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We provide a new way of understanding the multiplicative structure of the rational

homotopy groups π∗(Xλ) ⊗ Q for a family of topological spaces, once we know enough

about their additive structure. This allows us to interpret the condition of realizing as

an Ak map a multiple of a map f : S1 −→ G between two topological groups in terms

of the existence of a rational Whitehead product of order k. Our main example will be

when the Xλ are classifying spaces of symplectomorphism groups BSymp(�g × S2, ωλ)

where ωλ is a symplectic deformation on the trivial ruled surface �g × S2. Our method

of detecting nontriviality is based on computations of equivariant Gromov–Witten in-

variants. One application gives a homotopy-theoretic counterpart to a geometric result

obtained by Karshon. Another application concerns the ring structure of H∗(BSymp(S2×
S2, ωλ)).

1 Introduction

This paper has two parts. In the first, entirely topological, we relate rational Whitehead

products to extensions of maps defined on projective spaces, with the intention to apply

these results in the second part in a symplectic setting. Namely, we find higher mul-

tiplicative Samelson structures in homotopy groups of symplectomorphism groups as
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desuspensions of Whitehead products present in the classifying spaces of the groups

under study.

The study of the topology of symplectomorphism groups began with Gromov [11]

in 1985 in the case of the projective surface P
1 × P

1. Abreu [1], Anjos [4], Abreu–McDuff

[3], and more recently, Abreu–Granja–Kitchloo [2] studied in detail the homotopy type of

rational ruled surfaces with variable cohomology.

We propose that the appearance of higher Samelson products in the homotopy

groups of symplectomorphism groups is in many instances related to the presence of

negative self-intersection holomorphic curves detectable by parametric Gromov–Witten

invariants.

Whitehead products were first introduced by Porter [19] and rational ones

were later studied by Allday [7, 8]. Andrews–Arkovitz [6] studied applications of ra-

tional Whitehead products to Sullivan minimal models. Recall that if one considers

maps ηi : Sji −→ Y representing elements in π∗Y, the kth-order higher Whitehead pro-

duct [η j1, . . . , η jk] is a (possibly empty) subset of homotopy classes in πr−1Y, where

r = j1 + . . . + jk.

If a : Sr−1 −→ T represents the attaching map used to build the product P =
�k

i=1Sji from its (r − 2) skeleton T , and i represents the inclusion Sj1 ∨ . . . ∨ Sjk −→ T ,

then consider the set W := {ḡ : T −→ Y| ḡ ◦ i = g} of all possible extensions of the wedge

map g = η1 ∨ . . . ∨ ηk : Sj1 ∨ . . . ∨ Sjk → Y. The kth-order Whitehead product is the set

of elements in πr−1Y given by the maps ḡ ◦ a : Sr−1 −→ Y, for all ḡ ∈ W. Here, W is

nonempty if and only if all the lower Whitehead products contain the element 0. The

elements in [η1, . . . , ηk] represent the obstructions to extending all possible maps ḡ to

the product P . We are interested in all such elements with infinite order that form the

rational Whitehead products. They are obtained as Whitehead products in the the ratio-

nalization Y∅ of Y (see Section 2, [6], and references therein).

Definition 1.1. We denote by W(k)(F ) := [F, · · · , F ] ⊂ π∗Y ⊗ Q the kth-order Whitehead

product of F . If Y is the classifying space of a group G and F is the suspension of

an element γ ∈ π∗G, we will denote by S(k)(γ ) the corresponding rational Samelson

product. �

We find such rational Whitehead in families Xλ, λ ∈ I satisfying the deforma-

tion property 2.4, whose compact sets along with homotopies between them extend
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Whitehead Products and Symplectomorphism Groups 3

continuously for a small interval as λ increases in the interval I . If such extensions

can be made for the whole length of the interval I , we say that the family has a full

deformation property.

To set language, we will introduce the following concepts:

Definition 1.2. We say that a nonzero element F ∈ π∗Xλ0 is fragile if it admits a null-

homotopic deformation to the right 0 = Fλ ∈ π∗Xλ, for λ > λ0.

A continuous family Fλ : B −→ Xλ, λ > λ0 is new with respect to Xλ0 if it is not

the deformation of a map F : B −→ Xλ0 .

If the family Xλ has the full deformation property, an element F ∈ π∗Xλ0 is said

to be robust if its deformation Fλ ∈ π∗Xλ is essential (i.e., nonzero).1 �

Our strategy is to relate Whitehead products to maps F : Pn −→ Xλ and their

multiples given by composites P
n h �� Pn F �� Xλ with h of arbitrary degree. The fol-

lowing proposition gives a strategy to find nontrivial Samelson products2 in a simple

setting where the family Xλ is that of topological groups:

Proposition 1.3. Consider a family of groups Gλ such that Gλ satisfies the deformation

property 2.4. Consider a continuous map δ : S1 −→ Gλ0 and denote by F1 : P1 −→ BGλ0

its suspension to the classifying space. Assume that the deformations F1,ε : P1 −→
BGλ0+ε admit extensions F2,ε : P2 −→ BGλ0+ε for ε > 0 and that neither they, nor any

of their multiples, are homotopic to a map P
2 −→ BGλ0 . Then one of the following

holds:

A) There is a new element of π3Gλ0+ε ⊗ Q.

B) The Samelson product [δ, δ] ∈ π2Gλ0 ⊗ Q is nontrivial. �

As an example, the symplectic manifolds (M, ω1+ε) = (
T2 × S2, (1 + ε)σT2 ⊕ σS2

)
(ε ≥ 0), where σS2 and σT2 are the areas of the fiber and the base, respectively. We take

G1+ε to be symplectomorphism groups Symp
(
T2 × S2, (1 + ε)σT2 ⊕ σS2

)
. Following Mc-

Duff [16], there is a robust family δ1+ε : S1 −→ G1+ε (ε ≥ 0) which for ε > 0 is homotopic

to a group homomorphism so that its suspension F1,ε : P1 −→ BG1+ε extends over P
∞.

For these choices of G1+ε and δ, we use parametric Gromov–Witten invariants in

Subsection 4.3 to verify the hypothesis of Proposition 1.3 by showing that the maps F2,ε :
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P
2 −→ BG1+ε (ε > 0) and their multiples are not homotopic to a map F2 : P2 −→ BG1 (see

Corollary 4.5).

Moreover, because the rational homotopy groups of Gλ are known in this situa-

tion, we show in Subsection 4.4 that case A) of Proposition 1.3 does not occur. Hence, we

have the following:

Theorem 1.4. There is a fragile element of π2Symp(T2 × S2, σT2 × σS2) ⊗ Q that is re-

presented by the Samelson product [δ1, δ1]. �

Proposition 2.1 in Section 2 introduces a precise setting in which we can single

out a nontrivial Whitehead product W(k)(F ). Let us present, however, an instance of this

proposition which pertains to our main application.

Proposition 1.5. Consider a family of groups Gλ with the deformation property, such

that all higher rational Whitehead products in BGλ0 of degree strictly less than 2n va-

nish. Given a continuous homomorphism γ : S1 −→ Gλ0 , denote by Fn : Pn −→ BGλ0 the

restriction of the induced map Bγ : BS1 −→ BGλ0 to the 2nskeleton. Suppose that Fn has

a deformation Fn,ε : Pn −→ BGλ0+ε that extends to F̃n,ε : Pn+1 −→ BGλ0+ε when ε > 0, so

that condition (∗) is satisfied:

(∗) No multiple of F̃n,ε is homotopic to a map into BGλ0 .

Then one of the following holds

A) There is a new element of π2n+2BGλ0+ε ⊗ Q.

B) There is a nonzero element W ∈ π2n+1BGλ0 ⊗ Q such that the Whitehead pro-

duct W(n)(F1) = {0, W}. �

As above, our example lives in a symplectic setting. Let (M, ωλ) be a smooth

family of symplectic structures with a varying cohomology class on a closed manifold

M. Let G = Diff0(M) be the identity component of the group of diffeomorphisms and

Gλ = Symp(M, ωλ) ∩ Diff0(M). It follows from Lemma 4.1 in [10] that the family Gλ has

the deformation property.

Gromov and Abreu–McDuff have provided information on the additive structure

of the homotopy groups π∗Gλ ⊗ Q in the case that M represents a symplectic ruled sur-

face (Mg
λ , ωλ) = (�g × S2, λσ�g ⊕ σS2) (λ ≥ 1) with symplectomorphism groups Gg

λ. Here,

σ�g and σS2 are forms of total area 1. Denote the two homology classes [�g × pt] and

[pt × S2] by A and F , respectively. If k = �λ�, then Mg
λ admits k different Hamiltonian

3306

 at S
tate U

niv N
Y

 at S
tony B

rook on M
ay 23, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Whitehead Products and Symplectomorphism Groups

circle actions Hi each with two fixed point sets given by holomorphic curves in classes

A± iF , 1 ≤ i ≤ k. Due to the work of Abreu and McDuff [3, 16], appropriate integer

multiples of all these actions give the same elements [γ g] in the rational homotopy

groups π1(Gg
λ) ⊗ Q. Using the maps γ g in Proposition 1.5, we can verify condition (∗)

for all genus g by using parametric Gromov–Witten (PGW) invariants. In our case, these

are equivariant Gromov–Witten (EGW) invariants, and count precisely the Hi-invariant

curves. We show that the only natural EGW (those counting generically isolated curves

with no marked points in certain associated fibrations) are given by

Theorem 1.6. For any genus g and a Hamiltonian circle action with Lie group Hk on Mg
λ

(λ > k), we have

EGWg,0
(
Mg

λ ; Hk; sA−kF
) = ±1 · u2k+g−1 ∈ H∗(BS1,Q

)
. �

Moreover, because enough information is known about rational homotopy

groups in these instances, we can eliminate case A) of Proposition 1.5. One consequence

for g = 1 was explained in the beginning. In the rational ruled surface case, where the

base is a sphere, we obtain the following proposition:

Proposition 1.7. For all k ≥ 1 and k < λ ≤ k + 1, and for γλ given by the circle action Hk,

the Samelson product of order 2k + 1, S(2k+1)(γλ), is equal to {0, wk} ⊂ π4k(Gλ), where wk

is a fragile homotopy class that disappears when λ > k + 1. �

Note that the nontriviality of these Whitehead products was established by

Abreu–McDuff in [3] using different methods.

We will use this result to give an alternative proof of the following theorem

concerning the rational cohomology ring of the classifying spaces BGλ that is due

to Abreu–Granja–Kitchloo [2] (see also Abreu–McDuff [3] for a partial result in this

direction).

