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Taylor polynomials

Let F be a function holomorphic at the origin:

F(z) = f0 + f1z + f2z2 + · · ·+ fmzm + · · ·

and Pn be its n-th Taylor polynomial:

Pn(z) = f0 + f1z + f2z2 + · · ·+ fnzn.

Then

Pn(z)⇒ F(z) as n→∞

in the largest disk of holomorphy of F.
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Padé Approximants at the Origin

Let Pn and Qm be polynomials of respective degrees at most n and m such that

(
QmF − Pn

)
(z) = O

(
zm+n+1) as z→ 0.

The rational function Pn/Qm is unique and is called (n,m)-th Padé approximant at the
origin.

Theorem (de Montessus de Ballore)

If D is the largest disk centered at the origin where F has exactly m poles counting
multiplicities, then

(Pn/Qm)(z)⇒ F(z) as n→∞
in the spherical metric.
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Padé Approximants at Infinity

Let f be a function holomorphic and vanishing at infinity:

f (z) =
f1

z
+

f2

z2
+ · · ·+ fn

zn
+ · · · .

Further, let pn,qn be a pair of polynomials of degree at most n such that

Rn(z) :=
(
qnf − pn

)
(z) =

1
mnzn+1

+O
(
z−n−2) as z→∞.

The rational function pn/qn is always unique and is called the n-th diagonal Padé
approximant to f at infinity.

Theorem (Markov)

If σ is a compactly supported positive Borel measure on the real line, then

(pn/qn)(z)⇒ f (z) =

∫
dσ(t)
t− z

as n→∞

locally uniformly in C \ I, where I is the smallest interval containing supp(σ).
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Very Strong Asymptotics

It is easy to show that

∫
xiqn(x)dσ(x) = 0, i ∈ {0, . . . , n− 1}.

Let w(z) :=
√

z2 − 1 and ρ(z) be holomorphic and non-vanishing in a neighborhood of
[−1, 1]. By assuming

dσ(x) =
ρ(x)

2πi
dx

w+(x)

and studying (thanks to Fokas, Its, and Kitaev) the matrices

Yn :=

(
qn Rn

mn−1qn−1 mn−1Rn−1

)
via the steepest descent method of Deift and Zhou, one can get very precise asymptotics
of qn and Rn.
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Very Strong Asymptotics

In particular, one deduces Szegő’s asymptotics:

{
qn(z) =

(
1 + o(1)

)(
ΦnSρ

)
(z),

(wRn)(z) =
(
1 + o(1)

)(
ΦnSρ

)−1
(z),

where Φ(z) := z + w(z) and

Sρ(z) = exp

{
w(z)

2πi

∫
[−1,1]

log ρ(x)

x − z
dx

w+(x)

}
,

which satisfies S+
ρ S−ρ = ρ on (−1, 1). We can rewrite the asymptotic formulae as

 qn(z) =
(
1 + o(1)

)(
ΦnS

)(0)
(z),

(wRn)(z) =
(
1 + o(1)

)(
ΦnS

)(1)
(z).

M. Yattselev Szegő-type Asymptotics of Frobenius-Padé Approximants 6 / 16



Potential Theory and Riemann Surfaces

Orthogonality
∫

xiqn(x)dσ(x) = 0 tell us that the logarithmic potential

Vτ (z) := −
∫

log |z− x|dτ(x)

of a weak∗ limit point of the normalized counting measures of the zeros of qn is such that

2Vτ = min
supp(µ)

2Vτ on supp(τ) ⊆ supp(µ).

When supp(µ) = [−1, 1], the measure τ is necessarily the arcsine distribution on [−1, 1].
Then we construct a Riemann surface R using supp(τ) = [−1, 1] and look for a rational
function on R with a simple pole at∞(0) and a simple zero at∞(1) and a function S that
solves a certain boundary value problem.

R(0)

R(1)

−1

−1 1

1

Φ(0) = Φ

Φ(1) = Φ−1

S(0) = Sρ

S(1) = S−1
ρ
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Orthogonal Fourier Expansion

Let µ be a positive Borel measure on [a,b] and pn be orthonormal polynomials w.r.t µ,
i.e.,

∫
pnpmdµ = δmn. Given f ∈ L2(µ), associate

f ∼
∞∑
i=0

ci(f )pi, ci(f ) :=

∫
fpidµ.

Theorem (Freud + Mastroianni & Totik)

If f ∈ Lip
1
2 +ε and the Christoffel functions satisfy

nλn(x, µ) . 1

uniformly on a set S ⊆ [a,b], then

n−1∑
i=0

ci(f )pi ⇒ f on S.

The condition on the Christoffel functions is satisfied if µ is doubling on [a,b].
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Frobenius-Padé approximants

A Frobenius-Padé approximant of type (m, n) to f is a rational function

Pm,n/Qm,n, deg(Pm,n) ≤ m, deg(Qm,n) ≤ n,

such that

ci
(
Qm,nf − Pm,n

)
= 0, i ∈ {0, . . . ,m + n}.

