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The Repressilator is a genetic regulatory network used to model oscillatory behavior of more
complex regulatory networks like the circadian clock. We prove that the Repressilator equations
undergo a supercritical Hopf bifurcation as the maximal rate of protein synthesis increases, and
find a large range of parameters for which there is a cycle.
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1. Introduction

Regulatory networks are collections of interacting
molecules in a cell. One particular kind, oscillatory
networks, has been discovered in many biological
processes. Well-known examples are the circadian
clock [Dunlap, 1999] and the cell cycle [Nurse, 2000],
where the oscillatory nature of the process plays a
central role.

In recent years, researchers have been able to
implement artificial regulatory networks in the lab-
oratory. Studying these simplified models is an
important step to understand real life networks.

Modeling studies suggest several designs for
artificial oscillatory networks. There are many
implementations of hysteresis-based oscillators,
[Atkinson et al., 2003; Barkai & Leibler, 2000;
Hasty et al., 2001; Kuznetsov et al., 2004].

Another artificial oscillatory network called the
Repressilator [Elowitz & Leiber, 2000] borrows the
idea of a ring oscillator from engineering. The mech-
anism is based on connecting an odd number of
inverters (negative control elements) in a ring. Its
genetic implementation uses three proteins that
cyclically repress the synthesis of one another. Our
computational study [Yang et al., 2009] suggests

that the oscillatory mechanism of the repressilator
is qualitatively different from that in other genetic
oscillators. Moreover, the mathematical analysis of
such a system has not been done. In this paper,
we study the behavior of the following parametric
family of differential equations:

Definition 1. Fix n > 0. For α > 0 the Repressila-
tor equations are

dx

dt
=

α

1 + yn
− x

dy

dt
=

α

1 + zn
− y

dz

dt
=

α

1 + xn
− z (x, y, z ≥ 0).

(1)

This is a reduced version of the original model
in which three of six equations are assumed to be
in quasi-equilibrium and substituted by algebraic
relations. The reduction assumes that the three
excluded variables evolve an order of magnitude
faster than the other three. Note that when any of
the three variables is 0, the corresponding derivative
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is positive, so the orbit of any initial point with non-
negative coordinates moves in the positive octant
{x, y, z > 0} and remains there for all t > 0.

Our analysis is split in two parts. First, we
describe the bifurcation behavior of the family. It
is not hard to see that there is a unique fixed point
R, which sits on the main diagonal.

Proposition 1. The linearization of system (1) at
R has one negative eigenvalue and a pair of complex
conjugate eigenvalues.

(a) If n ≤ 2 the complex eigenvalues have negative
real part, so R is always attracting.

(b) If n > 2 there is a single supercritical Hopf
bifurcation when α = αbif = rn+1

0 + r0, where
r0 = n

√
2/(n − 2).

In the second part of the paper, we study the
topological behavior of orbits. We begin by showing
that in all cases the interesting behavior is restricted
to a bounded region.

Lemma 1. The orbit of any point P with non-
negative coordinates will eventually enter the cube
C = {0 ≤ x, y, z ≤ α} and stay in the interior of C
thereafter.

The fixed point R is always inside C. When
n > 2 and α > αbif , R is a saddle, so standard
index theory implies the existence of one or more
attracting sets to “absorb” the orbits repelled by R.

Note that Proposition 1 already guarantees an
attracting cycle near R when 0 < α − αbif � 1,
because the bifurcation is supercritical. In fact there
is always a cycle:

Theorem 1. For n > 2 and all α > αbif , system (1)
has a limit cycle.

Our proof is quasi-constructive and it yields
more about the behavior of the orbits inside C. We
will describe a toroidal region T ∈ C that is parti-
tioned into a chain of simply connected pieces, and
show that the orbit of any point P ∈ T travels in
these six regions in a specific order. This proves the
existence of a Poincaré map θ : K → K where K is
a section of T by a nullcline. Theorem (1) then fol-
lows from Brower’s Fixed Point Theorem [Munkres,
2000, p. 351].

One advantage of our method is that the con-
struction gives a heuristic reason for the existence

of the cycle. This mechanism is qualitatively differ-
ent from classical systems like the relaxation oscil-
lator. An exploration of distinguishing features will
appear in [Buşe et al., 2009].

