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“Crack” Problem

Let u be the equilibrium distribution of heat or current. Then

∆u = 0 in D \ γ

∂u
∂nΓ

= Φ on Γ := ∂D

∂u±

∂n±γ
= 0 on γ \ {γ0, γ1}

,

where ∆u is the Laplacian of u.
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“Crack” Problem

Methods of crack identification:

iterative methods: solve direct problem, use some
minimizing criteria, crack needs to be localized in advance;

semi-explicit methods: localization through approximation
of u in the whole domain D;

method of meromorphic approximants introduced by
L. Baratchart and E. B. Saff.
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Idea of the Method

It can be shown that u has well-defined conjugate in D \ γ and

F(ξ) = u(ξ)− i
∫ ξ

ξ0

Φds, ξ ∈ Γ.

Further,

F(z) = h(z) +
1

2πi

∫
γ

(F− −F+)(t)
z − t

dt , z ∈ D \ γ,

where h is analytic in D and continuous in D.

One approximates F on Γ by meromorphic in D functions and
observes the asymptotic behavior of their poles as the number
of poles growth large.
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Cauchy Transforms

Let µ be a complex measure whose support, Sµ, is a subset of
the unit disk, D.

Define the Cauchy transform of µ by

F(z) = F(µ; z) :=

∫
dµ(t)
z − t

and denote

DF := C \ Sµ.
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Hardy Spaces

Let h be a complex-valued function on the unit circle, T. Then

h ∈ Lp iff ‖h‖p
p :=

∑
|hj |p < ∞, hj :=

1
2π

∫
T

ξ−jh(ξ)|dξ|,

h ∈ L∞ iff ‖h‖∞ := ess. sup
T
|h| < ∞.

Let p ∈ [2,∞]. The Hardy spaces are defined by

Hp :=
{

h ∈ Lp : hj = 0, j < 0
}

,

H̄p
0 :=

{
h ∈ Lp : hj = 0, j > −1

}
.
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Spaces of Meromorphic Functions

Fix p ∈ [2,∞] and n ∈ N. The space of meromorphic functions
of the degree n is defined as

Hp
n := Hp +Rn,

where Rn is the set of rational functions of type (n − 1, n) with
all their poles in D.
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Meromorphic Approximation Problem

Meromorphic approximation problem:

‖F − gn‖p = inf
g∈Hp

n

‖F − g‖p.

This problem always admits a solution:

Adamjan, Arov, and Kreina, p = ∞;

Baratchart and Seyfertb & Prokhorovc, p ∈ [1,∞).

aAnalytic properties of Schmidt pairs for a Hankel operator on the generalized
Schur-Takagi problem. Math. USSR Sb., 15: 31-73, 1971

bAn Lp analog of AAK theory for p ≥ 2. J. Funct. Anal., 191(1): 52-122, 2002
cOn Lp-generalization of a theorem of Adamyan, Arov, and Krein. Comput. Methods

Funct. Theory, 1(2): 501-520, 2001
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Reduction to Rational Functions

Let gn = hn + rn, hn ∈ H2 and rn ∈ Rn, be a best approximant
for F in MAP with p = 2. Then

‖F − gn‖2
2 = ‖hn‖2

2 + ‖F − rn‖2
2.

Therefore, we arrive at

Rational Approximation Problem

‖F − rn‖2 = inf
r∈Rn

‖F − r‖2.
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Critical Points

Definitions

We say that r ∈ Rn is a critical point in RAP for F if

DΘ(r) = 0,

where Θ(r) := ΘF ,n(r) = ‖F − r‖2
2.

We say that rn is irreducible critical point if rn has exactly n
poles. (It is known that all best and locally best rational
approximants are always irreducible critical points.)
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Orthogonality Relations

Let rn = pn−1/qn be a critical point in RAP to F . Then

Rational function rn interpolates F at the reflections of the
zeros of qn with order 2 in the Hermite sense.

In other words, rn is a multipoint Padé approximant with the
implicitly defined interpolation set. Furthermore,

∫
t jqn(t)

dµ(t)
q̃2

n(t)
= 0, j = 0, . . . , n − 1,

where q̃n(z) = znqn(1/z̄) is the reciprocal polynomial.
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Some Definitions

Let F be an interval contained in (−1, 1) with the endpoints a
and b. Set

w(z) = w(F , z) :=
√

(z − a)(z − b) to be a holomorphic
outside of F function such that w(z)/z → 1 as z →∞.
Then w+ = −w− on F ;

φ to be the conformal map C \ (F ∪ F−1) onto an annulus
{ρ ≤ |z| ≤ 1/ρ} such that φ(T) = T and φ(±1) = ±1;

µ to be of the form dµ(t) =
h(t)dt
w+(t)

, where h is a

non-vanishing Dini-continuous function on F .

Then the following theorem takes place.
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Strong Asymptotics for the Error

Theorem 1 (Baratchart and Y.)

