is ordered, then another Cremona move gives

vp−1 =
(
λp−1 ;λp−1 − 1, c×1, (1− c)×(2p−1)

)
,

which is not necessarily ordered, but which is non-negative and whose defect is always zero. The
vector vp−1 is thus reduced, and we conclude that the (2p)th generalized Gromov width is w2p(M

0
µ) =

min{cvol, 1}.
If vp−2 is not ordered, then

v̂p−2 =
(
λp−2 ; c×3, λp−2 − 1, (1− c)×(2p−3)

)
(8)

is ordered with defect d′ := 3c−λp−2 > d0 = 2c−1 > 0. Performing a Cremona move and reordering
the resulting vector gives

v̂
(2)
1 :=

(
λp−2 − d′ ;λp−2 − 1, (1− c)×(2p−3), (c− d′)×3

)
,

which is of the same form as v1. This new vector is non-negative if and only if c − d′ ≥ 0. Since
d′ > d0, we have 1−c = c−d0 > c−d′, so that c−d′ is a new upper bound for w2p(M

0
µ). The defect

of v̂
(2)
1 is d

(2)
0 = d′ − d0 > 0, so the vector is not reduced and we can perform a Cremona move that

results in a vector v
(2)
2 of the same form as v2. We can repeat this process until we reach the vector

v
(2)
p−2 =

(
λp−2 − d′ − (p− 3)d

(2)
0 ;λp−2 − 1− (p− 3)d

(2)
0 , (1− c)×3, (c− d′)×(2p−3)

)
,

which is of the same type as vp−2. Again, we have the following alternative: if v
(2)
p−2 is non-negative

and ordered, the algorithm gives a reduced and non-negative vector after one more step. Otherwise,

the algorithm enters a new cycle that starts with a vector v
(3)
1 of the same form as v1. We claim

that we get all the possible obstructions to the embedding of k = 2p balls in M0
µ by iterating this

simple procedure.

For consistency, let us write v
(1)
p−2 for the vector v̂p−2 obtained in (8). We now define

v
(i)
p−2 =

(
Ai ;B3

i , Ci, D
×(2p−3)
i

)
, i = 1, 2

Since Ai = Bi +Ci +Di, those vectors are completely determined by the triples (Bi, Ci, Di). Using

this shorthand notation, the automorphism of DK(1, k + 1) that takes the vector v
(1)
p−2 to v

(2)
p−2 is

represented by the matrix

T =

 0 0 1
−p+ 3 p− 2 0
−1 1 1


of determinant one. For each integer n ≥ 0, we define

Vn+1 := (Bn+1, Cn+1, Dn+1) = Tn(B1, C1, D1) (9)



14 Packing numbers

The sequence Vn can be understood by looking at the Jordan normal form of T . When p = 4, the
matrix T has a single eigenvalue 1 and can be written as E ·∆ · E−1 where

∆ =

1 1 0
0 1 1
0 0 1

 and E =

1 0 0
1 1 1
1 1 0

 .

Hence, the orbit of (B1, C1, D1) is contained in a plane on which T acts as a shear map.
For p ≥ 5, we can write T = E ·∆ · E−1 where

∆ =

1 0 0
0 λ 0

0 0 λ

 and E =

1 λ λ
1 p− 3 p− 3
1 1 1

 ,

and where

λ =
p− 2 +

√
p2 − 4p

2
, λ =

p− 2−
√
p2 − 4p

2
.

Since λλ = 1, the orbit of a point (B,C,D) ∈ R3 under repeated multiplication by ∆ is contained
in the standard hyperbola

{yz = CD, x = B} .
It follows that the orbit of (B1, C1, D1) under repeated multiplication by T traces a hyperbola
contained in the plane generated by the eigenvectors (λ, p− 3, 1) and (λ, p− 3, 1).

For all p ≥ 4, the orbit of an initial triple (B1, C1, D1) may be reduced to a two dimensional
system by the change of variables

Rn = Bn − Cn and Sn = Cn −Dn.

In particular, R1 and S1 are then given by

R1 = 1− µ+ (p− 1)(2c− 1) and S1 = µ− 1− (p− 2)(2c− 1),

and we can write (
Rn+1

Sn+1

)
= M

(
Rn
Sn

)
where M is the matrix

M =

(
(p− 3) −1
−(p− 4) 1

)
(10)

with eigenvalues λ and λ. When p ≥ 5, the orbit of a general point (R1, S1) under repeated
multiplication by M lies along a hyperbola whose asymptotes extend in the eigendirections of λ
and λ. A quick computation gives eigenvectors (1, λ− 1) and

(
1, λ− 1

)
. Note that the asymptote

S = (λ−1)R, corresponding to the eigenvalue λ, has positive slope, while the asymptote S = (λ−1)R
has negative slope.

Lemma 3.7. Given p ≥ 4 and µ ≥ 1, let c ∈ (1/2, cvol]. Then the initial point (R1(c, µ), S1(c, µ))
sits in a convex region determined by a parabola tangent to the lines S = (λ−1)R and S = (λ−1)R.
The orbit of the point satisfies Sn > 0 for all n. Moreover,

• if R1 ≤ 0 then Rn ≤ 0 for all n,
• if R1 > 0 then there exists N > 0 such that Rn ≤ 0 if and only if n ≥ N .

Proof. Assume first p ≥ 5. Then all the points (R(c, µ), S(c, µ)) for which c ≤ cvol =
√
µ/p sit in

the convex region determined by the parametrized parabola (R(c), S(c)) :=
(
R(c, c2p), S(c, c2p)

)
,

see Figure 1 below. All is left to show is the tangency of this parabola to the lines S = (λ − 1)R
and S = (λ− 1)R.
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Let us show the tangency to S = (λ− 1)R; the other one is similar. The value cλ for which the
slope of the parabola is λ− 1 at the point (R(cλ), S(cλ)) is

cλ =
(p− 1)λ− 1

pλ
= cvol(λ) :=

√
λ/p (11)

and it is immediate to check that the point (R(cλ), S(cλ)) is on the line S(c) − (λ − 1)R(c) = 0,
that is

S(cλ)− (λ− 1)R(cλ) =
λ2 + (p− 2)λ− 1

pλ
= 0. (12)

This proves the first assertion. To prove the second statement, we observe that if the point in the
upper plane lies above the two asymptotes, so does its hyperbolic orbit. Thus Sn > 0. On the
other hand if the point (R1, S1) is in the first quadrant, then its corresponding hyperbola intersects
the vertical axis. Since the orbit does not have accumulation points, that finishes the proof in the
case p ≥ 5. When p = 4, the matrix (10) becomes

M =

(
1 −1
0 1

)
, (13)

which shears the points in the first quadrant horizontally toward the left. The conclusion follows
readily. �

Figure 1. The volume curve (R(c, c2p), S(c, c2p)) (solid red curve), eigendirec-
tions, and an orbit under iterates of M (dashed blue curve) are graphed for the
value p = 5. In general, the intersections of the volume curve with the vertical
axis occur at c = 1 and c = (p − 2)/p which correspond, respectively, to µ = p
and µ = (p − 2)2/p. The tangency point with positive slope occurs at cλ, which
corresponds to µ = λ. We have packing obstructions for points on the volume curve
between µ = p and µ = λ, while we have full packings for points on the volume
curve between µ = λ and µ = 1 ≥ (p− 2)2/p.

For the initial vector v0 = (µ + 1 − c ;µ − c, c×(2p−1), 1 − c) to belong to the closure of the
symplectic cone, it is necessary that all triples (Bn, Cn, Dn) be non-negative. Before we investigate
the positivity of these coordinates using the two dimensional picture, we will take a short necessary
excursion into the standard theory of recurrent sequences. By the Cayley-Hamilton theorem, the
vectors Vi = (Bi, Ci, Di) must satisfy the recurrence relation defined by the characteristic polynomial
of T , namely

Vn+3 = (p− 1)Vn+2 − (p− 1)Vn+1 + Vn (14)
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It follows that any linear combination of the coefficients Bi, Ci, and Di satisfies the same recurrence
as well. In particular, we have

Dn+3 = (p− 1)Dn+2 − (p− 1)Dn+1 +Dn

with initial conditions

D0 = 0 D1 = 1− c, D2 = (p+ µ− 1) + (1− 2p)c, D3 = (p− 1)(p+ µ− 2) + (−2p2 + 4p− 1)c.