This paper is organized as follows: In Sec. 2 we
prove Proposition 1 after describing the lineariza-
tion of system (1) at R. The computation showing
that the Hopf bifurcation is supercritical is delayed
to an appendix at the end of the paper. In Sec. 3,
we prove Lemma 1 and give a decomposition of
C into pieces on which orbit behavior is simple to
describe. Section 4 uses this decomposition to prove
Theorem 1.

2. Bifurcation Analysis

From the description of nullclines in Sec. 3, it will
follow that there is a unique equilibrium point R.
Because of the symmetry between coordinates, R is
of the form (r, r, r), where r satisfies

α

1 + rn
= r; (2)

i.e. rn+1 + r −α = 0. This section is devoted to the
analysis of the linearization of system (1) near R,
which yields the proof of Proposition 1.

The jacobian matrix of (1) is:

J =




−1
−nαyn−1

(1 + yn)2
0

0 −1
−nαzn−1

(1 + zn)2

−nαxn−1

(1 + xn)2
0 −1




, (3)

so using (2), the linearization of system (1) at R is


du

dt

dv

dt

dw

dt




=




−1
−nrn

1 + rn
0

0 −1
−nrn

1 + rn

−nrn

1 + rn
0 −1




·




u

v

w


 .

(4)
The eigenvalues of (4) are

λ = ω
nrn

1 + rn
− 1, (ω3 = −1). (5)

The eigenvalue corresponding to ω = −1 is
negative, while the other two are complex-valued.
Note that along diag the vector field points in
the diagonal direction. Moreover, the function
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(α/(1 + un)) − u is positive at u = 0, negative at
u = α, and monotone. This implies that diag con-
stitutes the global stable manifold of R.

By symmetry, the plane of remaining eigen-
directions of R is orthogonal to diag. To determine
the type of R, it remains to study the real part of
the complex eigenvalues:

Reλ = cos
(
±π

3

)
· nrn

1 + rn
− 1 =

n

2
· rn

1 + rn
− 1.

As r varies from 0 to ∞ this quantity changes
monotonically between −1 and (n/2)−1, and there-
fore it is always negative when n ≤ 2. However, for
n > 2 the value

r0 = n

√
2

n − 2
(6)

is such that Reλ is negative for r < r0 and positive
for r > r0. In particular, for the unique parameter

αbif = rn+1
0 + r0

(depending on n), the linearization of (1) at R
has one real and two purely imaginary eigenval-
ues. This is the setting for a Hopf bifurcation. In
an appendix we compute the first Lyapunov coef-
ficient �1(R) of (1) near R, and find that �1(R) =
−(n2 + 5n − 14)/18

√
3r2

0. The polynomial −(n2 +
5n−14) = −(n+7)(n−2) is negative for all n > 2.
This shows that the bifurcation is supercritical; as a
consequence, the cycles are attracting, and appear
when α > αbif .

3. Orbit Dynamics

3.1. The attracting cube C
In this section we prove Lemma 1; then we decom-
pose C into pieces where orbit behavior is simple to
describe. The proof of Lemma 1 is a consequence of
the following two claims.

Claim 1. If 0 ≤ x(0) ≤ α, then 0 < x(t) < α for
all t > 0.

Claim 2. If x(0) ≥ α, then there is a time t1 such
that x(t1) < α.

Indeed, by the symmetry of the system, y and
z satisfy analogous inequalities, so Claims 1 and 2
imply

(1) The cube C is a trapping region; i.e. the vec-
tor field is transversal to ∂C, pointing to the
interior.

(2) The orbit of any point P /∈ C moves toward,
and eventually enters C.

These two assertions are equivalent to the state-
ment of Lemma 1. Now, the proof of Claim 1 is
immediate:

(i) If x(0) = 0, then (dx/dt)(0) = α/(1 + yn
0 ) > 0.

(ii) If x(0) = α, then (dx/dt)(0) = α/(1 + yn
0 ) −

α = α((1/(1 + yn
0 )) − 1) < 0.

