Pre - Chapter 9 Matrix Multiplications Notes

The following example will be helpful in Markov Chain section (Section 9.2).

If:
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$$
 find A^2 , A^3 , A^4 and A^5

$$A^{2} = A.A = \begin{vmatrix} 1 & -1 \\ 2 & 0 \end{vmatrix} \begin{vmatrix} 1 & -1 \\ 2 & 0 \end{vmatrix} = \begin{vmatrix} -1 & -1 \\ 2 & -2 \end{vmatrix}$$

$$A^{3} = A^{2}.A = \begin{vmatrix} -1 & -1 \\ 2 & -2 \end{vmatrix} \begin{vmatrix} 1 & -1 \\ 2 & 0 \end{vmatrix} = \begin{vmatrix} -3 & 1 \\ -2 & -2 \end{vmatrix}$$

$$A^{4} = A^{2}.A^{2} = \begin{vmatrix} -1 & -1 \\ 2 & -2 \end{vmatrix} = \begin{vmatrix} -1 & -1 \\ 2 & -2 \end{vmatrix} = \begin{vmatrix} -1 & 3 \\ -6 & 2 \end{vmatrix}$$

$$A^{5} = A^{2}.A^{3} = \begin{vmatrix} -1 & -1 \\ 2 & -2 \end{vmatrix} = \begin{vmatrix} -3 & 1 \\ -2 & -2 \end{vmatrix} = \begin{vmatrix} 5 & 1 \\ -2 & 6 \end{vmatrix}$$

Examples to be solved before chapter 9 (strongly recommended)

1) If:
$$T = \begin{bmatrix} 0.2 & 0.8 \\ 0.6 & 0.4 \end{bmatrix}$$
. Find:
a) T^2 b) T^3 c) T^4

Answers: 1) a)
$$\begin{bmatrix} 0.520 & 0.480 \\ 0.360 & 0.640 \end{bmatrix}$$
 b) $\begin{bmatrix} 0.392 & 0.608 \\ 0.456 & 0.544 \end{bmatrix}$ c) $\begin{bmatrix} 0.433 & 0.557 \\ 0.418 & 0.582 \end{bmatrix}$ d) $\begin{bmatrix} 0.423 & 0.577 \\ 0.433 & 0.567 \end{bmatrix}$

2) If:
$$P = \begin{vmatrix} 0.3 & 0.7 \end{vmatrix}$$
 and $T = \begin{vmatrix} 0.2 & 0.8 \\ 0.6 & 0.4 \end{vmatrix}$. Use the results of question 1 to multiply:

a)
$$P. T$$
 b) $P. T^2$ c) $P. T^3$ d) $P. T^4$

d)
$$P. T^4$$

3) If:
$$T = \begin{bmatrix} 0.1 & 0.3 & 0.6 \\ 0.2 & 0.4 & 0.4 \\ 0 & 0.1 & 0.9 \end{bmatrix}$$
. Find:

a) T^2 b) T^3 c) T^4

Answers: 3) a) $\begin{bmatrix} 0.07 & 0.21 & 0.72 \\ 0.1 & 0.26 & 0.64 \\ 0.02 & 0.13 & 0.85 \end{bmatrix}$ b) $\begin{bmatrix} 0.049 & 0.177 & 0.774 \\ 0.062 & 0.198 & 0.740 \\ 0.028 & 0.143 & 0.829 \end{bmatrix}$ c) $\begin{bmatrix} 0.040 & 0.163 & 0.797 \\ 0.046 & 0.172 & 0.782 \\ 0.031 & 0.149 & 0.820 \end{bmatrix}$

4) If:
$$P = \begin{vmatrix} 0.2 & 0.3 & 0.5 \end{vmatrix}$$
 and $T = \begin{vmatrix} 0.1 & 0.3 & 0.6 \\ 0.2 & 0.4 & 0.4 \\ 0 & 0.1 & 0.9 \end{vmatrix}$ Use the results of question 3 to multiply:

a) $P. T$ b) $P. T^2$ c) $P. T^3$ d) $P. T^4$

Answers: 4) a) $\begin{vmatrix} 0.08 & 0.23 & 0.69 \end{vmatrix}$ b) $\begin{vmatrix} 0.054 & 0.185 & 0.761 \end{vmatrix}$

c) $\begin{vmatrix} 0.0424 & 0.1663 & 0.7913 \end{vmatrix}$ d) $\begin{vmatrix} 0.0375 & 0.15837 & 0.80413 \end{vmatrix}$