Theorem 1.8. (Abreu–Granja–Kitchloo) [2] Fix an integer k ≥ 0. For k < λ ≤ k + 1, we

have the following ring isomorphism H∗(BG0
λ,Q

) = Q[A, X, Z ]/〈Fk〉, with deg A = 2,

deg X = deg Y = 4, and where the polynomial Fk is given by:

Fk = A
(
X − Z + A

2)
(22 X − 24 Z + A

2)
. . .

(
k2 X − k4 Z + A

2)
. (1)

�
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For the proof, we use consequences of the existence of a nontrivial rational

Whitehead product to the structure of the Sullivan minimal models of the classifying

spaces BG0
λ, along with algebraic computations from [2] that exploit the underlying toric

structures of Kähler representatives of (S2 × S2, ωk).

In Section 4.7, we discuss the case g > 1 and prove the existence of nontrivial

higher Whitehead products. As a consequence, we show that the groups Gg
λ do not have

the homotopy type of a compact Lie group.

1.1 The structure of the paper

The paper is organized as follows. In Section 2, we introduce and prove the topologi-

cal result on the existence of nontrivial Whitehead products that enable us to provide

examples in the rest of the paper. In the same section, we discuss a relation between

rational higher-order Whitehead products and the existence of Ak maps between S1 and

a topological group. In Section 3, we start the discussion of the symplectic setting for

our main example when the family Xλ is BSymp(M, ωλ). A description of the parametric

Gromov–Witten invariants, the main tools we use to determine nontriviality, is provided

in Subsection 3.2.

We rephrase Proposition 1.5 in this setting and then focus in Section 4 on our

main objects of study, the symplectic ruled surfaces. In 4.1, we provide the necessary

background on ruled surfaces. The remaining three Subsections 4.4, 4.5, and 4.7 will

study the cases g = 0, g = 1, and g > 1. In particular, for the rational case, we provide in

Subsection 4.6 the arguments to obtain an alternative method for the full multiplicative

structure of the cohomology rings of the classifying spaces and compare them with [2].

In 4.8, we provide a proof of Theorem 1.6 based on obstruction bundle tech-

niques. We compute there all the natural equivariant Gromov–Witten invariants in the

topologically trivial ruled symplectic surfaces.

2 Topological Setting

In this section, we first introduce Proposition 2.1 which describes relations between

rational Whitehead products in a space Y and maps from projective spaces P
k to Y.

Afterward, we use this result to study under what conditions families of maps Fn+1,ε :
P

n+1 −→ Xλ0+ε, ε > 0 yield nontrivial Whitehead products.

If one considers the rationalization X0 of X, there exist localization maps

e : X −→ X∅ such that for any x ∈ [e∗η1, . . . , e∗ηk]w ⊂ πN X∅ there are integer numbers M

satisfying M0x = e∗z, with z ∈ [M1η1, . . . , Mkηk]w.
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Whitehead Products and Symplectomorphism Groups

The Whitehead products between elements e∗η in the rationalization X∅
are called rational Whitehead products. These products are multilinear: if x ∈
[e∗η1, . . . , e∗ηk]w, then Mx ∈ [e∗η1, . . . , Me∗ηi, . . . , e∗ηk]w. In light of the above correspon-

dence, and since we will be interested in nontrivial elements of infinite order up to a

factor, we will say that the rational Whitehead products considered are of elements in

π∗BG ⊗ Q. This correspondence can be formalized by considering other definitions of

Whitehead products; see for instance Allday [7], who defines rational Whitehead pro-

ducts on the graded differential Lie algebra π∗BGλ ⊗ Q.

Proposition 2.1. The following holds:

a) Assume that there is a map F : P1 −→ Y that yields a nontrivial F ∈ π2(Y) ⊗ Q

for which the following rational Whitehead products vanish:

{0} = W(k)(F ) ⊗ Q, k ≤ n. (2)

Then there is a map Fn : Pn −→ Y which extends a map homotopic to a mul-

tiple of F .

b) The converse is also true; namely, if there is some F ′
n : Pn −→ Y that extends a

map homotopic to a multiple of F then 0 ∈ W(k)(F ), k ≤ nand hence W(n+1)(F )

is defined. Moreover, if neither F ′
n nor one of its multiples can be extended to

a map defined on P
n+1 then W(n+1)(F ) contains a nontrivial element. �

Proof of Proposition 2.1 We will investigate the correspondence between maps defined

on P (k) := (S2)k and its skeletons and P
k and its skeletons. We reserve the notation T (k)

for the codimension-two (or the fat wedge) skeleton of P (k).

Recall that there is a covering map

pr(k) : P (k) −→ P
k = P (k)/Sk, (3)

where Sk is the kth group of permutations. Then a(k) : S2k−1 −→ T (k) is the universal

Whitehead product map, used to attach the top cell of dimension 2k on T (k) to obtain

P (k). If we look at the Hopf fibration

S1 −→ S2k+1 h(k)−→ P
k
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we obtain the Hopf maps h(k) : S2k+1 −→ P
k used to attach a (2k + 2)-dimensional cell to

P
k in order to obtain P

k+1. The long exact homotopy sequence for this fibration imme-

diately yields that π2k+1P
k = Z and this group is generated by h(k). Hence for any map

g : S2k+1 −→ P
k, we have [g] = N[h(k)], and the number N ∈ Z is called the Hopf invariant

of the map g. Note that if one considers the mapping cone Cg of such maps and denotes

by x and z the generators of H2(Cg;Z) = Z and H2k+2(Cg;Z) = Z, then the Hopf invariant

is also given by xk+1 = Nz. This can be seen by looking at the following cofiber sequence

(obtained as a consequence of the fact that π2k+1P
k = Z and that the mapping cone of the

Hopf map h(k) is P
k+1):

S2k+1
h(k) ��

N
��

P
k ��

=
��

P
k+1 ��

��

S2k+2

N
��

S2k+1
g ��

P
k �� Cg �� S2k+2 .

(4)

It is often easier to compute the Hopf invariant using the cup product in Cg. The

following lemma computes the Hopf invariant of the maps pr(k+1)|T (k+1) ◦ a(k+1):

Lemma 2.2. With the above notation, we have [pr(k+1)|T (k+1) ◦ a(k+1)] = (k + 1)![h(k)]. �

Proof of Lemma 2.2. The Hopf invariant M of the map pr(k+1)|T (k+1) ◦ a(k+1) is obtained

from the following cofiber sequence:

S2k+1
a(k+1) ��

M
��

T (k+1)
i ��

pr(k+1)

��

P (k+1) ��

pr(k+1)

��

S2k+2

M
��

S2k+1
h(k) ��

P
k ��

P
k+1 �� S2k+2 .

(5)

If we call x ∈ H2(Pk+1;Z) = Z, xi ∈ H2(P (k+1);Z) = Z
k+1 the generators of the

corresponding cohomologies, then pr∗
(k+1)(x) = (x1 + . . . + xk+1), and hence pr∗

(k+1)(x
k) =

(k + 1)!(x1 × . . . × xk+1). Since the degree of the map M must match (k + 1)! (as above), the

lemma follows. �

We now proceed to prove part (a) of Proposition 2.1. Fix n > 1 and F such that

0 = W(k)(F ) ⊗ Q for all k ≤ n. Therefore, the wedge map F ∨ . . . ∨ F admits extensions

g(k) : T (k) −→ Y, 1 ≤ k ≤ n (6)
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Whitehead Products and Symplectomorphism Groups

which commute with all possible inclusions i : T (k) −→ T (k+ j).

The following lemma that yields immediately part (a) of Proposition 2.1:

Lemma 2.3.

(1) The maps g(k) in (6) can be chosen symmetric in the sense that they commute

with the Sk action. Moreover, they extend to symmetric maps

gext
(k) : P (k) −→ Y. (7)

(2) There exist maps Fk : Pk −→ Y that commute with the inclusions i : Pk −→
P

k+ j , whose restriction F1 satisfies F1 = N · F , a multiple of F and for which

we have

gext
(k) = Fk ◦ pr(k) (8)

and

g(k) = Fk−1 ◦ pr(k)|T (k). (9)
�

Proof of Lemma 2.3. The following commuting diagram:

S2k+1 Nk+1
��

h(k)

��

S2k+1

h(k)

��
P

k N ��
P

k+1

(10)

implies that [(N · F )k ◦ h(k)] = Nk+1[Fk ◦ h(k)]. Hence, we can kill torsion in [Fk ◦ h(k)] by

replacing F with its multiple N · F . We can then use induction:

(Proof of Lemma 2.3 for k = 2) Take g(2) = F ∨ F , which is clearly symmetric. The

obstruction to extending the map F(1) := F from S2 = P
1 to P

2 is given by the homotopy

class [F ◦ h(1)] ∈ π3Y. We have by Lemma 2.2:

0 = W(2)(F ) = [g(2) ◦ a(2)] = [F ◦ pr(2)|T (2) ◦ a(2)] = 2[F ◦ h(1)]. (11)

We replace F by 2F and this will kill the two torsion in [F ◦ h(1)] because, as

above, [(2F ) ◦ h(1)] = 4[F ◦ h(1)]. Therefore, after replacing F with its multiple we can
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extend F1 to a map F2 : P2 −→ Y. Then, we take the map gext
(2) : P (2) −→ Y to be gext

(2) =
F2 ◦ pr(2), which is clearly symmetric and extends g(2).

(Proof that Lemma 2.3 for k implies Lemma 2.3 for k + 1) We have that T (k+1) =⋃ j=k
j=0 P (k)

j where P (k)
j is an identification of the product P (k) with the space of (k + 1)-

tuples that have the coordinate in position j at the base point xj. The spaces P (k)
j in-

tersect in spaces homeomorphic to P (k−1). By the induction step, we already have k + 1

copies gj,ext
(k) of the symmetric map gext

(k) with domains P (k)
j , as well as a map Fk with gext

(k) =
Fk ◦ pr(k). Since all the maps gj,ext

(k) agree on intersections, we define g(k+1) : T (k+1) −→ Y

by

g(k+1) :=
k⋃

j=0

gj,ext
(k) .

Clearly, g(k+1) = F(k) ◦ pr(k+1)|T (k+1) . Moreover, by hypothesis, the obstruction to extend

this map to the product is 0 = [g(k+1) ◦ a(k+1)] and using Lemma 2.2 we get (k + 1)![Fk ◦
h(k)] = [g(k+1) ◦ a(k+1)]. By replacing F with N · F , we can kill the undesired torsion in

[Fk ◦ h(k)]. Hence, we may conclude that [Fk ◦ h(k)] = 0 and therefore the map Fk can be

extended to Fk+1 : Pk+1 −→ Y. As before, we define gext
(k+1) = Fk+1 ◦ pr(k+1), which is a sym-

metric extension of g(k+1).