Proof of Claim 2. Generalizing the above inequality,
it is obvious that dx/dt < 0 when x ≥ α. However,
this is not enough to conclude Claim 2. Instead, we
need to show that dx/dt is bounded away from 0,
and this requires the chain of estimates (7)–(10) on
x, y, z, and back to x. Suppose then for a contradic-
tion that

x(t) = α + εt ≥ α for all t ≥ 0. (7)

Notice that (7) implies dz/dt ≤ (α/(1 + αn)) − z
for all t. As long as z(t) remains larger than α,
the derivative dz/dt ≤ α((1/(1 + αn)) − 1) < 0 is
bounded away from 0, so z decreases at a steady
rate. It follows that there is a time t0 > 0 such that

z(t) < α for all t > t0. (8)

Definition 2. The quantity α/(1 + αn) appears fre-
quently enough in estimates that it will be conve-
nient to represent it with the letter A.

By Claim 1, y(t0) > 0. Now, if y(t0) ≤ A,
inequality (8) gives dy/dt ≥ A − y > 0 for t > t0,
so the y coordinate cannot become less than y(t0).
On the other hand, if y(t0) > A, the y coordinate
cannot become A since (dy/dt)|t0 ≥ A − y > 0. In
either case, if Y = min{y(t0), A} (a positive quan-
tity), then

y(t) ≥ Y > 0 for t > t0. (9)

Using (7) and (9), we find that dx/dt is
bounded away from 0:

dx

dt
= α

(
1

1 + yn
− 1

)
− εt

≤ α

(
1

1 + Y n
− 1

)
− εt < 0, (10)

so x becomes arbitrarily small, contradicting (7).
This proves Claim 2 and the Lemma. �

3.2. Nullcline description

We have just seen that any interesting dynamical
behavior is bound to happen in C. For the rest of
the paper, x, y, z are restricted to C. As usual, the
shape and relative position of the nullcline surfaces
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for the three variables is an important indicator of
how the system behaves. In this section we describe
the configuration of nullclines.

Definition 3. The nullclines Nx, Ny, Nz are the
loci of points where each of the derivatives
dx/dt,dy/dt,dz/dt vanish. They are three surfaces
given implicitly by

Nx =
{

α

1 + yn
= x

}
∪ C,

Ny =
{

α

1 + zn
= y

}
∪ C, (11)

Nz =
{

α

1 + xn
= z

}
∪ C.

Let η be the curve {(α/(1 + yn)) − x, z = 0},
which connects (α, 0, 0) with (A,α, 0). Then, Nx is
formed by translating η along the z-direction. The
nullclines Ny and Nz are formed in a similar fashion
and their union has rotational symmetry about the
diagonal; see Fig. 1.

Note that Nx divides C in exactly two pieces,
one where dx/dt < 0 and one where dx/dt > 0.
Since (α/(1 + yn))′ = −nαyn−1/(1 + yn)2 < 0,

Fig. 1. (α = 4, n = 3). The nullclines Nx and Ny intersect
monotonically along an open-ended curve. One of the straight
sides of each nullcline ends at an edge of C, while the opposite
side intersects C on a face, very close to the opposite edge.

Fig. 2. (α = 4, n = 3). The intersection of the three null-
clines is a single point R. Their union is rotationally symmet-
ric about the main diagonal, and divides C into eight regions.

the curve η is monotonically decreasing in the
x-direction.

The intersection of Nx with Ny is a curve βxy

with parametric equations

x(t) =
α

1 +
(

α

1 + tn

)n ,

y(t) =
α

1 + tn
,

z(t) = t,

with 0 ≤ t ≤ α. This curve joins the points (A,α, 0)
and (α/(1 + An), A, α). Similar descriptions hold
for the nullcline intersection curves βyz , βzx. These
three curves intersect at the single point R. It fol-
lows that the union Nx ∪ Ny ∪ Nz divides C in
eight regions in a manner qualitatively similar to
the union of three orthogonal planes. Extending
this analogy, we refer to the eight components of
int C\(Nx ∪ Ny ∪ Nz) as octant regions; see Fig. 2.

3.3. Breaking C into pieces

In this section we partition C in several pieces where
the behavior of system (1) is easy to describe. Then,
we use this decomposition to prove Theorem 1.

Definition 4. The signature of a point P ∈ C is
a triple of symbols from the alphabet {−,+, o }
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which describe the signs of the derivatives of x, y
and z at P . We extend this notation to refer to any
subset of C where the signs remain constant. Thus,
for instance, (+++) represents the octant region
near the origin where dx/dt,dy/dt,dz/dt > 0, so
diag ⊂ (+++) ∪ ( o o o ) ∪ (−−−). We extend this
notation further, including the symbol ∗ to repre-
sent an undefined sign. For example, Nx = ( o ∗ ∗ ).

