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THE GONCHAR–CHUDNOVSKIES CONJECTURE
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THUE–SIEGEL–ROTH THEOREM

A. I. APTEKAREV AND M. L. YATTSELEV

Dedicated to the 90th anniversary of Andrei Aleksandrovich Gonchar

Abstract. This article examines the Gonchar–Chudnovskies conjecture about the
limited size of blocks of diagonal Padé approximants of algebraic functions. The
statement of this conjecture is a functional analogue of the famous Thue–Siegel–
Roth theorem. For algebraic functions with branch points in general position, we
will show the validity of this conjecture as a consequence of recent results on the
uniform convergence of the continued fraction for an analytic function with branch
points. We will also discuss related problems on estimating the number of “spurious”
(“wandering”) poles for rational approximations (Stahl’s conjecture), and on the
appearance and disappearance of defects (Froissart doublets).

1. Introduction

The article is devoted to functional analogues of Diophantine approximations of al-
gebraic numbers, i.e., we will talk about the approximation of algebraic functions by
rational ones. More specifically, we will consider the functional analogue of the famous
theorem of Thue–Siegel–Roth on the rate of approximation of algebraic numbers by ra-
tional ones (see [18, 11]), which is the so-called Gonchar–Chudnovskies conjecture (see
[14, 8]). For algebraic functions with branch points in general position, the validity of
this conjecture will be deduced from recent results on the uniform convergence of the
continued fraction for an analytic function with branch points (see [4]). We begin the
introduction with basic definitions and concepts.

1.1. Continued fractions and diagonal Padé approximants. Euclid’s algorithm
(separating the integer part, inverting the fractional part, again separating the integer
part, and so on) assigns to a real number α ∈ R the continued fraction

(1.1) α = a0 +
1

a1+

1

a2+

1

a3 + . . .
,

whose coe!cients (partial quotients) are the natural numbers {al ∈ N}. Finite trunca-
tions of a continued fraction (convergents)

(1.2) a0 +
1

a1 + . . .

1

an
=:

pn

qn
∈ Q

are rational (Diophantine) approximations of the real number α.
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252 A. I. APTEKAREV AND M. L. YATTSELEV

Similarly, Euclid’s algorithm (inverting, separating the polynomial part, again invert-
ing the regular part, and so on) assigns to the power series (germ of the function) in the
neighbourhood of the point at ∞

(1.3) f(z) =
∞∑

k=1

fk

zk
, f1 = 1,

the continued fraction with polynomial coe!cients {tl(z)}∞l=1:

(1.4) f(z) =
1

t1(z)+

1

t2(z)+

1

t3(z) + . . .
.

If f(z) is not rational, then the continued fraction (1.4) does not terminate. A finite part
of a continued fraction is a rational function

(1.5)
1

t1(z) + . . .

1

tn(z)
=:

pn(z)

qn(z)
= πn(z),

which is called a convergent. Another name for the rational function (1.5) is a diagonal
Padé approximant of the power series (1.3), which is constructively determined by the
system of linear equations

(1.6) Rn(z) := qn(z)f(z) − pn(z) = O(1/zn+1) as z → ∞
for the coe!cients of the polynomials qn and pn of degree not higher than n. Generally
speaking, this system does not have a unique solution, but the relation between the
polynomials in (1.6) determines the rational function (1.5) uniquely (after cancellation).
The index n and the rational function (1.5) are called normal if deg qn(z) = n (after
cancellation). In this case, we normalize the denominator

qn(z) = zn + . . .

1.2. Functions with branch points and poles of rational approximations. We
consider a class of analytic functions whose germ (1.3) has an analytic continuation in C̄
along any path that does not pass through a finite number of points A:

(1.7) f ∈ A(C̄ \ A), #A < ∞,

which we consider, for concreteness, to be branch points of the function f .
The rational approximants (1.5), being single-valued functions, approximate (in a

certain sense) a holomorphic (i.e., single-valued) branch of the germ (1.3), (1.7) in some
domain D (where this holomorphic branch can be selected):

(1.8) Df,∞ := {D} : f ∈ H(D), ∞ ∈ D ∈ Df,∞.

Moreover, their poles (the zeros qn(z) :=
∏n

k=1(z − zk,n)) approach (in a certain sense)
the border ∂D of this area of holomorphy D ∈ Df,∞.

1.3. Nuttall’s conjecture and Stahl’s theorem. In [19], J. Nuttall put forward a
hypothesis about the convergence in capacity of convergents for (1.7)

(1.9) πn
cap−−→
D∗

f, D∗ ∈ Df,∞,

in the domain of holomorphy with a minimal (in the sense of logarithmic capacity)
boundary

(1.10) D∗ ∈ Df,∞ : ∂D∗ = min
∂D,D∈Df,∞

cap(∂D).

Nuttall’s conjecture was proven by G. Stahl [23, 24, 25] in an even wider class than (1.7),
namely

(1.11) cap(A) = 0.

Licensed to Univ of Wisconsin, Madison. Prepared on Thu Oct 10 09:20:12 EDT 2024 for download from IP 128.104.46.196.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GONCHAR–CHUDNOVSKIES CONJECTURE 253

Moreover, Stahl found a weak limit of the poles πn

(1.12) νqn(z) :=
1

n

n∑

k=1

δ(z − zk,n)
∗−→ ω(z), suppω = ∂D∗,

where ω is the equilibrium measure of the compactum C̄\D∗, and proved the logarithmic
(in capacity) asymptotic behavior of the polynomial q(z):

(1.13) lim
n→∞

1

n
log |qn(z)| = −V ω(z) :=

∫
log |z − t| dω(t).

1.4. “Wandering” poles and uniform convergence. Stahl’s remarkable result de-
scribes the behavior of the poles πn “in general” (see (1.12)), but does not allow control of
the dynamics (over n) of individual zeros qn, called wandering or spurious, which unlike
most zeros qn, do not approach ∂D∗. To account for these subtle effects, more accurate
asymptotics πn are needed than (1.13).

In [4], we investigated the so called strong asymptotics for qn (and for Rn)

(1.14) lim
n→∞

qn

#n
= ? in D∗,

where # is a suitably defined (see below) normalizing function. The strong asymptotics
(1.14) allow control of wandering poles and answer questions about uniform convergence
of the convergents (1.5) of the continued fraction (1.4) for analytic germs (1.3) from the
class (1.7):

(1.15) f − πn =
Rn

qn
⇒ ?.