In fact, since the matrix T is unimodular and has eigenvalues 1, λ, λ, any affine combination of
sequences that satisfy the relation will satisfy it too. One more subtle relation is the following
lemma:

Lemma 3.8. If two sequences xn, yn satisfy a recurrence of type (14) then the sequence

φn = xnyn − xn+n0
yn−n0

(15)

satisfy the same recurrence.

Proof. We first consider the case p ≥ 5. We will use the shorthand [λ]n for the vectors [λn, λ n, 1] =
[λn, λ−n, 1]. Since the three eigenvalues 1, λ, and λ are distinct, a sequence yn satisfies the recur-
rence (14) if, and only if yn = [d] · [λ]n for some row vector [d] = [d1, d2, d3]. Then the sequence

φn = ([d] · [λ]n) ([d′] · [λ]n)−
(
[d] · [λ]n+n0

) (
[d′] · [λ]n−n0

)
Note that the terms containing the powers λ2n and λ−2n will cancel out; one can easily check

that an expansion of the rest of the expression will be a new linear combination

φn = [d′′] · [λ]n

and thus verifies the recurrence (14).
When p = 4, the characteristic polynomial of the recurrence has a single root of order three. In

that case, the general theory of recurrences implies that a sequence satisfies (14) if, and only if, it is
given by a quadratic polynomial in n. The lemma can be easily verified. �

Let us write now Dn = αn−βnc, the coefficients αn and βn must satisfy the recurrence (14) with
initial conditions

α1 = 1, α2 = p+ µ− 1, α3 = (p− 1)(p+ µ− 2),

and
β1 = 1, β2 = 2p− 1, β3 = 2p2 − 4p+ 1.

Thus all components Dn(c, µ) depend linearly on c so there is a sequence of positive numbers
wn, n ≥ 1 such that Dn(c, µ) > 0 if and only if c ≤ wn. The sequence wn is obtained as follows:

c ≤ wn =
αn
βn
, (16)

with the first initial few given by

w1 = 1, w2 =
p+ µ− 1

2p− 1
, w3 =

(p− 1)(p+ µ− 2)

2p2 − 4p+ 1
.

The sequence {wn} satisfies several identities. For our purpose, one of the most useful is the follow-
ing alternative definition whose equivalence with (16) can be easily checked by an easy induction
argument:

wn(µ) =
an + an−1µ

2(an + an−1)− 1
. (17)

where {an} is an increasing sequence that satisfies the recurrence (14) with initial conditions

a0 = 0, a1 = 1, a2 = p− 1, a3 = (p− 1)(p− 2)
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The following lemma translates the results obtained by studying the two dimensional linear system
M in the variables (R,S) into conclusions about the three dimensional linear system T in the
variables (B,C,D).

Lemma 3.9. Fix p ≥ 4, µ ≥ 1 and c so that 1/2 ≤ c ≤ cvol. Additionally, restrict to only those
pairs (c, µ) for which (B1, C1, D1) is in the first octant. The following facts hold:

(1) The orbit (Bn, Cn, Dn) of (B1, C1, D1) remains in the first octant as long as the coordinate
Dn remains positive. Thus, the vector vp−2(c, µ) is in the symplectic cone CK if and only if
Dn(c, µ) ≥ 0 for all n ∈ N.

(2) The sequence Dn has an almost monotone behavior, that is, only one of the following state-
ments holds:
• The sequences Dn(c, µ) and wn(µ) are strictly increasing. Additionally, cvol(µ) ≤ wn(µ)

for all n ∈ N
• There exist a natural number N > 1 such that Dn(c, µ) and wn(µ) are decreasing for
n ≤ N and increasing for n ≥ N .

Proof. The proofs are immediate. By Lemma 3.7 Sn = Cn −Dn is always positive. It immediately
follows that Dn > 0 implies Cn > 0. Moreover, since Bn = Dn−1, it immediately follows that
Bn > 0.

For part (2), recall that the volume condition implies S1 > 0 and D2 = D1−(B1−C1) = D1−R1.
In the case that R1 > 0, using Lemma 3.7 again, there exists N > 0 such that Rn ≤ 0 if and

only if n ≥ N . Since Dn+1 = Dn −Rn, the sequence Dn is decreasing for n ≤ N and increasing for
n ≥ N . If R1 ≤ 0 then as explained in the proof of Lemma 3.7 the orbit (Rn, Sn) approaches the
asymptote S = (λ− 1)R in the second quadrant, hence Rn remains negative for all n. This implies
that Dn is always increasing.

Clearly, wn(µ) has the same behavior as the sequences Dn(c, µ). Moreover, in the case when
D1 < 0, since the sequence wn(µ) is increasing, it is sufficient to show that cvol ≤ w1 = 1 which is
clear. �

We can now state the main result of this section, namely

Corollary 3.10. The (2p)th generalized Gromov width of the trivial bundle M0
µ is

w2p

(
M0
µ

)
= min

i∈N
{cvol, wi(µ)}

where the sequence wi has at most one minimum.

Proof. Let us first assume that the sequence {wn(µ)} attains a minimum at n = N > 1. From
Lemma 3.9, that minimum is positive, and setting c = wN (µ) in the initial vector

v0 =
(
µ+ 1− c ;µ− c, c×(2p−1), 1− c

)
the algorithm produces a sequence of vectors

v
(n)
p−2 =

(
An ;B3

n, Cn, D
×(2p−3)
n

)
which, by Lemma 3.9, are all nonnegative. For all n ≤ N those vectors are ordered since Rn =
Bn −Cn > 0. However, for n > N , we have Rn = Bn −Cn < 0, which shows that, after reordering,

v
(n)
p−2 becomes

v̂
(N)
p−2 =

(
Ai ;Ci, B

3
i , D

×(2p−3)
i

)
Applying a Cremona move then yields a reduced, nonegative vector. Consequently, w2p(µ) ≥ wN (µ).
Since, by construction, each wn(µ) gives an upper bound on the width w2p(µ), we conclude that
w2p(µ) = wN (µ).
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If the sequence {wi(µ)} is increasing, then cvol < wi(µ) for all i ≥ 1. In particular, µ must belong
to the interval [1, λ]. Setting c = cvol(µ) in v0, Lemma 3.9 shows that the algorithm still produces
a sequence of nonnegative vectors

v
(n)
p−2 =

(
An ;B3

n, Cn, D
×(2p−3)
n

)
As before, those vectors are ordered until Rn = Bn−Cn < 0. Since R1 ≥ 0 whenever µ ≥ (p−2)2/p,
and that 1 ≥ (p− 2)2/p for p ≥ 4, Lemma 3.9 shows that there exists N ≥ 1 such that Rn < 0 for
all n > N . As in the previous case, this implies that the algorithm produces a reduced vector after
finitely many steps. Therefore, w2p(µ) = cvol. �

In order to write w2p(µ) as a piecewise linear function, our next goal is to find an optimal interval
In ⊂ [1,∞) on which wn(µ) is the minimum in the sequence {wi(µ)}.

Lemma 3.11. Let p ≥ 4 be fixed. Then there exist a sequence {γn} given by

γ−1 = 0, γ0 = 1, γ1 = p

γn+3 = (p− 1)γn+2 − (p− 1)γn+1 + γn (18)

such that

wn+1 ≤ wn ⇐⇒ µ ≤ γn
γn−1

.

Proof. For ease of writing we will use the notation βn = 2(an−1 + an) − 1 which was previously

introduced. Notice that wn+1 ≤ wn is equivalent with an+1+anµ
βn+1

≤ an+an−1µ
βn

. This, in turn,

translates into

µ ≤ anβn+1 − an+1βn
anβn − an−1βn+1

(19)

We can prove, by using the Lemma 3.8 twice, that both the numerator sequence and denominator
sequence satisfy the recurrence (14). We will then define

γn := anβn+1 − an+1βn

We leave it to the reader to check that the initial condition are those listed in the statement.
For the numerator, use Lemma 3.8 by taking xn = an, yn = βn+1 and n0 = −1 and obtain that

γn satisfies the recurrence (18).
For the denominator, the same Lemma 3.8 with xn = an, yn = βn and n0 = 1 yields that

the sequence made with the numerators in (19) satisfies the recurrence as well. To show that the
denominator is just the numerator sequences with an index shift of 1 it is sufficient to verify this for
n = 1, 2, 3 using the given initial conditions for an; we leave this as an exercise. �

The sequence of quotients
(

γn
γn−1

)
n∈N

is monotone decreasing and converges to λ. The following

computational lemma will be used both for the next result as well as in Chapter 5.