Definition 5. The six octant regions (++−),
(+−+), (+−−), (−++), (−+−), (−−+), which are
disjoint from diag, are called lateral regions.

3.4. The spindle S
In this section we construct a small neighborhood S
of R that blends well with the orbits and with the
layout of the nullclines N∗ of system (1). First, we
give an analogous construction in the linearization
domain, and then pull it back by homeomorphism.

The nullclines of the linear system (4) are the
planes

{u = Qv}, {v = Qw}, {w = Qu}, (12)

where Q = −nrn/(1 + rn). As with sys-
tem (1), these planes determine eight regions
with different sign patterns for the derivatives
du/dt,dv/dt,dw/dt. We adopt the alphabet
{+,−, o , ∗ }.

The stable direction is along the diagonal {u =
v = w}, which is contained in the regions (+++)
and (−−−). The unstable manifold is the plane Π =
{u + v + w = 0}, orthogonal to the diagonal. This
plane sits inside the union of the six lateral regions.

For any ε > 0, consider the infinite cylinder
of radius ε in the direction of the diagonal {u =
v = w}. Let m > 0 be a fixed number (for all ε)
large enough that the planes Π+,Π−, at distance mε
from Π intersect the cylinder in two disks D+,D−
that are completely contained in (+++), (−−−),
respectively. Denote by Cε the compact portion of
the cylinder bounded between D+ and D−.

The behavior of the orbit γ of any point P ∈
Cε\Π is as follows. In negative time, γ spirals
toward the diagonal, while monotonically moving
away from Π, so that it exits Cε in finite time
through either D+ or D−.

In positive time, γ approaches Π monotonically
while spiraling away from the diagonal (since the
complex eigenvalues have positive real part). Thus,
γ stays between Π+ and Π−. We claim that γ
escapes into a lateral region at a distance dε from
diag, where δε becomes arbitrarily small as ε goes to

0. Indeed, the planes Π+,Π− intersect the nullcline
planes in two triangles ∆+,∆− contained within
distance dε from the diagonal. The rectangular faces
of the prism between ∆+ and ∆− are contained
inside the lateral regions. Since the orbit γ inter-
sects one of these prism faces in positive finite time,
the claim follows.

Now consider the ball Bε of radius ε centered at
the origin. For any P ∈ Bε\Π, let sP be the segment
of the full orbit γP that starts in D+∪D−, and ends
at the first point that is both inside a lateral region
and outside Cε.

Definition 6. The linear spindle of size ε is the
union

Sε = Bε ∪
⋃

P∈Bε\Π
sP .

It is a compact set such that

(a) Sε contains Bε and is simply connected.
(b) The intersection Sε∩D± is compactly contained

in (+++) ∪ (−−−).

Fig. 3. The ball Bε around the origin is encased in the cylin-
der Cε. The disks D± at both ends of Cε are inside the region
(+++) or (−−−), so backward orbits from Bε exit Cε into
one of these regions. The forward orbit approaches the plane
Π through the equator of Bε, so it eventually enters a lateral
region. The linear spindle Sε consists of Bε and all the orbits
that start at D±, enter Bε, and exit Cε into a lateral region.
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(c) Any orbit that enters Sε does so through
Sε ∩ D±.

(d) All orbits in Sε\diag leave Sε through a lateral
region, never to return to Sε (nor, in fact, to
(+++) ∪ (−−−)).

(e) limε→0 diam Sε = 0.

Since the linearization of R is a saddle, there is
a radius δ > 0, and a homeomorphism

φ : Bδ(R) → N

that conjugates the nonlinear system (1) within the
ball Bδ(R), to the linearization (4) in a neighbor-
hood N of 0. Let ε > 0 be small enough that the
linear spindle Sε is compactly contained in N .