1.5. Aim and structure of the work. We would like to discuss here some applications
of our result in [4] about the asymptotics of convergents of continued fractions for an
analytic function with branch points. We will talk about well-known problems: on
the normality of Padé approximants for algebraic functions (a functional analogue of
the Thue–Siegel–Roth theorem and the Gonchar–Chudnovskies ‘ε = 0’ conjecture), on
estimating the number of “spurious” (“wandering”) poles for rational approximations
(Stahl’s conjecture), and on appearance and disappearance of defects (Froissart doublets).
In §2, we will introduce the necessary concepts to formulate the theorem on strong
asymptotics from [4]. In §3, we present the formulation of this theorem and discuss
the formulation itself and the immediate consequences of the theorem. §4 is devoted to
the connection between the normality of the Padé approximants for the functions under
consideration and the emergence of special divisors in the Jacobi problem of inversion of
Abelian integrals. It is this connection that will make it possible to clarify the well-known
problems mentioned above in §§5 and 6. For a preview of this article, see [3].

2. Necessary concepts

2.1. Geometry of the extremal domain of holomorphy D∗. We note that the
original prooof of Stahl’s theorem is quite di!cult (it takes up several articles), and over
the past 40 years no significant simplification has been obtained (even when the class
under consideration has been narrowed from (1.11) to (1.7)).

However, for functions of the class (1.7), the existence proof of the extremal domain
of holomorphy D∗ (see (1.10)) and the description of the structure of the extremal sets
D∗ and ∂D∗ thanks to E. A. Rahmanov (see [21], and also [17, 4]) currently look short
and transparent. It is known that, in the class (1.7), the compactum of minimal capacity
(1.10)

(2.1) ∆ := ∂D∗ = C̄ \ D∗ = E ∪ ∪∆k

Licensed to Univ of Wisconsin, Madison. Prepared on Thu Oct 10 09:20:12 EDT 2024 for download from IP 128.104.46.196.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



254 A. I. APTEKAREV AND M. L. YATTSELEV

consists of a finite number of open analytical arcs {∆k} and a finite set of points E, each
of which is the end point of at least one of the arcs. For Green’s function g∆(z) of the
compactum ∆ (with a singularity at ∞), there is a known representation that has the
form for its derivative

(2.2) h(z) := (2∂zg∆)(z) =
1

z
+ . . . =

√
B(z)

A(z)
,

where 2∂z := ∂x − i∂y, deg B = deg A − 2 and

(2.3) A(z) :=
p∏

k=1

(z − ak), {a1, . . . , ap} := A ∩ E,

and the polynomial B is determined from the condition of imaginary periods of the
Abelian integral

∫
h dz and the nature of monodromy of the approximated function f .

2.2. Riemann surface and its standard characteristics

2.2.1. Definition and structure of sheets. Let R be the Riemann surface for the function
h (see (2.2)):

(2.4) R := Rh ⇔ h2 − B(z)

A(z)
= 0.

This is a hyperelliptic Riemann surface, whose two-sheeted cover C̄ has the form: R =
R(0) ∪ R(1), R(l) := π−1(C̄\ ∆̄) =: D(l), l = 0, 1, with a cross-wise re-gluing of the sheets
along the analytical arcs {∆k} and identification of the branch points E (see (2.1)). Thus,
to each arc ∆k corresponds a cycle Lk := π−1(∆k) on R = R(0) ∪ L ∪ R(1), L := ∪kLk,
oriented so that the domain D(0) remains on the left when its border Lk is traversed in
a positive direction.

2.2.2. Genus and homological basis. The number and multiplicity of zeros of the poly-
nomials A(z) and B(z) in (2.2), (2.3) uniquely define the genus R

(2.5) g := gen(R).

Let us fix a homological basis of cycles1 on R

{ak,bk}g
k=1 : {bk}g

k=1 ⊂ {Lk},

and ak = a(0)
k ∪ a(1)

k , a(j)
k ⊂ R(j), j = 0, 1, π(a(0)

k ) = π(a(1)
k ) = ∆a

k. We denote the
canonical cuts of R by

R̃ := R \ ∪g
k=1(ak ∪ bk) and R̂ := R \ ∪g

k=1ak.

2.2.3. The Abelian integral and the leading-order term of the asymptotics. We define on
R

(2.6) G =

∫
h dz and # = eG.

Fixing the unitary factor, we assume

(2.7) #(z) := #(0)(z) =
z

cap(∆)
+ O(1), z → ∞.

1To denote sets on a Riemann surface we use bold font or a superscript denoting a sheet. In the
future (when this does not lead to confusion), we will omit the superscript (0) to denote the main (i.e.,
taken from R(0)) branch of the analytic function on R.
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From (2.2), we have #(0)#(1) ≡ 1 on C̄ \ ∪k∆a
k. We denote the jumps on the cycles by

(2.8)
#+

#− =

{
exp{2πiωk} on ak,

exp{2πiτk} on bk,

where the real constants ωk and τk are

(2.9) ωk := − 1

2πi

∮

bk

h(t)dt and τk :=
1

2πi

∮

ak

h(t)dt.

2.2.4. Basis of holomorphic differentials. We fix

d)Ω := (dΩ1, . . . , dΩg)
T

to be a column vector of the normalized basis of holomorphic differentials

(2.10)

∮

ak

d)Ω = δk,l, k, l = 1, . . . , g.

We denote the (symmetric with positive definite imaginary part) Riemann matrix by

(2.11) BΩ :=

[ ∮

bj

dΩk

]g

j,k=1

.

2.3. Jacobi problem of inversion of Abelian integrals. Assuming that

(2.12) ρ(z) := (f+ − f−)(z)|∆\E *= 0,

we fix a continuous branch of log(ρ/h+) on ∆ \ E and define the vector

(2.13) )cρ :=
1

2πi

∮

L
log(ρ/h+) d)Ω,

which, together with the vectors (see (2.8), (2.9))

(2.14) )ω := (ω1, . . . ,ωg)
T , )τ := (τ1, . . . , τg)

T ,

define the right-hand side of the following Jacobi problem for the inversion of Abelian
integrals:

(2.15)
g∑

j=1

∫ tn,j

b(1)j

d)Ω ≡ )cρ + n()ω + BΩ)τ) (mod periods d)Ω).

