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Hermite-Padé Approximants: Definition

Let j?: (fi,.-ey fm ) be a vector of functions holomorphic and vanishing at
infinity:
fi(z)_@+@+ +%+~~

Let 77 € N be a multi-index, while Pé])( )y e P<"')( ) and Q7 (z) be
polynomials such that deg(Q) < |7 | :==ny + -+ + n,, and

BP() = (Qafi - PP) ()= O (™) as - co.

The vector of rational functions

(P /Qa, -, PE/Qx)

—

is called the type II Hermite-Padé approximant to f(z) corresponding to 7i.



Hermite-Padé Approximants: Orthogonality

It follows from Cauchy integral formula that

fie) = [ Qs

zZ— S8

for some compactly supported Borel generally speaking complex measure ;.
Since R\ (z) = O(z " '), itholds that

0= [ #RPEz = [ Feufie)z = [ Qale)du(s)

for k = 0,n; — 1, where I" is any Jordan curve encircling the support of z;. In
what follows, it assumed that ) (z) is the monic polynomial of minimal degree.



Padé Approximants: Markov Functions

Let /. be a positive Borel measure compactly supported on the real line. Then

) = [ 24D

Z—X

is called a Markov function. The n-th Padé approximant is defined by the
condition

~

Ru(2) = (Qnf — Pu)(2) = O(z""7Y)

. J

In this case it holds that

r N

/kan(x)d,u(x) =0, k=0,n—1.

. J

That is, ). (2) is the n-th orthogonal polynomial with respect to the measure /.



Padé Approximants: Distribution of Poles

Denote by o, the normalized counting measure of zeros of (),,(z). That s,

n n

On i= %Z(s(mnz)a Qn(z) = H(m — Zn,i),

=il =\

where §(x) is the Dirac d-distribution with mass at x. Recall that a sequence
of measures converges weak”, v, —» v, if [ Fdv, — [ Fdv for any function
F' continuous on a compact set containing the supports of v,,.

If supp(p) = [~1,1] and ¢/ > 0 a.e. on [—1, 1], then ¢, > w, where

dz

dw(z) = 4




Padé Approximants: Strong Asymptotics

Theorem (Szegd)

Let p(z) be a non-negative function satisfying [[7 11 log pdw > —oo.
Set . . (@)d
z)dx
i) = o / _L_pods
T/ rVl-x

Then it holds locally uniformly in C \ [-1, 1] that

Qn(2)
Rn(2)
where h(z) = 1/v/2% — 1, 7, is the normalizing constant, S,(z) is the
Szegd function of p(z) (non-vanishing and holomorphic with traces sat-

¥ (®"S,) (2),
T (h®"S,) ' (2),

Q

Q

isfying S,+ (2)S,— () = p~'(z) on [-1, 1]) and

D(z)=z+ 22 —1.




Padé Approximants: Function ®(z)

o —log|®(z2)
rium measure for [—1, 1]

is the logarithmic potential of the logarithmic equilib-

\. J

Logarithmic potential and energy of a compactly supported Borel measure v
are defined by V¥ (z) = — [log |z — w|dv(w) and I[v] = [ VY (z)dv(2).

Given a compact set i, either every Borel measure supported on & has
infinite logarithmic energy, in which case K is called polar, or there exists the
unique probability Borel measure wx such that /[wx| = inf I[v], where the
infimum is taken over all probability Borel measures supported on /<. The
measure wy is called the equilibrium measure of K.

It holds that wj_; 1; = wand I[w] = 0.



Padé Approximants: Function ®(z)

o —log|®(z2)
rium measure for [—1, 1]

is the logarithmic potential of the logarithmic equilib-

e log |®(2)| is the Green’s function for C \ [—1, 1] with poles at infinity

- J

Let K be a compact set and D be the unbounded component of C \ /. Then
g (2; 00), Green’s function for I with pole at oo, is uniquely characterized by

e gi(z;00)is harmonicin D\ {co}

e gx(z;00) — log|z| is bounded near co

I3

® i (z;00) = 0 for quasi every (up to a polar set) z € 9D

It holds that g(z; 00) = I[wk] — V¥% (z). The constant cap(K) = e~ /[“x] is
called the logarithmic capacity of K.



Padé Approximants: Function ®(z)

o —log|®(z2)
rium measure for [—1, 1]

is the logarithmic potential of the logarithmic equilib-

e log |®(2)| is the Green’s function for C \ [—1, 1] with poles at infinity

e log |®(2)| = Re (] h(s)ds)

\. J

Let h(2) = 1/+/22 — 1 be the branch holomorphic in C \ [-1, 1] and such that
h(z) =1/z+O(2 %) as z — co. Then

1
dwi—1 1) () = dw(z) = fEth(x)d:v




Padé Approximants: Function ®(z)

o —log |®(z)| is the logarithmic potential of the logarithmic equilib-
rium measure for [—1, 1]

e log |®(2)| is the Green’s function for C \ [—1, 1] with poles at infinity
e log |®(2)| = Re (] h(s)ds)

e part of a rational function on a certain Riemann surface

J

\.

