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Hermite-Padé Approximants: Definition

Let ~f = (f1, . . . , fm) be a vector of functions holomorphic and vanishing at
infinity:

fi(z) =
fi1
z

+
fi2
z2

+ · · ·+ fin
zn

+ · · · .

Let ~n ∈ Nm be a multi-index, while P (1)
~n (z), . . . , P

(m)
~n (z) and Q~n(z) be

polynomials such that deg(Q~n) ≤ | ~n | := n1 + · · ·+ nm and

R
(i)
~n (z) :=

(
Q~nfi − P (i)

~n

)
(z) = O

(
z−ni−1) as z →∞.

The vector of rational functions

(
P

(1)
~n /Q~n, . . . , P

(m)
~n /Q~n

)

is called the type II Hermite-Padé approximant to ~f(z) corresponding to ~n.



Hermite-Padé Approximants: Orthogonality

It follows from Cauchy integral formula that

fi(z) =

∫
dµi(s)

z − s

for some compactly supported Borel generally speaking complex measure µi.
Since R(i)

~n (z) = O
(
z−ni−1

)
, it holds that

0 =

∫
Γ

zkR
(i)
~n (z)dz =

∫
Γ

zkQ~n(z)fi(z)dz =

∫
skQ~n(s)dµi(s)

for k = 0, ni − 1, where Γ is any Jordan curve encircling the support of µi. In
what follows, it assumed that Q~n(z) is the monic polynomial of minimal degree.



Padé Approximants: Markov Functions

Let µ be a positive Borel measure compactly supported on the real line. Then

f(z) =

∫
dµ(x)

z − x

is called a Markov function. The n-th Padé approximant is defined by the
condition

Rn(z) =
(
Qnf − Pn

)
(z) = O

(
z−n−1)

In this case it holds that

∫
xkQn(x)dµ(x) = 0, k = 0, n− 1.

That is, Qn(z) is the n-th orthogonal polynomial with respect to the measure µ.



Padé Approximants: Distribution of Poles

Denote by σn the normalized counting measure of zeros of Qn(z). That is,

σn :=
1

n

n∑
i=1

δ(xn,i), Qn(x) =
n∏
i=1

(x− xn,i),

where δ(x) is the Dirac δ-distribution with mass at x. Recall that a sequence
of measures converges weak∗, νn

∗→ ν, if
∫
Fdνn →

∫
Fdν for any function

F continuous on a compact set containing the supports of νn.

Theorem

If supp(µ) = [−1, 1] and µ′ > 0 a.e. on [−1, 1], then σn
∗→ ω, where

dω(x) =
dx

π
√

1− x2
.



Padé Approximants: Strong Asymptotics

Theorem (Szegő)

Let ρ(x) be a non-negative function satisfying
∫

[−1,1]
log ρdω > −∞.

Set
f(z) :=

1

2π

∫
[−1,1]

1

z − x
ρ(x)dx√
1− x2

.

Then it holds locally uniformly in C \ [−1, 1] that Qn(z) ≈ γn
(
ΦnSρ

)
(z),

Rn(z) ≈ γn
(
hΦnSρ

)−1
(z),

where h(z) = 1/
√
z2 − 1, γn is the normalizing constant, Sρ(z) is the

Szegő function of ρ(x) (non-vanishing and holomorphic with traces sat-
isfying Sρ+(x)Sρ−(x) = ρ−1(x) on [−1, 1]) and

Φ(z) = z +
√
z2 − 1.



Padé Approximants: Function Φ(z)

• − log |Φ(z)| is the logarithmic potential of the logarithmic equilib-
rium measure for [−1, 1]

• log |Φ(z)| is the Green’s function for C \ [−1, 1] with poles at infinity

• log |Φ(z)| = Re
(∫ z

1
h(s)ds

)
• part of a rational function on a certain Riemann surface

Logarithmic potential and energy of a compactly supported Borel measure ν
are defined by V ν(z) = −

∫
log |z − w|dν(w) and I[ν] =

∫
V ν(z)dν(z).

Given a compact set K, either every Borel measure supported on K has
infinite logarithmic energy, in which case K is called polar, or there exists the
unique probability Borel measure ωK such that I[ωK ] = inf I[ν], where the
infimum is taken over all probability Borel measures supported on K. The
measure ωK is called the equilibrium measure of K.

It holds that ω[−1,1] = ω and I[ω] = 0.