Here, {b(1)
j }g

j=1 are the zeros of the polynomial B(z). Simple zeros correspond to branch

points, and zeros with even multiplicity are located on the R(1) sheet of the Riemann
surface, and the number of times they are counted is half of their multiplicity.

We also recall that

)c ≡ )e (mod periods d)Ω) ⇔ )c − )e = )n + BΩ )m, )n, )m ∈ Zg.

It is known that the solution {tn,j} =: tn ⊂ R of the Jacobi problem (2.15) always exists
but may not be the only one. Any solution to the Jacobi problem has the form

(2.16) {tn,j}g−2k
j=1 ∪{z(0)

j }k
j=1∪{z(1)

j }k
j=1,

where, in the first group, there are no involution points (i.e., a = b̃ ⇔ a *= b, π(a) =
π(b)), and involution points can be placed anywhere on R, and moreover, (2.16) remains
the solution of (2.15). The agreement is to place all involution points of the solution on
∞(0) and ∞(1).
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256 A. I. APTEKAREV AND M. L. YATTSELEV

3. Formulas for strong asymptotics of rational approximations

3.1. Limiting conditions. First, we fix some restrictions on the class (1.7) and the
index n, which we will use in the proof of the strong asymptotics theorem.

Nature of branching. We assume that all branches are algebro-logarithmic in nature
(AL-condition), i.e.,

(3.1) (AL) f : f(z) = h1(z)ψ(z) + h2(z), ψ(z) =

{
(z − ak)α(ak),

log(z − ak),

where hl(z) ∈ H(Dε
ak

), l = 1, 2. Condition (AL) is local.

Location of branch points. The following condition excludes some “degenerate” geome-
tries of a compactum with minimal capacity ∆ (see (1.10), (2.1)). We assume that the
points of the set A (branch points of f) are arranged in such a way (GP-condition)
that, in the expression (2.2) for the function h of the compactum ∆, the zeros of odd
multiplicity of the polynomial B(z) are simple.

(3.2) (GP) A : h(z) =

√
B(z)

A(z)
, B(z) =

p−2m∏

j=1

(z − bj)
g∏

j=p−2m+1

(z − bj)
2.

Here, we count zeros of even multiplicity as before (see (2.15)), and the polynomial A(z)
is specified in (2.3).

It is clear that the points of the set A, subject to the GP-condition, are in general
position. The equivalent form of the GP-condition fixes the geometry of the compactum
(2.1).

(3.3) (GP) A :
i) e ∈ E∩A — end point of exactly one arc from ∪∆k;

ii) e ∈ E \ A — end point of exactly three arcs from ∪∆k.

Jump of f on ∆. Condition for the non-degeneracy of the jump of f on ∆ (f∆-condition):

(3.4) (f∆) f : f+ − f− *= 0 on ∆ \ (A ∩ E).

ε-normal indices. The sequence Nε of (ε-normal) indices is determined (for a fixed ε > 0)
using the solutions tn of the Jacobi problem (2.15)):

(3.5) (Nε) n ∈ Nε :

{
∀tn ⇒ |π(tn,j)| ≤ 1/ε ∀tn,j ∈ R(0);

∀tn−1 ⇒ |π(tn−1,j)| ≤ 1/ε ∀tn−1,j ∈ R(1).

We note that ε-normal indices, for su!ciently large n, are normal (for Padé approximants
of functions from the class (1.7) with conditions (3.1) and (3.2)) in the sense of the
definition from §1.1. (This is one of the corollaries of the proven theorem.) We also note
that there is a unique solution to the problem (2.15) for n ∈ Nε.

3.2. Nuttall–Szegő function. The function Sn(z) is defined as the solution to the
following homogeneous Riemann boundary-value problem on R – (3.2) (for proof of
existence, uniqueness, and useful properties of Sn(z), see [4]):

(I) (Sn#n) ∈ M(R \ L), ∃S±
n ∈ C

(
L ∪ ∪p

k=1ak

)
;

(II) (Sn#n)− = (ρ/h+)(Sn#n)+ on L \ E;

(III) S(t) = 0, t ∈ {tn,j}g
j=1 \

(
{aj}p

j=1 ∪ {b(1)
j }g

j=1

)
;

Licensed to Univ of Wisconsin, Madison. Prepared on Thu Oct 10 09:20:12 EDT 2024 for download from IP 128.104.46.196.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(IV)






|Sn(z(k))| ∼ |z − a|m(a)/2−(−1)k(1+2αa)/4 as z(k) → a ∈ {aj}p
j=1,

|Sn(z(k))| ∼ |z − b|m(b)/2−1/2+(−1)k/4 as z(k) → b ∈ {b(1)
j }p−2m

j=1 ,

|Sn(z(1))| ∼ |z − b|m(b)−1 as z(1) → b ∈ {b(1)
j }g

j=p−2m+1.

At the remaining (with the exception of (III) and (IV)) points of R the function Sn is
finite and does not vanish. Here, m(t) denotes the number of times t appears among the
elements of the set of solutions to the Jacobi problem (2.15) – tn.

3.3. Formulation of the result. The following holds true (see [4])

Theorem 3.1. Let the germ of f – (1.3) belong to the class (1.7) with the additional
conditions (AL), (GP), and (f∆) (see (3.1)–(3.4)). Then, for the denominators qn of
the rational approximants (1.5) and the remainder functions Rn – (1.6) for n ∈ Nε for a
fixed ε, n → ∞, we have

(3.6)





qn = (1 + νn1),nSn#n + νn2 ,∗

nSn−1#n−1,

Rn = (1 + νn1),n
hS(1)

n
Φn + νn2 ,∗

n
h S(1)

n−1

Φn−1

locally uniformly in D∗ and





qn = (1 + νn1),nΨn + νn2,∗
nΨn−1, Ψn := (Sn#n)+ + (Sn#n)−,

R±
n = (1 + νn1),n

(
hS(1)

n
Φn

)±
+ νn2,∗

n

(
hS(1)

n−1

Φn−1

)±

locally uniformly in ∆ \ E. Here,

,n :=
cap(∆)n

Sn(∞)
, ,∗

n :=
cap(∆)n+1

S(1)
n−1(∞)

,

and

|νn,j | ≤
c(ε)

n
in C̄ and νn,j(z) = O

(1

z

)
, z → ∞, j = 1, 2.