This concludes the proof of Lemma 2.3. �

To prove (b) of Proposition 2.1, let us consider the maps F ′
n ◦ pr(n+1)|T (n+1) : T (n+1) −→ Y.

They provide an extension of F ′
1 ∨ . . . ∨ F ′

1 to T (n+1) and hence W(n+1)(F ′
1) is defined, thus

W(n+1)(F ) ⊗ Q is also defined. Let us assume that F ′
n : Pn −→ Y cannot be extended over

P
n+1. This implies that [F ′ ◦ h(n)] �= 0. We know that the obstruction to extend the map

g(n) satisfies [g(n) ◦ a(n)] = (n+ 1)![F ′
n ◦ h(n)]. Again, if we work rationally we can insure by

considering a multiple of F ′
n that the homotopy class [Fn ◦ h(n)] is of infinite order and

hence [g(n+1) ◦ a(n+1)] �= 0 which gives a nontrivial W(n+1)(F ′
1). �

2.1 Deformations of Whitehead products

Now consider a topological family Xλ0+ε that admits the following deformation property:

Definition 2.4. Let I ⊂ R be an open interval and Xλ, λ ∈ I , be a family of closed sub-

spaces of a topological space X. For J ⊂ I , let XJ = ∪λ∈J{λ} × Xλ ⊂ J × X. We say that

the family {Xλ} has the deformation property if for each λ ∈ I and every compact set
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K ⊂ Xλ there is εK > 0 and a continuous map h : [0, εK ] × K −→ X[λ,λ+εK ] such that the

following diagram commutes

h : [0, εK ] × K ��

pr1

��

X[0,∞)

pr2

��
[0, εK ] incl �� [0,∞).

(12)

Moreover, the germ of the deformation h is unique up to homotopy in the sense that

for any two maps h and h′ satisfying this diagram and which coincide on 0 × K, there

exists, for small enough ε′ > 0, a homotopy H : [0, 1] × [0, ε′] × K → X[0,∞) between h and

h′ which also satisfies H ◦ pr2 = pr1 ◦ incl.

We say that the family Xλ, λ ∈ I satisfies the full deformation property if both h

and H exist for all ε > 0. �

Proposition 2.5. For F : P1 −→ Xλ0 , if W(k)(F ) is defined, then W(k)(Fε) is also defined

for small positive ε and for Fε a deformation of F . �

The proof is immediate. Let Y = Xλ0 in Proposition 2.1. Any extension Fp : Pn −→ Xλ0

provided by part (a) has a deformation Fn,ε : Pn −→ Xλ0+ε extending a map Fε : P 1 −→
Xλ0+ε for small ε.

Corollary 2.6. Assume that we have a map Fn+1,ε : Pn+1 −→ Xλ0+ε, ε > 0 satisfying

I) Fn+1,ε and any of its multiples are new maps with respect to Xλ0 in the family

Xλ0+ε, ε > 0.

II) The restriction Fn,ε : Pn −→ Xλ0+ε belongs to a continuous family Fn,ε, ε ≥ 0.

Then one of the following holds

A) There is a new element with respect to Xλ0 in π2n+2(Xλ0+ε) ⊗ Q, ε > 0.

B) There is a nonzero element w ∈ π2n+1(Xλ0) ⊗ Q in the Whitehead product

W(n+1)(F1). �

In general, we can replace condition II by a weaker condition and obtain:

Corollary 2.7. Assume that we have a map Fn+1,ε : Pn+1 −→ Xλ0+ε, ε > 0 satisfying
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I) Fn+1,ε and any of its multiples are new maps with respect to Xλ0 in the family

Xλ0+ε, ε > 0.

III) There is a k with 1 < k ≤ nsuch that the restriction Fk,ε : Pk −→ Xλ0+ε belongs

to a continuous family Fk,ε, ε ≥ 0.

Then one of the following holds

C) There is a new element with respect to Xλ0 in π2r+2(Xλ0+ε) ⊗ Q, for some r

with k ≤ r ≤ n.

D) There is a nonzero element w ∈ π2r+1(Xλ0) ⊗ Q in the Whitehead product

W(r+1)(F1), for some r with k ≤ r ≤ n. �

Proof of Corollary 2.6. Consider the map Fn,0 : Pn −→ Xλ0 provided by assumption II. If

neither Fn,0 nor its multiples can be extended to a map defined on P
n+1 then, using part

b) of Proposition 2.1, situation B) will hold.

Otherwise, consider an extension Fn+1,0 : Pn+1 −→ Xλ0 . This map will deform to

a family F ′
n+1,ε : Pn+1 −→ Xλ0+ε for sufficiently small ε. We will now have two maps,

F ′
n+1,ε and the original map Fn+1,ε, whose restrictions to the codimension-two skele-

tons P
n are homotopic. But F ′

n+1,ε and Fn+1,ε cannot be homotopic to each other because

Fn+1,ε represents a new family. Thus, there must be a new element ηε in π2n+2(Xλ0+ε)

obtained as follows: after a homotopy we can assume that F ′
n,ε and Fn,ε are the same,

hence their extensions F ′
n+1,ε and Fn+1,ε are built using two maps φ1 : e2n+2 −→ Xλ0+ε and

φ2 : e2n+2 −→ Xλ0+ε that agree when restricted to the boundary of the top cells e2n+2. By

gluing these two maps along their boundaries, we obtain a new map ηε : S2n+2 −→ Xλ0+ε,

which is not null-homotopic since F ′
n+1,ε and Fn+1,ε are not homotopic. By taking suffi-

cient high multiples of the maps F and F ′, we can ensure that ηε has no vanishing

multiples.

Corollary 2.7 follows immediately as above. �

2.2 A criterion for the existence of Ak maps between topological groups

Let us offer the following interpretation of Proposition 2.1 for the case when Y repre-

sents the classifying space of a topological group G.

Consider a continuous map f : S1 −→ G and its suspension F : P1 −→ BG. The

obstructions for extending F to a map F∞ : P∞ = BS1 −→ BG are the same as for extend-

ing f as an H-homomorphism (otherwise known as A∞ map) (see Stasheff [22]). Recall
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that f is an H-homomorphism if there are two topological groups S, K weakly homotopy

equivalent to S1 and G, respectively, and a group homomorphism φ : S −→ K whose ho-

motopy class corresponds to the class of f via the homotopy equivalences involved.

In general, the obstructions to extend F to a map Fk : Pk −→ BG is the obstruc-

tion to realize f as an Ak map. So one can interpret parts of Proposition 2.1 as follows:

Corollary 2.8. Consider a continuous map f : S1 −→ G and its suspension F : P1 −→
BG. Then a multiple of F can be realized as an Ak map if and only if the rational White-

head product Wk+1(F ) is defined. �

This interpretation merely says that if zero is contained in the rational Whitehead pro-

ducts some extensions exist, hence one can find extensions of F ; but Proposition 2.1

gives an interpretation of all the homotopy types of such extensions.

Remark 2.9. Observe that the proofs of the results used in Subsection 2.1 only use

the deformation property 2.4 of the family Xλ when the compact subset K is a simply

connected closure-finite weak topology CW-complex. If we have a family of groups Gλ

that satisfy the deformation property 2.4, then the family of classifying spaces Xλ = BGλ

satisfies a weaker version of definition property 2.4 for K is a simply connected CW

complex.

3 Symplectic Setting

Consider (M, ωλ) a continuous family of symplectic forms with variable cohomology

class on a compact manifold M. In the rest of the paper, we will study the symplecto-

morphism groups Gλ = Symp(M, ωλ) ∩ Diff0(M), with Diff0(M) the identity component

of the diffeomorphism groups. There is no direct inclusion of elements from Gλ in Gλ+ε.

We have nevertheless the following:

Proposition 3.1.

1. (Buşe [10]) The family Gλ, λ ≥ 0, with Gλ ⊂ G = Diff0(M) satisfies the defor-

mation property.

2. The family of classifying spaces BGλ, λ ≥ 0, with BGλ ⊂ BG := BDiff0(M) sa-

tisfies the deformation property when K is a simply connected CW complex.
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3. (McDuff [16]) Consider the family Mg
λ := (�g × S2, λσ�g ⊕ σS2), where the topo-

logically trivial fibrations with two forms σS2 and σ�g have total area 1,

and consider Gg
λ, their corresponding symplectomorphism groups. Then both

families Gg
λ and BGg

λ, λ ≥ 1 have the full deformation property. �

Note that case (2) follows from the second part of Remark 2.9. As we will see

later, item (3) of Proposition 3.1 follows from a stronger result of D. McDuff [16]; namely,

she provides continuous maps hλ,λ+ε : Gg
λ −→ Gg

λ+ε that are in fact A∞ maps and hence

induce continuous maps Bhλ,λ+ε : BGg
λ −→ BGg

λ+ε. An explicit proof of their property of

being A∞ maps is provided in Abreu–Granja–Kitchloo [2].

We will be interested to apply Proposition 2.1 and its corollaries for such sym-

plectic families BGλ in general. Nevertheless, the existence of essential robust elements

with sufficiently many trivial Whitehead products is difficult to prove in general and

hence we will ultimately reduce to the case of ruled surfaces to provide examples.

Let us observe that a map f : B −→ BSymp(M, ωλ) is the same as a symplectic

fibration with base B and fiber M, whose structural group is inside the symplecto-

morphism group. Thus, studying extensions of such maps will in fact mean studying

symplectic fibrations. Let us introduce some preliminaries for convenience.

3.1 Symplectic fibrations

Consider a triple (M, ω0, J) where J is an almost complex structure that tames ω0 and

has a canonical class c1(M).

Definition 3.2. A locally trivial fibration π : Q −→ B is a symplectic fibration if the

fiber is a compact symplectic manifold (M, ω0) and there exists a two-form 
0 on Q

which is vertically closed (i.e., i(v1, v2)d
0 = 0 for all vertical vectors vi) and whose res-

triction to each fiber is the symplectic form of the fiber. �

As shown in [12], such forms correspond to symplectic connections on the fibra-

tion. Consider (Uα) an atlas covering the base B and a trivialization φα : π−1(Uα) −→
M × Uα, that yields a collection of transition maps φαβ : Uα ∩ Uβ −→ Diff(M). An equiva-

lent definition of the symplectic fibration is that φαβ ⊂ Symp(M, ω0). Indeed, given such

a trivialization, the form 
0 is obtained via a partition of unity from canonical forms on

π−1(Uα) such that it restricts on each fiber Mb to ωb = φα|∗
π−1(b)

ω0.
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Given a symplectic fibration, we consider the associated cohomological and

homological bundles H∗(M,R) −→ Q∗ −→ B and H∗(M,Z) −→ Q∗ −→ B. These are ob-

tained by considering the same atlas for the base and automorphisms naturally induced

by the maps φα on homology, respectively cohomology.