Let 91*) and %1'") be two copies of C \ [~ 1, 1] cut across [—1, 1] and % be the
surface obtained by gluing %1(” and %" crosswise across the cuts to each
other. Denote by z a point on 9 with natural projection 7(z) = 2. Put

®(z), ze RO,
®@) =1 5 &5
O (z), zeRY.

Notice that ® ' (z) = 2z — /22 — 1. Then ®(z) is a rational function on 9 with
the zero/pole divisor co™) — co(®.



Padé Approximants: Function ®(z)

o —log|®(z2)
rium measure for [—1, 1]

is the logarithmic potential of the logarithmic equilib-

e log |®(2)| is the Green’s function for C \ [—1, 1] with poles at infinity
e log |®(2)| = Re (] h(s)ds)

e part of a rational function on a certain Riemann surface

A ¥

B(z) = B(2)

--9
F--@

A

d(z :(l)*lz
- (=) =27 (2)

Observe also that log | (z)| is harmonic on % \ {00!”), 50!} for which the
cycle A == 77 ([~1,1]) is the zero level line.



Padé Approximants: Minimal Capacity Contours

It is said that f € S if it can be meromorphically continued along any path in
C\ Ey, where F; is polar and there exists at least one pointin C \ £; with
distinct continuations.
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Padé Approximants: Minimal Capacity Contours

It is said that f € S if it can be meromorphically continued along any path in
C\ Ey, where F; is polar and there exists at least one pointin C \ £; with
distinct continuations.

A compact set K is called admissible for f(z)if C \ K is connected and f (%)
has a meromorphic and single-valued extension there.

Theorem (Stahl)
Let f € S. There exists a unique admissible compact Ay such that
cap(Ay) < cap(K)

for any admissible /<. The normalized counting measures of zeros of
Qn(2) converge to wa , in the weak™ sense and it holds that

|f(Z) - (Pn/Qn)(z)|l/2" ~ engf(z;oo)

on compact subsets of C\ A.




Padé Approximants: Symmetry Property

Theorem (Stahl)

The minimal capacity contour A ; can be decomposed as
A =EyUE U A,

where £y C [y, IJ; consists of isolated points to which f has un-
restricted continuations from infinity leading to at least two distinct
function elements, and A; are open analytic arcs. Green’s function for
Ay satisfies

dga;  Oga,
ony  On_ on UAJ’

where 9/0n+ are the one-sided normal derivatives on | J A ;.




Padé Approximants: Symmetric Contours for Algebraic Functions

Theorem (Stahl)

Let f € S and A be its minimal capacity (symmetric) contour. Define

h(z) := 0:9a,(2), 20; := 0y —i0y.

The function /”(z) is holomorphic in C \ (Ey U ;) with a double
zero at infinity and the arcs A; are orthogonal critical trajectories of the
quadratic differential 4 (2)dz* (thatis, h”(2(t))(2'())* < 0).

Assume in addition that £ is finite. For each point e € EyUF,; denote
by i(e) the bifurcation index of ¢, that is, the number of different arcs
A; incident with e. Then

e = I1 G- [] -o7,

ec EgUE e€Ey

where F» is the set of critical points of ga , (2; 00) and j(e) is the order
of e € Es.




Padé Approximants: Function ®(z)

Let / € S be such that Ej is finite.

Let %1(”) and %" be two copies of C \ A cut across A ; and 91 be the surface
obtained by gluing %1(*’ and 9%1") crosswise across the cuts to each other.

Set h(z) = (—1)*h(z), z € K™, which is a rational function on 9. Put

®(z) = exp {/zh(s)ds}.

Then @ (z) is meromorphic on % expect for the unimodular jumps on a

homology basis for % with the zero/pole divisor oo™ — 09 and such that

e log |®(z)| is harmonic in R \ {c0(®, 0o}
o 7 '(A;) is the zero level line of log |®(z)|

o log|®(z)| = ga, (2; 00) for z € RO




Padé Approximants: Symmetric Contours through Riemann Surfaces

Take % := {w” = P(z)}, where P(z) has degree 2g + 2. It is a hyperelliptic
surface of genus g (7(z) = 2z, z = (z,w)).
There exists a function g(z) on A that is harmonic in % \ {o0(”), 00"} and

behaves like (—1)" log || as z — o). This function is
involution-symmetric, i.e, g((z,w)) = g((z, —w)). Define

A:=7({zeR:g(z) =0}

Then A is a symmetric (minimal capacity) contour for some function and
ga(z) = g(z),z € RO, where %1(?) is the closure of the connected component
of %\ {g(z) = 0} containing co(®.