3.4. Discussion of the formulation of the result. We will make a few remarks in
relation to the statement of Theorem 3.1.

Remark 3.1. If the set A consists of two points, then ∆ is the segment connecting them.
In this case, Theorem 3.1 gives well-known formulas for the asymptotics of polynomials
orthogonal with respect to a complex-valued weight (if ρ > 0 in (2.12), then it turns into
the classical theorem of Bernstein–Szegő). Moreover, the Riemann surface R has zero
genus, therefore # is a simple conformal mapping of D∗ onto {|z| > 1} with a fixed point
at infinity and a positive derivative there, and Sn = Sρ is the classical Szegő function.

Remark 3.2. The conditions (GP), (AL), and (f∆) (see (3.1), (3.2), and (3.4)) addi-
tional to (1.7) are technical in nature. In their absence, the method of the Riemann–
Hilbert matrix problem used to prove Theorem 3.1 requires the solution of a series of
special local boundary-value problems (for some advances in this direction, see [6]). Ev-
idently, this obstacle can be circumvented by proving the existence of a solution to these
problems without explicitly finding it (see similar examples in [10, 1]). Apart from that,
there are other ways to potentially remove these restrictions. For example, in the ab-
sence of the condition (f∆) (see (3.4)), the asymptotic formulas can be obtained from
the formulas of Theorem 3.1 using Christoffel’s transformation (see [28]).

Remark 3.3. We note that the projections onto C of both functions Sn and hS∗
n are

holomorphic in D∗. Moreover, Sn has exactly g zeros on R, which depend on n. We
can also conclude that qn has a zero in the neighborhood of every zero of Sn located on
D(0). These zeros are called spurious or wandering, since their location is determined
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258 A. I. APTEKAREV AND M. L. YATTSELEV

by the geometry of R and by the weight function ρ, and, generally speaking, they do
not approach ∆ as n grows, whereas the remaining zeros qn do so. On the other hand,
those zeros of Sn, which are located on D(1), are the zeros of the projection onto C of
the function S∗

n and, therefore, determine the location of the zeros of Rn (additional
interpolation points).

Remark 3.4. Although Theorem 3.1 applies only to those normal indices which are also
asymptotically normal, formula (3.6) explains what happens in degenerate cases. If, for
some index n, the solution (2.15) is unique and contains l instances of the point ∞(1),

then the function S(1)
n has a zero at infinity of order l, which, in combination with the

second line in (3.6), shows that πn “almost interpolated” the function f by additional l
orders. Thus, there is a small perturbation of f that does not change the vector )cρ in
(2.13), which turns the index n into the last normal index before the apperance of a block
of non-normal indices of size l. This corresponds to the fact that the solutions (2.15) will
be special for the subsequent l − 1 indices, and the solution for the index n + l contains
l instances of the point ∞(0). In the next section, we will dwell on the correspondence
between the theorem on blocks of non-normal indices for Padé approximants and the
structure and dynamics with respect to n of special (non-unique) solutions to the Jacobi
problem (2.15). It is this correspondence that underlies the applications of Theorem
3.1 to the functional analogues of the fundamental theorems on the rate of Diophantine
approximations.

We note that ρ̂− [n/n]ρ̂ = Rn/qn applied to f := ρ̂ gives Corllary 3.1 to Theorem 3.1
on the uniform convergence of Padé approximants.

Corollary 3.1. Under the conditions of Theorem 3.1, for n ∈ Nε, it is true that

(3.7) f − [n/n]ρ̂ = [1 + O(1/n)]
S∗

n

Sn

h

#2n
in D∗

n,ε,

where D∗
n,ε := D∗ \ ∪g

j=1{|z − tn,j | < ε}, and furthermore, the set {|z − tn,j | < ε} is
replaced by {|z| > 1/ε} if tn,j = ∞, and O(1/n) uniformly for a fixed ε > 0.

4. Block structure of the Padé table and special divisors

In this section, we will establish a connection between the Jacobi problem of inversion
of Abelian integrals (2.15) and the normality of the Padé approximants of analytic germs
with a finite number of branch points.

4.1. Normality and the block theorem. We recall the main features of the theory
of normal indices of diagonal Padé approximants (1.4) (see [18]). From (1.4), we have a
formula for the denominators of the Padé fractions

qn(z) :=
1

Hn

∣∣∣∣∣∣∣∣

f0 . . . fn

. . . . . . . . . . . . . . . . .
fn−1 . . . f2n−1

1 . . . zn

∣∣∣∣∣∣∣∣
, Hn :=

∣∣∣∣∣∣

f0 . . . fn−1

. . . . . . . . . . . . . . . . .
fn−1 . . . f2n−2

∣∣∣∣∣∣
,

where Hn are the Hankel determinants. Then, for the remainder function (1.6), we have

(4.1) 2πiRn(z) =

∮

∞

qn(t)f(t)

z − t
dt =

1

z

∞∑

j=0

∮

∞

( t

z

)j
qn(t)f(t) dt =

mn

zn+1
+ . . . ,

where mn := Hn+1

Hn
.
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By definition (see §1.1), the rational approximant πn from (1.3) and the index n ∈ N
are called normal (N (f) is the set of normal indices) if

∃(pn : deg pn = n − 1), (qn : deg qn = n) :

{
πn := pn

qn
– irreducible,

f − πn = O
(

1
z2n+1

)
.

Then, from (4.1) follows the normality criterion:

Hn *= 0 ⇔ n ∈ N .

Since the block theorem states that all Padé approximants with non-normal indices are
combined into blocks, i.e., if n and n + k are two consecutive normal indices, then (after
reduction) it is true that

πm = πn ∀m ∈ [n, n + k).

Thus, if N ≡ Z+, then the size of all blocks is equal to 1 (trivial blocks). Scenario for
the occurrence of a non-trivial block: let n ∈ N , but

(4.2) (f − πn)(z) =
A

z2n+k
+ . . . , A *= 0,

then k is the size of the block and A = mn
2πi .

The following statements are consequences of the block theorem:

a)

{
n ∈ N ,

mn = 0
⇒ n is the start of the block of size " 2;

and, more generally, for k > 2

b)






n ∈ N ,

mn = 0,

mnmn+1 = 0,

. . . . . . . . . . . . . . .

mn . . . mn+k−2 = 0

⇒ n is the start of the block of size " k.

