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Mahler Measure

The Mahler measure of a polynomial p(z) = a
∏

(z − αn) is given by

M(p) := exp

{∫
T

log |p(τ)| |dτ |
2π

}
,

where T :=
{
|z | = 1

}
. It follows from Jensen’s formula that

M(p) = |a|
∏

max
{

1, |αn|
}

= |a|
∏

exp
{

log+ |αn|
}
.
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How Many Polynomials Have at Most a Certain Mahler Measure?

Associate to each element v ∈ CN+1 a polynomial pv. The following
quantity is of number theoretic interest:

#
{
v ∈ Z[i]N+1 : M(pv) ≤ T

}
.

Clearly, this quantity is equal to

#Z[i]N+1 ∩
{
v ∈ CN+1 : M(pv) ≤ T

}
.

Chern & Vaaler1 have shown that this quantity is bounded by

T 2N+2vol
{
v ∈ CN+1 : M(pv) ≤ 1

}
.

1The distribution of values of Mahler’s measure, J. Reine Angew. Math., 540:1—47, 2001
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Volume of the Star Body of Mahler Measure at Most 1

They further computed that

vol
{
v ∈ CN+1 : M(pv) ≤ 1

}
=

π

N + 1
HN(N + 1),

where

HN(s) :=

∫
CN

M−2s
(
Pu

)
dA⊗N =

πN

N!

N∏
n=1

s

s − n

and Pu is the monic polynomial of degree N + 1 with the non-leading
coefficients described by the vector u ∈ CN .
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Mahler Ensemble of Complex Random Polynomials

Question

Where do the zeros of a typical polynomial from this volume lie?
(Is zN − 1 or (z − 1)N more typical?)

Definition

By a random polynomial from a complex Mahler ensemble we will
mean a polynomial chosen according to the density M−2s

(
Pu

)
/HN(s).

Remark

True interest of a number theorists lies in polynomials with integer
coefficients which leads to real Mahler ensemble. Please, stay for the
talk by Chris Sinclair where this more complicated case is addressed.
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Mahler Ensemble of Complex Random Polynomials

As was observed by Chern & Vaaler, a change of variables from the
coefficients of polynomials to their roots, gives

HN(s) :=
1

N!

∫
CN

DN,s(α1, . . . , αN)dA⊗N(α1, . . . , αN),

where

DN,s :=
∏
n

exp

{
− 2s log+ |αn|

} ∏
n<m

|αn − αm|2

=
∏
n

exp

{
−2s

∫
T

log |τ − αn|
|dτ |
2π

} ∏
n<m

|αn − αm|2.



Random Polynomials LDP and LS Scaling Limits

Logarithmic Capacity

For any probability Borel measure on C, say ν, set

I [ν] :=

∫
log

1

|z − u|
dν⊗2(z , u)

to be its logarithmic energy. For any compact set K the logarithmic
capacity of K is defined by

cp(K ) := exp

{
− inf

supp(ν)⊆K
I [ν]

}
.

It is known that either cp(K ) = 0 (K is polar) or else there exists the
unique measure ωK , the logarithmic equilibrium distribution on K , that

realizes the infimum. The measure |dτ |2π |T is the equilibrium distribution

on both T and D.



Random Polynomials LDP and LS Scaling Limits

Green’s Function and Generalized Mahler Measure

gK , Green’s function with a pole at ∞ for the unbounded component of
K c , the complement of a compact set K , is the unique harmonic function
which is zero q.e. on ∂K c and behaves like log |z | at ∞. In particular,

gD(z) = gT(z) = log+ |z |.

Put gK ≡ 0 in C \ K c . If it is continuous in C, K is called regular w.r.t.
Dirichlet problem.

Let K be such that cp(K ) = 1. The Mahler measure of a polynomial p
with respect to K is defined by

MK (p) := exp

{∫
log |p|dωK

}
= |a| exp

{∑
gK (αn)

}
.
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Density of Random Polynomials

Let K be a compact set. The joint density of random configurations
(zeros of random polynomials or equivalently eigenvalues of normal
random matrices) is defined by

ΩN,s(z) :=
1

ZN,s
exp

{
−2s

N∑
n=1

gK (zn)

} ∏
m<n

|zn − zm|2,

where s − N + 1 > 1 + c0 for some c0 > 0 and

ZN,s =

∫
CN

exp

{
−2s

N∑
n=1

gK (zn)

} ∏
m<n

|zn − zm|2 dA⊗N .
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Empirical Measures

Let η = {η1, . . . , ηN} be a random configuration chosen according to the
law ΩN,s . To any such configuration we associate the empirical measure
defined as

ωη :=
1

N

N∑
k=1

δηk ,

where δz is the classical Dirac delta with the unit mass at z .