Padé Approximants: Strong Asymptotics

Theorem (Aptekarev-Ya.)

Let f € S besuch that Ey is finite and (7, /Q»)(z) be the n-th diagonal
Padé approximant. Then

U (z) ~ cap™ (Af)P"(z), z€ RO,

YW (2) ~ cap” (A7) 0" (2), 7€ R,

Q

Qn(2)
R, (2)

R

where U, (z) is meromorphic in % \ 7~ ' (A ) with the zero/pole di-
visor (n — g)oo™ + S g — noo'”) that solves a certain boundary
value problem on 7~ ' (A ) (g is the genus of %) and v, is a normaliz-
ing constant.




Angelesco Systems: Orthogonality

We shall say that a vector function f = (f1, ..., f,n) forms an Angelesco system
if
d il
512 = [ > 0, supp(is) = s b, fas b N e b5] = 2.
Given a multi-index 77 = (n1,...,nm), || = n1 + - - - + nm, we can write

/kuﬁ(m)d,uz(x) =0, k=0,n;— 1.

Hence, ();:(z) has n; simple zeros on [a;, b;]. Denote by o ; their counting
measure normalized by |7i|. That s, |05 ;| = n:/|7].



Angelesco Systems: Weak Asymptotics

Theorem (Gonchar-Rakhmanov)

Assume that p; > 0 a.e. on [a;,b;]. Let {7i} be a sequence of multi-
indices such that 7i|i| * — & € (0,1)™, | &

| = 1. Then there exists
a vector equilibrium measure (wz 1, . .., wes,,) (Unique minimizer of a

certain energy functional) such that
O7.i i) Wwe,i-
Moreover, it holds that supp(wez,;) = [az,i, bzi] C [ai, b;] and

7]~ log |Qa(2)| =~ —V“(2), ws=wz1+ "+ Wam,

7] log |[RS) (2)|  ~ V¥ei(2) — bzs, i=T,m,

for some constants /.




Angelesco Systems: Divergence Domains

It follows from the previous theorem that

7~ og |fi(2) — (P /Qu)(2)| = Vet (2) — b

Define the divergence domain by

[ Dz, = {2 fas — V=71 (2) < 0} ]

It might happen that D_ , is non-empty, but it is always bounded.

Dy

a; = az1 b1 b1 ag = aza by = bz




Angelesco Systems: Riemann Surface

Let &5 be the vector equilibrium measure for 7i/|7i|. Define % w.r.t. &; by

&
3
8
o
g
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(bu‘ (Z) ~ 4‘ 7|
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Angelesco Systems: Function ®;(z)

The surface 9 has genus 0. Let ®;(z) be the rational function on 93; with
the zero/pole divisor and normalization given by

(Pr) = n1oo® + - + npmoo™ — \ﬁ\oom), H@%k)(z) =

(0)

There exist points z;, i = 1, m — 1, “in the gaps” on 31" and a rational

function h;; (z) with the zero pole/divisor and normalization

m—1 m

zi+ioo

i=1 k=0 =

anz+bn 7,) h(0>(2:) Y 1/2,
1

such that

®;:(z) = exp {/ hﬁ(s)ds}.




Angelesco Systems: Function ®;(z)

Moreover, it holds that

DUV B G R VEL TSI L
i e

| VAR (e) — b+ ke S s, 2 € R,

and

dz

2’

dwa(z) = (h$) (@) - hE)(x))

In particular, the boundary between convergence and divergence domains
can be described as

oDz, = {s:120(s)| = |2 (5)|}

. 2
That is, it is an orthogonal trajectory of (hg’) (s) — h? (s)) ds?.



Angelesco Systems: Strong Asymptotics

Theorem (Ya.)

\.

Let p;(z) be a Fisher-Hartwig perturbation of a non-vanishing holo-

morphic function on [a;, b;| and

1 i (z)dx
filz) = 5= &y,
T Jlaz ;) ¥ TF

Further, let { 77 } be a sequence of multi-indices such that /|7 | — ¢ €
(25)“ (2),

(0,1)™. Then
{ Qa(2)
RY(z) ~ (®a8)"(2),

where S(z) is a Szeg6-type function on R..

Q

Q

Previous works by Kalyagin, Aptekarev, Aptekarev-Lysov, and subsequent

work by Aptekarev-Denisov-Ya. (¢ € [0, 1] for m = 2).




