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Mahler Measure

The Mahler measure of a polynomial P(z) = aH’anl(z — ) is defined as

M(P) = |a|]]max{1,|anl}

_ exp{%/:w |og|p(ei9)}de}.
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Theorem (Kronecker, 1857)
M(P) =1 for a polynomial P with integer coefficients iff P is a product of
monomials and cyclotomic polynomials (divisors of z" — 1). Necessarily, such a

M(P)

polynomial has all its roots in T U {0}.
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Theorem (Kronecker, 1857)

M(P) =1 for a polynomial P with integer coefficients iff P is a product of
monomials and cyclotomic polynomials (divisors of z" — 1). Necessarily, such a

polynomial has all its roots in T U {0}.
Conjecture (Lehmer, 1933)
Is 1 an isolated point of the range of M(-) on integer polynomials?

Lehmer himself constructed the smallest known example:

M(zlo+zg—z7—26—25—24—234—2—}—1)%1.1&



Number of Integer Polynomials

Theorem (Chern-Vaaler, 2001)

The number of integer polynomials of height at most T behaves as
vol(By) TV + O(T"), T — o0,

where By is the Mahler measure unit star body. Moreover,

I(By) = Fy (N +1
vol (Bw) N1 v (N+1),
where
[(N=1)/2] 5
Fn(s) = Cy _—
oy s—(N—2m)

and Cy is an explicit constant.
Notice that Lehmer’s conjecture asks what happens when T — 1.

Observe also that both (z — 1)" and z" — 1 belong to By but have drastically
different coefficient vectors.



Volumes of Star Bodies

More generally, the \-homogeneous Mahler measure is given by

N
M(P) = |a* H max {1, |ova| }.
n=1

The corresponding unit star body is defined as

N
B,i‘, = {(21,4..72N+1) e RV A <Z 3n+12"> < 1}4

n=0

Theorem (Chern-Vaaler, 2001)

vol(By) = 2 _Fy (M)




Volumes of Star Bodies

s N—1
vol (By) / vol {b M (czN +>° bn+1z"> < 1} de
=2 n=0

- N—1
/ vol {cb VA (czN + Z cb,,+1z"> < 1} de.
—oo n=0

Using the A\-homogeneity of M* one then gets
vol(BR) = 2/ cMvol {b: M(b) < ¢} de
0

_ 2 [ vy . d¢
= /\/Of vol{b.l\/l(b)gg} ,

where M(b) is the Mahler measure of z" + > o bni12" Integratlon by parts

then gives

VO|(B,C) = N_|_]_/ € N+1)/>\dvo|{b M(b <§}

2
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Volumes of Star Bodies

Making a change of variables from coefficients of polynomials to their roots

gives
Fu(s):= | M(b)*duz(b) = sz;;f),

RN L+2M=N

where L and M stand for the number of real and complex roots, and

2un9) = [, [, TT®@) ™ [T o(6n) 1, Blau(@)aut(9)
RLJCM =l

with A(c, 3) being the Vandermonde of o, .. ., ,ar, B, f ..... J:’?M,EM.

The summands Z; u(s) are not simple and Chern-Vaaler went through a dozen
pages of rational function identities to show that

L(N—=1)/2]
Fu(s) = Cw ST (N—2m)’

m=0



Complex Star Bodies

In fact, one could consider polynomials with complex coefficients. Set

N
BQ(C) = {(al, o0 .,aN+1) [S (CN+1 5 /\//A (Z anﬂz”) S 1} o

n=0

Then

vol(Bﬁ(C))

N—1
/vol {b: M (czN + Z bn+1z"> < 1} dc
c n=0
/C\c\z’vvol {b : M(b) < \c\f’\}dc
_ [T i .
- T [ ¢ dvol{b : M(b) < 1
e {b:M(b) <1)

- ™ ' _2(N+1)/A N
= — M(b b).
/V+1/CN (5) ue(b)



Complex Star Bodies

As before, making a change of variables from the coefficients to the roots gives

6u(s) = [, My Haut(e) = 25,

where

2us) = [ TTo0) ™A autn)

@m)" > <H /OOO ¢(pn)2spi°(”)ldpn>

o

N N
(2m)" Z <H 2g(n)(ssf U(n))> =" H s i n’

o n=1

Theorem (Chern-Vaaler, 2001)

vol (B(C)) = Nj—lGN (M) :




Determinantal Interpretation

Theorem (Sinclair, 2008)
Let o, ..., My_1 be polynomials such that
<r|n|r|m> = 5n,m7

where inner product (-|-) is defined by
(fle)e = [ F(2)g@ () duc(z),
c

with ®(z) := max{1,|z|}. Then

N—1
Gn(s) =[] 2
n=0

where T (z) = ez



Pfaffian Interpretation

Theorem (Sinclair, 2008)