Chapter 9: Markov Chain

Section 9.1: Transition Matrices

In Section 4.4, Bernoulli Trails:

The probability of each outcome is <u>independent</u> of the outcome of any previous experiments and the probability <u>stays the same.</u>

Example 1: Flipping a fair coin 30 times, the probability stays the same and does not depend on the previous result

Example 2: Computer chips are manufactured with 5% defective. Fifteen are drawn at random from an assembly line by an inspector, what is the probability that he will find 3 defective chips?

In Section 9.1, Markov Chain:

What happens next is governed by what happened immediately before. (see the next Examples)

Example 3: An independent landscape contractor works in a weekly basis.

Each week he works (**W**), there is a probability of 80% that will be called again to work the following week. Each week he is not working (**N**), there is a probability of only 60% that he will be called again to work

Draw the tree for all possibilities of 2 weeks from now and show all probabilities.

Note: You need to draw 2 different trees, one if he is working now and the other if he is not. We cannot start from one point covering the initial states with one branch for W and the other for N since it is not given to us and we cannot assume it 50% each.

Use the tree to find

- a) The probability that if he is working now, then he will be working in 2 weeks.
- b) The probability that if he is not working now, then he will be working in 2 weeks.

Example 4: Use the information of example 3 again

Each week he works (W), there is a probability of 80% that will be called again to work the following week. Each week he is not working (N), there is a probability of only 60% that he will be called again to work

and find:

- a) The **Transition Matrix**. Show all probabilities and make sure the sum per row = 1
- b) The **Transition Diagram.** Show all probabilities (the sum of probabilities leaving a nod + itself = 1)

Example 4 Cont. : Use the information of example 3 again and find:

- c) The probability that if he is working now, then he will be working in 2 weeks
- d)The probability that if he is <u>not</u> working now, then he will be working in 2 week

$$T = \begin{bmatrix} W & N \\ 0.80 & 0.20 \\ N & 0.60 & 0.40 \end{bmatrix}$$

$$\mathbf{T}^2 = \mathbf{T} \cdot \mathbf{T} = \begin{vmatrix} 0.80 & 0.20 \\ 0.60 & 0.40 \end{vmatrix} \cdot \begin{vmatrix} 0.80 & 0.20 \\ 0.60 & 0.40 \end{vmatrix}$$

$$\mathbf{T}^{2} = \begin{bmatrix} W & N \\ 0.76 & 0.24 \\ N & 0.72 & 0.28 \end{bmatrix}$$

Example 4 Cont.: Use the information of example 3 again and find:

e)The probability that if he is working now, then he will be working in 4 weeks

$$\mathbf{T}^2 = \begin{bmatrix} W & 0.76 & 0.24 \\ N & 0.72 & 0.28 \end{bmatrix}$$

$$\mathbf{T}^{4} = \mathbf{T}^{2} \cdot \mathbf{T}^{2} = \begin{vmatrix} 0.76 & 0.24 \\ 0.72 & 0.28 \end{vmatrix} \cdot \begin{vmatrix} 0.76 & 0.24 \\ 0.72 & 0.28 \end{vmatrix}$$

$$\mathbf{T}^{4} = \begin{bmatrix} W & N \\ 0.7504 & 0.2496 \\ N & 0.7488 & 0.2512 \end{bmatrix}$$

Example 5: A study by an overseas travel agency reveals that among the airlines: American, Delta and United, traveling habits are as follows:

- If a customer has just traveled on American, there is a 50% chance he will choose American again on his next trip, but if he switches, he is just likely to switch to Delta or United.
- If a customer has just traveled on Delta, there is a 60% chance he will choose Delta again on his next trip, but if he switches, he is three times as likely to switch to American as to United.
- If a customer has just traveled on United, there is a 70% chance he will choose United again on his next trip, but if he switches, he is twice as likely to switch to Delta as to American.
 - a) Find the probability transition matrix
 - b) Find the transition diagram

Example 5 Cont.:

c) Find the matrix that describes the customers habits two trips from now, then find the probability that a current Delta ticket holder will <u>not</u> travel on Delta the next time after