4.2. Block theorem and special divisors. In this section, we will discuss how the
leading-order term of the asymptotics of the rational approximants (see Theorem 3.1 in
the neighborhood of the point at ∞) for large n and z

(4.3) qn ≈ ,nSn#
n, Rn ≈ ,n h S(1)

n #−n

is consistent with the theory of normality of Padé approximants, which we recalled in the
previous section. Now we examine the zeros in the neighborhood of the point at infinity
on the right-hand side of the approximate equalities (4.3).

We recall (see (2.2), (2.7)) that the function # has a pole of first order at infinity, and
the function h has a zero of first order. The Szegő function Sn is holomorphic along the
cut R̃ (by convention, on the sheet R̃(0), we keep the notation Sn, whereas we denote the

values on R̃(1) by S(1)
n ). On R the Szegő function vanishes at g points {tn,j}g

j=1 of the
solution to the Jacobi problem (2.15) (except for solution points, which fall onto branch
points of R):

(4.4)
g∑

j=1

∫ tn,j

b(1)j

dΩ ≡ )cφ + n()ω + BΩ)τ ) (mod periods d)Ω).

We define the sequence N0 of strictly normal indices of the solutions tn of the Jacobi
problem (4.4) (cf. (3.5)):

(4.5) (N0) n ∈ N0 : ∞(0) /∈ {tn,j}g
j=1.
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Turning to (4.3), we see that, for a strictly normal n, the zeros of the function Sn do
not reduce the order of the pole of the leading-order term of the asymptotics qn, which
is equal to n, which agrees with (4.2).

Let us note one more property of strictly normal indices

(4.6) n ∈ N0 ⇒ ∃!{tn,j}g
j=1

ensures the uniqueness of the solution of (4.4). Indeed, involution points (special divisors)
violate the uniqueness of the solution of (4.4), i.e.,

tn,j0 ∈ R(0), tn,j1 ∈ R(1) and π(tn,j0) = π(tn,j1),

since, in the solution of (4.4), a pair in involution can be replaced by another pair in
involution but with any other projection, which is prohibited by (4.5). For the same
reasons, for the indices

n : ∞(1) /∈ {tn,j}g
j=1 ⇒ ∃!{tn,j}g

j=1

the solution of (4.4) is unique.
Let us understand the block structure of non-unique solutions {tn,j}. The key role

here is played by the Riemann relations, which express the b-periods of the Abelian
differential of the third kind dΩw1,w2 with simple poles and residues ±1 at the points
w1, w2, normalized

(4.7)

∮

aj

dΩw1,w2 = 0, j = 1, . . . , g,

via Abelian integrals of the first kind (2.10), (2.11)

(4.8)

∮

bj

dΩw1,w2 = −2πi

∫ w2

w1

dΩj , j = 1, . . . , g.

Taking into account the connection of Green’s differential (2.6) with purely imaginary
periods and the differential with normalization (4.7)

dG = dΩ∞(1),∞(0) + 2πi
g∑

j=1

τj dΩj

relations (4.8) give:

(4.9)

∫ ∞(0)

∞(1)

d)Ω = )ω + BΩ)τ .

This immediately leads to the remarkable implication

(4.10) ∞(1) ∈ {tn−1,j}g
j=1 ⇒ ∞(0) ∈ {tn,j}g

j=1.

Referring to (4.3), the resulting property can be interpreted as follows. If the zero of the
Szegő function increases the order of the zero at the point ∞ in the leading-order term
of the asymptotics of Rn−1, then in the leading-order term of the asymptotics of qn this
leads to a reduction in the order of the pole at the point ∞, which agrees with the theory
of normality for the approximants (Rn−1, qn).

Let us consider the scenario of the emergence of a block of involution points in the
solutions of the Jacobi problem (4.4) and its structure. Let n and n + k, k > 1 be two
consecutive strictly normal indices

n, n + k ∈ N0, n + l /∈ N0, l = 1, . . . , k − 1,

then
tn = {tn,j}g−k+1

j=1 ∪ {(∞(1))k−1}, π(tn,j) < ∞,
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and
tn+l = {tn,j}g−k+1

j=1 ∪ {(∞(1))k−1−l} ∪ {(∞(0))l}, l = 1, . . . , k − 1,

and
∞(0) /∈ tn+k.

Since tn+k−1, tn+k are the only solutions of (4.4), we obtain tn+k−1 ∩ tn+k = ∅.
The size of the block of non-unique solutions to the Jacobi problem is bounded by

the number g − 1. The maximal block is formed after a strictly normal index, for which
tn = {(∞(1))g}. It ends with the index n + g − 1. Then comes the unique solution
tn+g = {(∞(0))g} with the non-strictly normal index n + g, followed by the unique
solution tn+g+1 ∩ tn+g = ∅ with the strictly normal index n + g + 1. Thus, the block of
non-strictly normal indices is bounded by g.

Now, we will make sure that the size of the blocks of rational approximants under
the conditions of Theorem 3.1 is also bounded by g. To do so, we use the fact (see [4,
Proposition 2, (2.23)–(2.24)]) that the limit points of the solutions tn have the same block
structure as the solutions tn. Then, for each limit point of tn, containing ∞(0), we can
choose ε > 0, so that the strictly normal indices framing the corresponding block have
become ε-normal for su!ciently large n, and, therefore, by Theorem 3.1, these ε-normal
indices are normal indices for rational approximants, and the size of the block between
them does not exceed g.

So, we have obtained Corollary 4.1, which is important for applications.

Corollary 4.1. Under the conditions of Theorem 3.1, the size of the blocks of the Padé
approximants for the function f ∈ A(C̄\A) does not exceed the value g–genus of the Stahl
Riemann surface (2.4) for f (i.e., of the double extremal domain D∗ of the holomorphic
continuation f).

5. Theorems on the rate of Diophantine approximations and their
functional analogues

In this section, we will discuss the main consequences of Theorem 3.1 concerning some
well-known conjectures and problems on rational approximations of algebraic functions.
For algebraic functions f , condition (AL) is obviously satisfied (see (3.1)), but, for the
correct application of Theorem 3.1, we must assume that the branch points of f are
in general position, i.e., conditions (GP) and (f∆) (see (3.2) and (3.4)) are satisfied.
Earlier in §3 (see Remark 3.2), we noted the technical nature and methods for removing
these conditions.