Padé Approximants: Function Φ(z)

• − log |Φ(z)| is the logarithmic potential of the logarithmic equilib-
rium measure for [−1, 1]

• log |Φ(z)| is the Green’s function for C \ [−1, 1] with poles at infinity

• log |Φ(z)| = Re
(∫ z

1
h(s)ds

)
• part of a rational function on a certain Riemann surface

Let K be a compact set and D be the unbounded component of C \K. Then
gK(z;∞), Green’s function for K with pole at∞, is uniquely characterized by

• gK(z;∞) is harmonic in D \ {∞}
• gK(z;∞)− log |z| is bounded near∞
• gK(z;∞) = 0 for quasi every (up to a polar set) z ∈ ∂D

It holds that g(z;∞) = I[ωK ]− V ωK (z). The constant cap(K) = e−I[ωK ] is
called the logarithmic capacity of K.



Padé Approximants: Function Φ(z)

• − log |Φ(z)| is the logarithmic potential of the logarithmic equilib-
rium measure for [−1, 1]

• log |Φ(z)| is the Green’s function for C \ [−1, 1] with poles at infinity

• log |Φ(z)| = Re
(∫ z

1
h(s)ds

)

• part of a rational function on a certain Riemann surface

Let h(z) = 1/
√
z2 − 1 be the branch holomorphic in C \ [−1, 1] and such that

h(z) = 1/z +O(z−2) as z →∞. Then

dω[−1,1](x) = dω(x) = − 1

πi
h+(x)dx



Padé Approximants: Function Φ(z)

• − log |Φ(z)| is the logarithmic potential of the logarithmic equilib-
rium measure for [−1, 1]

• log |Φ(z)| is the Green’s function for C \ [−1, 1] with poles at infinity

• log |Φ(z)| = Re
(∫ z

1
h(s)ds

)
• part of a rational function on a certain Riemann surface

Let R(0) and R(1) be two copies of C \ [−1, 1] cut across [−1, 1] and R be the
surface obtained by gluing R(0) and R(1) crosswise across the cuts to each
other. Denote by z a point on R with natural projection π(z) = z. Put

Φ(z) =

{
Φ(z), z ∈ R(0),

Φ−1(z), z ∈ R(1).

Notice that Φ−1(z) = z−
√
z2 − 1. Then Φ(z) is a rational function on R with

the zero/pole divisor∞(1) −∞(0).



Padé Approximants: Function Φ(z)

• − log |Φ(z)| is the logarithmic potential of the logarithmic equilib-
rium measure for [−1, 1]

• log |Φ(z)| is the Green’s function for C \ [−1, 1] with poles at infinity

• log |Φ(z)| = Re
(∫ z

1
h(s)ds

)
• part of a rational function on a certain Riemann surface

Φ(z) = Φ(z)

Φ(z) = Φ−1(z)

∆

∆

Observe also that log |Φ(z)| is harmonic on R \ {∞(0),∞(1)} for which the
cycle ∆ := π−1([−1, 1]) is the zero level line.



Padé Approximants: Minimal Capacity Contours

It is said that f ∈ S if it can be meromorphically continued along any path in
C \ Ef , where Ef is polar and there exists at least one point in C \ Ef with
distinct continuations.

A compact set K is called admissible for f(z) if C \K is connected and f(z)

has a meromorphic and single-valued extension there.

Theorem (Stahl)

Let f ∈ S. There exists a unique admissible compact ∆f such that

cap(∆f ) ≤ cap(K)

for any admissible K. The normalized counting measures of zeros of
Qn(z) converge to ω∆f in the weak∗ sense and it holds that

|f(z)− (Pn/Qn)(z)|1/2n ≈ e−g∆f
(z;∞)

on compact subsets of C \∆f .
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Padé Approximants: Symmetry Property

Theorem (Stahl)

The minimal capacity contour ∆f can be decomposed as

∆f = E0 ∪ E1 ∪
⋃

∆j ,

where E0 ⊆ Ef , E1 consists of isolated points to which f has un-
restricted continuations from infinity leading to at least two distinct
function elements, and ∆j are open analytic arcs. Green’s function for
∆f satisfies

∂g∆f

∂n+
=
∂g∆f

∂n−
on

⋃
∆j ,

where ∂/∂n± are the one-sided normal derivatives on
⋃

∆j .



Padé Approximants: Symmetric Contours for Algebraic Functions

Theorem (Stahl)

Let f ∈ S and ∆f be its minimal capacity (symmetric) contour. Define

h(z) := ∂zg∆f (z), 2∂z := ∂x − i∂y.