Let {rn} be a sequence of irreducible critical points in RAT for F
with µ as described. Then

(F − rn)(z) = (D + o(1))
w∗(z)

w(z)

(
ρ

φ(z)

)2n

Dn(z)

locally uniformly in DF , where
w∗(z) = zw(1/z̄);
D is some constant;
{Dn} is a sequence of outer functions in C \ (F ∪ F−1);
|Dn| are uniformly bounded away from zero and infinity.
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Strong Asymptotics for the Error

The proof of the above stated result utilizes:

a priori knowledge of the behavior of the arguments of qn
on F (B, Küstner, Totika);

formulae of strong asymptotics for polynomials satisfying
non-Hermitian orthogonality relations with varying
measures on arcs (last section and almost Aptekarevb);

special connection (reciprocity) between the polynomial
part of the weight, q̃2

n , and the orthogonal polynomials qn
(B, Stahl, Wielonskyc).

aZero distribution via orthogonality. Ann. Inst. Fourier., 55(5): 1455-1499, 2005
bSharp constants for rational approximations of analytic functions. Sb. Math.,

193(1-2): 1-72, 2002
cAsymptotic error estimates for L2 best rational approximants to Markov functions.

J. Approx. Theory., 108: 53-96, 2001
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Rationale

Numerical search of best rational approximants is a nonconvex
optimization problem and therefore it often gets trapped in local
minima. However, if there is only one local minimum, the
descent algorithms converge.
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Index Theorem

Definitions

A critical point r is called nondegenerate if D2Θ(r) is a
nonsingular quadratic form.

The Morse index of a nondegenerate critical point r , M(r),
is the number of negative eigenvalues of D2ΘF (r).

Theorem (Baratchart and Olivi)a

If all the critical points are nondegenerate and neither of them
interpolates F on T, then there are only finitely many such
points and ∑

(−1)M(rc) = 1.

a Index of critical points in l2-approximation. Systems Control Lett., 10: 167-174,
1988
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Criterion for Uniqueness

Theorem (Adopted from Baratchart, Stahl, Wielonsky)a

Let rn be an irreducible critical point of order n that does not
interpolate F on T. If there exists a meromorphic function Π
with at most of n − 1 poles in D, continuous on T, such that

2|F − rn| ≤ |Π− rn| on T,

and the winding number

wT(F − Π) ≤ 1− 2n,

then rn is a local minimum, i.e. D2Θ(r) is positive definite.

aAsymptotic uniqueness of best rational approximants of given degree to Markov
functions in L2 of the circle. Constr. Approx., 17: 103-138, 2001
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Multipoint Padé Approximants

Set
ϕi(z) = z − w(z);

ϕ(z) = z + w(z);

En to be a set of 2n points in D := C \ F ;

Ψn(z) :=
∏

e∈En

ϕ(z)− ϕ(e)

1− ϕ(z)ϕ(e)
;
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Multipoint Padé Approximants

Definition
A system of sets {En} is called admissible if, to each n ∈ N,
there is a one-to-one correspondence ∆n : En → En such that

sup
n∈N

∑
e∈En

|ϕ̄i(e)−∆n(ϕi(e))|
(1− |ϕi(e)|)(1− |∆n(ϕi(e))|)

< ∞

and

lim
n→∞

∑
e∈En

(1− |ϕi(e)|) = ∞.
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Multipoint Padé Approximants

Note

Admissibility implies that Ψn = o(1) in C \ F and |Ψ±n | are
uniformly bounded above on F .

Let rn be an irreducible critical point in RAP to F of order n
and let {ξj,n} be its poles. Then E∗n := {1/ξ̄j,n} form an
admissible sequence of sets. We shall denote associated
“rational” functions by Ψ∗n.
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Multipoint Padé Approximants

Theorem 2 (Baratchart and Y.)

Let {En} be an admissible sequence of sets and F be as in
Theorem 1. Further, let Πn be the diagonal multipoint Padé
approximant of order n with the interpolation set En. Then

(F − Πn)(z) = (G + o(1))
Ψn(z)

w(z)
Sn(z)

locally uniformly in DF , where
G is some constant;
{Sn} is a sequence of outer functions in C \ F ;
|Sn| are uniformly bounded away from zero and infinity.
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Good ”Bad“ Approximants

We take Π = Πn−1 for some admissible interpolation scheme
{En}. By the previous theorem w(F −Πn−1) = 1−2n whenever
En ⊂ C \ D. Thus, points {En} need to be chosen in C \ D so∣∣∣∣1− F − Πn−1

F − rn

∣∣∣∣ > 2 on T,

i.e.

|Ψn−1(z)/Ψ∗n(z)| > 2.
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Good ”Bad“ Approximants

Facts (modified Baratchart, Stahl, Wielonsky)

One can construct {En} based on {E∗n} so that functions
log |Ψn−1/Ψ∗n| approximate the Green potential of any
signed measure of total mass 2 supported on F−1;

there exists a measure on F−1 whose Green potential
satisfies |1−G| > 2 everywhere on T.

Theorem 3 (Baratchart and Y.)
Let F be as in Theorem 1. Then for all n large enough there
exists a unique critical point of order n.