	A	D	U
Α	0.50	0.25	0.25
T = D	0.30	0.60	0.10
U	0.10	0.20	0.70

$$\mathbf{T}^{2} = \mathbf{T} \cdot \mathbf{T} = \begin{vmatrix} 0.50 & 0.25 & 0.25 \\ 0.30 & 0.60 & 0.10 \\ 0.10 & 0.20 & 0.70 \end{vmatrix} \cdot \begin{vmatrix} 0.50 & 0.25 & 0.25 \\ 0.30 & 0.60 & 0.10 \\ 0.10 & 0.20 & 0.70 \end{vmatrix}$$

Example 5 Cont.:

d) Find the matrix that describes the customers habits three trips from now, then find the probability that a current American ticket holder will switch to United three trips from now.

$$\mathbf{T}^{3} = \mathbf{T}^{2} \cdot \mathbf{T} = \begin{vmatrix} 0.350 & 0.325 & 0.325 \\ 0.340 & 0.455 & 0.205 \\ 0.180 & 0.285 & 0.535 \end{vmatrix} \cdot \begin{vmatrix} 0.50 & 0.25 & 0.25 \\ 0.30 & 0.60 & 0.10 \\ 0.10 & 0.20 & 0.70 \end{vmatrix}$$

Example 6: A market analyst is interested in whether consumers prefer Dell or Gateway computers. Two market surveys taken one year apart reveals the following:

- 10% of Dell owners had switched to Gateway and the rest continued with Dell.
- 35% of Gateway owners had switched to Dell and the rest continued with Gateway.

At the time of the first market survey, 40% of consumers had Dell computers and 60% had Gateway.

- a) Find the probability transition matrix
- b) Find the transition diagram

Example 6 Cont.:

c) What percentage will buy their next computer from Dell?

$$P_n = P_0 T^n$$
 (P_0 : the initial state vector, T : the transition matrix)

$$\mathbf{P_0} = \begin{vmatrix} D & G & D & 0.90 & 0.10 \\ 0.40 & 0.60 & T = G & 0.35 & 0.65 \end{vmatrix}$$

$$P_0.T = \begin{vmatrix} 0.40 & 0.60 \end{vmatrix} \cdot \begin{vmatrix} 0.90 & 0.10 \\ 0.35 & 0.65 \end{vmatrix}$$

$$P_0.T = 0.570 0.430$$

Example 6 Cont.:

d) What percentage will buy their second computer from Dell?

 $P_n = P_0 T^n$ (P_0 : the initial state vector, T: the transition matrix)

$$\mathbf{T}^2 = \begin{bmatrix} 0.90 & 0.10 \\ 0.35 & 0.65 \end{bmatrix} \cdot \begin{bmatrix} 0.90 & 0.10 \\ 0.35 & 0.65 \end{bmatrix}$$

$$\mathbf{T}^2 = \begin{pmatrix} 0.845 & 0.155 \\ 0.543 & 0.458 \end{pmatrix}$$

$$P_0.T^2 = \begin{vmatrix} 0.40 & 0.60 \end{vmatrix} \cdot \begin{vmatrix} 0.845 & 0.155 \\ 0.543 & 0.458 \end{vmatrix} = \begin{vmatrix} D & G \\ 0.6635 & 0.3365 \end{vmatrix}$$

Example 6 Cont.:

e) Suppose that each consumer buy a new computer each year, what will be the market distribution after 4 years

$$\mathbf{T^4} = \mathbf{T^2} \cdot \mathbf{T^2} = \begin{bmatrix} 0.845 & 0.155 \\ 0.543 & 0.458 \end{bmatrix} \cdot \begin{bmatrix} 0.845 & 0.155 \\ 0.543 & 0.458 \end{bmatrix}$$

$$\mathbf{T}^{4} = \begin{vmatrix} 0.7981 & 0.2019 \\ 0.7066 & 0.2934 \end{vmatrix}$$

$$P_0.T^4 = \begin{vmatrix} 0.40 & 0.60 \end{vmatrix} \begin{vmatrix} 0.7981 & 0.2019 \\ 0.7066 & 0.2934 \end{vmatrix} = \begin{vmatrix} D & G \\ 0.7432 & 0.2568 \end{vmatrix}$$

Example 7: Suppose that taxis pick up and deliver passengers in a city which is divided into three zones: *A*, *B* and *C*. Records kept by the drivers show that:

- Of the passengers picked up in zone A, 50% are taken to a destination in zone A, 40% to zone B, and 10% to zone C.
- Of the passengers picked up in zone B, 40% go to zone A, 30% to zone B, and 30% to zone C.
- Of the passengers picked up in zone C, 20% go to zone A, 60% to zone B, and 20% to zone C.