Question

Where is it most likely to find ωη when N is large? That is, where it is
most likely for random polynomials to have their zeros?
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Distance Between Measures

Let ν and µ be two probability Borel measures on C. The distance
between them is defined by

dist(ν, µ) = sup
f

∣∣∣∣∫ f dν −
∫

f dµ

∣∣∣∣ ,
where the supremum is taken over all functions f that are bounded by 1
in modulus and satisfy the Lipschitz condition with constant 1 on
supp(ν) ∪ sup(µ).

For measures supported on a compact set it holds that dist(ν, νn)→ 0 as

n→∞ if and only if νn
∗→ ν, where

∗→ stands for the convergence in the
weak∗ topology of measures.
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Large Deviation Principle

The following theorem takes place.2

Theorem (M.Y.)

Let K be a compact set with connected complement which is regular
with respect to the Dirichlet problem and such that K = K◦. Then

lim
ε→0

lim
N→∞

1

N2
log Prob {dist (ν, ωη) < ε} = −

(
I`[ν]− I [ωK ]

)
,

for any probability Borel measure ν, supp(ν) ⊂ C, where

I`[ν] := I [ν] +
2

`

∫
gKdν, ` := lim

N→∞
s−1N,

and it holds that I`[ωK ] = I [ωK ] < I`[ν], ν 6= ωK .

2Large Deviations and Linear Statistics for Potential Theoretic Ensembles Associated with Regular Closed Sets,

Probab. Theory Relat. Fields., 2014
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Point Processes and Correlation Functions

Let η be a random configuration chosen according to ΩN,s and ωη be the
corresponding empirical measure. ωη can be considered as a simple point
process on C.

The correlation functions of ωη w.r.t. dA are functions (if they exists)
Rn : Cn → [0,∞) such that for any family of mutually disjoint subsets
O1, . . . ,On it holds that

E

[
n∏

k=1

ωη(Ok)

]
=

∫
O1×···×On

Rn(z1, . . . , zn)dA⊗n(z1, . . . , zn)

and Rn(z1, . . . , zn) vanishes whenever zi = zk for i 6= k.

Thus,
∫
O

R1dA is the expected number of zeros that lie in the set O.
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Linear Statistics

Exercise

Rn(z1, . . . , zn) =
N!

(N − n)!

∫
CN−n

ΩN,sdA⊗(N−n)(zn+1, . . . , zN).

Theorem (M.Y.)

Under the conditions of the previous theorem, it holds that

lim
N→∞

(N − n)!

N!

∫
Cn

f RndA⊗n =

∫
f dω⊗nK

for each f ∈ Cb(Cn), n ∈ N, where Cb(Cn) is the Banach space of
bounded continuous functions on Cn.

Remark

In particular, E(ωη(O)) ' NωK (O).
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Orthogonal Polynomials

Define a sequence of orthonormal polynomials {pn} such that∫
C

pn(z)pm(z)e−2sgK (z)dA = δnm.

The following fact is by now standard, see Deift3 or Mehta4,

Rn(z1, . . . , zn) = det
[
KN(zi , zk)

]n
i,k=1

,

where

KN(z ,w) := e−s(gK (z)+gK (w))
N−1∑
n=0

pn(z)pn(w).

3Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Volume 3 of Courant Lectures

in Mathematics. Amer. Math. Soc., Providence, RI, 2000.

4Random Matrices. Volume 142 of Pure and Applied Mathematics, Elsevier/Academic Press, Amsterdam, 2004
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Asymptotics of Orthogonal Polynomials

Then the following theorem takes place5.

