Hermite-Padé Approximants and Transcendence of e, π

Maxim L. Yattselev

Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo, São Carlos May 26th, 2022

Algebraic and Transcendental Numbers

A number α is called *algebraic* (of degree d) if there exists a polynomial

$$f(x) = n_d x^d + n_{d-1} x^{d-1} + \dots + n_0$$

with *integer* coefficients, $n_d \neq 0$, such that $f(\alpha) = 0$ (and there are no such polynomial of smaller degree).

A number α is *transcendental* if it is not algebraic.

Algebraic and Transcendental Numbers

Theorem (Liouville 1844)

If a non-rational number α is algebraic of degree d, then

$$\frac{C}{q^d} \le \left| \alpha - \frac{p}{q} \right|$$

for some constant *C* and any rational number p/q, $q \ge 1$.

That is, α *cannot be approximated well* by rational numbers.

Let f(x) be the corresponding minimal polynomial with integer coefficients and A be such that $f(x) \neq 0$ for $x \in (\alpha - A, \alpha + A) \setminus \{\alpha\}$. Then

$$\left|\alpha - \frac{p}{q}\right| \ge A \quad \Rightarrow \quad \left|\alpha - \frac{p}{q}\right| \ge \frac{A}{q^d}.$$

If $|\alpha - p/q| < A$, then

$$\frac{1}{q^d} \le |f(p/q)| = |f(p/q) - f(\alpha)| \le \max_{x \in [\alpha - A, \alpha + A]} |f'(x)| \left| \alpha - \frac{p}{q} \right|.$$

Algebraic and Transcendental Numbers

Theorem (Liouville 1844)

$$\alpha = \sum_{n \ge 1} \frac{1}{10^{n!}}$$
 is transcendental.

Let

$$\frac{p}{q} = \sum_{n=1}^{N} \frac{1}{10^{n!}} = \frac{p}{10^{N!}}.$$

Set
$$r = \frac{1}{10(N+1)!}$$
. Then

$$\alpha - \frac{p}{q} = \sum_{n>N} \frac{1}{10^{n!}} = r \left(1 + \frac{1}{r^{(N+2)-1}} + \frac{1}{r^{(N+2)(N+3)-1}} + \cdots \right)$$

$$< r \left(1 + \frac{1}{r} + \frac{1}{r^2} + \cdots \right) = \frac{r}{1-r} < 2r = \frac{2}{q^{N+1}}.$$

Irrationality: Criterion

Lemma

 α is irrational if for any $\varepsilon > 0$ there exist a pair of integers (q, p) such that $0 < |q\alpha - p| \le \varepsilon$.

If $\alpha = u/v$, then

$$\varepsilon \geq |q\alpha - p| = \frac{|qu - pv|}{v} \geq \frac{1}{v}.$$

Irrationality: Criterion

Lemma

 α is irrational if for any $\varepsilon > 0$ there exist a pair of integers (q,p) such that $0 < |q\alpha - p| \le \varepsilon$.

If $\alpha = u/v$, then

$$\varepsilon \geq |q\alpha - p| = \frac{|qu - pv|}{v} \geq \frac{1}{v}.$$

To prove that e is irrational, we need to find a sequence of rational numbers that approximate e and are never equal to e.

Hermite realized that he can construct such a sequence by cleverly approximating e^x by rational functions.

Padé Approximants: Definition

Let

$$F(x) = f_0 + f_1 x + f_2 x^2 + \dots + f_k x^k + \dots$$

be a convergent power series. Let

$$Q(x) = q_0 + q_1 x + \dots + q_n x^n$$

and

$$P(x) = p_0 + p_1 x + \dots + p_m x^m$$

be polynomials such that

$$Q(x)F(x) - P(x) = O\left(x^{m+n+1}\right)$$

A rational function P(x)/Q(x) is called a Padé approximant of type (m, n) to F(x) (Padé was a student of Hermite).

Padé Approximants: Existence

It holds that

$$\begin{split} Q(x)F(x) &= f_0q_0 + (f_0q_1 + f_1q_0)x + (f_0q_2 + f_1q_1 + f_2q_0)x^2 + \cdots \\ &= \sum_{k=0}^{\infty} \left(\sum_{i=1}^{\min\{k,n\}} f_{k-i}q_k\right)x^k. \end{split}$$

Therefore,

$$p_k := \sum_{i=1}^{\min\{k,n\}} f_{k-i} q_k$$
 and $\sum_{i=1}^{\min\{k,n\}} f_{k-i} q_i = 0$

for k from 0 to m and and for k from m+1 to m+n+1, respectively.

The latter is a linear system of n equations with n+1 unknowns. Such a system always has a solution.

Padé Approximants: Uniqueness

A solution may not be unique, but the ratio P(x)/Q(x) always is.