Suppose that at the beginning of the day 60% of the taxis are in zone A, 10% in zone B, and 30% in zone C.

a) What is the distribution of taxis in the various zones after all have had one rider?

Example 7: Suppose that taxis pick up and deliver passengers in a city which is divided into three zones: *A*, *B* and *C*. Records kept by the drivers show that:

- Of the passengers picked up in zone A, 50% are taken to a destination in zone A, 40% to zone B, and 10% to zone C.
- Of the passengers picked up in zone B, 40% go to zone A, 30% to zone B, and 30% to zone C.
- Of the passengers picked up in zone C, 20% go to zone A, 60% to zone B, and 20% to zone C.

Suppose that at the beginning of the day 60% of the taxis are in zone A, 10% in zone B, and 30% in zone C.

a) What is the distribution of taxis in the various zones after all have had one rider?

$$P_0.T = \begin{vmatrix} 0.60 & 0.10 & 0.30 \end{vmatrix} \cdot \begin{vmatrix} 0.50 & 0.40 & 0.10 \\ 0.40 & 0.30 & 0.30 \\ 0.20 & 0.60 & 0.20 \end{vmatrix}$$

$$P_0.T = \begin{vmatrix} 0.400 & 0.450 & 0.150 \end{vmatrix}$$

Example 7 Cont.:

b) What is the distribution of taxis in the various zones after all have had two riders?

$$P_0.T^2 = \begin{vmatrix} 0.60 & 0.10 & 0.30 \end{vmatrix} \cdot \begin{vmatrix} 0.430 & 0.380 & 0.190 \\ 0.380 & 0.430 & 0.190 \\ 0.380 & 0.380 & 0.240 \end{vmatrix}$$

$$P_0.T^2 = 0.410 \quad 0.385 \quad 0.205$$

Example 7 Cont.:

c) What is the distribution of taxis in the various zones after all have had four riders?

$$\mathbf{T}^{4} = \mathbf{T}^{2} \cdot \mathbf{T}^{2} = \begin{vmatrix} 0.430 & 0.380 & 0.190 \\ 0.380 & 0.430 & 0.190 \\ 0.380 & 0.380 & 0.240 \end{vmatrix} \cdot \begin{vmatrix} 0.430 & 0.380 & 0.190 \\ 0.380 & 0.380 & 0.240 \\ 0.380 & 0.380 & 0.380 & 0.240 \end{vmatrix}$$

$$\mathbf{P}_0.\mathbf{T}^4 = \begin{vmatrix} 0.60 & 0.10 & 0.30 \end{vmatrix} \cdot \begin{vmatrix} 0.4015 & 0.3990 & 0.1995 \\ 0.3990 & 0.4015 & 0.1995 \\ 0.3990 & 0.3990 & 0.2020 \end{vmatrix}$$

$$P_0.T^4 = 0.401 \quad 0.399 \quad 0.200$$

Section 9.2: Regular Markov Chains

• **Irreducible Markov Chain:** When all its states <u>communicate</u> with each others, or it is easier to think of it as: *connectable.* (*It is strongly recommended to draw the transition diagram*)

Example 1: Determine if the following is irreducible (*connectable*):

$$T = \begin{bmatrix} 0.25 & 0.75 \\ 0.65 & 0.35 \end{bmatrix}$$

Example 2: Determine if the following is irreducible (*connectable*):

$$T = \begin{bmatrix} 0.2 & 0.4 & 0.4 \\ 0.3 & 0 & 0.7 \\ 0 & 0 & 1 \end{bmatrix}$$

Note: Anytime a state is communicating only with <u>itself</u> as in state 3, the matrix is not irreducible (not connectable)

Example 3: Determine if the following is irreducible (*connectable*):

$$T = \begin{bmatrix} 0.6 & 0 & 0.4 \\ 0.2 & 0 & 0.8 \\ 0 & 0.8 & 0.2 \end{bmatrix}$$

Regular Markov Chain: A transition matrix is regular when there is power of *T* that contains all positive *no zeros* entries.