Lemma 3.12.
(an + an−1)2

p
− an + an−1

p
= anan−1. (20)

β2
n = 4panan−1 + 1. (21)
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Proof. To see how this holds first note that from the recurrence (14) for the sequences an, βn, γn we
obtain the general formulae

an =
1

4− p
(−1 +

p+
√
p2 − 4p

2p
λn +

p−
√
p2 − 4p

2p
λ
n

βn =
1

4− p
(−p+ 2λn + 2λ

n
)

γn =
1

4− p
(−2 + λn+1 + λ

n+1
)

Using this equations as well as the fact that λλ = 1 one can verify by a straightforward but lengthy
computation the relation (21). The relation (20) is just an algebraic reformulation of relation (21)
obtained by completing the square. Finally, we should point out that in the case p = 4, the sequences
are easy quadratic polynomials, namely an = n2, βn = (2n − 1)2, γ = (n + 1)2 and the relations
above are easily verifiable. �

Lemma 3.13. Let p ≥ 4 and n ≥ 0 be a fixed natural numbers. Then

(1)

wn(µ) = min
i∈N
{wi(µ)} ⇐⇒ µ ∈

[
γn
γn−1

,
γn−1
γn−2

]
(2)

wn(µ) < cvol(µ) ⇐⇒ µ ∈
[
γn
γn−1

,
γn−1
γn−2

]
Proof. The first statement is an easy combination of Lemma 3.9 and Lemma 3.11. For the second

part note that the relation is equivalent with an+1+anµ
βn+1

≤
√

µ
p if and only if µ ∈

[
γn
γn−1

, γn−1

γn−2

]
. Thus

is sufficient to verify that γn
γn−1

and γn−1

γn−2
are the two roots of the quadratic equation.

(an + an−1µ)2

β2
n

=
µ

p
(22)

But using the identity (21), the two roots of this equation are of the form (βn±1)2
4pa2n−1

. We claim that

the general formulae for an, βn, γn can be used to verify the relations

(βn + 1)2γn−2 = 4pγn−1a
2
n−1, (βn − 1)2γn−1 = 4pγna

2
n−1, (23)

We will omit the computation and simply observe that the two presentations of the roots are equal.
�

Remark 3.14. The automorphism φn produced by the reduction algorithm when µ ∈ In is given by

φn :=
[
BCA(RC)p−3

]n−1
RC (24)

where R and C are defined in Remark 3.14 and where A and B are the permutation matrices

A = (1 ; 5, 2, 3, 4, 6, . . . , k + 2) B = (1 ; k, k + 1, k + 2, 5, . . . , k − 1)
G
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Remark 3.15. The piecewise linear function w2p(µ) approximates cvol(µ) from below on the interval
(λ,∞). Each function wn(µ) defines a line in the RS plane, namely (R(µ, wn(µ)), S(µ, wn(µ)).
That line intersects the volume curve in two points. Any choice of a point in the region delimited
by the volume curve and that line yields a vector v0 outside the symplectic cone. Each point in the
region bounded by the axis R = 0, the lines wn, and the portion of the volume curve between µ = 1
and µ = λ gives, after reduction, a nonnegative reduced vector, see Figure 2 below.

G

Figure 2. The volume curve (R(c, c2p), S(c, c2p)) (solid red curve), together with
the lines traced by w1(µ) = 1 (orange), w2(µ) (blue), and w3(µ) (green) in the RS
plane. The piecewise linear function w2p(µ) approximates cvol(µ) from below on the
interval (λ,∞).

Observe that Proposition 3.6 follows as an immediate consequence of Corollary 3.10 and Corol-
lary 3.13. Moreover, the computations of the packing numbers and of the stability numbers are easy
consequences of Corollary 3.10.

Corollary 3.16. Let k = 2p ≥ 8 and consider µ ≥ 1. Then the kth packing numbers of M0
µ are

p2p(M
0
µ) =


1 if µ ∈

[
1,

p−2+
√
p2−4p

2

)
p
µ

(an−1µ+an)
2

(2(an+an−1)−1)2 if µ ∈
[
γn
γn−1

, γn−1

γn−2

)
, n ≥ 2

p
µ if µ ∈ [p, ∞)

In particular, the even stability number of M0
µ is Neven(M0

µ) = 2
⌈
µ+ 2 + 1

µ

⌉
.

Proof. The stability number Neven(M0
µ) is obtained by solving for p in the equation cvol(µ) = λ. �

Combining the above results with the Remark 3.14 and the strategy presented in Section 2.4, we
can present the obstruction curves for this case as well:

Corollary 3.17. Using our identification of the k-fold blow-up of M0
µ with Xk+1, a set of exceptional

classes in H2(X2p+2;Z) giving the obstructions to the embedding of 2p balls into M0
µ is(

1 ; 1×2, 0×(2p)
)

when µ ∈ [p, ∞) ;(
dn ; zn, yn, x

×(2p−2)
n , tn

)
when µ ∈

[
γn
γn−1

,
γn−1
γn−2

]
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where the coefficients are given recursively in terms of the sequence {an} by

xn =
2(an + an−1)− 1 + (−1)n

2p

dn = an + an−1 − xn , zn = an − xn
yn = xn − (−1)n , tn = an−1 − xn

For µ ∈ [1, λ), the only obstruction is given by the volume condition.

Proof. On each interval In the reduction algorithm defines an automorphism φn ∈ DK(1, 2p+1) such
that φ∗nEk+1 is an obstructing exceptional class. From the description of φn given in Remark 3.14,
one can see that those classes must be of the form

En :=
(
dn ; zn, yn, x

×(2p−2)
n , tn

)
In order to prove that the formulae for the coefficients given above yield obstructing exceptional
classes, we only need to check that (i) En · En = −1, (ii) K · En = 1, and (iii) v0 · En = Dn(µ, c).
Indeed, we have

En · En = d2n − z2n − y2n − (2p− 2)x2n − t2n
= 2anan−1 − 2px2n + 2xn(−1)n − 1

= 2anan−1 −
(2(an + an−1)− 1)

2
+ 1

2p
− 1

= 2

(
anan−1 −

(an + an−1)2

p
+

(an + an−1)

p

)
− 1

= −1

where the last equality follows from Lemma 3.12. Similarly,

K · En = 3dn − zn − yn − (2p− 2)xn − tn
= 2(an + an−1)− 2p xn + (−1)n

= 2(an + an−1)− (2(an + an−1)− 1 + (−1)n) + (−1)n

= 1

and

v0 · En = (µ+ 1− c)dn − (µ− c)zn − cyn − c(2p− 2)xn − (1− c)tn
= µ(dn − zn) + (zn − yn − (2p− 2)xn + tn − dn)c+ (dn − tn)

= an−1µ+ an − (2 (an + an−1)− 1) c

= Dn(µ, c)

�

Remark 3.18. To illustrate the previous corollary, the obstructing classes correponding to the inter-
vals I2, I3, and I4 are of types(

p− 1 ; p− 2, 0, 1×(2p−2), 0
)
,
(
p2 − 3p+ 3 ; (p− 2)2, p− 1, (p− 2)×(2p−2), 1

)
(

(p− 2)2 + (p− 2)3 ; (p− 1)(p− 2)(p− 3), (p− 1)(p− 3),
(
(p− 2)2

)×(2p−2)
, p− 2

)
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Remark 3.19. Note that the arguments in Corollary 3.17 explain why we wrote the functions wn(µ)
by the formula (17). Namely, the sequence {an} establishes a direct connection between the bounds
wn(µ) and Biran’s result (1) presented in terms of the Diophantine equations (2). As expected, a
consequence of finding obstructing classes that give the packing numbers is that we can provide the
solutions for the Diophantine minimizing problem described in (2). When k is odd, the relation
between the generalized Gromov widths and the Diophantine equations is particularly easy to see.
Indeed, for a fixed k = 2p + 1, and any n ≥ 2, let us take n1 = 1 and n2 = p. Then the
Diophantine equations (2) have solutions mi = 1, i = 1, 2p + 1. These solutions correspond exactly
to the coefficients of our obstructing curves from Corollary 3.5 when translated back to the base of
the homology of S2 × S2. Thus our results could be interpreted as providing the infimum from the
relation (1) without going through extremely difficult task of solving all other possible Diophantine
equation involved. We should also remark that similar solutions can be provided for all other cases
that we discuss in the paper.