The function h2(z) is holomorphic in C \ (E0 ∪ E1) with a double
zero at infinity and the arcs ∆j are orthogonal critical trajectories of the
quadratic differential h2(z)dz2 (that is, h2(z(t))(z′(t))2 < 0).

Assume in addition thatEf is finite. For each point e ∈ E0∪E1 denote
by i(e) the bifurcation index of e, that is, the number of different arcs
∆j incident with e. Then

h2(z) =
∏

e∈E0∪E1

(z − e)i(e)−2
∏
e∈E2

(z − e)2j(e),

where E2 is the set of critical points of g∆f (z;∞) and j(e) is the order
of e ∈ E2.



Padé Approximants: Function Φ(z)

Let f ∈ S be such that Ef is finite.

Let R(0) and R(1) be two copies of C \∆f cut across ∆f and R be the surface
obtained by gluing R(0) and R(1) crosswise across the cuts to each other.

Set h(z) = (−1)kh(z), z ∈ R(k), which is a rational function on R. Put

Φ(z) = exp

{∫ z

h(s)ds

}
.

Then Φ(z) is meromorphic on R expect for the unimodular jumps on a
homology basis for R with the zero/pole divisor∞(1) −∞(0) and such that

• log |Φ(z)| is harmonic in R \ {∞(0),∞(1)}

• π−1(∆f ) is the zero level line of log |Φ(z)|

• log |Φ(z)| = g∆f (z;∞) for z ∈ R(0)



Padé Approximants: Symmetric Contours through Riemann Surfaces

Take R := {w2 = P (z)}, where P (z) has degree 2g + 2. It is a hyperelliptic
surface of genus g (π(z) = z, z = (z, w)).

There exists a function g(z) on R that is harmonic in R \ {∞(0),∞(1)} and
behaves like (−1)k log |z| as z→∞(k). This function is
involution-symmetric, i.e, g((z, w)) = g((z,−w)). Define

∆ := π ({z ∈ R : g(z) = 0})

Then ∆ is a symmetric (minimal capacity) contour for some function and
g∆(z) = g(z), z ∈ R(0), where R(0) is the closure of the connected component
of R \ {g(z) = 0} containing∞(0).



Padé Approximants: Strong Asymptotics

Theorem (Aptekarev-Ya.)

Let f ∈ S be such thatEf is finite and (Pn/Qn)(z) be the n-th diagonal
Padé approximant. Then

Qn(z) ≈ γnΨn(z) ≈ capn(∆f )Φn(z), z ∈ R(0),

Rn(z) ≈ γnΨn(z) ≈ capn(∆f )Φn(z), z ∈ R(1),

where Ψn(z) is meromorphic in R \ π−1(∆f ) with the zero/pole di-
visor (n− g)∞(1) +

∑g
i=1 zn,i − n∞(0) that solves a certain boundary

value problem on π−1(∆f ) (g is the genus of R) and γn is a normaliz-
ing constant.



Angelesco Systems: Orthogonality

We shall say that a vector function ~f = (f1, . . . , fm) forms an Angelesco system
if

fi(z) =

∫
dµi(x)

z − x , µi > 0, supp(µi) = [ai, bi], [ai, bi] ∩ [aj , bj ] = ∅.

Given a multi-index ~n = (n1, . . . , nm), |~n| = n1 + · · ·+ nm, we can write

∫
xkQ~n(x)dµi(x) = 0, k = 0, ni − 1.

Hence, Q~n(z) has ni simple zeros on [ai, bi]. Denote by σ~n,i their counting
measure normalized by |~n|. That is, |σ~n,i| = ni/|~n|.



Angelesco Systems: Weak Asymptotics

Theorem (Gonchar-Rakhmanov)

Assume that µ′i > 0 a.e. on [ai, bi]. Let {~n} be a sequence of multi-
indices such that ~n|~n|−1 → ~c ∈ (0, 1)m, | ~c | = 1. Then there exists
a vector equilibrium measure (ω~c,1, . . . , ω~c,m) (unique minimizer of a
certain energy functional) such that

σ~n,i
∗→ ω~c,i.

Moreover, it holds that supp(ω~c,i) = [a~c,i, b~c,i] ⊆ [ai, bi] and |~n|−1 log |Q~n(z)| ≈ −V ω~c(z), ω~c = ω~c,1 + · · ·+ ω~c,m,

|~n|−1 log |R(i)
~n (z)| ≈ V ω~c,i(z)− `~c,i, i = 1,m,

for some constants `~c,i.