5.1. Rate of approximation of algebraic numbers by rationals. First,we recall the
basic known facts about the rate of Diophantine approximations of irrational numbers.
Functional analogues will be considered below precisely for these theorems.

The rate of approximation of real numbers by rationals is measured on a scale, deter-
mined by the value of the denominator of the approximant. It is on this scale that the
convergents of (1.1) are the best approximations, i.e., all rational numbers, which have a
smaller denominator than that of the convergent, cannot be closer than this convergent
to the number it approximates.

An upper bound on the rate of approximation is given by the following.

Theorem 5.1 (Markov–Hurwitz). For any irrational number α /∈ Q, the inequality

(5.1)
∣∣∣α− p

q

∣∣∣ # 1√
5
q−2

has infinitely many solutions p/q ∈ Q, all of which are convergents for the number α.
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If we do not specify the constant on the right-hand side of (5.1) and do not consider
refinements of this theorem (Markov chains), then the proof of this statement (with
constant 1) is very simple (it follows from the fact that among n natural numbers smaller
than n, there are at least two identical ones).

Lower bounds for the rate of approximation of algebraic numbers α ∈ A are much
more non-trivial and have a long history. We begin with a simple statement showing
that, for quadratic irrationalities, the exponent in the rate of approximations in (5.1) is
exact. We have the following.

Theorem 5.2 (Liouville, 1844). For any algebraic number of the kth order2 α ∈ Ak,
k " 2, there exists a constant C(α) (effectively defined by α) such that

(5.2)
∣∣∣α− p

q

∣∣∣ " C(α)q−k ∀p/q ∈ Q.

For arbitrary α ∈ A, the fact that the exponent of the rate of approximation in the
lower-bound estimate coincides with the exponent in the upper-bound estimate (5.1) up
to an arbitrarily small ε > 0 was deduced by K. Roth. This result was preceded by
several strong intermediate results, which must be recalled to complete the picture.

Theorem 5.3 (Thue, 1909). Let α ∈ Ak, k " 2 be an arbitrary algebraic number. Then,
∀ε > 0 ∃C(ε) (not effective), such that

∣∣∣α− p

q

∣∣∣ " C(ε)

qk/2+1+ε
∀p/q ∈ Q.

Then, the estimate of the Norwegian mathematician A. Thue was strengthened by
C. L. Siegel.

Theorem 5.4 (Siegel, 1921). Let α ∈ Ak, k " 2 be an arbitrary algebraic number. Then,
∃C(α) (not effective), such that

(5.3)
∣∣∣α− p

q

∣∣∣ " C(α)

q2
√

k
∀p/q ∈ Q.

Later, in 1947–1948, F. Dyson and A. O. Gelfand (independently) improved the con-
stant factor 2 in the exponent on the right-hand side of (5.3), bringing it to

√
2. Finally,

it is true that

Theorem 5.5 (Roth, 1955). Let α ∈ A be an arbitrary algebraic number. Then, ∀ε > 0
∃C(ε) (not effective), such that

(5.4)
∣∣∣α− p

q

∣∣∣ " C(ε)

q2+ε
∀p/q ∈ Q.

Theorem 5.5 is often called the Thue–Siegel–Roth theorem. The original references
and the proofs of the theorems given here can be seen in [18, 11].

Algebraic numbers, for which the Diophantine inequality (5.4) holds with ε = 0, are
called badly approximable irrationalities. We will denote the set of such numbers by
Ã. It is easy to show (see, for example, [18]) that the property α ∈ Ã is equivalent to
boundedness of the partial quotients (coe!cients) of the continued fraction of the number
α:

α ∈ Ã ⇔ ∃C(α) : aj < C, j ∈ N, for α = a0 +
1

a1+

1

a2+

1

a3 + . . .
.

It is clear that A2 ⊆ Ã. This follows both from Liouville’s theorem 5.2 and from the
Euler–Lagrange theorem on periodicity of continued fractions for α ∈ A2.

2That is, a root of an algebraic equation of the kth degree with rational coefficients.
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At the same time, to disprove or prove the same for

(5.5) Ak ⊆ Ã, k > 2 ???

is an open and very di!cult problem.
Numerical calculations of the continued fraction for α := 3

√
2 made in [7, 16, 2] leave

little hope for (5.5) to hold:

3
√

2 = 1 +
1

3+

1

1+

1

5+

1

1 + . . .
,

a10 = 14, . . ., a36 = 543, . . ., a572 = 7451, . . ., a620 = 4941, . . ..

5.2. The non-Archemedean norm and approximations by rational functions.
As we have already noted in §1.1, the convergents (1.5) for (1.4) are the diagonal Padé
approximants πn of the power series f(z) (see (1.3)). We recall the definition of Padé
approximants equivalent to (1.6), which will clarify the analogy between the theories of
normality of Padé approximants and the rate of Diophantine approximations. For any
n ∈ N, we let

(5.6) νn(f) = sup{ν(f − r) : r ∈ Rn}, ν(f(z)) := ord
z=∞

f,

where Rn is the set of all rational functions of order no higher than n. Then,

(5.7) ∀n ∃!πn ∈ Rn : νn(f) = ν(f − πn)

and the function πn is called the nth diagonal Padé approximant of the series f(z). If
a, a > 1 is fixed (arbitrarily), then the functional

(5.8) ‖f‖a = a−ν(f), f(z) =
∞∑

k>−∞

fk

zk
∈ C((z))z=∞

defines the non-Archemedean3 norm ‖ ·‖a over the field of formal power series C((z))z=∞
at the point z = ∞. Then, πn from (5.7) is the rational function that best approximates
f in the class Rn with respect to this norm:

(5.9) ‖f − πn‖a = inf{‖f − r‖a : r ∈ Rn}.

Now a simple (linear algebra) formal property of Padé approximants:

(5.10) ∃Λ(f) : Λ ⊂ N, -Λ = ∞, νn(f) > 2n, n ∈ Λ,

can be reformulated in the form of a functional analogue of Theorem 5.1.

Theorem 5.6 (Kronecker). For any series f ∈ {C((z))z=∞ \ R(z)}, the inequality

‖f − r‖a # (an)−2, r ∈ Rn,

has infinitely many solutions r ∈ R(z) := ∪nRn, all of which are convergents of the
series f (i.e., Padé approximants).