In a similar manner, one constructs an associated bundle J (B, M) whose fiber

over each b is the space of almost complex structures J on M that are tamed by ωb. As

explained in Le–Ono [14], since the fibers are contractible, one can always pick a section

b −→ Jb in this bundle.

The above alternative descriptions of a symplectic fibration imply that there ex-

ist constant sections s[ω0] : B −→ Q∗ with the value [ω0] ∈ H∗(M,R) and s[c1] : B −→ Q∗

that take the integer value c1(M, ω0) ∈ H2(M,R).

We say that a symplectic fibration is a Hamiltonian fibration if the structure

group further reduces to Ham(M, ω0) ⊂ Symp(M, ω0).

By a result of Guillemin et al. [12], a symplectic fibration with a simply con-

nected base B is Hamiltonian if and only if there exists a closed extension 
0 ∈ �2(Q).

Moreover, a result of Thurston [17, page 197] guarantees that if the base B carries a sym-

plectic form σB , then for t sufficiently large the form 
0 can be chosen to be symplectic

and to represent the class [ω0] + t[π∗σB].
If π1(B) acts trivially on the associated fibration H∗(M,Z) −→ Q∗ −→ B (e.g., if

B is simply connected), then for each D ∈ H2(M,Z) there also exists a constant section

sD : B −→ Q∗ that takes the value D.

Let us consider a symplectic deformation (M, ωλ)λ≥0 of the symplectic structure

(M, ω0).

Definition 3.3. We say that a continuous one parameter family of vertically closed

two forms (
λ)λ≥0 on Q that satisfy the conditions in Definition 3.2 for symplec-

tic fibers (M, ωλ), represents a fiberwise symplectic deformation based on the family

(M, ωλ)λ≥0. �

These fibrations carry vertical almost complex structures J̃λ. These are automor-

phisms of the vertical tangent bundle such that J̃λ
2 = −Id. We say J̃λ is compatible with


λ if 
λ(·, J̃λ·) provides a metric in each fiber Mb.

We will refer to such pairs (
λ, J̃λ) as compatible with the symplectic fibration

Q with fiber (M, ωλ).

We are interested in applying Corollaries 2.6 and 2.7 for the cases Xλ =
BSymp(M, ωλ). Let us point out that a deformation Fn,ε : Pn −→ BSymp(M, ωλ0+ε), ε ≥ 0,
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corresponds to a fiberwise symplectic deformation (
λ)λ≥0 on Q −→ P
n based on the

family (M, ωλ)λ≥0. Thus, the essential tool to show that a given family Fn+1,ε, ε > 0 is a

new family as in part I of Corollary 2.6 must in fact be a tool that shows obstructions to

deform it to ε = 0. These tools will be parametric Gromov–Witten invariants, which are

introduced in the next section. The informed reader may skip and go to Subsection 3.3

to see them applied to our setting.

3.2 Definition and properties of parametric Gromov–Witten invariants

We will first make a summary of their defining properties. We will use results from

Li–Tian [15] as well as results from Le–Ono [14].

Assume that the symplectic fibration π : Q −→ B with fiber (M, ω) admits a

closed extension 
 of ω. As explained in Subsection 3.1, we may consider a section

J̃ : B −→ J (B, M) that provides an almost complex structure on each fiber Mb compati-

ble with the symplectic form ωb. It will suffice for our purposes to consider B a simply

connected compact space.

For 2g + m≥ 3, let Mg,m be the moduli space of genus g Riemann surfaces

(�g, x1 · · · xm) (up to biholomorphisms of marked surfaces) with m marked distinct

points. As usual, the (3g − 3 + m)-dimensional Kähler orbifold Mg,m is the Deligne–

Mumford compactification of Mg,m. This consists of all genus g stable curves (up to

biholomorphisms of marked surfaces taking nodes to nodes) with at most rational dou-

ble points different from the mmarked points.

Fix a homology class D ∈ H2(M,Z). Since we assumed that B simply con-

nected, we get a constant section sD : B −→ H2(Q,Z) in the corresponding homological

bundle.

Definition 3.4. A vertical stable C l-map (b, f, x1, · · · xm) with mmarked points is a map

f : (�g, x1 · · · xm) −→ Q whose image is contained in some fiber Qb and satisfies the fol-

lowing conditions:

(1) � is a connected (possibly singular) curve with normal crossings and

x1 · · · xm are smooth distinct points on �.

(2) f is continuous and each restriction to an irreducible component f|�i lifts

to a C l-smooth map from the normalization �̃i into Q.

(3) Any irreducible component �i of genus 0 on which f is constant must con-

tain at least three special points (that are either marked points or singular

points of �). �
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Note that the condition 2g + m≥ 3 is not imposed in Definition 3.4. If 2g + m≥
3, the domain curve (�g, x1 · · · xm) is stable if its group of biholomorphic self-maps

Aut(�, x1, · · · xm) is finite. If one looks at Aut(b, f, �, x1, · · · xm) satisfying f ◦ σ = f , then

stability of the map (b, f, x1, · · · xm) implies only finiteness of the latter.

Consider f : (�, x1 · · · xm) −→ Q and f ′ : (�′, x′
1 · · · x′

m) −→ Q. We say that two sta-

ble maps (b, f, x1, · · · xm) are equivalent if b = b′, both im( f) and im( f ′) are contained in

the same fiber Qb, and there is a biholomorphism of the domains φ : � −→ �′ that takes

marked points to marked points, nodal points to nodal points (and hence irreducible

components to irreducible components), and such that f ◦ φ = f ′. Let F l
g,m(Q, sD) be the

moduli space of equivalence classes [b, f, x1, · · · , xm] as above such that f is C l smooth

and [im( f)] = sD(b) ∈ H2(Qb,Z).

A vertical map f with im( f) ⊂ Qb is Jb holomorphic if there is an arbitrary com-

plex structure j ∈ Teich(�) on �, such that ∂̄Jb( f) = 1
2 (df + Jb ◦ df ◦ j) = 0. We denote by

Mg,m(Q, J̃, sD) the subset of F l
g,m(Q, sD) consisting of Jb-holomorphic stable maps.

If � is smooth, we denote by �(0,1)( f∗T Qvert
b ) the set of all continuous sections

ξ in Hom((T�), f∗T Qvert
b ) that anti-commute with j and Jb. Let Reg(�) ⊂ � be the set

of all nonsingular points of �. In general, �(0,1)( f∗T Qvert
b ) consists of f∗T Qvert

b -valued

(0, 1) forms ξ over Reg(�) that have the property that the restrictions ξ|�1 , ξ|�2 of two

local components near a singular point q can be extended continuously across q.

We can construct a generalized bundle E over F l
g,m(Q, sD) with fiber

�(0,1)( f∗T Qvert
b ) and consider a section in E given by � = 1

2 (df + Jb ◦ df ◦ j). Then,

�−1(0) is exactly Mg,m(Q, J̃, sD).3

Proposition 3.5. For l ≥ 2 and the section φ : F l
g,m(Q, sD) −→ E as above,

φ−1(0) = Mg,m(Q, J̃, sD) is compact and φ gives rise to a generalized Fredholm orbifold

bundle with a natural orientation and index d = 2(dim CM − 3)(1 − g) + 2c1(D) + 2m+
dim B. �

Following the same line of argument as in [15], the above result allows one to

construct a virtual moduli class [Mg,m(Q, J̃, sD)]virt ∈ Hd(Mg,m(Q, J̃, sD),Q). Let us con-

sider now the usual evaluation map

ev : Mg,m(Q, J̃, sD) −→ Qm

given by ev([b, f, x1, · · · xm]) = ( f(x1), · · · , f(xm)), as well as the forgetful map forget :
Mg,m(Q, J̃, sD) −→ Mg,m, whose value is the stabilized domain (collapsing unstable

3319

 at S
tate U

niv N
Y

 at S
tony B

rook on M
ay 23, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


O. Buşe

components) of f . In what follows, we define Mg,m to be a point whenever 2g+
m< 3.

Definition 3.6. The parametric Gromov–Witten invariants are maps

PGWg,m(Q, sD) : [H∗(Q;Q)]m × H∗(Mg,m,Q) −→ Q (13)

which, for α ∈ [H∗(Q;R)]m and β ∈ H∗Mg,m are given as:

PGWg,m(Q, sD)(α, β) = [Mg,m(Q, J̃, sD)]virt ∩ (forget∗β ∪ ev∗α).

These invariants are zero unless

2(dim CM − 3)(1 − g) + 2c1(D) + 2m+ dim B = dim α + dim β. (14)
�

Let us focus on the case when β = 1 and α is the Poincaré dual of a product of m

cycles ai that can be represented in a fiber Qb for some arbitrary b. Then the invariants

count all maps [b, f, j, x1, . . . , xm] whose homology class is [im( f)] = sD ∈ H2(Qb,Z) and

such that f(xi) lies in ai.

We define the symplectic vertical taming cone T ( J̃) of a section J̃ to be the space

of closed two forms 
 on Q that are compatible with the symplectic fibration π : Q −→ B

with fiber (M, ω) and which satisfy the taming relation 
(v, J̃v) > 0 for any vector v

tangent to a fiber Qb.

As in Li–Tian [15] and Le–Ono [14], the following properties of parametric

Gromov–Witten invariants hold:

Proposition 3.7. (Properties of parametric Gromov–Witten invariants). Consider a sym-

plectic fibration π : Q −→ B with fiber (M, ω0), with a closed extension 
0 of ω0 and an

integral homology class D ∈ H2(M, Z).

(i) The parametric Gromov–Witten invariants PGWg,m(Q, sD) are well defined

and independent of the choice of the section of tamed vertical almost com-

plex structure J̃ with 
0 ∈ T ( J̃).
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(ii) The parametric Gromov–Witten invariants PGWg,m(Q, sD) are independent

of the choice of the taming closed extension 
0 and hence are fiberwise

symplectic deformation invariants as long as the deformation is within

some symplectic taming cone T ( J̃).

(iii) (Le–Ono [14]) Symplectic sum formula: let Q = Q1#Q2 be a fiber connected

sum of two fibrations. Then

PGWg,0(Q, sD) = PGWg,0(Q1, sD) + PGWg,0(Q2, sD). (15)
�

(iv) (Le–Ono [14]) If f : B ′ −→ B is a N covering map, then PGWg,m(Q, sD) = N ·
PGWg,m( f∗Q, s′

D).