Remark 3.20. By construction, the coefficients of dn, zn, yn, xn, and tn must verify a recurrence of
order at most 2p + 2. It can be shown that the generic coefficient xn satisfies the recurrence of
order 4

X4 − (p− 2)X3 + (p− 2)X − 1

For p odd, all the other coefficients also satisfy that recurrence, while for p even, the coefficients
dn, zn, yn, and tn satisfy the recurrence of order p+ 4

Xp+4 − (p− 1)Xp+3 + (p− 1)Xp+2 −Xp+1 +X3 − (p− 1)X2 + (p− 1)X − 1

4. Embeddings of k ≥ 8 disjoint balls in the non-trivial bundle M1
µ

This section is dedicated to providing the proofs of Theorem 1.6 and its immediate corollaries.
As explained in Section 2.4, given k ≥ 8, and µ > 0, our goal is to find the largest capacity c for
which the vector v0 =

(
µ+ 1 ;µ, c×k

)
belongs to the closure of the symplectic cone. As before, the

volume condition gives an upper bound on wk, namely

wk ≤ cvol =

√
2µ+ 1

k

Because µ can take values in (0, 1), we cannot assume c ≤ µ, so that v0 may not be ordered.

Lemma 4.1. Let k ≥ 8 and suppose wk(µ) ≥ µ. Then µ ≤ 1/2. Consequently, for µ ≥ 1/2, we can
assume c ≤ wk ≤ µ.

Proof. The inequality wk(µ) ≥ µ implies that cvol ≥ µ, which is equivalent to µ ∈
(

0, 1+
√
k+1
k

)
.

Now, 1+
√
k+1
k is a decreasing function of k that takes the value 1/2 at k = 8. �

Assuming µ ≥ 1/2, the vector v0 is ordered and positive, with defect d0 = 2c − 1, so that v0
is reduced whenever c ≤ 1/2. Consequently, we have the lower bound wk ≥ 1/2. We note, in
particular, that for µ = 1/2 and k = 8, we have cvol = 1/2 = µ, which shows that

w8(1/2) = 1/2

For c > 1/2, applying a sequence of Cremona moves and reorderings leads to vectors vn of the form

vn =
(
µ+ 1− nd0 ;µ− nd0, c×(k−2n), (1− c)×(2n)

)
Lemma 4.2. Given k ≥ 8, let write k = 2p or k = 2p+ 1 depending on the parity of k. Choose any
µ ≥ 1/2 and c ∈ (1/2,min{1, cvol, µ}]. Then the following holds:

• If k ≥ 9, then the vector vp−2 is ordered and positive.
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• If k = 8, the vector v2 is ordered and positive whenever µ ≥ 7
4 .

Proof. The vector vp−2 is ordered if and only if µ − (p − 2)(2c − 1) ≥ c. Since we must have

c ≤ cvol =
√

(2µ+ 1)/k, it is sufficient to assume c = cvol, in which case we get

f(µ) := k(µ+ p− 2)2 − (2µ+ 1)(2p− 3)2 ≥ 0

When k = 2p+ 1 is odd, the discriminant of this polynomial is 2(7− 2p), so that f has no real roots
whenever p ≥ 4 and hence must be positive. When k = 2p the discriminant is 2(9 − 2p), showing
that f has real roots only for p = 4, that is, for k = 8. In that case, the roots are {1/2, 7/4}. �

Now let assume µ ∈ (0, 1/2). As before, the vector v0 = (µ + 1 ;µ, c×k) is ordered only if µ ≥ c,
in which case its defect is 2c− 1. Hence, v0 is positive and reduced whenever 0 < c < µ ≤ 1/2. On
the other hand, when c > µ, the reordering of v0 gives the vector v̂0 = (µ + 1 ; c×k, µ) with defect
3c − µ − 1. Hence, that vector is positive and reduced whenever 0 < µ < c ≤ (µ + 1)/3. Now, we
have cvol ≤ (µ + 1)/3 if and only if kµ2 + 2(k − 9)µ + (k − 9) ≥ 0, which is true whenever k ≥ 9.
Therefore,

Lemma 4.3. Assume k ≥ 9 and µ ∈ (0, 1/2]. Then wk(M1
µ) = cvol, that is, we have full packing of

M1
µ by k equal balls. For k = 8 and µ ∈ (0, 1/2], we have the lower bound µ ≤ w8(M1

µ) with equality
when µ = 1/2.

We now discuss the following cases separately:

• k = 2p+ 1 ≥ 9 and µ > 1/2
• k = 2p ≥ 10 and µ > 1/2
• k = 8

4.1. The odd case k = 2p+ 1 ≥ 9 and µ > 1/2. By Lemma 4.2, the vector

vp−2 =
(
µ+ 1− (p− 2)d0 ;µ− (p− 2)d0, c

×5, (1− c)×(2p−4)
)

is ordered and positive. A Cremona move leads to

vp−1 =
(
µ+ 1− (p− 1)d0 ;µ− (p− 1)d0, c

×3, (1− c)×(2p−2)
)

which is positive but not necessarily ordered.
If vp−1 is ordered, that is, if µ − (p − 1)d0 ≥ c, then its defect is d0 = 2c − 1 > 0 and another

Cremona move yields

vp =
(
µ+ 1− pd0 ;µ− pd0, c, (1− c)×(2p)

)
which, again, is positive but not necessarily ordered. However, since µ− (p− 1)d0 ≥ c and (c− 1) =
c− d0 implies µ− pd0 ≥ (1− c), its defect is

(µ− pd0) + c+ (1− c)− (µ+ 1− pd0) = 0

so that vp is positive and reduced.
If vp−1 is not ordered, that is, if µ− (p− 1)d0 < c, then the reordered vector is

v̂p−1 =
(
µ+ 1− (p− 1)d0 ; c×3, µ− (p− 1)d0, (1− c)×(2p−2)

)
with defect dp−1 = (2p+ 1)c− µ− p > d0. Hence, applying a Cremona move gives

vp =
(

2λp−1 − 3c ;λp−1 − 1, (1− c)×(2p−2), (λp−1 − 2c)×3
)
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where we have set λp−1 = µ+ 1− (p− 1)d0. The vector vp is always ordered, and it is non-negative
if and only if λp−1 − 2c ≥ 0, which is equivalent to

c ≤ p+ µ

2p

The defect of vp is dp = 1 + c − λp−1, which is positive if and only if we assume vp−1 not ordered.
Thus, vp is not reduced, and we can apply a sequence of (p− 3) Cremona moves and reorderings to
obtain the vector

v2p−3 =
(

2λp−1 − 3c− (p− 3)dp ;λp−1 − 1− (p− 3)dp, (1− c)×4, (λp−1 − 2c)×(2p−3)
)

That vector is ordered if λp−1 − 1− (p− 3)dp ≥ (1− c), which is equivalent to

c ≤ (p− 2)µ+ p2 − 3p+ 1

p(2p− 5)

For c = cvol, this becomes(
2p3 − 7p2 + 4p+ 4

)
u2 + 36p3 − 2

(
2p4 − 11p3 + 16p2 − 3p+ 2

)
u+ 2p5 − 15p4 − 26p2 − 4p+ 1 ≥ 0

which has a double root for p = 4 and no real roots for p ≥ 5. Hence, v2p−3 is ordered for all c ≤ cvol.
A Cremona move applied to v2p−3 then yields

v2p−2 =
(

2λp−1 − 3c− (p− 2)dp ;λp−1 − 1− (p− 2)dp, (1− c)×2, (λp−1 − 2c)×(2p−1)
)

which is positive but not necessarily ordered.
Assuming v2p−2 ordered, a last Cremona move gives

v2p−1 =
(

2λp−1 − 3c− (p− 1)dp ;λp−1 − 1− (p− 1)dp, (λp−1 − 2c)×(2p+1)
)

which is positive with defect d2p−1 = λp−1 − 1− c = −dp. Hence, v2p−1 is reduced.
If v2p−2 is not ordered, then the reordered vector is

v̂2p−2 =
(

2λp−1 − 3c− (p− 2)dp ; (1− c)×2, λp−1 − 1− (p− 2)dp, (λp−1 − 2c)×(2p−1)
)

and another Cremona move gives

v2p−1 =
(

2λp−1 − 3c− (p− 1)dp ; (λp−1 − 2c)×(2p+1), λp−1 − 1− (p− 1)dp

)
which is non-negative only if λp−1 − 1− (p− 1)dp ≥ 0, which is equivalent to

c ≤ p(p+ µ− 1)

2p2 − p− 1

Its defect is d2p−1 = 3(λp−1− 2c)− (2λp−1− 3c− (p− 1)dp) which is positive if c ≥ (p−2)u+p2−3p+1
2p2−5p ,

that is, if v2p−3 is not ordered. So, v2p−1 is again reduced.
Summing up, we see that the algorithm produces a non-negative reduced vector provided c is not

greater than any of the upper bounds cvol, 1, p+µ
2p , and p(p+µ−1)

2p2−p−1 .