Definition 7. The preimage S = φ−1(Sε) ⊂ Bδ will
be called the spindle of (1). Note that φ takes local
nullclines N∗ ∩ Bε(R) to the planes (12) inside N .
By a slight abuse of notation, we denote by D± the
preimages φ−1(D±) in (+++), (−−−) ⊂ C. With
these considerations in mind, S satisfies

(a) S is simply connected.
(b) The intersection S∩D± is compactly contained

in (+++) ∪ (−−−).
(c) Any orbit that enters S does so through S∩D±.
(d) All orbits in S\diag leave S through a lateral

region and escape Bδ without re-entering S.

In particular, if an orbit that leaves S were to
return to S, it would have to follow a homoclinic
connection. One consequence of Proposition 3 below
will be that this does not happen.

3.5. The trapping torus T

Definition 8. The region T = cl(−−+) ∪
cl(−+−) ∪ cl(−++) ∪ cl(+−−) ∪ cl(+−+) ∪
cl(++−)\intS (where cl stands for closure) has the
topological type of a filled torus. It is divided into
six pieces whose interiors are just lateral octant
regions truncated by S. We call these truncated
regions torus pieces.

4. Poincaré Map

Our first lemma discusses the way in which the vec-
tor fields cross the nullclines.

Lemma 2. The orbit of P ∈ Nx\R moves into an
octant region according to the following table.

P ∈ ( o ++) moves inside(−++)

( o +−) (−+−)
( o−+) (+−+)
( o−−) (+−−)
( o o +) — ′′— (+−+)
( o o−) (−+−)
( o + o ) (−++)
( o− o ) (+−−)

The behavior for a point P in Ny or Nz is
analogous, and the corresponding table is obtained
from the above one by permuting the coordinates.

Proof. Since the tangent plane of Nx at any point
contains the vector 〈0, 0, 1〉, the vector field is par-
allel to Nx exactly on the intersection Nx ∩ Ny =
( o o ∗ ). Let n be a normal vector to Nx at P
pointing away from the z-axis. Recall that f(u) =
α/(1 + un) has negative derivative. Then n is of the
form 〈1,−f ′(y), 0〉. If P ∈ ( o + ∗ ), the dot product
of n with a flow vector of the form ( o + ∗ ) must be
positive, while if P ∈ ( o−∗ ), the dot product is
negative.

Orbit behavior for points on the other two null-
clines can be deduced from this table by permuting
the three coordinates. �

Next we show that orbits must cross between
octant regions.
Definition 9. A point P ∈ C\R is close to diag if
its forward orbit enters S.

Proposition 2. Let P = P (0) ∈ C\diag lie in the
interior of any octant region. Then the orbit of P
will cross in finite time to a different lateral region
and outside the spindle.

Proof. If P is close to diag, its orbit enters S in
finite time by the construction of S. Then, since it
is not in diag, it crosses over to a lateral region. This
proves the claim in this case.

Now assume that P is in a given octant region,
but not close to diag. By definition the forward orbit
does not enter S, so there is an ε such that for all t >
0, P (t) is at least ε-away from R. Since R is the only
point with vanishing derivative, there is a δ > 0 such
that ||P ′(t)|| > δ for all t > 0. Thus, at any given
time t one of the three coordinates has speed larger
than δ. After t > 3α/δ, one of the three variables
had speed larger than δ for a union of disjoint time
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intervals of total length at least α/δ. Assuming that
the orbit remains in the same octant region for all
time, this coordinate changes monotonically. By the
Mean Value Theorem it follows that this coordinate
changes by at least α, hence P would escape C.

This contradiction proves that the orbit of
P must cross through a nullcline to a different
octant region. This new region cannot be (+++)
or (−−−) because of the transition pattern from
Lemma 2. �

We continue by showing that the torus T is a
trapping region, and we describe the behavior of the
flow inside T .

Proposition 3. The following hold

(1) All orbits in C\diag are trapped in finite time in
the interior of T .

(2) Inside T every orbit moves from torus piece to
torus piece, crossing nullclines in the following
pattern:

( o−+) �→ (+−+) �→ (+− o ) �→ (+−−)

�→ (+ o−) �→ (++−) �→ ( o +−)

�→ (−+−) �→ (−+ o ) �→ (−++)

�→ (− o +) �→ (−−+) �→ ( o−+).
(13)

Proof. Let P ∈ C\diag. If P ∈ ∂C, by Lemma 1 the
flow points toward the interior of T . By Proposi-
tion 2, if P is in an octant region, its forward orbit
enters intT in finite time. If P is anywhere on a
nullcline, then Lemma 2 and the construction of
the spindle prove the first claim.