Motivation Meromorphic Approximation Rational Approximation Uniqueness Symmetric Contours

Good ”Bad“ Approximants

Facts (modified Baratchart, Stahl, Wielonsky)

One can construct {En} based on {E∗n} so that functions
log |Ψn−1/Ψ∗n| approximate the Green potential of any
signed measure of total mass 2 supported on F−1;

there exists a measure on F−1 whose Green potential
satisfies |1−G| > 2 everywhere on T.

Theorem 3 (Baratchart and Y.)
Let F be as in Theorem 1. Then for all n large enough there
exists a unique critical point of order n.



Motivation Meromorphic Approximation Rational Approximation Uniqueness Symmetric Contours

Good ”Bad“ Approximants

Facts (modified Baratchart, Stahl, Wielonsky)

One can construct {En} based on {E∗n} so that functions
log |Ψn−1/Ψ∗n| approximate the Green potential of any
signed measure of total mass 2 supported on F−1;

there exists a measure on F−1 whose Green potential
satisfies |1−G| > 2 everywhere on T.

Theorem 3 (Baratchart and Y.)
Let F be as in Theorem 1. Then for all n large enough there
exists a unique critical point of order n.



Motivation Meromorphic Approximation Rational Approximation Uniqueness Symmetric Contours

Setting

Let F be now any oriented smooth arc connecting ±1. Set

w(z) := w(F , z) defined as before;

ϕ(z) = z + w(z);

En to be a set of 2n points in D := C \ F ;

vn to be a polynomial with zeros at finite points of En;

Ψn(z) :=
∏

e∈En

ϕ(z)− ϕ(e)

1− ϕ(z)ϕ(e)
;

h to be a Dini-continuous non-vanishing function on F .
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Szegő Function

For h as above we define geometric mean:

Gh := exp
{∫

log h(t)
idt

πw+(t)

}

and Szegő function:

Sh(z) := exp
{

w(z)

2

∫
log(h(t)/Gh)

t − z
idt

πw+(t)

}
.

Then Sh is an outer function in C \ F , Sh(∞) = 1, and S±h are
continuous functions on F such that

h = GhS+
h S−h .
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}
and Szegő function:

Sh(z) := exp
{

w(z)

2

∫
log(h(t)/Gh)

t − z
idt

πw+(t)

}
.

Then Sh is an outer function in C \ F , Sh(∞) = 1, and S±h are
continuous functions on F such that

h = GhS+
h S−h .
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Measures

Orthogonal polynomials:∫
F

t jqn(t)wn(t)
dt

w+(t)
= 0, j = 0, . . . , n − 1.

Functions of second kind:

Rn(z) :=
1
πi

∫
F

qn(t)wn(t)
t − z

dt
w+(t)

, z ∈ C \ F .

Weights:

wn(t) =
h(t)
vn(t)

,

where En (that is vn) are such that Ψn = o(1) locally uniformly
in D and |Ψ±n | = O(1) uniformly on F .
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Main Theorem

Theorem (Baratchart and Y.)

Let {qn}n∈N be a sequence of polynomials as above.

Then each polynomials qn has exact degree n for all n large
enough and therefore can be normalized to be monic.

Under such a normalization we have{
qn = (1 + o(1))/Sn

Rnw = (1 + o(1))γnSn
locally uniformly in D

and
q2

n(t)wn(t)
γnw+(t)

dt ∗→ dt
w+(t)

,

where Sn := Swn(2/ϕ)n, γn := 21−2nGwn , and ∗→ stands for the
weak∗ converges of measures.
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Main Theorem

Theorem (BY)
Further,{

qn = (1 + d−n )/S+
n + (1 + d+

n )/S−n

(Rnw)± = (1 + d±n ) γnS±n
on F ,

where d±n are continuous on F and satisfy∫
F

|d−n (t)|p + |d+
n (t)|p√

|1− t2|
|dt | → 0 as n →∞

for any p ∈ [1,∞).



Motivation Meromorphic Approximation Rational Approximation Uniqueness Symmetric Contours

Remarks

Remarks
smoothness of F can be reduced. Most likely we can
handle quasismooth arcs without twisting points;

function h, in fact, can vanish at a finite number of points in
a "controlled manner";

we can consider a compact family {hn} instead of h.
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An Example

For any α ∈ R denote

Fα :=

{
iα + x
1 + iαx

: x ∈ [−1, 1]

}
.

and for any point e ∈ C define

e∗ =
2iα + (1− α2)ē
(1− α2) + 2iαē

.

Then
e∗ = e for any e ∈ F−1

α

and
|(ΨeΨe∗)

±| = 1 on Fα,

where
Ψe(z) :=

ϕ(z)− ϕ(e)

1− ϕ(z)ϕ(e)
.
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Numerics

wn(t) = exp
{

2it − 1
2i − t

π

}
/(t − 2i)2n

Figure: Zeros of q10 (black) and q15 (red).
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Numerics

wn(t) = t−n(t + 4i/3)−n

Figure: Zeros of q10 (black), q15 (red), and q20 (blue).
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