- a) If the transition matrix is not irreducible (not connectable), then it is not regular
- b) If the transition matrix is irreducible (*connectable*) and at least one entry of the main diagonal is nonzero, then it is regular
- c) If all entries on the main diagonal are zero, but T^n (after multiplying by itself n times) contain all postive entries, then it is regular.

Example 4: Determine which of the following matrices is regular:

a)
$$T = \begin{bmatrix} 0.6 & 0.4 \\ 0.2 & 0.8 \end{bmatrix}$$

b)
$$T = \begin{bmatrix} 0.5 & 0.5 \\ 1 & 0 \end{bmatrix}$$

a)
$$T = \begin{bmatrix} 0.6 & 0.4 \\ 0.2 & 0.8 \end{bmatrix}$$
 b) $T = \begin{bmatrix} 0.5 & 0.5 \\ 1 & 0 \end{bmatrix}$ c) $T = \begin{bmatrix} 1 & 0 & 0 \\ 0.25 & 0.5 & 0.25 \\ 0 & 1 & 0 \end{bmatrix}$

- a) yes, all entries are positive
- b) yes because has only positive entries. You can also look at it as irreducible matrix with at least one element in the main diagonal not equal to zero.

$$T^2 = \begin{bmatrix} 0.75 & 0.25 \\ 0.5 & 0.5 \end{bmatrix}$$

c) No, because it is not irreducible (not connectable). Also, if you multiply it by itself over and over it will still contain zeros

$$T = \begin{vmatrix} 0.000 & 0.100 & 0.900 \\ 0.700 & 0.000 & 0.300 \\ 1.000 & 0.000 & 0.000 \end{vmatrix}$$

$$T^{2} = \begin{vmatrix} 0.970 & 0.000 & 0.030 \\ 0.300 & 0.070 & 0.630 \\ 0.000 & 0.100 & 0.900 \end{vmatrix}$$

$$T^{3} = \begin{vmatrix} 0.030 & 0.097 & 0.873 \\ 0.679 & 0.030 & 0.291 \\ 0.970 & 0.000 & 0.030 \end{vmatrix}$$

$$T^{4} = \begin{vmatrix} 0.941 & 0.003 & 0.056 \\ 0.312 & 0.068 & 0.620 \\ 0.030 & 0.097 & 0.873 \end{vmatrix}$$

Notice that T^4 have all postive entries, so it is regular.

	0.000	1.000	0.000	
T =	0.500	0.000	0.500	
	0.000	1.000	0.000	
	0.500	0.000	0.500	
$T^2 =$	0.000	1.000	0.000	
	0.500	0.000	0.500	
	0.000	1.000	0.000	
$T^{3} =$	0.500	0.000	0.500	
	0.000	1.000	0.000	

Notice that T^3 is the same as the original matrix, so it cycles back and forth. This is called periodic and it is not regular.

For T= $\begin{bmatrix} 0 & 0.7 & 0.3 \\ 0.8 & 0 & 0.2 \\ 0.4 & 0.6 & 0 \end{bmatrix}$

Draw the transition diagram

 $\text{find}\ T^2$

a) Irreducible ? Yes____ No ____

b) Regular? Yes____ No____

For T=
$$\begin{bmatrix} 0 & 0.7 & 0.3 \\ 0.8 & 0 & 0.2 \\ 0.4 & 0.6 & 0 \end{bmatrix}$$

Draw the transition diagram

a) Irreducible ? Yes___ No ___

find
$$T^2 = T$$
. T

$$= \begin{bmatrix} 0 & 0.7 & 0.3 \\ 0.8 & 0 & 0.2 \\ 0.4 & 0.6 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0.7 & 0.3 \\ 0.8 & 0 & 0.2 \\ 0.4 & 0.6 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0.680 & 0.180 & 0.140 \\ 0.080 & 0.680 & 0.240 \\ 0.480 & 0.280 & 0.240 \end{bmatrix}$$

b) Regular? Yes____ No____

From section 9.1, we had:

$$P_n = P_0 T^n$$
 (P_0 : the initial state vector, T : the transition matrix)

Example 5: Previously in section 9.1, we had the following example:

A market analyst is interested in whether consumers prefer Dell or Gateway computers. two market surveys taken one year apart reveals the following:

- 10% of Dell owners had switched to Gateway and the rest continued with Dell.
- 35% of Gateway owners had switched to Dell and the rest continued with Gateway.