Angelesco Systems: Divergence Domains

It follows from the previous theorem that

|~n|−1 log
∣∣∣fi(z)− (P

(i)
~n /Q~n)(z)

∣∣∣ = V ω~c+ω~c,i(z)− `~c,i

Define the divergence domain by

D−~c,i =
{
z : `~c,i − V ω~c+ω~c,i(z) < 0

}
It might happen that D−~c,i is non-empty, but it is always bounded.

a1 = a~c,1 b~c,1 b1 a2 = a~c,2 b2 = b~c,2

D�
1



Angelesco Systems: Riemann Surface

Let ~ω~n be the vector equilibrium measure for ~n/|~n|. Define R~n w.r.t. ~ω~n by

R
(0)
~n

R
(1)
~n

R
(2)
~n

Φ
(0)
~n (z) ∼ z| ~n |

Φ
(1)
~n (z) ∼ z−n1

Φ
(2)
~n (z) ∼ z−n2

a~n,1 b~n,1 a~n,2 b~n,2

a~n,1 b~n,1

a~n,2 b~n,2



Angelesco Systems: Function Φ~n(z)

The surface R~n has genus 0. Let Φ~n(z) be the rational function on R~n with
the zero/pole divisor and normalization given by

(Φ~n) = n1∞(1) + · · ·+ nm∞(m) − |~n|∞(0),
∏

Φ
(k)
~n (z) ≡ 1.

There exist points zi, i = 1,m− 1, “in the gaps” on R(0) and a rational
function h~n(z) with the zero pole/divisor and normalization

(h~n) =

m−1∑
i=1

zi +

m∑
k=0

∞(k) −
m∑
i=1

(
a~n,i + b~n,i

)
, h(0)(z) ∼ 1/z,

such that

Φ~n(z) = exp

{∫ z

h~n(s)ds

}
.



Angelesco Systems: Function Φ~n(z)

Moreover, it holds that

1

|~n| log |Φ~n(z)| =

 −V
ω~n(z) + 1

m+1

∑m
i=1 `~n,i, z ∈ R(0),

V ω~n,k(z)− `~n,k + 1
m+1

∑m
i=1 `~n,i, z ∈ R(k),

and

dω~n(x) =
(
h

(0)
~n−(x)− h(0)

~n+(x)
) dx

2πi
.

In particular, the boundary between convergence and divergence domains
can be described as

∂D−~n,i =
{
s : |Φ(0)

~n (s)| = |Φ(i)
~n (s)|

}

That is, it is an orthogonal trajectory of
(
h

(0)
~n (s)− h(i)

~n (s)
)2

ds2.



Angelesco Systems: Strong Asymptotics

Theorem (Ya.)

Let ρi(x) be a Fisher-Hartwig perturbation of a non-vanishing holo-
morphic function on [ai, bi] and

fi(z) :=
1

2πi

∫
[ai,bi]

ρi(x)dx

x− z .

Further, let {~n } be a sequence of multi-indices such that ~n/|~n | → ~c ∈
(0, 1)m. Then {

Q~n(z) ≈
(
Φ~nS

)(0)
(z),

R
(i)
~n (z) ≈

(
Φ~nS

)(i)
(z),

where S(z) is a Szegő-type function on R~c.

Previous works by Kalyagin, Aptekarev, Aptekarev–Lysov, and subsequent
work by Aptekarev-Denisov-Ya. (~c ∈ [0, 1]2 for m = 2).



Symmetric Stahl Systems

We say that a vector function ~f = (f1, f2) forms a symmetric Stahl system if

fi ↔ µi, supp(µ1) = [−1, a], supp(µ2) = [−a, 1], a ∈ (0, 1).

Let h be an algebraic function given by

A(z)h3 − 3B2(z)h− 2B1(z) = 0

where, for some parameter p > 0, we set


A(z) := (z2 − 1)(z2 − a2),

B2(z) := z2 − p2,

B1(z) := z,



Symmetric Stahl Systems: Riemann Surface

Denote by R the Riemann surface of h. We are looking R such that

Re

(∫ z

h(s)ds

)
is single-valued and harmonic on R (∗)

Theorem (Aptekarev-Van Assche-Ya.)