Symmetric Stahl Systems

We say that a vector function fq: (f1, f2) forms a symmetric Stahl system if

[ fi <> pi, supp(p1) = [~1,a], supp(uz2) =[-a,1], a€(0,1). ]

Let h be an algebraic function given by

[ A(2)R® — 3B2(2)h — 2B1(2) =0 ]

where, for some parameter p > 0, we set

A(z) = (2" —1)(2" —a?),
Ba(z2) = 2% —p?,
Bi(z) =z,




Symmetric Stahl Systems: Riemann Surface

Denote by 9 the Riemann surface of /.. We are looking 9 such that

Re ( / h(s)ds> is single-valued and harmonic on 8 (x)

Theorem (Aptekarev-Van Assche-Ya.)

(I) Ifa € (0,1/V2), then there exists p € (a, /(1 + a2)/3) such
that condition (x) is fulfilled. In this case i has 8 ramification
points whose projections are {1, a} and {+b, £ic} for some
uniquely determined b € (a,p) and ¢ > 0.

(Il) If a = 1/+/2, then () is fulfilled with p = 1//2. In this case %t
has 4 ramification points whose projections are { & 1, £1/1/2}.

() Ifa € (1/v/2,1), then (x) is fulfilled for p = /(1 + a2)/3. In this
case 91 has 6 ramification points whose projections are {+1, +a}
and {£b}, b € (p, a).




Symmetric Stahl Systems: Riemann Surface

4‘10
R L R
—a a b 1
° ® *—e
RO 5 1M RO 5 R
—e —iC
(a) Casel
—1 —1/v2 1/vV2 1
RO o RO R(0) o () T R/0) o R
(b) Case Il
-1 —a —b b a 1
*—e S ° *—e
RO 5 R RO o 1M RO £y 1)

(c) Case IlI



Symmetric Stahl Systems: Nuttall-Szeg6 Functions

Put

B(z) = exp {/ h(s)ds}

Then @(z) is meromorphic on 9 expect for the unimodular jumps on a
homology basis for 9 with the zero/pole divisor co”) + 00?) — 200(%).

Moreover, log |®(z)| is harmonic on 91 \ {o0(?, 00 00(?}.



Symmetric Stahl Systems: Nuttall-Szeg6 Functions

Put

B(z) = exp {/ h(s)ds}

Then @(z) is meromorphic on 9 expect for the unimodular jumps on a
homology basis for 9 with the zero/pole divisor co”) + 00?) — 200(%).

Moreover, log |®(z)| is harmonic on 91 \ {o0(?, 00 00(?}.

To ®"(z) and p1(z), p2(z) there corresponds a function U, (z) that is
meromorphic away from the cycles that separate sheets RO 1M R®® and
on those cycles it solve a certain boundary value problem (in Case I the jump
on RN N R depends on (p1/p2)(2)).

Each of the functions ¥, (z) has a wandering zero (fwo in Case I) and there
exists a subsequence N. such that

o |V, | < C(N,)|®"| uniformly away from the branch points of {
e |U,| > C(N.)"'|®"| uniformly in a neighborhood of co(”




Symmetric Stahl Systems: Strong-type Asymptotics

Theorem (Aptekarev-Van Assche-Ya.)

Let fi(2) <> pi, dpi(x) = pi(z)dz/(271), where p;(z) are as before and

we assume in addition that the ratio (p2/p1)(z) extends from (—a, a)
to a holomorphic and non-vanishing function

e in a domain that contains in its interior the closure of all the
bounded components of the regions €2;;;, in Case I;

e in a domain whose complement is compact and belongs to the
right-hand component of (292; in Cases II and IIla;

e in the extended complex plane, i.e., the ratio is a non-zero
constant, in Case IIIb,

where Q;, = {z (@@ (2)] > 129 (2)] > |<l)“‘")(z)\}. Then it holds
that

TLGN*.

Q

{Q(n,n)(z) ~ 'YH‘I/S))(Z%
R (2) T (2),

(n,n)




Symmetric Stahl Systems: Strong-type Asymptotics

Case IIIb: 7y := (p2/p1)(z) is a constant.

*—0 *—0

TO(2) = wP(z) and T2 () = 190 (2) ]

The functions f;(z) — (P((Ti% n) / (2(,_,,,)) (z) diverge in both components of (2;0s.



metric Stahl Systems: Strong-type Asymptotics

Case Illa: extension to a domain whose complement belongs to the
right-hand component of Q2.

Qo12
ng QlOQ

70— o)

Again, divergence in both components of 2102.



metric Stahl Systems: Strong-type Asymptotics

Case II: extension to a domain whose complement compactly belongs to the

right-hand component of Q2.

QOlQ /
\ Q(]21




Symmetric Stahl Systems: Strong-type Asymptotics

Case I: extension to a domain that contains in its interior the closure of the
bounded components of €2; .