Each torus piece is bounded by five surfaces; a
portion of ∂C, a portion of ∂S, and three nullcline
components (one from each of Nx, Ny, Nz). Let us
call the latter three faces of the torus piece.

Now consider a torus piece, say (+−+). Its
three faces are truncations of ( o−+), (+ o +) and
(+− o ). Again, by Lemma 2, the flow enters (+−+)
through the first two faces, and exits L toward
(+−−) only through the third face. The same argu-
ment applied to the remaining five torus pieces
proves that the only possible transitions between
torus pieces are given by the pattern (13). �

Definition 10. Denote by Kx = cl( o−+) ∩ T .

Corollary 1. There is a well defined Poincaré
return map

θ : Kx → Kx.

The proof is immediate from Proposition 3.
Theorem 1 follows from Brower’s Fixed point

Theorem applied to the map θ. Moreover, any such
cycle must move through lateral regions in the
pattern (13).
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Appendix

Here, we compute the first Lyapunov coefficient
�1(R) of system (1) near R when α = αbif . Recall
that the bifurcation condition is expressed by

r = r0 = n

√
2

n − 2
.
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Let us first rewrite the vector field in the format

F (x, y, z) = (f(x, y, z), g(x, y, z), h(x, y, z))

=
(

α

1 + yn
− x,

α

1 + zn
− y,

α

1 + xn
− z

)
.

The third order Taylor approximation of F
around R has a particularly simple expression
because only partial derivatives of higher order that
do not vanish are fy···y, gz···z, and hx···x (compare
(3)). Indeed,

F (x, y, z) = A ·




x

y

z


 +

1
2!

B((x, y, z), (x, y, z))

+
1
3!

C((x, y, z), (x, y, z), (x, y, z))

+ O(|(x, y, z)|4),
where A is the jacobian matrix


−1
−nrn

0

1 + rn
0

0

0 −1
−nrn

0

1 + rn
0

−nrn
0

1 + rn
0

0 −1




=



−1 −2 0

0 −1 2
−2 0 −1




with eigenvalues −3,±√
3i (regardless of n), and B

and C are bi- and trilinear functions respectively,
with components

B1((x1, y1, z1), (x2, y2, z2)) = fyy|x,y,z=r0
· y1y2,

B2((x1, y1, z1), (x2, y2, z2)) = gzz|x,y,z=r0
· z1z2,

B3((x1, y1, z1), (x2, y2, z2)) = hxx|x,y,z=r0
· x1x2,

and

C1((x1, y1, z1), (x2, y2, z2), (x2, y2, z2))

= fyyy|x,y,z=r0
· y1y2y3,

C2((x1, y1, z1), (x2, y2, z2), (x2, y2, z2))

= gzzz|x,y,z=r0
· z1z2z3,

C3((x1, y1, z1), (x2, y2, z2), (x2, y2, z2))

= hxxx|x,y,z=r0
· x1x2x3.

The following formula applies in the general set-
ting of a Hopf bifurcation.

Lemma 3 [Kuznetsov, 2004, p. 180]. Let q be the
eigenvector of A corresponding to the eigenvalue√

3i, normalized so that q · q = 1. Let p be the
adjoint eigenvector such that ATp = −√

3ip and
p · q = 1. If I denotes the 3 × 3 unit matrix, then

�1(R) =
1

2
√

3
Re(p · C(q,q,q)

− 2p · B(q, A−1B(q,q))

+p · B(q, (2
√

3iI − A)−1B(q,q))). (A.1)

We will proceed as follows. First, we write
explicit expressions for B and C; then we find q
and p. Finally, we compute the expressions in for-
mula (A.1).

Note that fy(x, y, z) = −nαyn−1/(1 + yn)2, so

fyy(x, y, z) = nα
(n + 1)y2n−2 − (n − 1)yn−2

(1 + yn)3
.

(A.2)

Substituting y = r0, and recalling that α/(1 +
rn
0 ) = r0, we find that the coefficient of B1 is

n
(n + 1)r2n−1

0 − (n − 1)rn−1
0

(1 + rn
0 )2

=
n

r0
·
(n + 1)

(
2

n − 2

)2

− (n − 1)
(

2
n − 2

)
(

n

n − 2

)2

=
2
r0

· 2(n + 1) − (n − 2)(n − 1)
n

=
2
r0

(5 − n).