(I) If a ∈
(
0, 1/
√

2
)
, then there exists p ∈

(
a,
√

(1 + a2)/3
)

such
that condition (∗) is fulfilled. In this case R has 8 ramification
points whose projections are {±1,±a} and {±b,±ic} for some
uniquely determined b ∈ (a, p) and c > 0.

(II) If a = 1/
√

2, then (∗) is fulfilled with p = 1/
√

2. In this case R

has 4 ramification points whose projections are
{
± 1,±1/

√
2
}

.

(III) If a ∈
(
1/
√

2, 1
)
, then (∗) is fulfilled for p =

√
(1 + a2)/3. In this

case R has 6 ramification points whose projections are {±1,±a}
and {±b}, b ∈ (p, a).



Symmetric Stahl Systems: Riemann Surface

�1 �b �a a b 1

ic

�ic

R(0) $ R(2) R(0) $ R(1) R(0) $ R(2)

R(1) $ R(2)

(a) Case I

�1 �1/
p

2 1/
p

2 1

R(0) $ R(2) R(0) $ R(1) R(0) $ R(2)

(b) Case II

�1 �a �b b a 1

R(0) $ R(2) R(0) $ R(1) R(0) $ R(2)

(c) Case III



Symmetric Stahl Systems: Nuttall-Szegő Functions

Put

Φ(z) = exp

{∫ z

h(s)ds

}

Then Φ(z) is meromorphic on R expect for the unimodular jumps on a
homology basis for R with the zero/pole divisor∞(1) +∞(2) − 2∞(0).
Moreover, log |Φ(z)| is harmonic on R \ {∞(0),∞(1),∞(2)}.

To Φn(z) and ρ1(z), ρ2(z) there corresponds a function Ψn(z) that is
meromorphic away from the cycles that separate sheets R(0),R(1),R(2) and
on those cycles it solve a certain boundary value problem (in Case I the jump
on R(1) ∩R(2) depends on (ρ1/ρ2)(z)).

Each of the functions Ψn(z) has a wandering zero (two in Case I) and there
exists a subsequence N∗ such that

• |Ψn| ≤ C(N∗) |Φn| uniformly away from the branch points of R

• |Ψn| ≥ C(N∗)−1 |Φn| uniformly in a neighborhood of∞(0)
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Symmetric Stahl Systems: Strong-type Asymptotics

Theorem (Aptekarev-Van Assche-Ya.)

Let fi(z)↔ µi, dµi(x) = ρi(x)dx/(2πi), where ρi(z) are as before and
we assume in addition that the ratio (ρ2/ρ1)(z) extends from (−a, a)

to a holomorphic and non-vanishing function

• in a domain that contains in its interior the closure of all the
bounded components of the regions Ωijk in Case I;

• in a domain whose complement is compact and belongs to the
right-hand component of Ω021 in Cases II and IIIa;

• in the extended complex plane, i.e., the ratio is a non-zero
constant, in Case IIIb,

where Ωijk :=
{
z : |Φ(i)(z)| > |Φ(j)(z)| > |Φ(k)(z)|

}
. Then it holds

that {
Q(n,n)(z) ≈ γnΨ

(0)
n (z),

R
(i)

(n,n)(z) ≈ γnΨ̂
(i)
n (z),

n ∈ N∗.



Symmetric Stahl Systems: Strong-type Asymptotics

Case IIIb: γ := (ρ2/ρ1)(z) is a constant.

⌦012⌦102 ⌦102

Ψ̂(1)
n (z) = Ψ(1)

n (z) and Ψ̂(2)
n (z) = γΨ(1)

n (z)

The functions fi(z)−
(
P

(i)

(n,n)/Q(n,n)

)
(z) diverge in both components of Ω102.



Symmetric Stahl Systems: Strong-type Asymptotics

Case IIIa: extension to a domain whose complement belongs to the
right-hand component of Ω021.

⌦021 ⌦021

⌦012

⌦102 ⌦102

�1

b (1)
n =

�⇢1

⇢2
 

(2)
n

b (1)
n =  

(1)
n

�2

b (2)
n =

 
(2)
n

b (2)
n = ⇢2

⇢1
 

(1)
n

Again, divergence in both components of Ω102.



Symmetric Stahl Systems: Strong-type Asymptotics

Case II: extension to a domain whose complement compactly belongs to the
right-hand component of Ω021.
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Symmetric Stahl Systems: Strong-type Asymptotics

Case I: extension to a domain that contains in its interior the closure of the
bounded components of Ωijk.
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