Thus, there are the following analogies between Diophantine approximations of num-
bers and rational approximations of power series:

R+, Q, N, A ↔ C((z))z=∞, R(z), P(z), A(z);

|n| for n ∈ N, ‖ · ‖ := | · | ↔ deg p for p ∈ P(z), ‖ · ‖ := ‖ · ‖a.

It will be more convenient below for us to formulate the results in terms of tangency of
power series (5.6), than in terms of the non-Archemedean norm (5.8), where the usual
signs of the inequalities in the theory of Diophantine approximations will be replaced by
the opposite ones.

3I.e., on the right-hand side of the triangle inequality is the maximum term instead of a sum.
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5.3. Kolchin’s conjecture and the functional theorem of Thue–Siegel–Roth. In
1959, Kolchin (see [15]) put forward the hypothesis that, for the solutions of algebraic and
differential equations, given by formal power series, over the field of rational functions
R(z), for any ε > 0 ∃C(f):

(5.11) νn(f) < (2 + ε)n + C(f), n ∈ N.

This statement, rewritten in terms of the non-Archemedean norm (5.8), is a functional
analogue of the Thue–Siegel–Roth theorem (Theorem 5.5). There exist several proofs of
Kolchin’s conjecture (5.11): both with a non-effective constant C(f) (see [29]) and with
effective constants [9, 8]. For more details about Kolchin’s conjecture and its connection4

with the modern development of the theory of Padé approximants, see the review by
S. P. Suetin [27].

We note that the “ineffective” version of the functional analogue of the Thue–Siegel–
Roth theorem (Theorem 5.5)

(5.12) lim
n→∞

νn(f)

n
= 2

was formulated (as an open problem) by A. A. Gonchar in [14] in a more general setting:
for f – a multi-valued analytic function having a finite set of singular points, i.e., in a
wider class than algebraic functions (1.7). The validity of this conjecture by Gonchar
follows from Stahl’s results [23, 24, 25].

5.4. The Gonchar–Chudnovskies ‘ε = 0’ conjecture. In the same article of 1978
[14], A. A. Gonchar suggested that, for algebraic functions, the statement of the conjec-
ture (5.12) can be significantly strengthened: if f is an algebraic function, different from
rational, then {νn(f)− 2n} is a bounded sequence. That is, in the functional analogue of
the Thue–Siegel–Roth theorem (Theorem 5.5) we can let ε = 0:

(5.13) f ∈ A(z) ⇒ ∃C(f) : νn(f) < 2n + C(f), n ∈ N.

A recent (more accessible than [14]) review [5] presents interesting arguments by
A. A. Gonchar motivating conjecture (5.12) and (5.13) in relation to the single-valuedness
(multi-valuedness) of analytical functions, normality of Padé approximants, and lacunary
power series.

Later (in 1984), the Chudnovskies [8] also assumed the validity of the ‘ε = 0’-
strengthening of the Kolchin conjecture (5.13). In that work, they considered normality
of special classes of Hermite–Padé approximants (functional analogue of Schmidt’s the-
orem [22] for simultaneous approximations of a set of functions). In particular (see [8,
c. 43]), they announced a proof of this conjecture for a set of solutions of a differential
equation with constant coe!cients, the hypergeometric equation. Also, in [8, Section 5],
the ‘ε = 0’-conjecture is proven for a set of d− 1 meromorphic functions on the Riemann
surface of an algebraic function of order d − 1 (it is appropriate to compare this result
with a theorem by Nuttall: see [20]).

For algebraic functions of the second order, the validity of the ‘ε = 0’-conjecture (5.13)
follows from Liouville’s functional theorem: see [29].

The validity of the ‘ε = 0’-conjecture (5.13) (under the conditions of general position
in Theorem 3.1) for an algebraic function of an arbitrary order follows from Corollary
4.1. Moreover, we have an effective constant (5.13):

4This connection was noted earlier; see the quote from [8]: “In the functional case, the solution of
Kolchin’s problem is equivalent to the normality and almost normality of Padé approximants. This point
will be expanded upon in further papers related to the conjecture that we can set ε = 0 in Kolchin’s
problem”.
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Corollary 5.1 (of Theorem 3.1). Let f ∈ A(z) satisfy the conditions of general position
(GP) and (f∆) (see (3.1) and (3.4)). Then (5.13) holds with a constant C(f) := g,
where g is the genus of the Stahl Riemann surface (2.4) for f (i.e., a double holomorphic
domain D∗ of the holomorphic continuation f).

As we have already noted (see Remark 3.2), the conditions of general position (GP)
and (f∆) are of a technical nature, and there are approaches for their possible elimina-
tion. This circumstance allows us to make an assumption about the effective constant in
the most general case.

Hypothesis 5.1. For an arbitrary f ∈ A(z), (5.13) holds, and

(5.14) C(f) := g + d, where g := gen(R), d := deg(Dis(f(z))).

Here, Dis(f(z)) denotes a polynomial (in z), which is a discriminant of the polynomial
(in f), defining the algebraic function f(z).

Removing the (GP) constraint following (5.14) entails an extension of the class of
Stahl’s Riemann surfaces R, which is reflected by the first term in (5.14). The second
term is related to condition (f∆), it dominates the number of zeros of the jump of f on
the extremal cut ∆. Each change in the sign of the jump on ∆ can generate a “spurious”
pole (see §6), which can end up at infinity and violate normality (this can be understood
by cutting neighbourhoods of simple zeros of the jump out of ∆ with subsequent passage
to the limit).

In conclusion of this point, we note that the validity of the ‘ε = 0’-conjecture (5.13)
implies boundedness of the (degree of) partial quotients of the continued fraction (1.4)
for f ∈ A(z). To imagine something similar for the numbers α ∈ A (see §5.1 or the
quote5 from [8]) is simply impossible.

6. “Spurious” poles, doublets and special divisors

There is probably no strict definition of a wandering or spurious pole of a rational
approximation, but it is intuitively clear—this is a pole, which does not model the ap-
proximated function (i.e., the pole of the rational approximant is located “far” from the
pole of the meromorphic one or from the extremal cut for multi-valued functions). In
this section, we will discuss this phenomenon from the point of view of Theorem 3.1.

6.1. Stahl’s conjecture. In 1998, Stahl formulated the following.

Hypothesis ([26]*Conjecture 6). Let f be an algebraic function, holomorphic at the
point z0. Then, there is a number N = N(f) ∈ N such that, for any n ∈ N, the total
number (taking into account multiplicities) of spurious poles of the Padé approximant πn

does not exceed N = N(f).