By symmetry, this is also the coefficient of B2 and B3, so the bilinear function B is

B((x1, y1, z1), (x2, y2, z2)) =
2
r0

(5 − n)(y1y2, z1z2, x1x2).
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We find C in the same manner. From (A.2),

fyyy(x, y, z) = −nα
(n2 + 3n + 2)y3n−3 − (4n2 − 4)y2n−3 + (n2 − 3n + 2)yn−3

(1 + yn)4
.

Substituting y = r0 and α/(1 + rn
0 ) = r0, the coefficient of C1 becomes

n
−(n2 + 3n + 2)r3n−2

0 + (4n2 − 4)r2n−2
0 − (n2 − 3n + 2)rn−2

0

(1 + rn
0 )3

=
n

r2
0

·
−(n2 + 3n + 2)

(
2

n − 2

)3

+ (4n2 − 4)
(

2
n − 2

)2

− (n2 − 3n + 2)
(

2
n − 2

)
(

n

n − 2

)3

=
2
r2
0

· −4(n + 1)(n + 2) + 8(n − 2)(n − 1)(n + 1) − (n − 2)3(n − 1)
n2

=
2
r2
0

(−n2 + 15n − 38),

and the trilinear function C becomes

C((x1, y1, z1), (x2, y2, z2), (x3, y3, z3))

=
2
r2
0

(−n2 + 15n − 38)(x1x2x3, y1y2y3, z1z2z3).

Let ω = (−1/2) + (
√

3i/2) be a cubic root
unity. Then the normalized eigenvectors q and p
of Lemma 3 are

q = p =
〈

ω2

√
3
,

ω√
3
,

1√
3

〉
. (A.3)

Note that formula (A.1) has nested instances of
the bilinear form B. These values are

B(q,q) =
2(5 − n)

3r0
〈ω2, ω, ω〉,

and

B(q,q) =
2(5 − n)

3r0
〈1, 1, 1〉.

For the outer expressions involving B we find
the inverse matrices

A−1 =




−1
9

2
9

−4
9

−4
9

−1
9

2
9

2
9

−4
9

−1
9




,

(2
√

3iI − A)−1

=




3
63

− 34
√

3i
189

10
63

+
8
√

3i

189
−4
63

+
8
√

3i

189

−4
63

+
8
√

3i
189

3
63

− 34
√

3i

189
10
63

+
8
√

3i
189

10
63

+
8
√

3i

189
−4
63

+
8
√

3i
189

3
63

− 34
√

3i

189




,

so that

A−1B(q,q) =
−2(5 − n)

9r2
0

〈1, 1, 1〉,

(2
√

3iI − A)−1B(q,q)

=
−(5 − n)

27r0

〈
1 − i√

3
,
6 − 4

√
3i

7
,−3 −

√
3i

〉
.

Then

B(q, A−1B(q,q)) =
−4

√
3(5 − n)2

27r2
0

〈ω, 1, ω2〉,

and

B(q, (2
√

3iI − A)−1B(q,q))

=
−2

√
3(5 − n)2

27r2
0

〈
1 − i√

3
,−1 − i√

3
,

2√
3
i

〉
.

The last function value needed is

C(q,q,q)=
√

3(n2−15n + 38)
9r2

0

〈1−
√

3i,−2,
√

3−3i〉.
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Now we can compute the hermitian products

p · C(q,q,q) =
n2 − 15n + 38

3r2
0

(1 +
√

3i),

(A.4)

p · B(q, A−1B(q,q)) =
2(5 − n)2

9r2
0

(1 +
√

3i),

(A.5)

and

p · B(q, (2
√

3iI − A)−1B(q,q)) =
4(5 − n)2

9
√

3r2
0

i.

(A.6)

Putting together (A.4)–(A.6), the Lyapunov
coefficient is

�1(R) =
−1

18
√

3r2
0

Re(n2 + 5n − 14 + 13
√

3n2i

− 115
√

3ni + 286
√

3i)

=
−(n2 + 5n − 14)

18
√

3r2
0

. (A.7)
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