Notes

Math M118: Lecture Notes For Chapter 7

Slope-Intercept Equation y = mx + b (m is the slope, b is the y-intercept)

m > 0 or positive slope, then the line is increasing or rising, as y = 2x - 3

m < 0 or negative slope, then the line is decreasing or falling, as y = -3x + 4

m = 0, then the line is horizontal, as y = 2

m = undefined, no slope, then the line is vertical, x = 3

b determines where the line crosses the y-axis: above (b > 0, pos.), below (b < 0, neg.) or through (b = 0).

Example 1: Graph 2x - y = 4, (hint: isolate y first to know the shape of the line).

Example 2: Match the following equations with the correct graph:

- 1) y = -2x + 4; graph: H
- 2) y = 2x + 4 ; graph: 6
- 3) y = -5 x 2; graph: A
- 4) y = 4x 2; graph:
- 5) y = -2x ; graph: _____
- 6) y = 3x ; graph:
- 7) y = 2 ; graph:
- 8) x=3 ; graph: F

Example 3: Locate the following points:

- 1) A(2,0)
- 2) B(-2, 1)
- 3) C(-2, -3)
- 4) D(2,-3)
- 5) E(0, -2)
- 6) *F* (3, 2)
- 7) G(0,3)
- 8) H(-3,0)

Notice:

- Any point on the y-axis has x = 0, or it is called the y-intercept
- Any point on the x-axis has y = 0, or it is called the x-intercept
- Points in the first quadrant has (+, +), both positive x and y:
- Points in the second quadrant has (-, +), negative x, positive y:
- Points in the third quadrant has (-, -), both negatives x and y:
- Points in the fourth quadrant has (+, -), positive x, negative y,

Points E and G

Points A and H

Point F, x > 0, y > 0

Point B, x < 0, y > 0

Point C, x < 0, y < 0

Point D, x > 0, y < 0

Intersection Point

y = y2

Linear Inequalities:

$$2x + y - 10 \le 0$$

$$2x + y \le 10$$

$$2y \leq x + 4$$

$$-x + 2y \leq 4$$

$$2x-5 \leq 3y$$

$$2x - 3y \le 5$$

$$-x-y < 3$$

$$x + y > -3$$

Notice that when you multiply by negative, the inequality is reversed.

$$5 > -3$$
, multiply by negative: $-5 < 3$

Graphing an Inequality:

Graph
$$2x + y - 5 \le 0$$

• Move the constant (-5), and change to equality:

$$2x + y = 5$$

• Isolate y to get two points and to visualize the shape

$$\gamma = -2x + 5$$

• Give at least 2 values to x

$$x = 0$$

$$, y = 5$$

$$x = 2$$

$$, y = 1$$

• Plot the line and decide which half is the solution

Take a point that in <u>Not located</u> on the line and check if it is included in the solution or not.

If it is, then the whole half is included.

For example , take the point (0,0)

Where x = 0, and y = 0

Substitute in step 1:

$$2x+y \leq 5$$
 $0+0 \leq 5$
Yes

Example 9: Graph the solution set for:

$$3x + 2y - 12 \le 0$$

$$-x + 2y \le 4$$

$$x \ge 0, y \ge 0$$

Find the coordinates of the corner points

- · Take each inequality, move the constant if there is, and change to equality
- Isolate y to get two points and to visualize the shape
- Give at least 2 values to x to get 2 points:

$$3x + 2y - 12 \le 0$$

$$3x + 2y \le 12$$

$$-x + 2y \le 4$$

$$-x + 2y = 4$$

$$-x + 2y = 4$$

$$2y = -3x + 12$$

$$y = -\frac{3x + 12}{2}$$

$$y = \frac{x + 4}{2}$$

$$y = \frac{x + 4}{2}$$

$$(0,6), (4,0)$$

$$y = \frac{x + 4}{2}$$

$$(0,2), (-2,1)$$

$$(0,2), (-2,1)$$

Pointo:
*
$$A(0,0)$$

* $B: X = 0$, line 2
 $-X + 2y = 4 \implies y = 2$
 $B(0,2)$
* C On line (1) of line (2)
 $y = y$
 $-3X + 12 = X + 4$
 $-4X = -8$

Example 10: Graph the solution set for:

$$-3x + 4y - 6 \le 0$$

$$4x + 3y \ge 9$$

$$x \le 4$$

$$x \ge 0, y \ge 0$$

- a) Find the coordinates of the corner points.
- b) Maximize and Minimize F = 2x 4y

a) Corner Points

$$\frac{3x+6}{4} = \frac{-4x+9}{3}$$

Cross Mult
$$_{-}$$
 $q_{X}+18=-16X+36$
Solve for $X: X=0.72, Y=2.04$

$$-3x + 4y = 6$$

$$x = 4 \rightarrow y = 4.5$$

$$F = 2X - 4Y$$

$$C = 2(4) - 4(0) = 8$$

$$D = 2(2.25) - 4(0) = 4.5$$