For us, the loss of normality means the appearance of a spurious pole at infinity,
so Stahl’s conjecture generalizes the Gonchar–Chudnovskies conjecture. We have the
following.

Corollary 6.1 (of Theorem 3.1). Let f ∈ A(z) satisfy the conditions of general posi-
tion (GP) and (f∆) (see (3.1) and (3.4)). Then, there exists a subsequence of indices
{nj}∞j=1 ⊆ N : nj+1 − nj < g ∀j ∈ N, for which Stahl’s conjecture holds with a constant
N(f) := g, where g is the genus of the Stahl’s Riemann surface (2.4) for f (i.e., double
extremal domain D∗ of the holomorphic continuation f).

5“We would like to note that our conjecture that ε = 0 in Kolchin’s problem refers to the problem
of rational approximations in the functional case only. For numbers, it seems highly improbable that
ε = 0.”
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As in the cases of Corollary 5.1 and Hypothesis 5.1, we may assume that the following
is true in the general case.

Hypothesis 6.1. Stahl’s conjecture holds ∀f ∈ A(z) with a constant

N(f) := g + d, where g := gen(R), d := deg(Dis(f(z))).

6.2. Classification of spurious poles and Froissart doublets. The structure of the
solutions to the Jacobi problem (2.15) allows us to classify them into so called wandering
or spurious poles. We have

(6.1) tn = {tn,j}g−2l
j=1 ∪ {z(0)

j , z(1)
j }l

j=1,

where, among the points {tn,j}g−2l
j=1 , there are no involution points. As we have already

noted, involution points violate the uniqueness of the solution to the Jacobi problem
and can be chosen anywhere. However, small perturbations of the coe!cients of the
function’s germ transform these points into points with close projections in C, thereby
the solution acquires uniqueness, and the position of these points is fixed. Since

Rn(z) = qn(z) f(z) − pn(z),

then, taking into account (4.3), in the neighbourhood of the projections of points close
to involution, there will be a zero of qn, a zero of Rn, and therefore, a zero of pn.
This corresponds to the effect of the doublet [12]: zero and pole close to each other.
However, doublets arise not only in the neighbourhood of additional interpolation points
and the spurious pole. We consider the situation when in the neighbourhood of the
projections of the points {tn,j}g−2l

j=1 ∩R(0) (i.e., in the neighbourhoods of spurious poles)
there are no additional interpolation points. However, the uniform convergence (3.7)
of the approximations on the boundary of the neighbourhood of the spurious pole and
Rouchet’s theorem (the version for meromorphic functions) imply the presence of a zero
Pn in this neighbourhood.

In the next subsection, we consider an example of a spurious pole, in the neighbour-
hood of which there is no additional interpolation point, but there is a doublet.

6.3. Example. We fix the parameters a, b, c, 0 < c < a < b. We construct a function f
with branch points

A = {−b,−a, a, b}
such that its odd diagonal Padé approximants have a pole at the point c, which belongs to
the domain of holomorphy C̄\{[−b,−a]∪ [a, b]}. Following [13], we consider the periodic
continued fraction:

(6.2) f :=
l1

z − c1 − l2
z−c2−f

, c1 := c, c2 := −c, l1, l2 > 0.

The numerators pn(z) and the denominators qn(z) of the convergents pn(z)
qn(z) of the con-

tinued fraction (6.2) have the form for the initial indices

q−1 = 0, q0 = 1, q1 = z − c1, q2 = (z − c1)(z − c2) − l2,
p−1 = 1, p0 = 0, p1 = l1, p2 = l1(z − c2).

We find the algebraic function f(z) directly from (6.2):

(6.3) q1(z)f2 − (q2(z) + p1)f + p2(z) = 0, f =
q2(z) + p1 − #(z)

2q1(z)
,

where, taking into account that q1p2 − q2p1 = l1l2, we have

#(z) :=
√

(q2 + p1)2 − 4q1p2 =
√

(q2 − p1)2 − 4l1l2.
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Let

(6.4) a2 := c2 + (
√

l1 −
√

l2)
2, b2 := c2 + (

√
l1 +

√
l2)

2,

then

(6.5) q2 − p1 = z2 − (c2 + l1 + l2) = z2 − a2 + b2

2
, −2

√
l1l2 =

a2 − b2

2
.

From this, we have

#(z) =
√

(z2 − a2)(z2 − b2).

Also, from the relation (6.5), follows an equation for determining the coe!cients l1,2

(based on the branch points a, b and the parameter c):

l2 −
(b2 + a2

2
− c2

)
l +

(b2 − a2

4

)2
= 0.

The choice of the root l1 > l2 ensures the cancellation of the zero in the denominator
of the representation (6.3) of f (when choosing the corresponding branch #(z)). Thus,
the function f , defined by the continued fraction (6.2), whose coe!cients are expressed
by the parameters 0 < c < a < b, is holomorphic in the domain C̄\{[−b,−a] ∪ [a, b]}.
Moreover, from the formula for the numerators and denominators of convergents

y2r+ν =
ρ2r
1 (yν+2 − ρ2

2yν) − ρ2r
2 (yν+2 − ρ2

1yν)

ρ2
1 − ρ2

2

, ν = −1, 0, r ∈ N,

where ρ2
1,2 = q2−p1+Φ

2 , it follows that the odd convergents have a pole at the point c.
Indeed, the initial conditions

y1(z)|z=c = q1(c) = 0, y−1 = q−1 = 0

guarantee that all denominators q2n−1(c) of the convergents are equal to zero at the point
c. Similarly, it is verified that all numerators p2n−1 *= 0, but in this case the point c is a
limit point of the zeros of p2n−1(z). Indeed, we have the following numerical values (we
let c = 1, a = 2, b = 3):

q5(1) = 0, p5(1) = 1, p5(1, 00778 . . .) = 0,
q7(1) = 0, p7(1) = 1, p7(1, 00045 . . .) = 0.

Since the genus of the elliptic Riemann surface of the function f is equal to one, the pres-
ence of a false pole of the approximant at a point of the extremal domain of holomorphy
guarantees the absence of an additional interpolation point not only in the neighbour-
hood of this pole, but also everywhere in C̄\{[−b,−a] ∪ [a, b]}. Thus, an example of a
doublet without a close additional interpolation point is constructed.
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