Proposition 4.4. Let k = 2p + 1 ≥ 9 and µ ∈ (1/2,∞). Then the (2p + 1)th generalized Gromov
width of M1

µ is

w2p+1(M1
µ) =



cvol if µ ∈
[
1/2, p3−2p2+1−(p−1)

√
2p+1

p2

)
p(p+µ−1)
2p2−p−1 if µ ∈

[
p3−2p2+1−(p−1)

√
2p+1

p2 , p(p−1)
p+1

)
p+µ
2p if µ ∈

[
p(p−1)
p+1 , p

)
1 if µ ∈ [p, ∞)
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Proof. This follows readily from the fact that w2p+1 = min
{
cvol, 1,

p+µ
2p ,

p(p+µ−1)
2p2−p−1

}
. �

Corollary 4.5. Let k = 2p+ 1 ≥ 9 and consider µ ≥ 1/2. The (2p+ 1)th packing number of M1
µ is

p2p+1(M1
µ) =



1 if µ ∈
[
1/2, p3−2p2+1−(p−1)

√
2p+1

p2

)
p2(p+µ−1)2
(2µ+1)(p−1)2 if µ ∈

[
p3−2p2+1−(p−1)

√
2p+1

p2 , p(p−1)
p+1

)
(2p+1)
(2u+1)

(
p+µ
2p

)2
if µ ∈

[
p(p−1)
p+1 , p

)
2p+1
2µ+1 if µ ∈ [p, ∞)

�

Corollary 4.6. The odd stability number of M1
µ is

Nodd(µ) =


7 if µ ∈

{
1
7 ,

3
8

}
9 if µ ∈ (0, 1) \

{
1
7 ,

3
8

}
2

⌈
u+2+

√
(u+2)2+4

√
2u+1

2

⌉
+ 1 if µ ∈ [1,∞)

Proof. By Proposition A.2, the pairs (µ, k) for which we have full packings by k = 2p+ 1 ≤ 7 balls
are {(1, 3), (1/7, 7), (3/8, 7), (3, 7)}. On the other hand, for µ ∈ (0, 1/2], Lemma 4.3 shows that we
have full packings whenever k ≥ 9. These two facts together prove our claim for µ ∈ (0, 1/2]. When
µ ∈ (1/2,∞), the largest root of the polynomial in p

(2p+ 1)
(
p4 − 2p3µ+ p2µ2 − 4p3 + 4p2µ+ 4p2 − 2µ− 1

)
obtained by setting

c2vol =
p2(p+ µ− 1)2

(2p2 − p− 1)2

is

r(µ) =
µ+ 2 +

√
(µ+ 2)2 + 4

√
2µ+ 1

2

The integer J(µ) := max{9, 2dr(µ)e + 1} gives the odd stability number in the range k ≥ 9. The
results follows by comparing J(µ), µ ≥ 1/2, with the exceptional full packings by k ≤ 7 balls listed
above. �

Corollary 4.7. The exceptional classes in H2(X2p+2;Z) that give the obstructions to the embedding
of 2p+ 1 ≥ 9 balls into M1

µ, µ ≥ 1/2, are of type(
1 ; 1×2, 0×2p

)
for µ ∈ [p, ∞)(

p ; p− 1, 1×2p, 0
)

for µ ∈
[
p(p− 1)

p+ 1
, p

)
(
p(p− 1) ; p(p− 2), (p− 1)×(2p+1)

)
for µ ∈

[
p3 − 2p2 + 1− (p− 1)

√
2p+ 1

p2
,
p(p− 1)

p+ 1

)
For µ ∈

[
1/2, p3−2p2+1−(p−1)

√
2p+1

p2

)
, the only obstruction is given by the volume condition.
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Proof. As in Corollary 3.5, this follows from applying to the vector (0 ; 0×(2p+1),−1) the adjoint of
the automorphism φ produced by the algorithm on each interval. That automorphism is

φ =


(RC)p for µ ∈ [p, ∞)

(RC)p−1BCA(RC)p−1 for µ ∈
[
p(p−1)
p+1 , p

)
BCS(RC)p−2BCA(RC)p−1 for µ ∈

[
p3−2p2+1−(p−1)

√
2p+1

p2 , p(p−1)
p+1

)
�

4.2. The even case k = 2p ≥ 10 and µ > 1/2. Let d0 = 2c− 1. By Lemma 4.2, the vector

vp−2 =
(
µ+ 1− (p− 2)d0 ;µ− (p− 2)d0, c

×4, (1− c)×(2p−4)
)

is ordered and positive. A Cremona move leads to

vp−1 =
(
µ+ 1− (p− 1)d0 ;µ− (p− 1)d0, c

×2, (1− c)×(2p−2)
)

which is positive but not necessarily ordered. In any case, its defect is still d0 so that a Cremona
move yields

vp =
(
µ+ 1− pd0 ;µ− pd0, (1− c)×2p

)
which is non-negative only if µ− pd0 ≥ 0, which is equivalent to

c ≤ p+ µ

2p

If vp is non-negative and ordered, then its defect is zero, so that vp is reduced. If vp is non-negative
but not ordered, then its reordering gives

v̂p =
(
µ+ 1− pd0 ; (1− c)×2p, µ− pd0

)
whose defect is dp = 3− 3c− (µ+ 1− pd0). That defect is positive only if

c >
p+ u− 2

2p− 3

However, that would imply

cvol =

√
2µ+ 1

2p
>
p+ u− 2

2p− 3
which is impossible for k = 2p ≥ 10. Hence, v̂p is also reduced.

The previous discussion shows that the algorithm produces a non-negative reduced vector provided
c is not greater than any of the upper bounds cvol, 1, and p+µ

2p .

Proposition 4.8. Let k = 2p ≥ 10 and µ ∈ (1/2,∞). Then the (2p)th generalized Gromov width of
M1
µ is

w2p(M
1
µ) =


cvol if µ ∈

[
1/2, p−

√
2p
)

p+µ
2p if µ ∈

[
p−
√

2p, p
)

1 if µ ∈ [p, ∞)

Proof. This follows readily from the fact that w2p = min
{
cvol, 1,

p+µ
2p

}
. �

Corollary 4.9. Let k = 2p ≥ 10 and consider µ ≥ 1/2. The (2p)th packing number of M1
µ is

p2p(M
1
µ) =


1 if µ ∈

[
1/2, p−

√
2p
)

(p+µ)2

(2p)(2µ+1) if µ ∈
[
p−
√

2p, p
)

2p
2µ+1 if µ ∈ [p, ∞)
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In particular, the even stability number of M1
µ is Neven(µ) = 2p where p =

⌈
µ+ 1 +

√
2µ+ 1

⌉
.

Proof. The stability number is obtained by solving for p in the polynomial c2vol −
(p+µ)2

(2p)2 . Since this

is a degree two polynomial with negative leading term, choosing the largest root gives the result. �

Corollary 4.10. The exceptional classes that give the obstructions to the embedding of 2p ≥ 10
balls into M1

µ, µ ≥ 1/2, are of type(
1 ; 1×2, 0×(2p−1)

)
for µ ∈ [p, ∞)(

p ; p− 1, 1×2p
)

for µ ∈
[
p−

√
2p, p

)
For µ ∈

[
1/2, p−

√
2p
)
, the only obstruction is given by the volume condition.

Proof. The obstructing classes are φ∗(E2p+1) where

φ =

{
(RC)p for µ ∈ [p, ∞)

D(RC)p for µ ∈
[
p−
√

2p, p
)

where D is the permutation (1, k + 2, 2, . . . , k + 1). �

4.3. The case k = 8. When k = 8, Lemma 4.2 and Lemma 4.3 show that the behaviour of the
algorithm depends on whether µ ≤ 1/2 or 1/2 ≤ µ. In the first case, the lower bound µ ≤ w8(µ)
implies that one must start with the ordered vector

(
µ+ 1 ; c×8, µ

)
, while in the second case, the

upper bound w8(µ) ≤ µ show that the initial vector is
(
µ+ 1 ;µ, c×8

)
. Moreover, for µ < 7

4 , the

initial steps are sensitive to the actual value of µ. In fact, for µ ∈ (0, 74 ), the branching pattern
of the algorithm becomes surprisingly hard to analyze. Consequently, we use a different approach
which gives directly the exceptional classes defining the obstructions to the embedding of 8 balls
of capacity c in M1

µ. This approach relies on the classical fact that the set of exceptional classes

of CP2# 9CP2 can be described in terms of the affine root lattice of type E8 and, as such, it only
applies to the case k = 8.