Indeed, let $x^{k_1}Q_1(x)$, $x^{k_1}P_1(x)$ and $x^{k_2}Q_2(x)$, $x^{k_2}P_2(x)$ be solutions. Then

$$F(x) - \frac{P_j(x)}{Q_j(x)} = O\left(x^{m+n+1-k_j}\right).$$

Therefore,

$$\frac{P_1(x)}{Q_1(x)} - \frac{P_2(x)}{Q_2(x)} = O\left(x^{m+n+1-\max k_j}\right).$$

However,

$$\deg \left(P_1 Q_2 - P_2 Q_1 \right) \leq m + n - k_1 - k_2 < m + n + 1 - \max k_j.$$

Differentiation Operator

For any convergent power series f(x), let

$$I[f(x)] = f(x)$$
 and $\mathcal{D}[f(x)] = f'(x)$.

Observe that

$$\mathcal{D}[e^x f(x)] = e^x f(x) + e^x f'(x) = e^x (I + \mathcal{D})[f(x)],$$

while

$$\mathcal{D}^{2}[e^{x} f(x)] = e^{x} f(x) + 2e^{x} f'(x) + e^{x} f''(x)$$
$$= e^{x} (I + 2D + D^{2}) [f(x)] = e^{x} (I + D)^{2} [f(x)]$$

and so on. Notice also that

$$\mathcal{D}\left[O\left(x^{k+1}\right)\right]=O\left(x^{k}\right).$$

Let P(x)/Q(x) be the Padé approximant of type (m, n) to e^x . Then

$$Q(x)e^{x} - P(x) = O\left(x^{m+n+1}\right),\,$$

and therefore it holds that

$$\mathcal{D}^{m+1}\left[Q(x)e^x-P(x)\right]=e^x(\mathcal{I}+\mathcal{D})^{m+1}[Q(x)]=O\left(x^n\right).$$

In particular,

$$(I + \mathcal{D})^{m+1}[Q(x)] = \kappa x^n$$

where κ is the leading coefficient Q(x). Hence,

$$Q(x) = (I + \mathcal{D})^{-(m+1)} \left[\kappa x^n \right] = \sum_{k=0}^{\infty} (-1)^k \binom{m+k}{k} \mathcal{D}^k \left[\kappa x^n \right].$$

Padé Approximants to ex

Normalizing Q(0) = 1, we get that

$$Q(x) = \sum_{k=0}^{n} {n \choose k} \frac{(m+n-k)!}{(m+n)!} (-x)^{k}$$

(in this case $\kappa = (-1)^n m!/(n+m)!$) and

$$P(x) = \sum_{k=0}^{m} {m \choose k} \frac{(m+n-k)!}{(m+n)!} x^{k}$$

Observe also that

$$\frac{(m+n)!}{m!}Q(\ell)$$
 and $\frac{(m+n)!}{n!}P(\ell)$

are integers for $\ell \in \mathbb{Z}$.

Padé Approximants to ex

Recall that

$$f(x) - T_m[f(x)] = \frac{1}{m!} \int_0^x (x - t)^m f^{(m+1)}(t) dt,$$

where $T_m[f(x)]$ is the m-th McLaurin polynomial of f(x). Notice that

$$P(x) = T_m \left[Q(x) e^x \right].$$

Recall also that

$$\kappa x^n e^x = \mathcal{D}^{m+1} \left[Q(x) e^x - P(x) \right] = \mathcal{D}^{m+1} \left[Q(x) e^x \right].$$

Since $\kappa = (-1)^n m! / (n + m)!$,

$$Q(x)e^{x} - P(x) = \frac{\kappa}{m!} \int_{0}^{x} (x - t)^{m} t^{n} e^{t} dt$$

$$= \frac{\kappa}{m!} \int_{0}^{1} (x - sx)^{m} (sx)^{n} e^{sx} x ds$$

$$= \frac{(-1)^{n}}{(n+m)!} x^{m+n+1} \int_{0}^{1} (1 - s)^{m} s^{n} e^{sx} ds.$$

Irrationality of el

Theorem

 e^{ℓ} is irrational for any integer ℓ .

Let P(x)/Q(x) be the Padé approximant of type (n, n) to e^x . Set

$$p \coloneqq \frac{(2n)!}{n!} P(\ell)$$
 and $q \coloneqq \frac{(2n)!}{n!} Q(\ell)$.

Then p, q are integers and

$$qe^{\ell} - p = \frac{(-1)^n}{n!} \ell^{2n+1} \int_0^1 (1-s)^n s^n e^{s\ell} ds.$$

Hence,

$$0 < \left| qe^{\ell} - p \right| < \frac{\ell^{2n+1}e^{\ell}}{n!}.$$

Transcendance: Criterion

Lemma

 α is transcendental if for any $d \in \mathbb{N}$ and $\varepsilon > 0$ there exist d+1 linearly independent vectors of integers $(q_j, p_{j1}, \dots, p_{jd})$, $j = \overline{0, d}$, such that

$$\left| q_j \alpha^k - p_{jk} \right| \le \varepsilon$$
 for each j and k .