3.2.1 Equivariant Gromov–Witten invariants

Equivariant Gromov–Witten invariants can be defined for any Hamiltonian action of a

compact Lie group H on a symplectic manifold (M, ω). We will restrict ourselves to the

case of Hamiltonian circle actions H = S1. To define them, we will follow here the ap-

proach of Givental, Givental–Kim, and Ruan; namely, equivariant Gromov–Witten (GW)

invariants will be viewed as limits of parametric GW-invariants.

Consider the universal symplectic fibration MS1 = M ×S1 E S1 with fiber (M, ω).

MS1 consists of an infinite tower of Hamiltonian fibrations π(k) : M(k)

S1 = M ×S1 S2k+1 −→
CP k. Note that M comes equipped with an S1-invariant symplectic form ω. By taking

its pullback to the product M × E S1 and its descendants to the quotients M(k)

S1 , we ob-

tain closed two-form extensions 
(k). Similarly,using an S1-invariant compatible almost

complex structure on M, we obtain a natural vertical almost complex structure J(k) com-

patible with the fibration that makes the map π(k) almost holomorphic, so that the triple

(M(k)

S1 , J(k), 
(k)) is compatible with the fibration π(k) : M(k)

S1 −→ CP k with fibers (M, ω).

We say that MS1 admits the vertical almost complex structure J̃ if J̃ restricts to

the usual vertical almost complex structure on each M(k)

S1 . Similarly, we say that 
 is a

closed two form on MS1 if it restricts to a closed two form on each M(k)

S1 .

Then, the equivariant Gromov–Witten invariants are maps

EGWg,m(M, sD) : [H∗(MS1 ,Q)]m × H∗(Mg,m,Q) −→ H∗(BS1,Q) (16)
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which are defined as follows:

Take α ∈ [H∗(MS1 ,Q)]m, β ∈ Mg,m. Note that since

H∗(BS1,Q) = H∗(CP ∞,Q) = Q[[u]],

u of degree 2, any class in γ ∈ H∗(BS1,Q) can be written as γ = �k=∞
k=1 γkuk. Consider the

inclusion maps i
M(k)

S1
: (M(k)

S1 )m −→ (MS1)m. Then we have

EGWg,m(M, sD)(β, α) =
k=∞⊕
k=1

EGW(k)
g,m(M(k)

S1 , sD)(i∗
M(k)

S1
α, β)uk (17)

where EGW(k)
g,m(Q(k), sD)(α(k), β) represent parametric Gromov–Witten invariants of the

fibration M(k)

S1 that are zero unless

2(dim CM − 3)(1 − g) + 2c1(D) + 2m+ 2k = dim i∗
M(k)

S1
α + dim β. (18)

Remark 3.8. Our formalism here follows closely the way EGW are introduced by Ruan

[20] for a general choice of the acting group H (see Ruan’s Definition 5.1 and Theorem

5.2). To obtain a complete identification and hence the properties mentioned below in

Proposition 3.9, one has to see that for our case H = S1 the homology H∗(BS1,Z) is gen-

erated by the classes [CP k] for all k and hence via Ruan’s [20] Proposition 4.4 we obtain

the desired equivalence between our and his definition. �

The following proposition gives properties of equivariant Gromov–Witten invariants:

Proposition 3.9.

1. For any pair (
, J̃) compatible with the fibration MS1 with S1-invariant fiber

(M, ω), the invariants EGWg,m(M, sD) are well defined and independent of the

choice of the taming vertical almost complex structure J̃.

2. The invariants EGWg,m(M, sD) do not change under a symplectic deformation

ωλ that induces a fiberwise symplectic deformation (MS1 ,
λ). �
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3.3 Relation between PGW and Whitehead products

Proposition 3.10. Consider a symplectic deformation (M, ωλ)λ≥0 and a homology class

D ∈ H2(M,Z) with [ω0](D) = 0. Assume that there exists a smooth symplectic fibration

π : Q −→ B endowed with a continuous family of closed two-form extensions (
λ)λ≥0 of

the symplectic fibers (M, ωλ). Then, any well defined PGWg,m(Qλ, sD) must be trivial. �

An effective tool to find families that satisfy condition I in Corollaries 2.6 and 2.7 is

given by:

Corollary 3.11. Consider a symplectic deformation (M, ωλ)λ≥0 and a homology class

D ∈ H2(M,Z) with [ω0](D) = 0. If the fiberwise symplectic deformation correspond-

ing to a continuous family Fn+1,ε : Pn+1 −→ BSymp(M, ωλ0+ε), ε > 0 exhibits a nontrivial

PGWg,m(Qλ>0, sD), then both Fn+1,ε and its multiples must be new families. �

Nevertheless, to find families that satisfy both conditions I and II is more difficult; that

is because one needs to know a great deal more about the additive structure of the

symplectomorphism groups to be able to satisfy II. Hence, we restrict our attention to

the ruled surfaces in the next section.

4 Ruled Surfaces Mg
λ

A topologically trivial ruled surface Mg
λ is the total space of the topologically trivial

symplectic fibration (�g × S2, λσ�g ⊕ σS2) −→ (�g, σ�g), where λ ≥ 1 and the two forms

σS2 and σ�g have total area 1. Accordingly, we let the symplectomorphism groups Gg
λ be

Symp(�g × S2, λσ�g ⊕ σS2) ∩ Diff0(Mg
λ ).

4.1 Prior results on the additive structure of π∗Gg
λ

We present here results that are essentially contained in McDuff [16]. Let us denote by

Sg
λ the space of symplectic forms that are strongly isotopic with ωλ := λσ�g ⊕ σS2 , and

by Ag
λ the space of almost complex structures that are tamed by some form in Sg

λ . Then,

there exists a fibration Gg
λ −→ Diff0(Mg

λ ) −→ Sg
λ and, since Sg

λ is homotopy equivalent

with Ag
λ, there is also a homotopy fibration

Gg
λ −→ Diff0(Mg

λ ) −→ Ag
λ. (19)
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Let Dk = A− kF ∈ H2(Mg
λ ,Z) where A and F are the homology classes of the base and

the fiber, respectively. The subsets Ag
λ,k of Ag

λ consisting of almost complex structures

that admit J-holomorphic curves in the class Dk provide a stratification of Ag
λ as in the

following:

Proposition 4.1. (McDuff [16])

(i) Ag
λ ⊂ Ag

λ+ε and hence, via (19) one obtains maps hλ,λ+ε : Gg
λ −→ Gg

λ+ε.

(ii) Ag
λ,k is a Frechet suborbifold of Ag

λ of codimension 4k − 2 + 2g.

(iii) A0
λ is constant on all the intervals (�, � + 1] and A0

k+ε \ A0
k = A0

k+ε,k.

(iv) The homotopy type of G0
λ is constant for k < λ ≤ k + 1, with k an integer

greater than zero. For this range of λ, there exists a nontrivial fragile ele-

ment wk ∈ π4k(G0
λ) ⊗ Q that disappears when λ passes the critical value k + 1,

while a new fragile element wk+1 appears.

(v) There exists a fragile element ρ ∈ π2(G1
1) that disappears in π2(G1

1+ε). �

Moreover, the inclusions i : Gg
λ −→ Diff0(Mg) lift to maps ĩ : Gg

λ −→ Dg
0 where Dg

0

is the subgroup of diffeomorphisms that preserve the S2 fibers. The following proposi-

tion shows that all essential elements in π∗(Dg
0) are retained in the homotopy groups of

symplectomorphism groups:

Proposition 4.2. (McDuff [16])

(i) The vector space πi(Dg
0) ⊗ Q has dimension one when i = 1, 3 except in

the cases i = g = 1 when the dimension is three, and g = 0, i = 3 when

the dimension is two. It has dimension 2g when i = 2 and is zero

otherwise.

(ii) There exist maps ĩ : Gg
λ −→ Dg

0 that induce a surjection on all rational ho-

motopy groups for all g > 0 and λ ≥ 0. The map is actually an isomorphism

on πi, i = 1, . . . , 2g − 1 when we restrict to the range λ > k where g = 2k or

g = 2k + 1 depending on the parity.

(iii) The map ĩ also gives an isomorphism on πi for g = 1, i = 2, 3, 4, 5, and λ >

3/2.

(iv) (Abreu–McDuff [3]) The homotopy limit Gg∞ = limλ−→∞ Gg
λ ≈ Dg

0. �
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4.2 Lie group actions on symplectic ruled surfaces

We will describe first all possible Hamiltonian circle actions on the manifolds Mg
λ . This

appears for instance in M. Audin [9]. For these actions, we give a complete description

of the equivariant Gromov–Witten invariants that count isolated curves of genus g. We

also describe families of robust elements as in the hypothesis of Proposition 2.1 which,

combined with the nontrivial count of EGW, yields nontrivial Whitehead products.

The Lie groups Hk ≈ S1 act on the manifolds Mg
λ , λ > k as follows.

We denote by O(−2k)g a holomorphic line bundle of degree −2k over the sur-

face �g, and consider the projectivized line bundles π : P (O(−2k)g ⊕ Og) −→ �g. The

Kähler manifolds P (O(−2k)g ⊕ Og) are endowed with naturally integrable almost com-

plex structures denoted by J(k),g. Topologically, they are just �g × S2 and it is easy to

see that these bundles admit a holomorphic circle action that rotates the fibers while

fixing the zero section and the section at infinity that represents the classes A− kF and

A+ kF , respectively:

θ
g
k : S1 × P (O(−2k)g ⊕ Og) −→ P (O(−2k)g ⊕ Og). (20)

In coordinates, this action is given by eit · (b, [v1 : v2]) = (b, [eitv1 : v2]). We will

view P (O(−2k)g ⊕ Og) as the symplectic manifolds Mg
λ endowed with the S1-invariant

taming complex structures J(k),g whenever λ > k.

The J(k),g-holomorphic circle actions (20) become Hamiltonian with respect to

the tamed symplectic forms ωλ whenever λ > k; this is for example explained in [9]. The

ruled surfaces Mg
λ , for λ > 0 can be constructed via symplectic reduction from disk bun-

dles Da(O(−2k)g ⊕ Og) with appropriate radii a.