To begin with, we show that the exceptional classes leading to embedding obstructions must be
“almost parallel” to the vector w =

(
µ+ 1 ;µ, (cvol)

×8), see also §2 in [12].

Lemma 4.11. The classes that may give obstructions to the embeddings of 8 equal balls in M1
µ are

of the forms

i) (d ;m, `− 1, `×7)
ii) (d ;m, `×8)
iii) (d ;m, `+ 1, `×7)

Proof. Fix µ and c ∈ (0, cvol] and define v0 =
(
µ+ 1 ;µ, c×8

)
and w =

(
µ+ 1 ;µ, (cvol)

×8). By
definition of cvol we have w · w = 0. Suppose an exceptional class E = (e0 ; e1, . . . , e8) defines an
obstruction, that is, suppose v0 · E ≤ 0. Then we must have w · E ≤ 0 as well. If we define
ε = (0, ε1, . . . , ε8) by setting

E =
e0

µ+ 1
w + ε

we can write

w · E =
e0

µ+ 1
w · w +

e0
µ+ 1

w · ε =
e0

µ+ 1
w · ε ≤ 0

and

−1 = E · E =

(
e0

µ+ 1

)2

w · w + 2

(
e0

µ+ 1

)
w · ε+ ε · ε
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Those two equations imply that ‖ ε ‖2= −ε·ε ≤ 1. Now, we observe that ‖ ε ‖ is simply the Euclidean
distance between the vectors e0

µ+1w and E. In particular, the distance between the truncated vectors
e0
µ+1 (cvol, . . . , cvol) and (e2, . . . e8) is bounded above by one, that is,

8∑
i=2

(
ei −

e0cvol
µ+ 1

)2

≤ 1

Since the coefficients of E are integers, that implies the coefficients {e2, . . . , e8} must all be equal to
some integer `, with at most one exception, in which case the other coefficient must be `± 1. Since
the product v0 · E is constant under permuting the coefficients {e2, . . . , e8}, we can assume that E
is of the form (d ;m, ` − 1, `×7), (d ;m, `×8), or (d ;m, ` + 1, `×7) for some positive integers d and
m. �

In order to list the exceptional classes of types (i), (ii), and (iii) above, it is useful to describe the
set E9 of all exceptional classes in X9 = CP2# 9CP2 in a more concrete way. To this end, recall that
the (−2)-homology classes αi are defined of the standard basis {L,E1, . . . , E9} by

α0 := L− E1 − E2 − E3

αi := Ei − Ei+1, 1 ≤ i ≤ 7

and that the Poincaré dual of the first Chern class is given by

K := 3L− E1 − · · · − E9

We now define the root lattice Q8 ⊂ H2(X9;Z) by setting

Q8 := ⊕7
i=0Zαi ' Z8

It is known (see, for instance, [16]) that there exists a natural bijection T : Q8 → E9 between the
root lattice and the set of exceptional classes, namely

T (α) = E9 − α−
1

2
(α · α)K

whose inverse is given by
T−1(E) = E9 − E + (1 + E · E9)K

Under that bijection, the curves of types (i), (ii), and (iii) take a very simple form, and that allows
us to write them explicitely.

Lemma 4.12. The classes that may give obstructions to packings by 8 balls belongs to three families
that can be parametrized as follows:

i)
(
n(12n− 1) ;n(4n− 3), 4n2 − 1, (4n2)×7

)
ii)
(
4n(3n+ 2) ; 4n2 − 1, (n(4n+ 3)×8

)
iii)

(
(3n+ 2)(4n+ 3) ;n(4n+ 3), 2(n+ 1)(2n+ 1) + 1, (2(n+ 1)(2n+ 1))×7

)
Proof. We first consider classes of type (d;m, ` − 1, `×7). The bijection E9 → Q8 ' Z8 maps any
such class to a vector of the form

(−d+ 3`+ 3, 2d− 6`+ 2, d− 3`+ 3, 5, 4, 3, 2, 1) ∈ Z8

Writing n = 3`− d, that vector becomes

(n+ 3, 2− 2n, 3− n, 5, 4, 3, 2, 1) ∈ Z8

showing that classes of type (d ;m, `−1, `×7) form a 1-parameter family indexed by n ∈ Z. Applying
the inverse bijection, we obtain an explicit parametrization of elements of E9, namely(

n(12n− 1) ;n(4n− 3), 4n2 − 1, (4n2)×7
)
, n ∈ Z
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Similarly, one can check that classes of the types (d ;m, `×8) and (d ;m, ` + 1, `×7) correspond to
vectors

(n+ 3, 1− 2n, 3− n, 5, 4, 3, 2, 1) and (n+ 3,−2n, 3− n, 5, 4, 3, 2, 1)

in Z8. The formulae in (ii) and (iii) follow readily. �

The previous two lemmas show that a necessary and sufficient condition for v0 =
(
µ+ 1 ;µ, c×8

)
,

with 0 < c < cvol, to belong to the symplectic cone of X9 is the positivity of the symplectic areas of
the classes of types (i), (ii), and (iii). Note that for n = 0, we obtain curves of types

(
0 ; 0,−1, 0×7

)
,(

0 ;−1, 0×8
)
, and

(
6 ; 0, 3, 2×7

)
. The first two give the trivial lower bound w8(µ) > 0, while the third

gives the upper bound w8(µ) ≤ 6µ+6
17 . For n ∈ Z \ {0}, we get three families of upper bounds for

w8, namely

u1(µ, n) =
2n(4n+ 1)µ+ 12n2 − n

32n2 − 1
, u2(µ, n) =

(8n2 + 8n+ 1)µ+ 12n2 + 8n

8n(4n+ 3)

and

u3(µ, n) =
2(4n2 + 7n+ 3)µ+ 12n2 + 17n+ 6

32n2 + 48n+ 17
Therefore,

w8

(
M1
µ

)
= min
n∈Z\{0}

{
cvol =

√
2µ+ 1

8
, u1(µ, n), u2(µ, n), u3(µ, n), u3(µ, 0) =

6µ+ 6

17

}
which proves Theorem 1.4.

In order to describe w8(µ) explicitely as a piecewise linear function, we introduce the functions

s1(n) =
4n(3n− 2)

24n2 + 8n+ 1
, s2(n) =

4n(3n+ 2)

24n2 + 40n+ 17
, s3(n) =

8n2 + 8n+ 1

16(n+ 1)2

defined respectively on Z, Z, and Z \ {−1}. For convenience, we extend the domain of s3(n) to Z
by setting s3(−1) =∞. Simple but rather tedious computations show that

u1(µ, n) = u2(µ, n) ⇐⇒ µ = s1(n)

u2(µ, n) = u3(µ, n) ⇐⇒ µ = s2(n)

u3(µ, n) = u1(µ, n+ 1) ⇐⇒ µ = s3(n)

and that

u1(µ, n) = u2(µ, n) < cvol for µ = s1(n)

u2(µ, n) = u3(µ, n) < cvol for µ = s2(n)

u3(µ, n) = u1(µ, n+ 1) = cvol for µ = s3(n)

Moreover, for n ≥ 0, the si(n) form interlocking increasing sequences which converge to 1/2,

0 = s2(0) <
1

16
= s3(0) < · · · < s1(n) < s2(n) < s3(n) < s1(n+ 1) < · · · < 1/2

while for n ≤ −1, the si(n) form interlocking decreasing sequences which also converge to 1/2,

1/2 < · · · < s3(−(n+ 1)) < s1(−n) < s2(−n) < s3(−n) < · · · < 4 = s2(−1) <∞ = s3(−1)

We conclude that on the interval (0, 4], the upper bounds ui(µ, n) are never greater than cvol. On the
other hand, by Lemma 4.2, the conclusions of Proposition 4.8 hold whenever µ ≥ 7

4 . In particular,
we know that w8(µ) = 1 = u3(µ,−1) whenever µ ≥ 4. Together with the fact that w8(1/2) = 1/2,
this gives a complete description of w8

(
M1
µ

)
, namely
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Theorem 4.13. The generalized Gromov width w8(M1
µ) is the piecewise linear function defined by

w8(M1
µ) =



u2(µ, n) if µ ∈ (s1(n), s2(n)]

u1(µ, n) if µ ∈ (s3(n− 1), s1(n)]

u3(µ, n− 1) if µ ∈ (s2(n− 1), s3(n− 1))

cvol =
√

2µ+1
8 if µ ∈

{
s3(n− 1), 1

2 , s3(−(n+ 1))
}
, where n ≥ 1

u1(µ,−n) if µ ∈ (s3(−(n+ 1)), s1(−n)]

u2(µ,−n) if µ ∈ (s1(−n), s2(−n)]

u3(µ,−n) if µ ∈ (s2(−n), s3(−n))
�

Let define the set S ⊂ (0,∞) by setting

S =

{
s3(n− 1),

1

2
, s3(−(n+ 1))

}
=

{
8n2 − 8n+ 1

16n2
,

1

2
,

8n2 + 8n+ 1

16n2

}
, n ≥ 1

Note that S ⊂ (0, 17/16]. Theorem 4.13 shows that M1
µ admits a full packing by 8 balls if, and only

if, µ ∈ S. This last result allows us to complete our computations of the stability numbers of M1
µ.