If a consumer has Dell Computer now:	If a consumer has Gateway Computer now:
Now: [1 0]	Now: [0 1]
After 1 year:	After 1 year:
$\begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.9 & 0.1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.35 & 0.65 \end{bmatrix}$
After 2 year:	After 2 year:
$\begin{bmatrix} 0.9 & 0.1 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.85 & 0.16 \end{bmatrix}$	$\begin{bmatrix} 0.35 & 0.65. \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.54 & 0.46 \end{bmatrix}$
After 3 year:	After 3 year:
$\begin{bmatrix} 0.85 & 0.16 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.81 & 0.19 \end{bmatrix}$	$\begin{bmatrix} 0.54 & 0.46 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.65 & 0.35 \end{bmatrix}$
After 4 year:	After 4 year:
$\begin{bmatrix} 0.81 & 0.19 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.8 & 0.2 \end{bmatrix}$	$\begin{bmatrix} 0.65 & 0.35 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.71 & 0.29 \end{bmatrix}$
After 5 year:	After 5 year:
$\begin{bmatrix} 0.8 & 0.2 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.79 & 0.21 \end{bmatrix}$	$\begin{bmatrix} 0.71 & 0.29 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.74 & 0.26 \end{bmatrix}$

If a consumer has Dell Computer now:	If a consumer has Gateway Computer now:
After 6 year:	After 6 year:
$\begin{bmatrix} 0.79 & 0.21 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$	$\begin{bmatrix} 0.74 & 0.26 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.76 & 0.24 \end{bmatrix}$
After 7 year:	After 7 year:
$\begin{bmatrix} 0.78 & 0.22 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$	$\begin{bmatrix} 0.76 & 0.24 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.77 & 0.23 \end{bmatrix}$
After 8 year:	After 8 year:
$\begin{bmatrix} 0.78 & 0.22 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$	$\begin{bmatrix} 0.77 & 0.23 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$
After 9 year:	After 9 year:
$\begin{bmatrix} 0.78 & 0.22 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$	$\begin{bmatrix} 0.78 & 0.22 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$

^{*} After certain years, the probability stabilizes at 78% for Dell and 22% for Gateway. Notice that whether we start with Gateway or Dell, the result is the same and that is not accidental.

^{*} The state vector of is called the **Steady State Vector** where: P.T = P (multiplying the Steady State Vector by the Transition Matrix = the Steady State Vector.)

^{*} The above can only applied on **Regular** Markov chain

Example 6: The same example again:

A market analyst is interested in whether consumers prefer Dell or Gateway computers. two market surveys taken one year apart reveals the following:

- 10% of Dell owners had switched to Gateway and the rest continued with Dell.
- 35% of Gateway owners had switched to Dell and the rest continued with Gateway.

Find the distribution of the market after "a long period of time" or the **Steady State Vector**.

Solution:

The answer is in finding the Steady State Vector P where: P.T = P

$$P = \begin{bmatrix} x & y \end{bmatrix} \qquad ; \qquad T = \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix}$$

$$P.T = P \text{ then}: \begin{bmatrix} x & y \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix}$$

$$Or: \qquad 0.9x + 0.35y = x \qquad \Rightarrow \qquad 0.9x - x + 0.35y = 0$$

$$0.1x + 0.65y = y \qquad \Rightarrow \qquad 0.1x + 0.65y - y = 0$$

Simplify the above equations by moving all variable to one side:

$$-0.1x + 0.35y = 0$$
$$0.1x - 0.35y = 0$$

The two equations are dependent and have infinite number of solutions. We must add another equation in order to get the answer: x + y = 1

Now, use the Echelon's Method to solve:

Multiply each equation by 100 to remove decimals, except the last equation:

$$-0.1x + 0.35y = 0$$
$$0.1x - 0.35y = 0$$
$$x + y = 1$$

$$-10x + 35y = 0$$
$$10x - 35y = 0$$
$$x + y = 1$$

x	y	
-10*	35	0
10	-35	0
1	1	1
-10	35	0
0	0	0
0	-45	-10
-10	35	0
0	-45*	-10
-45	0	-35
0	-45	-10
1	0	0.78
0	1	0.22

Remove the line with all zeros

The answer is x = 78% and y = 22% which is the same answer we got in example 6 when we did it the long way.