It is clear that the actions (20) cease to be symplectic whenever λ ≤ k. However,

for λ > k they yield symplectic actions:

θ
g
λ,k : S1 × Mg

λ −→ Mg
λ , λ > k. (21)

To stress this distinction, we will use the notation γ
g
k,λ : S1 −→ Gg

λ for the group

homomorphisms given by the symplectic actions (21). Also from McDuff’s results that

led to Proposition 4.2, we know that the cycles ĩ(γ g
λ,k) are essential in Dg

0 and represent

an element in π1(Dg
0) ⊗ Q.
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In fact, a smooth representative for this element can be given by maps tg
k : S1 −→

Dg
0, with [tg

k ] ∈ π1(D0)g ⊗ Q described as follows:

tg
k (eit)(z, w) = (z, Rρ(z)

eit (w)) (22)

where ρ : �g −→ S2 is a covering map of degree k and Rρ(z)
eit (w) rotates the fiber sphere

in S2 × S2 with an angle t about a point ρ(z) in the base sphere. So we have that [tg
k ] =

ĩ∗[γ g
k,λ].

4.2.1 Toric actions Kk in the rational case

In the case g = 0, the Hamiltonian Hk circle actions (20) are in fact induced from a T2

toric action. Then, M0
λ , λ ≥ 1 can be obtained through symplectic reduction in �λ� dif-

ferent ways as M0
λ = C

4//T2, for any 0 ≤ k < λ where the two generators ξ1, ξ2 of T2

act on C
4 with weights (1, 1, 0, 0) and (2k, 0, 1, 1). The subgroups Kk of symplectic au-

tomorphisms that commute with the toric action are compact Lie subgroups given by

Kk = S1 × SO(3) for k > 0 and K0 = SO(3) × SO(3). The latter has two 2-torsion genera-

tors τ and τ ′ of π1K0 and α := α0 and η as two nontorsion generators in π3K0. Kk has αk

as a nontorsion generator in π3K0. We have that Hk ⊂ Kk.

Moreover, the inclusion Kk −→ G0
λ induces an injection on the rational homotopy

groups. Since for λ > k > 0, π∗Kk ⊗ Q has one generator γk in dimension one and one

generator αk in dimension three, while π3K0 ⊗ Q has two generators η and α0 = α, it

follows that π∗G0
λ ⊗ Q has one generator γ 0

λ,k in dimension one when λ > k > 1, and two

generators α, β in dimension three when λ > 1.

The following lemma, essentially proved in [3] gives us relations between the

nontrivial images of these generators of Hk and Kk when viewed inside an appro-

priate Gλ.

Lemma 4.3.

(i) Consider (1) g > 0 and k ≥ 1, or (2) g = 0 and k ≥ 2.

[tg
k ] = k[tg

1 ] ∈ π1Dg
0 ⊗ Q. (23)
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(ii) If, in addition, we assume λ > k > [g/2], then the same relation takes place

between the symplectic representatives in π1Gg
λ ⊗ Q :

[γ g
λ,k] = k[γ g

λ,1] ∈ π1Gg
λ ⊗ Q. (24)

(iii) For g = 0, we have

αk = α0 + k2η ∈ H3(G0
λ,Q). (25)

(iv) There exists a continuous family of robust elements of infinite order

δ
g
λ,k : S1 −→ Gg

λ, λ ≥ k, (26)

such that for λ > k the elements δ
g
λ,k are homotopic with the homomorphisms

γ
g
λ,k given by the group action Hk.

Moreover, if λ ≥ k > [g/2] when g > 1 or for any λ when g = 0, at the critical

values λ = k we have integers M so that

[δg
k,k] = M[γ g

k,1] ∈ π1Gg
k ⊗ Q. (27)

�

Proof. The proof of (i) is an immediate adaptation of Lemma 2.10 proved in Abreu–

McDuff [3] for the case g = 0. In fact they actually compute the difference between the

two terms as a 2-torsion element. Similarly, when we restrict to the given range for λ the

morphisms ĩ give an isomorphism on π1 and hence the relation in (i) continues to hold

in π1Gg
λ ⊗ Q. Part (iii) is also contained in Lemma 2.10 proved in Abreu–McDuff [3].

The existence of the robust family (26) in part (iv) is an immediate consequence

of Proposition 4.2. Indeed, since the maps ĩ induce a surjection on the first rational

homotopy groups for λ in that range and the family can be obtained by pulling back the

smooth representative tg
k to the symplectomorphism groups.

For the second part of (iv), we use the fact that ĩ induces an isomorphism on

the first rational homotopy groups for the given λ range. Using this isomorphism, the

relation (27) follows for instance from the fact that for the given λ range the vector space

π1Gg
k ⊗ Q is one dimensional (Proposition 4.2 point (i)). �
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Of particular importance for us are the relations in point (i). For the rational

case, dual relations between the elements in the cohomology, derived by Abreu–Granja–

Kitchloo [2] will be provided and used in Section 4.6.

4.3 Natural Equivariant Gromov–Witten invariants in ruled surfaces

The circle maps

γ
g
λ,k : S1 −→ Symp(Mg

λ ) (28)

give rise to maps

Bγ
g
λ,k : BS1 −→ BSymp(Mg

λ ). (29)

These can also be viewed as a collection of symplectic fibrations

(Q(k),(p),g
λ , J(k),(p),g) = Mg

λ ×Hk S2p+1. (30)

They are the associated symplectic fibrations with fiber (Mg
λ , ωλ) endowed with the S1-

invariant symplectic form 

(k),(p)
λ and compatible almost complex structure J(k),(p),g.

We will show in 4.8 that EGW(p)
g,0(Q(p),g

λ , sDk) = ±1 if p = 2k + g − 1 and zero oth-

erwise. That allows us to state the following:

Theorem 4.4. For any arbitrary genus g, and a Hamiltonian circle action with Lie group

Hk on Mg
λ , λ > k as in (21), and equivariant almost complex structure J(k),g, we have

EGWg,0(Mg
λ ; Hk; sA−kF ) = ±1 · u2k+g−1 ∈ H∗(BS1,Q). �

Then, using Corollary 3.11 we obtain the following

Corollary 4.5. The fibrations (Q(k),(p),g
λ , J(k),(p),g) that have nontrivial EGW provide us

with a family of maps:

F̃ g
n+1,ε : Pn+1 −→ BGg

k+ε, ε > 0

with n+ 1 = 2k + g − 1. This family and its multiples are new families as in condition I

of Corollary 2.6. �
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The proof follows from Theorem 1.6 and Corollary 3.11. This is the chief result that will

be used in the following three subsections.

4.4 The case g = 1

Here we prove Theorem 1.4. When k = 1 and g = 1, Corollary 4.5 gives a family F̃ g
2,ε :

P
2 −→ BG1

1+ε (ε > 0). Consider the family δ1
1+ε given by (26). For simplicity, we have sup-

pressed the double subscript. The first element of the family is an essential loop

δ1
1 : S1 −→ G1

1.

By suspension of the family δ1
1+ε, we get maps F1,ε : P1 −→ BG1

1+ε, ε ≥ 0. Assume that the

Whitehead product [F1, F1] = 0. Then, a multiple of F1 extends to F2 and further deforms

to F2,ε. Lemma 4.3 (iv) implies that suitable multiples of F1,ε and F̃1,ε will be homotopic

for ε > 0. Since F̃2,ε is a new family and F2,ε is a deformation of the map F2, the two

cannot be homotopic; therefore we must have a new element in π4(BG1
1+ε). We claim that

this element is in fact robust. For this, recall that F̃2,ε exhibits nontrivial Gromov–Witten

invariants in a class on which the symplectic form ω1 vanishes. If the two fibrations

F̃2,ε and F2,ε become homotopic after a large ε, they would have the same (nontrivial)

Gromov–Witten invariants since these invariants are unchanged under deformations.

Recall that F2 represents a symplectic fibration whose vertical two form restricts in

fibers to symplectic forms in the class [ω1]. Hence, F2 would have a nontrivial Gromov–

Witten invariant in a homology class on which its underlying symplectic form would

have to vanish, which is impossible.

Therefore, this robust element must survive in the homotopic limit BG1∞ = BD1
0.

But since the maps ĩ are surjective on rational homotopy groups for any 1 + ε ≥ 1, no

essential element in BD1
0 can be obtained from a new element detected after some 1 + ε >

1. Therefore, our assumption that the Whitehead product is trivial must be false and

Theorem 1.4 holds.

Remark 4.6. We know from Karshon’s results in [13] that no topologically essential cir-

cle map S1 −→ G1
1 can be realized as a group homomorphism. In particular, δ1

1 : S1 −→
G1

1 is not an A∞ map. We have shown that the first homotopic obstruction to real-

ize δ1
1 as an H-homomorphism is nontrivial and hence δ1

1 cannot even be realized as

A1 map. �
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4.5 The case g = 0

Corollary 4.5 gives a family F̃n+1,ε : Pn+1 −→ BG0
k+ε, ε > 0 for n = 2k − 2. This family and

its multiples are new. Use now Bγ 0
k,1 : BS1 −→ BG0

k to get a map F1 : P1 −→ BG0
k.

Recall that the maps hk,k+ε : BG0
k −→ BG0

k+ε induce an isomorphism on π∗(BG0
k+ε)

for ∗ ≤ 2n = 4k − 4.

By composition, we obtain a family

F1,ε = hk,k+ε ◦ F1 : P1 −→ BG0
k+ε, ε ≥ 0.

Observe that after considering sufficient multiples for both F1,ε and F̃n+1,ε, we

get via Lemma 4.3 that the maps F1,ε and F̃1,ε are homotopic to each other, have no

torsion, and are homotopic to a multiple of the suspension of the circle map γ 0
k+ε,1.

We want to build on F1 a map Fn whose deformations via composition with hk,ε

are homotopic to F̃n,ε. Note that the homotopy type of the map F̃n,ε is determined by

all the homotopy classes of the attaching maps used to attach subsequent cells to F̃1,ε.

Since the spaces BG0
k and BG0

k+ε have isomorphic π∗ for ∗ ≤ 2n, and the isomorphism is

preserved by the maps hk,ε, the same attaching maps used for F̃n,ε can be used to extend

F1 to the desired map Fn : Pn −→ BG0
k.

Evidently, by this construction, the deformations

Fn,ε = hk,ε ◦ Fn : Pn −→ BG0
k+ε, ε ≥ 0.

are homotopic to F̃n,ε for ε > 0.

It follows immediately that as long as ε > 0, we can extend Fn,ε to a map Fn+1,ε

homotopic to F̃n+1,ε. The family Fn+1,ε, ε > 0 satisfies conditions I and II of Corollary 2.6.

Hence, either point A) or B) must hold. An argument as in Subsection 4.4 shows that any

elements obtained by point A must be robust.