If α is algebraic of degree d, then $n_0 + n_1\alpha + \cdots + n_d\alpha^d = 0$, $n_k \in \mathbb{Z}$. Hence,

$$0 = \sum_{k=1}^{d} n_k (q_j \alpha^k - p_{jk}) + n_0 q_j + \sum_{k=1}^{d} n_k p_{jk}.$$

By linear independence, there exists *i* such that

$$n_0q_i + n_1p_{i1} + \cdots + n_dp_{id} \neq 0.$$

Therefore,

$$1 \le \left| \sum_{k=1}^d n_k (q_i \alpha^k - p_{ik}) \right| \le \varepsilon \sum_{k=1}^d |n_k|.$$

Hermite-Padé Approximants

Let $F_1(x), \dots, F_d(x)$ be convergent power series at the origin.

Let n_0, n_1, \dots, n_d be non-negative integers.

Set $N := n_0 + \cdots + n_d$ and consider the following system of equations

$$R_k(x) := Q(x)F_k(x) - P_k(x) = O(x^{N+1})$$

where $deg(Q) \le N - n_0$ and $deg(P_k) \le N - n_k$.

Such polynomials exist (their coefficients are obtained from a linear system which is always solvable), but are not necessarily unique.

The *d*-tuple of rational functions $P_1/Q, \dots, P_d/Q$ is called an *Hermite-Padé* approximant of type II.

Proposition

The *d*-tuple of Hermite-Padé approximants for the system e^x, \dots, e^{dx} is *unique* and is given up to the normalization by the formulae

$$Q(x) = f^{(N)}(0) + f^{(N-1)}(0)x + \dots + f^{(n_0)}(0)x^{N-n_0}$$

$$P_k(x) = f^{(N)}(k) + f^{(N-1)}(k)x + \dots + f^{(n_k)}(k)x^{N-n_k}$$

$$R_k(x) = x^{N+1} \int_0^k f(s)e^{x(k-s)}ds$$

where $f(s) = s^{n_0}(s-1)^{n_1} \cdots (s-d)^{n_d}$.

Moreover, the polynomials $(1/n_0!)Q(x)$ and $(1/n_k!)P_k(x)$ have integer coefficients.

Hermite-Padé Approximants for e^x, \dots, e^{dx} : Linear Independence

Proposition

$$\Delta(x) := \left| \begin{array}{cccc} Q_0(x) & P_{01}(x) & \cdots & P_{0d}(x) \\ \vdots & \vdots & \ddots & \vdots \\ Q_d(x) & P_{d1}(x) & \cdots & P_{dd}(x) \end{array} \right| = \kappa x^{dN},$$

 $\kappa \neq 0$, where Hermite-Padé approximants are associated to the following system of indices:

Let $N = n_0 + n_1 + \cdots + n_d$. Since the system of indices is

$$\left| \begin{array}{ccccc} n_0 - 1 & n_1 & \cdots & n_d \\ n_0 & n_1 - 1 & \cdots & n_d \\ \vdots & \vdots & \ddots & \vdots \\ n_0 & n_1 & \cdots & n_d - 1 \end{array} \right|,$$

it holds that

$$\deg(\Delta) = \left| \begin{array}{cccc} N - n_0 & N - n_1 - 1 & \cdots & N - n_d - 1 \\ N - n_0 - 1 & N - n_1 & \cdots & N - n_d - 1 \\ \vdots & \vdots & \ddots & \vdots \\ N - n_0 - 1 & N - n_1 - 1 & \cdots & N - n_d \end{array} \right| = dN$$

and that the coefficient next to x^{dN} is the product of leading coefficients of the elements of the main diagonal and therefore is not zero.

Hermite Padé Approximants for e^x, \dots, e^{dx} : Linear Independence

On the other hand,

$$\begin{split} \Delta(x) &= \left| \begin{array}{cccc} Q_0(x) & P_{01}(x) - e^x Q_0(x) & \cdots & P_{0d}(x) - e^{dx} Q_0(x) \\ \vdots & \vdots & \ddots & \vdots \\ Q_d(x) & P_{d1}(x) - e^x Q_d(x) & \cdots & P_{dd}(x) - e^{dx} Q_d(x) \end{array} \right| \\ &= \left| \begin{array}{cccc} Q_0(x) & O\left(x^N\right) & \cdots & O\left(x^N\right) \\ \vdots & \vdots & \ddots & \vdots \\ Q_d(x) & O\left(x^N\right) & \cdots & O\left(x^N\right) \end{array} \right| = O\left(x^{dN}\right). \end{split}$$

Transcendence of e

Theorem (Hermite 1873)

e is transcendental.