Corollary 4.14. The even stability number of M1
µ is

Neven

(
M1
µ

)
=


8 if µ ∈ S
10 if µ ∈

(
0, 32
]
\ S

2
⌈
µ+ 1 +

√
2µ+ 1

⌉
if µ ∈

[
3
2 , ∞

)
Proof. By Proposition A.2, the only pair (µ, k) for which we have full packings by k = 2p ≤ 6 balls
is (1/4, 6), and we observe that 1/4 6∈ S. On the other hand, for µ ∈ (0, 1/2], Lemma 4.3 shows
that we have full packings whenever k ≥ 9. We conclude that for µ ∈ (0, 1/2] \ S the even stability
number is equal to 10, while it is equal to 8 for µ ∈ S ∩ (0, 1/2].

When µ ∈ (1/2,∞), the largest root of the polynomial in p

2p
(
p2 − 2(µ+ 1)p+ µ2

)
obtained by setting

c2vol =
(p+ µ)2

(2p)2

is

r(µ) = µ+ 1 +
√

2µ+ 1

The integer J(µ) := max{10, 2dr(µ)e} gives the even stability number in the range k ≥ 10. It is
easy to see that on S ∩ (1/2, 3/2], J(µ) = 10. The results follows readily. �

Combining Corollary 4.6 with Corollary 4.14, we finally get the general stability number of the
twisted bundle, namely

Corollary 4.15. The general stability number of M1
µ is

Nstab

(
M1
µ

)
=


8 if µ ∈ S
9 if µ ∈

(
0, 3

2

)
Neven − 1 if µ ∈

[
3
2 , ∞

)
�
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5. Embedding ellipsoids in polydisks and comparison with ECH capacities

5.1. Embedding ellipsoids in polydisks. Using a recent result of Dorothee Muller our results
about ball packings can be translated into the following

Corollary 5.1. Let k be any integer greater than 8 and a, s, t any positive real numbers with s < t.
Denote by µ = a

s . The following are equivalent:

i) E(a, ka) ↪→ P (s, t)
ii) If k = 2p+ 1 then

a

s
≤


cvol =

√
2µ

2p+1 if µ ∈
[
1, p+ 1−

√
2p+ 1

)
µ+p
2p+1 if µ ∈

[
p+ 1−

√
2p+ 1, p+ 1

)
1 if µ ∈ [p+ 1, ∞)

If k = 2p then

a

s
≤


cvol =

√
µ
p if µ ∈

[
1,

p−2+
√
p2−4p

2

)
an−1µ+an

2(an+an−1)−1 if µ ∈
[
γn
γn−1

, γn−1

γn−2

)
, n ≥ 2

1 if µ ∈ [p, ∞)

Proof. Recall the identification µ = t
s . For a generic almost complex structure J on M0

µ we can

arrange that the image of the embedding of the k disjoint equal balls into M0
µ misses some generic

section of S2 × S2 and hence it provides an embedding of a disjoint union of 2p balls of capacity
wn(µ) into a polydisk P (1, µ). In theorem 1.1 of [13], D. McDuff proved that an embedding of k balls
of equal size c in a ball is equivalent with a symplectic embedding an ellipsoid E(c, kc) in the same
ball; thus giving the first instance of proof on how embeddings of balls into a symplectic domain yield
embeddings of an appropriate domain. Recently D. Muller [17] used a similar technique to prove a
similar result for when the target is a polydisk. According with her results as seen in Proposition
10 in [7], if one has an symplectic embedding

Φ : t2pintB(w2p) ∪B(1) ∪B(µ) −→ B(1 + µ) (25)

then one obtains an embedding of E(w2p,w2p2p) → P (1, µ). But it is clear that the problem of
finding such embedding Φ reduced to an identical problem about the symplectic cone of X2p+2 as
the one that we have solved in our quest of solving the packing problem. Hence (iv) <=> (i) follows.

�

5.2. Comparison with ECH capacities. In a recent series of papers, M. Hutching’s defines the
embedded contact homology (ECH) capacities for Liouville domains (Y, ξ) and, more generally, for
Liouville domains with corners. The purpose of this section is to establish a connection between
our results and ECH capacities of ellipsoids and polydisks. Let us first give a brief overview of
the necessary notations and results existing in the literature. The ECH capacities form a sequence
ck(Y, ξ) which represents the spectrum of a filtered version of embedded contact homology, in which
the filtering is defined using a certain action functional. The construction of this homology theory,
as well as its mains properties, are discussed in Hutchings [5] and [7]. We will consider here the case
of a Liouville domain given by an ellipsoid E(a, b) and that of a Liouville domain with corners given
as a polydisk P (s, t). We will denote by Nk(a, b) the sequence of ECH capacities ck(E(a, b)), and
by Mk(s, t) the sequence ck(P (s, t)). For our purpose, it is sufficient to recall that the following
results:

Theorem 5.2 (M. Hutchings [5], [7]). i) E(a, b) ↪→ P (s, t) if, and only if N (a, b) <M(s, t)
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ii) For an ellipsoid E(a, b), the elements of the sequence N (a, b) are obtained by arranging in
increasing order (with repetitions) all the numbers of the type am + bn with m,n natural
numbers.

iii) For a polydisk P (s, t), the ECH capacities are organized in a sequence M(s, t) whose ith

element is defined as

Mi(ν, µ) = min{νm+ µn | (m+ 1)(n+ 1) ≥ i+ 1, (m,n) ∈ N× N}. (26)

Note that the reverse implication in statement (i) of this theorem is a consequence of how the
invariants are defined by Hutchings. The direct implication was recently proved by M. Hutchings
(see [7]) using D. Muller’s [17] result cited above, as well as a strategy provided by Mcduff in [14]
which proves sharpness of the ECH invariants for embeddings of ellipsoids into ellipsoids.

Our results provides explicit and comprehensive ranges in terms of the values of a, b, s, t for when
such embeddings happen for the case when the ratio a

b is an integer greater than 8.
Our next result uses Corollary 1.3 to give an alternative proof of the direct implication in i) in 5.2

for the case when the ratio a
b is an integer greater or equal with 8. ( For smaller values of k one can

trace the results using the Appendix A).
We believe that this alternative proof will shed some insight on the difficulties and intricacies

involved in computing explicitly the ECH invariants, needed if one wants to find this ranges without
making use of the reduction algorithm.

Proposition 5.3. Let k ≥ 8 be an integer. The following are equivalent:

i) E(a, ka) ↪→ P (s, t)
ii) N (a, ka) <M(s, t)
iii) a

sN (1, k) <M(1, ts )

iv) If k = 2p+1 then a
s ≤ wk = min{1, cvol, µ+p2p+1}. If k = 2p then a

s ≤ wk = minn∈N{1, cvol, wn}.
Moreover, Theorem 1.1 the precise value of this minimum is given by the index n of the
interval In in which µ = t

s lies.

Proof. Note that (i) =⇒ (ii) is the inverse implication of point i) from Hutching’s theorem 5.2,
and that (ii) =⇒ (iii) is straightforward as all ECH capacities satisfy a rescaling property. The
implication (iv) =⇒ (i) is covered by Corrolary 1.3.

We will show here the remaining needed implication, namely that (iii) implies (iv). So let us
assume that a

sN (1, k) < M(1, µ). The fact that a
s ≤ min{1, cvol} is straightforward as the ECH

capacities respect volume and because the first entries of N (1, k) and M(1, ts ) are 1. Let us prove
the rest of the inequalities.