Theorem (M.Y and C. Sinclair)

Let K be a Jordan domain whose boundary ∂K is a Jordan curve of class
C 1,α, α > 1/2. Then

pn =
(
1 + o(1)

)√n + 1

π

(
1− n + 1

s

)
ΦnΦ′

uniformly on K c , where Φ is the conformal map from K c → {|z | > 1}.

Remark

Observe that |Φ(z)| = exp
{

gK (z)
}

for z ∈ K c .

5Universality for ensembles of matrices with potential theoretic weights on domains with smooth boundary, J.

Approx. Theory, 164(5):682—708, 2012
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Interior Asymptotics

Denote by K (z ,w) the reproducing kernel for the Bergman space on
K◦. That is,

f (z) =

∫
K◦

f (w)K (z ,w)dA(w)

for every holomorphic f such that
∫
K◦ |f |2dA <∞.

Theorem (M.Y. and C. Sinclair)

Under the conditions of the previous theorem, KN(z ,w) converges to
K (z ,w) locally uniformly in K◦ × K◦.

Remark

For all N large, random polynomials are expected to have a “fixed”
number of zeros in each set of positive Lebesgue measure.
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Exterior Asymptotics

KN(z ,w) =
∣∣Φ(z)Φ(w)

∣∣−s N−1∑
n=0

pn(z)pn(w), z ,w ∈ K c .

Theorem (M.Y. and C. Sinclair)

Under the conditions of the previous theorem, it holds that∣∣Φ(z)Φ(w)
∣∣s(

Φ(z)Φ(w)
)N KN(z ,w)

s − N
→ 1

π

Φ′(z)Φ′(w)

Φ(z)Φ(w)− 1

[
1 +

c−1

Φ(z)Φ(w)− 1

]

locally uniformly in K c × K c , where c := limN→∞(s − N). In particular,
KN(z ,w)→ 0 when s − N →∞.

Remark

When c <∞ and N is large, random polynomials are expected to have a
“fixed” number of zeros in each set of positive Lebesgue measure.
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Scaling Limits on the Boundary

From the linear statistics we know that

E
[
ωη(Dε(τ))

]
∼ NωK (Dε(τ)) ∼ εNω′K (τ).

Thus, to see a non-trivial behavior around τ we need to scale ε ∼ N−1.
We also know that

E
[
ωη(D 1

N
(τ))

]
=

∫
D 1

N
(τ)

R1(z)dA(z) =

∫
D 1

N
(τ)

KN(z , z)dA(z)

=

∫
D

1

N2
KN

(
τ +

z

N
, τ +

z

N

)
dA(z).

Thus, we expect integrand to converge and therefore set

Kτ (z ,w) := lim
N→∞

1

N2
KN

(
τ +

z

N
, τ +

w

N

)
.
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Scaling Limits on the Boundary

Theorem (M.Y. and C. Sinclair)

Under the conditions of the previous theorem, it holds that

Kτ (z ,w) =
ω(τ, z)ω(τ,w)

π

∫ 1

0

x(1− `x)e(a(τ,z)+a(τ,w))xdx ,

where a(τ, z) := zΦ′(τ)Φ(τ) (the argument of a(τ, z) is equal to the
angle between z and the outward normal to ∂K ), ` = limN→∞ s−1N, and

ω(τ, z) := lim
N→∞

exp
{
−sgK

(
τ +

z

N

)}
.

Remark

∫ 1

0

x(1− `x)eηxdx = (1− `) eη(η − 1) + 1

η2
+ `

eη(η − 2) + η + 2

η3
.



Random Polynomials LDP and LS Scaling Limits

Plots of the Second Correlation Functions

K sin(a, b) =
sin(a− b)

a− b
=

eη − e−η

2η
, η = i(a− b)
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Plots of Rsin
2 (a, b) = 1− K sin(a, b)2 as a function of 2(a− b). The

second plot is an enlargement of the shaded region.
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Plots of the Second Correlation Functions

πKτ (z ,w)

ω(τ, z)ω(τ,w)
= (1− `) eη(η − 1) + 1

η2
+ `

eη(η − 2) + η + 2

η3

where η = a(τ, z) + a(τ,w) which can be parametrized as i(a− b) in the
tangential direction (in which case ω(τ, z) = 1).
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Plots of the Second Correlation Functions
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Plot of the interpolation between R0
2 and R1

2 along a tangent line.
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