A Frobenius-Padé approximant always exists as its construction boils down to solving a
linear system with one more unknown than equations.
A Frobenius-Padé approximant corresponding to Qm,n of the smallest degree is unique.

deg(Qm,n) = n ⇒ Uniqueness.
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Set Up

Let

f (z) =

∫
dσ(x)

x − z
.

The measures µ and σ are such that

∆µ := supp(µ) = [bµ,aµ], ∆σ := supp(σ) = [aσ,bσ]

and

∆µ ∩∆σ = ∅.

We shall also assume that

n− 1 ≤ m,
n

n + m
→ c ∈ (0, 1/2] as n→∞.
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Orthogonality

Assume for now that µ and σ are positive measures. Recall that

ci
(
Qm,nf − Pm,n

)
= 0, i ∈ {0, . . . ,m + n}.

Write Rm,n := Qm,nf − Pm,n . Then

∫
xiRm,n(x)dµ(x) = 0, i ∈ {0, . . . ,m + n}.

Let Vm,n be the polynomial vanishing at the zeros of Rm,n on ∆µ . Cauchy tells us that

∫
xiQm,n(x)

Vm,n(x)
dσ(x) = 0, i ≤ min{n− 1,m} = n− 1.

Using Cauchy’s work again, we get that

∫
xiVm,n(x)

Qm,n(x)

(∫
Q2

m,n(t)
Vm,n(t)

dσ(t)
t− x

)
dµ(x) = 0, i ∈ {0, . . . ,m + n}.
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Nikishin Measures

We have that ∫
xiQm,n(x)

Vm,n(x)
dσ(x) = 0, i ∈ {0, . . . , n− 1},

and ∫
xiVm,n(x)

Qm,n(x)

(
·
)

dµ(x) = 0, i ∈ {0, . . . ,m + n}.

Weak∗ limits of the counting measures of zeros then give us

{
Qm,n ⇒ τσ,c, |τσ,c| = c, supp(τσ,c) ⊆ ∆σ,

Vm,n ⇒ τµ,c, |τµ,c| = 1, supp(τµ,c) ⊆ ∆µ,

and we expect their logarithmic potentials to satisfy

{
2Vτσ,c − Vτµ,c = min∆σ (2Vτσ,c − Vτµ,c ) =: `σ,c on supp(τσ,c),

2Vτµ,c − Vτσ,c = min∆µ(2Vτµ,c − Vτσ,c ) =: `µ,c on supp(τµ,c).
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Nikishin Measures

We are looking for measures such that

{
2Vτσ,c − Vτµ,c = `σ,c on supp(τσ,c) ⊆ ∆σ,

2Vτµ,c − Vτσ,c = `µ,c on supp(τµ,c) ⊆ ∆µ.

Proposition (Gonchar, Rakhmanov, & Sorokin)

Such a pair of measures exists and is unique, supp(τµ,c) = ∆µ , and supp(τσ,c) =: ∆σ,c

is an interval. Set D+
σ,c := {2Vτσ,c − Vτµ,c − `σ,c < 0} . Then it is non-empty, contains

∆σ,c in its boundary, is bounded when c < 1/2 , and is equal to C \∆σ when c = 1/2 .

D+
σ,c

∆µ ∆σ,c

bµ aµ aσ = aσ,c bσ,c bσ
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Exponential Factor

R
(0)
c

R
(1)
c

R
(2)
c

bµ aµ

bµ aµ aσ bσ,c

aσ bσ,c

Define Φm,n on R n
n+m

as having a divisor

(n + m)∞(2) − n∞(0) −m∞(1)

and normalized so that

Φ(0)
m,n(z)Φ(1)

m,n(z)Φ(2)
m,n(z) ≡ 1.
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Main Theorem

Theorem (Aptekarev, Bogolubsky, & Y.)

Let

dν(x) =
ρν(x)

2πi
dx

w+
ν (x)

, wν(z) =
√

(z− aν)(z− bν), ν ∈ {µ, σ},

where ρν is holomorphic and non-vanishing around ∆ν . Assume µ possesses the full
system of orthonormal polynomials. Then Qm,n(z) =

(
1 + o(1)

)(
Φm+1,nSc

)(0)
(z),(

wσ,cRm,n
)
(z) =

(
1 + o(1)

)(
Φm+1,nSc

)(1)
(z).

locally uniformly in C \∆σ . It holds that
∣∣Φ(1)

m+1,n/Φ
(0)
m+1,n

∣∣ < 1 in D+
σ,c.

D+
σ,c

∆µ ∆σ,c

bµ aµ aσ = aσ,c bσ,c bσ
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Matrix for Riemann-Hilbert Analysis

Steepest descent is performed on

Ym,n := Cm,n


Qm,n Rm,n Hm,n

Qm+1,n−1 Rm+1,n−1 Hm+1,n−1

Qm,n−1 Rm,n−1 Hm,n−1


where Cm,n is a diagonal matrix of constants,

Rm+1,n−1(z) =
(
Qm+1,n−1f − Pm+1,n−1

)
(z) = O

(
zm+1) as z→∞,

and

Hm,n−1(z) :=

∫
Rm,n−1(x)

x − z
dµ(x) = O

(
z−(m+n+1)) as z→∞.
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