However, we cannot have any new robust families in π2n+2(BG0
k+ε) since any such

element would vanish after reaching the appropriate integer. Hence, B) holds and we

must have a nonzero element W ∈ π2n+1BG0
k ⊗ Q that gives a nontrivial Whitehead pro-

duct of order 2n. Recall that we considered n = 2k − 2. Now, we have the following:

Proposition 4.7. For all k ≥ 1 and 0 < ε ≤ 1, and for γ 0
k+ε,1 given by the circle action

Hk, the rational Samelson product of order 2k + 1, S(2k+1)(γk+ε,1), is equal to {0, wk} ⊂
π4k(Gk+ε) ⊗ Q, where wk is a fragile homotopy class that disappears when ε > 1. �
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Proof. Recall that an nth-order Samelson product is a desuspension of a correspond-

ing Whitehead product. The previous arguments, shifted from k to k + 1, show that

for wk ∈ π4k(Gk+1) we have {wk} ⊂ S(2k+1)(γ 0
k+1,1). Zero is always present in the rational

Samelson products of S(2k+1)(γ1,k+1) because the map γ 0
k+1,1 is a symplectic circle action.

Furthermore, since the rational homotopy groups of Gk+1 are known, no other elements

will be present in this Samelson product and the lower-order products must be trivial.

Finally, since the groups Gk+ε are homotopic for 0 < ε ≤ 1 the proposition holds. �

4.6 The ring H∗(BG0
λ;Q) and relations with Abreu–Granja–Kitchloo’s work

4.6.1 Minimal rational Whitehead order of BGλ and consequences to its

minimal model

We aim here to understand all the rational Whitehead products among elements in the

homotopy groups π∗BGλ ⊗ Q. We will write A for the suspension of γ 0
λ,1 in π2BG0

λ ⊗ Q, X

for the suspension of α0 in π4BG0
λ ⊗ Q, and Y for the suspension of η in π4BG0

λ ⊗ Q. Wk

represents the suspension of wk in π4k+1BG0
λ ⊗ Q.

Recall that r ≥ 2 is the the rational minimal Whitehead order of a topological

space B if it is the minimal order in which there exists a nonvanishing rational White-

head product. Due to a result of Andrews–Arkovitz [6] if each homotopy group π∗B∅ of the

rationalization of a space B is finitely generated then any rational Whitehead product of

minimal order r contains exactly one element.

We will call Whitehead products of type (p, s), 2p+ 4s = 4k + 2 the following:

W(p,s)(A, ai X + biY)i=1,k = [A, . . . , A, a1Y + b1 X, . . . , asY + bs X]. (31)

Lemma 4.8. For any k ≥ 1 and k < λ ≤ k + 1, we have

1. Any Whitehead product of order less than k + 1 vanishes. Moreover, all

Whitehead products of order k + 1 of type (1, k) with ai = 1, bi = d2, 1 ≤ d ≤ k

also vanish.

2. The following Whitehead product of order k + 1 is nontrivial and consists of

only one element in π4k+1BG0
λ:

0 �= [A, Y, . . . , Y]. (32)
�
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Proof. Clearly, [A, A] = 0. Considerations of the dimension of π∗BGλ imply that any

other Whitehead products of order strictly less than k + 1 must also vanish. Hence, any

Whitehead product of order k + 1 is defined and contains only one element. The clas-

sifying spaces of Lie subgroups Ki, i ≤ k of G0
λ are rationally H-space and hence they

have vanishing rational Whitehead products. Lemma 4.3 (ii) and (iii) yield part (i) of the

present lemma.

For the second part let us first notice that the indeterminacy in the Whitehead

product W(2k+1)(A) obtained in Proposition 4.7 implies that nonvanishing lower-order

Whitehead products must exist. Again, due to dimension considerations, they can only

be of order (p, s) with p+ s < 2k + 1 and 2p+ 4s = 4k + 2. We use the following: �

Lemma 4.9. The minimum Whitehead order is k + 1.

The proof is by contradiction. Assume that the minimum Whitehead order is p+ s >

k + 1. Hence, p > 1 and as above 2p+ 4s = 4k + 2. The following equation in b has degree

s and coefficients in π4k+1BGλ ⊗ Q given by single element Whitehead products of type

(p, s) generating all the Whitehead products of type (p, s):

0 = [A, . . . , A, Y + bX, . . . , Y + bX]. (33)

Proposition 4.3 implies that Equation (33) has k solutions b = 1, 4, . . . k2 provided by the

k different Lie group actions. If p > 1, then k = 2p+4s−2
4 > s and hence all the coefficients

must be zero. But they generate all Whitehead products of the given type (p, s), therefore

p must be 1.

Lemma 4.9 and part (1) of Lemma 4.8 yield part (2) of Lemma 4.8. �

Proposition 4.10. Consider k < λ ≤ k + 1. Consider the Sullivan minimal model M of

H∗(BG0
λ,Q).

• M is a commutative differential graded algebra (M, d) generated by A ∈ M2,

X, Y ∈ M4, and Wk ∈ M4k+1 dual to A, X, Y, Wk.

• We have the following isomorphisms of graded rings

H∗(BGλ;Q) = H∗
cochain(M;Q) = Q[A, X, Y]/〈F ′

k〉 (34)

3332

 at S
tate U

niv N
Y

 at S
tony B

rook on M
ay 23, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Whitehead Products and Symplectomorphism Groups

where A, X, Y have degrees 2, 4, and 4 and 〈F ′
k〉 is the principal ideal

generated by a polynomial F ′
k of homogeneous degree 4k + 2. �

Proof. A complete set of generators for the Sullivan minimal model’s differential alge-

bra M of BG0
λ is given by elements in the dual homotopy groups Hom(π∗BG0

λ ⊗ Q,Q),

in our case consisting of A ∈ M2, X, Y ∈ M4, and Wk ∈ M4k+1, dual to A, X, Y, and Wk.

Degree considerations insure that M2i+1 = 0 for 2i + 1 < 4k + 1. Therefore, dA = dX =
dY = 0 and these generators transgress to the cochain cohomology on M. Also due to

degree considerations, we have that M4k+2 must be generated by homogeneous mono-

mials in A, X, Y of degree 4k + 2. Thus, dWk = F ′
k, for F ′

k some homogeneous polynomial

of degree 4k + 2.

Any complete set of generators on M induces a decreasing filtration M◦
s on the

quotient of M by the elements of degree 0 denoted byM◦, with M◦
s being the subalgebra

generated by products of s generators.

Since the Whitehead minimal order is r = k + 1, [6, Proposition 6.4] implies that

for any μ ∈ M with nontrivial differential we must have dμ ∈ M◦
k+1. Moreover, Theo-

rem 5.4 in [6] states that for any μ with dμ ∈ M◦
s , and z ∈ [x1, x2, . . . , xs] ∈ π∗(BG0

λ) ⊗ Q,

the (partial) differential dμ modulo M◦
k+2 can be computed via Sullivan pairings 〈μ̄, z〉.

In our case that yields the nontrivial part of the polynomial F ′
k consisting of homoge-

neous monomials of exact word length k + 1. Leibnitz rule implies that any other non-

trivial differential of higher degree would be divisible by Wk. Hence, H∗
cochain(M;Q) =

Q[A, X, Y]/ < F ′
k >. �

4.6.2 The cohomology ring H∗(BGλ;Q)

We will compute here the full cohomology ring H∗(BGλ;Q). This result was proved using

different methods in [2]. In [3], Abreu–McDuff obtained nontriviality of the Whitehead

products by different means and obtained partial relations. We use the algebraic com-

putations from [2] that explain how the cohomology generators of H∗(BGλ;Q) restrict

to the cohomologies H∗(BKi;Q). These, combined with Proposition 4.10, will yield the

result.

In order to match our computations to those in [2], we set Z to be

Z = Y + A
2
. (35)
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Denote by Pi = i4 X − i2 Z + A
2
. The following algebraic computation from

[Corollary 5.16] from [2] gives us a description of the cohomologies H∗(BKi;Q):

Proposition 4.11. (Abreu–Granja–Kitchloo) [2] If i > 0, then H∗(BKi;Q) =
Q[A, X, Z ]/〈Pi〉. �

Note that with the above variables one is able to draw the same conclusion on the ra-

tional cohomology of BGλ as in Proposition 4.10. We can now provide an alternate proof

for Abreu–Granja–Kitchloo’s Theorem 1.8:

Proof of Theorem 1.8. By Proposition 4.10, H∗(BG0
λ,Q) = Q(A, X, Z)/〈Fk〉, with Fk of

homogeneous degree 4k + 2. We will show by induction on k that Fk = AP1 · · · Pk. Assume

that Fk−1 = AP1 . . . Pk−1. The maps fλ := Bhλ−1,λ : BGλ−1 −→ BGλ and ξk : BKk −→ BGλ

induce morphisms of graded rings between the corresponding rational cohomology

rings. By Proposition 4.10 and Proposition 4.11, they give the graded ring morphisms:

f∗
λ : Q[A, X, Z ]/〈Fk〉 −→ Q[A, X, Z ]/〈Fk−1〉, (36)

ξ∗
k : Q[A, X, Z ]/〈Fk〉 −→ Q[A, X, Z ]/〈Pk〉. (37)

These relations imply that both Fk−1 and Pk must divide Fk. By Proposition 4.10,

the homogeneous degree of Fk must be 4k + 2. Since all factors A, Pi, 1 ≤ i ≤ k − 1 in Fk−1

are mutually prime with Pk, it follows that Fk is of the form (1).

The initial of induction follows similarly; in this case P1 = X − Z + A
2

divides

F1 from the map (37) and A divides F1 from the effect in cohomology of the inclusion

of K0 in Gλ, 1 < λ ≤ 2. Since F1 has homogeneous degree 6, it immediately follows that

F1 = AP1. �

4.7 The case g > 1

We will treat this case in a manner similar to the case g = 0, but since a lot less is known

about the additive structure of π∗(BGg
k+ε) in this case, our conclusions will be weaker.

Proposition 4.12. For all genus g ≥ 2 and all k > [g/2], there exist elements γ g ∈ π1Gg
k ⊗

Q with nonvanishing Samelson product of order r with g ≤ r ≤ 2k + g − 1, 0 �= w
g
r ∈

S(r)(γ g) ⊂ π2r−2(Gg
k). �

3334

 at S
tate U

niv N
Y

 at S
tony B

rook on M
ay 23, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Whitehead Products and Symplectomorphism Groups

Proof. Corollary 4.5 provides a new family F̃ g
n+1,ε : Pn+1 −→ BGg

k+ε, n+ 1 = 2k + g − 1.

These maps are just restrictions of Bγ
g
k+ε,k : BS1 −→ BGg

k+ε to the 2n+ 2 skeleton.