Let 7o, ..., mn—1 be polynomials such that
(mon|mom) = (Tont1|Toms1) =0 and  {(won|T2m+1) = On,m,

where skew-symmetric inner product (-|-) = (:|-)r + (:|-)c is defined by

(Fle)= / / F(x)E(y)sen(y — X)) *®(y)*du(x)dpr(y)

(flg)c

i / F@)e(2)sen(Im(2))®(2)~*dpc(2),

with ®(z) = max{1, |z|}. Then

[(N=1)/2] )
Fn(s) = H ('yzn’Y2n+1)_ 9

n=0

where 7T/<(Z) = ﬂ,/kzk + .



Random Polynomials

Recall that
Gn(s) = /N M(b)~*du(b) and Fu(s) = /N M(b)~*duf (b).
c R
Under a random polynomial we mean a polynomial chosen with respect to
M(b)™%*/Gn(s), beCM, or M(b)°/Fn(s), beR".
This is equivalent to choosing polynomials uniformly from B,<VNH)571.

We would like to study fine statistics of zeros of such random polynomials.



Numerical Simulation

A simultaneous plot of the roots of 100 random polynomials of degree 28. A
ball-walk of 10,000 steps of length .01 starting from x*® was performed for
each polynomial. The arrows indicate directions of outlying roots.



Correlation Functions: Complex Case

Let P be a random polynomial. For C C C define N¢ := £C N {zeros of P}.

In the case of complex coefficients, a function R, : C" — [0, c0) is called n-th
correlation function if

ElNe, -+ N = [ = / Ry (2)

for pairwise disjoint sets Ci, ..., C,. Since the joint density of the zeros is given
by

i TL 1= MR TT o0 ()

m<n n=1
®(z) = max{1,|z|}, it is well known in random matrix theory that

Ra(X) = det [Kn(Ai, A)] ]

ij=1’
where

Kn(z, w) == ®(2)70(w) ™" ) Ma(2)Ma(w)

0
and [1, are orthonormal polynomials w.r.t. ®~°(z)duc(z).



Correlation Functions: Real Case

In the case of real coefficients, if there is a function R; , : R’ x C7 — [0, c0)
such that

E[Na, -+~ Na,Ng, - - - Na,] 32/ / / o [ Rum(x, 2)dpr(x)dud (2)
A A B Bum

for pairwise disjoint sets Aq,..., A/ C Rand By,..., B, C C., then it is called

the (/, m)-th correlation function.

When such functions exist, it holds in particular that

deg(P) = / Ruo(x, —)dgum(x) + / Roa(— 2)dc(2)

and the first integral represents the expected number of real zeros, where we
set R/_m(-.f) = R/_m(-,Z).



Correlation Functions: Real Case

Theorem (Borodin-Sinclair, 2009)
There exists a 2 x 2 matrix kernel Ky : C x C — C?*? such that

I I,m
[KN(X’V XJ” ij=1 [KN(X"* Z”)L,n1]

Rim(x,z) = Pf - /
7[K/{I(Zkij)} k_;'zl [K’V(Zk’z”)} k,n=1

In particular, it holds that

Rio(x,—) = PfKn(x,x) and Roi(—,z)=PfKn(z, z).

Recall that we set (:|-) = (:|")r + (:|")c, where

(Fla)e = / / F(x)&(y)sen(y — x)0(x)0(y) dpm(x)dun(y)

(Fla)e = —2i / F@)e(2)sen(Im(2))b(2) " dpc(2).



Correlation Functions: Real Case

Theorem (Borodin-Sinclair, 2009)
Let N =2J and 7o, ..., mn—1 be skew-orthogonal polynomials w.r.t. (-|-). Set

rn(u, v) = 20(u) " d(v SZ T2n(U)T2n41(v) — 2n(v)T2ns1(u)).

n=0
Then
rn(u, v) rne(u, v)
Kn(u,v) = ,
exn(u,v) exne(u,v)+ ssgn(u — v)

where sgn(-) = 0 for non-real arguments and ¢ is the operator

3 Ji f()sgn(t — u)due(t), weER,
i-sgn(Im(w))f(w), ue C\R,

ef (u) :=

which acts on u when written on the left and on v when written on the right.



Skew-Orthogonal Polynomials

The following results are from Sinclair-Ya. 2012 (complex case) and 2015 (real
case).