For any $d, n \in \mathbb{N}$, consider (d + 1)-tuples of the Hermite-Padé approximants

$$\left(Q_j(x), P_{j1}(x), \dots, P_{jd}(x)\right)$$

for e^x, \dots, e^{dx} associated with the matrix of indices

$$\left|\begin{array}{ccccc} n-1 & n & \cdots & n \\ n & n-1 & \cdots & n \\ \vdots & \vdots & \ddots & \vdots \\ n & n & \cdots & n-1 \end{array}\right|.$$

Set

$$q_j := \frac{Q_j(1)}{(n-1)!}$$
 and $p_{jk} := \frac{P_{jk}(1)}{(n-1)!}$.

Transcendence of e

Then q_j , p_{jk} are integers,

$$\left| q_j e^k - p_{jk} \right| = \frac{1}{(n-1)!} \left| \int_0^k \frac{f(s)}{s-j} e^{k-s} ds \right| \leq \frac{e^d d^{dn+1}}{(n-1)!},$$

where $f(s) = s^n(s-1)^n \cdots (s-d)^n$, and

$$\begin{vmatrix} q_0 & p_{01} & \cdots & p_{0d} \\ \vdots & \vdots & \ddots & \vdots \\ q_d & p_{d1} & \cdots & p_{dd} \end{vmatrix} = \frac{\Delta(1)}{((n-1)!)^{d+1}} \neq 0.$$

Transcendence of π

Theorem (Lindemann 1882)

 π is transcendental.

Assume π is algebraic, in which case $i\pi$ is algebraic as well.

Let *g* be the polynomial with Gaussian integer coefficients such that $g(i\pi) = 0$.

Denote by $\alpha_1, \ldots, \alpha_D$ the zeros of g. Then

$$0 = (e^{\alpha_1} + 1) \cdots (e^{\alpha_D} + 1) = e^{\beta_1} + \cdots + e^{\beta_d} + 2^D - d,$$

where β_l are combinations $\epsilon_1 \alpha_1 + \cdots + \epsilon_D \alpha_D$ with $\epsilon_l \in \{0, 1\}$ that are not equal to zero.

Transcendence of π

For any $n \in \mathbb{N}$, consider (d+1)-tuples of the Hermite-Padé approximants

$$\left(Q_j(x), P_{j1}(x), \dots, P_{jd}(x)\right)$$

for $e^{\beta_1 x}, \dots, e^{\beta_d x}$ associated with the matrix of indices

$$\left| \begin{array}{ccccc}
n-1 & n & \cdots & n \\
n & n-1 & \cdots & n \\
\vdots & \vdots & \ddots & \vdots \\
n & n & \cdots & n-1
\end{array} \right|$$

Let
$$N = (d+1)n - 1$$
 and $n_{jk} = n - \delta_{jk}$. Then

$$Q_{j}(x) = f_{j}^{(N)}(0) + f_{j}^{(N-1)}(0)x + \dots + f_{j}^{(n_{j0})}(0)x^{N-n_{j0}}$$

$$P_{jk}(x) = f_{j}^{(N)}(\beta_{k}) + f_{j}^{(N-1)}(\beta_{k})x + \dots + f_{j}^{(n_{jk})}(\beta_{k})x^{N-n_{jk}}$$

$$R_{jk}(x) = x^{N+1} \int_{0}^{\beta_{k}} f_{j}(s)e^{x(\beta_{k}-s)}ds$$
where $f_{j}(s) = s^{n_{j0}}(s - \beta_{1})^{n_{j1}} \dots (s - \beta_{d})^{n_{jd}}$.

Set

$$q_j \coloneqq \frac{\varkappa Q_j(1)}{(n-1)!} \quad \text{and} \quad p_{jk} \coloneqq \frac{\varkappa P_{jk}(1)}{(n-1)!},$$

where \varkappa is the leading coefficient of g.

Similarly to the previous proof, one can show that vectors $(q_j \ p_{1j} \ \dots \ p_{dj})$ are linearly independent. Hence, there exists an index i = i(n) such that

$$q_i(2^D - d) + \sum_{k=1}^d p_{ik} \neq 0.$$

Using the fact that the symmetric functions of $\alpha_1, \dots, \alpha_d$ are integers, one can also argue that the sum above is an integer. Then

$$0 = \sum_{k=1}^d q_i e^{\beta_k} + q_i (2^D - d) = \sum_{k=1}^d \left(q_i e^{\beta_k} - p_{ik} \right) + q_i (2^D - d) + \sum_{k=1}^d p_{ik},$$

where the first sum can be made arbitrarily small by increasing n and the remaining summands always add up to a non-zero integer.