As in the rational case, we get F1 : P2 −→ BGg
k as the suspension of γ

g
k,1. Again,

after taking suitable multiples of F1 and F̃n+1,ε we can assume that the deformations

F1,ε and F̃1,ε are homotopic when ε > 0. We will now restrict ourselves to the case when

k > [g/2]. Since the suspension of the map ĩ gives an isomorphism π∗, ∗ ≤ 2g, we can

import the suspensions of the classes the attaching maps that used to build the map F̃g,ε

in BGg
k. That way we get an extension Fg : Pg −→ BGg

k whose deformations Fg,ε obtained

via composition with the maps hk,k+ε are homotopic to F̃g,ε. Hence for ε > 0, we can

homotope the maps F̃n+1,ε to maps Fn+1,ε whose restrictions to the 2g skeleton coincide

with the maps Fg,ε obtained by the above procedure.

The family Fn+1,ε satisfies Corollary 2.7 with k = g. From the conclusion of the

corollary, either C) or D) must hold.

Assume that C) happens. Then there is an r with k ≤ r ≤ p and a new family

ηε : S2r+2 −→ BGg
k+ε. This family exists for any ε > 0 but it might become null-homotopic

at some ε0. When that happens it means that the fibrations Fr,k+ε0 and F̃r,k+ε0 become ho-

motopic. Then we apply Corollary 2.7 again for λ0 = k + ε0 and k = r. If situation D) never

happens, and if all the new families ηε found by this process become null-homotopic af-

ter finite time, we can conclude that there is some ε′ such that the deformations Fn+1,ε′

of extensions of Fg are homotopic to F̃n+1,ε′ . But this cannot happen since the latter has

nontrivial PGW in a homology class on which the symplectic form ω
g
k vanishes.

Therefore, if D) never holds we must have robust new elements 0 �= ηε ∈
πrBGg

k+ε ⊗ Q, ε −→ ∞. Any such element would have to survive in the homotopic limit

BGg∞ = BDg
0, which is impossible as the rational homotopy of BDg

0 is known from 4.2

part (i). So D) must hold and the proposition follows. �

Corollary 4.13. For all genus g ≥ 2 and all k > [g/2], the groups BGg
k do not have the

homotopy type of a compact Lie group. �

Proof. Since the classifying spaces BGg
k have nontrivial rational Whitehead products,

they cannot be H-spaces. �

4.8 Computation of equivariant Gromov–Witten invariants on ruled surfaces Mg
λ

Proof of Theorem 1.6. Recall that

(Q(k),(p),g
λ , J(k),(p),g) = Mg

λ ×Hk S2p+1 (38)
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is the associated symplectic fibration with fiber (Mg
λ , ωλ) endowed with the symplec-

tic form 

(k),(p)
λ and compatible almost complex structure J(k),(p),g. Then according to

Proposition 3.9, we need to show that EGW(p)
g,0(Q(p),g

λ , sDk) is ±1 if p = 2k + g − 1 and zero

otherwise.

The dimension condition in (18) translates into saying that

(dim CMg
λ − 3)(1 − g) + c1(A− kF ) + 2p = g − 1 + (A− kF )2 + 2 − 2g + 2p

= g − 1 − 2k + 2 − 2g

= −2k − g + 1 + 2p (39)

must be 0. Therefore, all such invariants are zero unless p = 2k + g − 1.

In this situation, there exists exactly one embedded vertical J(k),(p),g-

holomorphic map representing sDk in each fiber Q(k),(p),g
b for each b ∈ P

p. More precisely,

each fiber is biholomorphic to P (O(−2k)g ⊕ Og). The only possible bubbling for vertical

almost holomorphic curves in Q(k),(p),g
b must take place within a fiber. It immediately fol-

lows that the only J(k),(p),g maps in each fiber representing the class Dk is the zero section

of the bundle P (O(−2k)g ⊕ Og). Therefore, the moduli space Mg,0(Q(k),(p),g, J(k),(p),g, sDk)

is naturally diffeomorphic with P
p.

Given such J(k),(p),g-holomorphic map f : (�g, jg) −→ (Mg
λ , J(k),(p),g) in the class

Dk, the linearized operator Dφ of index zero is

Dφ([b, f, jg]) : TbP
p × C ∞( f∗T Mg

λ ) × TjgTeichg −→ �(0,1)( f∗T Mg
λ ) (40)

where the component corresponding to the Teichmüller space appears when g > 0.

The actual dimension of Mg,0(Q(k),(p),g, J(k),(p),g, sDk) is larger than its formal di-

mension zero. This is because the fiberwise almost complex structure J(k),(p),g is not Dk

regular, or equivalently, the linearized operator (40) is not onto. The computation of the

invariants then follows from the following:

Lemma 4.14.

(i) EGW(p)
g,0(Q(k),(p),g, sDk) = e(Og) where e(Og) represents the Euler class of the

obstruction bundle Og −→ Mg,0(Q(k),(p),g, J(k),(p),g, sDk) induced by the sec-

tion φ whose fiber over a point [b, f, jg] is given by cokerDφ([b, f, jg]).
(ii) Whenever p = 2k + g − 1, the obstruction bundle Og −→

Mg,0(Q(k),(p),g, J(k),(p),g, sDk) is isomorphic to OCP p(−1)p −→ P
p. �
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Proof. (i) This follows immediately from the setup in the general theory as in Li–Tian

[15], since in this particular case the moduli space φ−1(0) is smooth and hence the gen-

eralized Fredholm orbifold is in fact a smooth vector bundle over P
p.

(ii) Since f represents the zero section in the fiber Qb = P (O(−2k)g ⊕ Og), the

vertical tangent bundle Tvert
b (Q(k)(p),g

b )|im f = T(Mg
λ )|im f splits holomorphically in the di-

rect sum T�g ⊕ νg, where ν
g
k is the normal bundle to the image �g of the zero section

f . It is immediate that the normal bundle is in fact O(−2k)g −→ �g. The operator (40)

becomes:

Dφ([b, f, jg]) : TbP
p ⊕ C ∞(�g, ν

g
k ) ⊕ C ∞(�g, T�g) ⊕ TjgTeichg −→

−→ �(0,1)(�g, ν
g
k ) ⊕ �(0,1)(�g, T�g)

and hence

Dφ[b, f, jg]) : TbCP p ⊕ C ∞(�g,O(−2k)g) ⊕ C ∞(�g, T�g) ⊕ TjgTeichg −→
−→ �(0,1)(�g,O(−2k)g) ⊕ �(0,1)(�g, T�g).

We will study the cokernel in the case g = 0 separately. If g > 0, then the compo-

nent of Dφ[b, f, jg]) that is not onto is

Dφrestr([b, f, jg]) : C ∞(�g,O(−2k)g) −→ �(0,1)(�g,O(−2k)g) (41)

whose cokernel is H (0,1)(�g,O(−2k)g). If we denote by Kg the degree 2g − 2 canoni-

cal bundle over �g then, by Serre duality, cokerDφ[b, f, jg]) will be precisely the space

of holomorphic sections (H0(�g,O(−2k)∗g ⊗ Kg))
∗. By the Riemann–Roch theorem, this

space has complex dimension 2k + 2g − 2 − g + 1 = 2k + g − 1. To find out how these

fibers fit together topologically in the obstruction bundle, we need to understand what

is the induced S1-action on (H0(�g,O(−2k)∗g ⊗ Kg))
∗ such that

Og = (H0(�g,O(−2k)∗g ⊗ Kg))
∗ ×S1 S2p+1.

Since S1 acts with weight 1 on the normal bundle μg = O(−2k)g, and correspond-

ingly on its dual O(−2k)∗g, the space of sections inherits a diagonal S1-action with equal

weights given by either 1 or −1. Since it will be enough to determine the EGW up to
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a sign, we will assume for simplicity that the weights are equal to 1. Since im( f) is a

fixed set of the canonical bundle S1-action, T(Q(k),(p),g)|im f is also fixed by the induced

S1-action and therefore so is the Kg. Hence, the action on (H0(�g,O(−2k)∗g ⊗ Kg))
∗ is

induced by the S1-action with weights (1, . . . , 1) on O(−2k)∗g and hence it is diagonal

with weights (1, . . . , 1). It immediately follows that (H0(�g,O(−2k)∗g ⊗ Kg))
∗ ×S1 S2p+1 is

given by OPp(−1)p −→ P
p.

In the case g = 0, the moduli spaces involved in the computation must be of un-

parametrized curves, which means we have to quotient out the six-dimensional group

P GL(2,C) representing the reparametrizations of the domain. The linearized operator

will be

Dφ([b, f, j0]) : TbP
p ⊕ C ∞(�0, ν0

k) ⊕ C ∞(S2, T S2) −→ �(0,1)(S2, ν
g
k ) ⊕ �(0,1)(S2, T S2)

with the cokernel given by:

Dφrestr([b, f, j]) : C ∞(S2,O(−2k)) −→ �(0,1)(S2,O(−2k)).

A similar line of thought as above then applies. In this case, the canonical bundle

is of negative degree O(−2) and the fiber of the obstruction bundle is (H0(S2,O(−2k)∗ ⊗
O(−2))∗ = (H0(S2,O(2k − 2))∗ of complex dimension 2k − 1.

Hence whenever p = 2k + g − 1, we have EGW(p)
g,0(Q(k),(p),g, sDk) = e(Og) =

cn(OCP p(−1)p) = (c1(OCP p(−1))p = 1. �

Using Lemma 4.14, one can conclude the proof of Theorem 1.6. �

Remark 4.15. As in Proposition 2.1 point (b), we also need to consider towers of fibra-

tions that are finite covers of the original ones. Note that any covering of Q
(k),(p),g
λ must

also have nontrivial PGW cf. Proposition 3.7(iii). �
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Notes

1To simplify the notation throughout the paper, we will use the same symbol for a map, for ex-

ample F , and its homotopy class [F ] whenever the distinction is not really relevant.
2Recall that in a topological group Gλ, the Samelson product between two elements α ∈ πpGλ

and β ∈ πqGλ is an element in πp+qGλ given by the homotopy class of the anticommutator map

[α, β] : Sp × Sq/Sp ∨ Sq −→ Gλ given by [α, β](u, v) = α(u)β(v)α−1(u)β−1(v). As explained in White-

head [Chapter X] [23] this is, up to a sign, equal to the desuspension of the Whitehead product

between the suspension of α and β in the classifying space BGλ.
3The topologies of spaces F l

g,m(Q, sD)F l
g,m(Q, sD) and Hom(TReg(�), f∗T Qvert

b ) can be introduced

exactly as in Li–Tian [15].
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