Theorem

It holds that

F(k+3/2)[(n—k+1/2)
Fk+1)r(n—k+1) °

and

1 ~s— (2k+2)T(k+3/2)[(n—k—1/2) 541
e D Fk+L)(n—k+1) -~

Mo(z) = \/";Ll (1 - %1>z




Expected Number of Real Zeros

Write 7 (z) := mx(z)®(z)°. Given A C R and N even, it holds that

E[Na] = /APfKN(va)dMR(X)
= /APf EHN(OX’X) f{/\/c(ox.X)] dpiz(x)

N/2

ZZ_E/A (T2n(X)€T2n+1(x) — Tant1(x)€M2n(x)) dpr(x).



Expected Number of Real Zeros

Theorem

Let Ni, and Nou: be the number of real roots on [—1,1] and R\ (—1,1). Then

E[Na] = % log N + On(1)
E[Nowt] = 7%71\1(2;7/\/) log (1 — Ns™") + v/Ns—10n(1),

where the implicit constants are uniform with respect to s.
Observe that
V/Ns=10pn(1), limsupy . Ns~! <1,
E[Nowt] = ZlogN+ On(1), s=N-+N'"%a€[0,1],

Llog N+ On(1), limsupy_, (s — N) < occ.



Expected Number of Zeros Around Points of the Unit Circle

Let ¢ € T and 6 be small. In the complex case we have that

E[N¢ysp] = /(+6]DJ Kn(z, z)dpc(2)

/ 8Ky (¢ +6z,¢ + 62z)duc(z).
D
Similarly, in the real case we have for ¢ € T\ {+1} that

E I:NC+§I]} = / PfK/\/(Z7 z)d,uc(z).
¢+oD

As we have N total zeros, the scale should be 6 = 1//.



Expected Number of Zeros Around Points of the Unit Circle

Theorem

Let ¢ € T. Assume that \ := limy_... Ns—* € [0,1] exists. Then
. 1 z w
i K (G €+ ) = Kelzw),

where w(7) := min {1_ e*m‘f(r')/k} e
Kot w) = (=0 L [ (1~ a)elear
T Jo

It holds that Re(z() > 0 iff z points outside I at ¢.



Expected Number of Zeros Around Points of the Unit Circle

Theorem

Let ¢ € T\ {£1}. Assume that \ := limy_,.c Ns~' € [0,1] exists. Then

im 1 0 Ke(z, w)
—K¢(w, z) 0

Jim, gk (¢ + ¢+ ) =

That is, Pfaffian point process becomes essentially determinantal around (.



Expected Number of Zeros Around Points of the Unit Circle

Theorem

Let ¢ € T\ {£1}. Assume that \ := limy_,.c Ns~' € [0,1] exists. Then

0 Ke(z, w)

lim NKN(<+ O ) —Ke(w, 2) 0

N— oo

That is, Pfaffian point process becomes essentially determinantal around (.

Theorem

Let ¢ € {+1}. Assuming that \ := limy_., Ns ' € [0,1] exists, it holds that
u v
I|m W (x—l—ﬁ,f—i— N) = ke(u,v)
where the convergence is locally uniform in C x C,
1
ke(u, v) = w (u) w (vE) % / T(1-A7) (M/(UfT)M(VfT)*M(ufT)M%VfT)) dr
0

and M(z) = 1F1(3/2,1;2), i.e.,, zM"(z) + (1 — z)M'(z) — 2M(z) = 0.



Expected Number of Zeros Around

The scaled intensity of complex roots near 1, for A = 1 (left) and A\ = 0 (right).
Note how the roots tend to accumulate near the unit disk (the y-axis here) and
repel from the real axis.



Expected Number of Zeros on Compact Subsets of

Theorem

Assuming that \ := limpy_ Ns~te [0, 1] exists, it holds that

. 1 1
Wim, Kz w) = T T ey

and

fim (o, v) = 1 /T((V —7 — uy/—7) |d7]

N=oo ar Jr (1 - w2r) (1 - v2r)*?

locally uniform in D x D, where \/—7 is the branch defined by — 2 >

s

~m
T

2m—1"




Expected Number of Zeros on Bounded Subsets of

Theorem
Assuming that \ := limy_o Ns™* € [0,1] amd ¢ := limy_00(s — N) € [0, 0]
exist, it holds that

li ==
TR (zw)VN s—N mzw — 1

I -1
|zw|* Kn(z,w) X 1 {1+ c }

and

li =—
N (uv)N s— N muv—1

|uv]® kn(u,v) A 1 14 ct v—u .
uv—1]Vu2—-1/v2 -1



Expected Number of Zeros on Bounded Subsets of

04

02

The limiting intensity of complex roots outside the disk, with a close up view
near z = 1, for the Mahler measure (¢ = 1) case.