Example 7: Suppose that General Motors (GM), Ford (F), and Chrysler (C) each introduce a new SUV vehicle.

- General Motors keeps 85% of its customers but loses 10% to Ford and 5% to Chrysler.
- Ford keeps 80% of its customers but loses 10% to General motors and 10% to Chrysler.
- Chrysler keeps 60% of its customers but loses 25% to General Motors and 15% to Ford...

Find the distribution of the market in the long run or the Steady State Vector.

Solution: Lets assume the probabilities to be x for GM, y for F and z for C just to make it easier to solve

$$P = \begin{bmatrix} x & y & z \end{bmatrix} \qquad \qquad ; \qquad \qquad T = \begin{bmatrix} 0.85 & 0.1 & 0.05 \\ 0.1 & 0.8 & 0.1 \\ 0.25 & 0.15 & 0.6 \end{bmatrix}$$

$$P.T = P$$
 then: $\begin{bmatrix} x & y & z \end{bmatrix} \cdot \begin{bmatrix} 0.85 & 0.1 & 0.05 \\ 0.1 & 0.8 & 0.1 \\ 0.25 & 0.15 & 0.6 \end{bmatrix} = \begin{bmatrix} x & y & z \end{bmatrix}$

Or:
$$0.85x + 0.1y + 0.25z = x$$
 $\rightarrow 0.85x - x + 0.1y + 0.25z = 0$
 $0.1x + 0.8y + 0.15z = y$ $\rightarrow 0.1x + 0.8y - y + 0.25z = 0$
 $0.05x + 0.1y + 0.6z = z$ $\rightarrow 0.05x + 0.1y + 0.6z - z = 0$

Simplify the above equations by moving all variable to one side:

$$-0.15x + 0.1y + 0.25z = 0$$

$$0.1x - 0.2y + 0.15z = 0$$

$$0.05x + 0.1y - 0.4z = 0$$
and: $x + y + z = 1$

Multiply each equation by 100 to remove decimals, except the last equation:.

$$-0.15x + 0.1y + 0.25z = 0$$

$$0.1x - 0.2y + 0.15z = 0$$

$$0.05x + 0.1y - 0.4z = 0$$

$$x + y + z = 1$$

$$-15x + 10y + 25z = 0$$

$$10x - 20y + 15z = 0$$

$$5x + 10y - 40z = 0$$
and: $x + y + z = 1$

It makes it easier if you multiply the first 3 equations by 100 to remove the decimal:

т.	makes it ca	sici ii you i	indiciply die	msi 5 cqui	mons by 100 to remove the decimal.
	X	y	Z		
•	-15*	10	25	0	•
	10	-20	15	0	
	5	10	-40	0	
	1	1	1	1	_
	-15	10	25	0	
	0	200*	-475	0	
	0	-200	475	0	
	0	-25	-40	-15	_
	200	0	-650	0	
	0	200	-475	0	
	0	0	0	0	Remove the line with all zeros
	0	0	1325	200	
	200	0	-650	0	
	0	200	-475	0	
	0	0	1325*	200	
	1325	0	0	650	•
	0	1325	0	475	
	0	0	1325	200	_
	1	0	0	0.49	GM = 49%
	0	1	0	0.36	Ford = 36%
_	0	0	1	0.15	Chrysler = 15%

Example 8: A marketing analysis shows that 63% of the consumers who currently drink Coke will purchase Coke the next time, and 12% of consumers who drink Pepsi will switch to Coke. Find the steady state vector.

Example 9: A an extensive survey of customers of three major cable companies (**A, B and C**) found the following:

Company A will keep 71% of its customers, 12% will move to **B** and the rest will move to **C**.

Company B will lose 32% of its customer to A and 34% to C.

Company C will keep 96% of its customers with half of the rest moving to A and half to B.

Find the steady state vector