Let us consider now that k = 2p
Recall that for any n > 1, wn = an+an−1µ

2(an+an−1)−1 . We will introduce the sequence xn satisfying the

identity 2(an + an−1)− 1 = 2pxn + (−1)n+1. One can easily verify, using the recurrence (14) for the
sequence an, that the numbers xn are in fact natural numbers satisfying the relation:

xn+3 = (p− 1)(xn+2 − xn+1) + xn + (−1)n+1

Therefore

xn =
2(an + an−1)− 1 + (−1)n

2p
(27)

For each n > 1 we define the index i to be

in := (an + 1)(an−1 + 1)− 1 (28)

Then it is clear from (26) that
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Min(1, µ) = an + an−1µ.

Therefore our assumption is equivalent with

a

s
≤ an + an−1µ

Nin(1, k)
(29)

We claim that for our choice of in , we get that

Nin(1, k) = 2pxn + (−1)n+1 = 2(an + an−1)− 1, (30)

hence the right hand side of (29) is exactly wn. The remaining of the proof will be to justify the
value of the ithn ECH capacity of E(1, k) from relation (30). To see this, first observe that for any
integer k, N (1, k) is given by(

1, . . . k − 1, k, k, k + 1, k + 1, . . . 2k − 1, 2i− 1, (2k)×3, . . .

. . . (3k − 1)×3, . . . , (jk)×(j+1), . . . , ((j + 1)k − 1)×(j+1), . . . ,
)

(31)

In particular, any number of the form kx− 1 will appear as a value of Ni(1, k) exactly when

kx(x+ 1)/2− x ≤ i ≤ kx(x+ 1)/2− 1 (32)

and any number of the form kx+ 1 will appear as a value of Ni(1, k) exactly when

kx(x+ 1)/2 + x+ 1 ≤ i ≤ kx(x+ 1)/2 + 2x+ 2. (33)

The equation (30) will then follow from the following claim used in conjunction with (32) when
n is even and with (33) when n is odd:

2pxn(xn + 1) + (−1)nxn +
1 + (−1)n

2
= in

To prove this identity we first observe that it is equivalent, via the identities (27) and (28), with
the identity

(an + an−1)2

p
− an + an−1

p
= anan−1. (34)

But this was proved in Lemma 3.12.
Let us now consider the case when k = 2p+ 1. In this case we pick the index i = 2p+ 1.
We get that N2p+1(1, k) = (2p+ 1) by (33). On the other hand, for k = 2p+ 1 the condition in

the equation (26) is satisfied with equality if (m,n) = (p, 1) and it implies thatM2p+1(1, µ) = µ+p.
Hence the inequality a

sN2p+1(1, k) ≤M2p+1(1, µ) is equivalent with

a

f
≤ µ+ p

2p− 1

and the result follows. This concludes the proof. �

Remark 5.4. Note that one can think of this Proposition as one step forward towards proving
Corollary 1.3 (thus the equivalence (i) <=> (iv) ) without our results regarding the reduction
algorithm, by making use instead of both implications available from Theorem 5.2. Indeed, one
could conjure the numbers Nin(1, k) and Min(1, µ) (albeit we believe it difficult without the previous
knowledge on all recurrences and results obtained form the algorithm) and obtain the implication
(i) => (iv). But the reverse of this implication requires that one shows that the entire vector
a
sN (1, k) < M(1, µ) for the proposed values for and that would mean computing all the ECH
capacities for the two objects. But our main results does, in addition providing insight to what



34 Packing numbers

particular values should we pick for a/s, circumvent an attempt to compute all values of the entries
in the ECH capacities, by showing that the embeddings exist for the proposed values a/f = wk(µ).

We will conclude, therefore, with the following two questions:

• Can we give a simpler proof of Theorem 1.1 using exclusively the computation of ECH
capacities introduced by M. Hutchings 5.2 ?

• Is there a way to reduce the computations of the generalized Gromov widths of the twisted
bundle M1

µ to a comparison of suitable sequences of ECH capacities ?

Appendix A. Embeddings of 1 ≤ k ≤ 7 disjoint balls in M i
µ

For 1 ≤ k ≤ 7, the set EK ⊂ H2(Xk+1;Z) of exceptional homology classes of the (k + 1)-fold
blow-up of CP2 is finite. It consists of classes of the following types:

(0 ;−1) ,
(
1 ; 1×2

)
,
(
2 ; 1×5

)
(
3 ; 2×1, 1×6

)
,
(
4 ; 2×3, 1×5

)
,
(
5 ; 2×6, 1×2

)
,
(
6 ; 3, 2×7

)
It follows that the symplectic cone CK of Xk+1 is defined by finitely many inequalities. In particular,
an easy computation yields the packing numbers pk(M i

µ), 1 ≤ k ≤ 7. Using the same normalization
as before, we obtain:

Proposition A.1. For the normalized product bundle M0
µ =

(
S2 × S2, µσ ⊕ σ

)
, the packing numbers

pk(M0
µ), 1 ≤ k ≤ 7 are given by

p1(M0
µ) =

1

2µ
p2(M0

µ) =
1

µ

p3(M0
µ) =

{
3
2µ

(
µ+1
3

)2
if µ ∈ [1, 2)

3
2µ if µ ∈ [2,∞)

p4(M0
µ) =

{
2
µ

(
µ+1
3

)2
if µ ∈ [1, 2)

2
µ if µ ∈ [2,∞)

p5(M0
µ) =

{
5
2µ

(
µ+2
5

)2
if µ ∈ [1, 3)

5
2µ if µ ∈ [3,∞)

p6(M0
µ) =


3
µ

(
2µ+2

7

)2
if µ ∈ [1, 43 )

3
µ

(
µ+2
5

)2
if µ ∈ [ 43 , 3)

3
µ if µ ∈ [3,∞)

p7(M0
µ) =


7
2µ

(
4µ+4
15

)2
if µ ∈ [1, 87 )

7
2µ

(
3µ+4
13

)2
if µ ∈ [ 87 ,

11
8 )

7
2µ

(
µ+3
7

)2
if µ ∈ [ 118 , 4)

7
2µ if µ ∈ [4,∞)

In particular, the pairs (µ, k), 1 ≤ k ≤ 7, for which we have full packings of M0
µ are:{

(1, 2), (2, 4), (
4

3
, 6), (3, 6), (

8

7
, 7)

}
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Proposition A.2. For the normalized twisted bundle M1
µ, the packing numbers pk(M1

µ), 1 ≤ k ≤ 7
are given by

p1(M1
µ) =

1

2µ+ 1
p2(M1

µ) =

{
2

2µ+1

(
µ+1
2

)2
if µ ∈ (0, 1)

2
2µ+1 if µ ∈ [1,∞)

p3(M1
µ) =

{
3

2µ+1

(
µ+1
2

)2
if µ ∈ (0, 1)

3
2µ+1 if µ ∈ [1,∞)

p4(M1
µ) =

{
4

2µ+1

(
µ+2
4

)2
if µ ∈ (0, 2)

4
2µ+1 if µ ∈ [2,∞)

p5(M1
µ) =


5

2µ+1

(
2µ+2

5

)2
if µ ∈ (0, 23 ]

5
2µ+1

(
µ+2
4

)2
if µ ∈ ( 2

3 , 2]
5

2µ+1 if µ ∈ (2,∞)

p6(M1
µ) =


6

2µ+1

(
2µ+2

5

)2
if µ ∈ (0, 14 ]

6
2µ+1

(
2µ+3

7

)2
if µ ∈ ( 1

4 ,
3
5 ]

6
2µ+1

(
µ+3
6

)2
if µ ∈ ( 3

5 , 3]
6

2µ+1 if µ ∈ (3,∞)

p7(M1
µ) =



7
2µ+1

(
3µ+3

8

)2
if µ ∈ (0, 17 ]

7
2µ+1

(
4µ+5
13

)2
if µ ∈ ( 1

7 ,
3
8 ]

7
2µ+1

(
4µ+6
15

)2
if µ ∈ ( 3

8 ,
6
11 ]

7
2µ+1

(
3µ+6
14

)2
if µ ∈ ( 6

11 ,
3
2 ]

7
2µ+1

(
µ+3
6

)2
if µ ∈ ( 3

2 , 3]
7

2µ+1 if µ ∈ (3,∞)

In particular, the pairs (µ, k), 1 ≤ k ≤ 7, for which we have full packings of M1
µ are:{

(1, 3), (
1

4
, 6), (

1

7
, 7), (

3

8
, 7), (3, 7)

}
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