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Abstract. This manuscript reviews the study of the asymptotic behavior of

meromorphic approximants to classes of functions holomorphic at infinity. The

asymptotic theory of meromorphic approximation is primarily concerned with
establishing the types of convergence, describing the domains where this con-

vergence takes place, and identifying its exact rates. As the first question is

classical, it is the latter two topics that this survey is mostly focused on with
the greater emphasis on the exact rates. Three groups of approximants are

introduced: meromorphic (AAK-type) approximants, L2-best rational approx-

imants, and rational interpolants with free poles. Despite the groups being dis-
tinctively different, they share one common feature: much of the information

on their asymptotic behavior is encoded in the non-Hermitian orthogonality re-

lations satisfied by the polynomials vanishing at the poles of the approximants
with the weight of orthogonality coming from the approximated function. The

main goal of the study is extracting the generic asymptotic behavior of the

zeros of these polynomials from the orthogonality relations and tracking down
those zeros that do not conform to the general pattern (wandering poles of the

approximants).

1. Introduction

This survey concerns functions meromorphic in a given domain that are the
closest in some metric to a fixed function on the boundary of the domain. The
first step in this direction was taken in [70] where the striking connection between
spectral theory of Hankel operators and approximation by functions holomorphic in
the unit disk was discovered. This result received an impressive development known
as Adamyan-Arov-Krein Theory [1, 28, 90, 125]. The latter, in particular, provides
the rate of approximation of a bounded function on the unit circle by functions
meromorphic in the unit disk with an increasing number of poles in the uniform
norm via singular values of a Hankel operator whose symbol is the approximated
function.

The AAK theory had a considerable impact in rational approximation, since by
retaining only the principal part of a best meromorphic approximant to a function
analytic outside the disk, one obtains a near-best rational approximant to that
function [47]. This is instrumental in Parfenov’s solution to the Gonchar conjecture
[48] on the degree of rational approximation to holomorphic functions on compact
subsets of their domain of analyticity, and also in Peller’s converse theorems on
smoothness of functions from their error rates in rational approximation [87, 88].

The mathematical beauty of the AAK approach as well as its cross-area nature
attracted a lot of attention that resulted in a deeper and more encompassing theory
[91, 82, 53, 89, 35, 96, 92, 122]. In particular, the theory was extended to integral
norms [69, 14, 97] and more general domains [97, 60, 11]. These generalizations
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turned out to be valuable in spectral theory and the modeling of signals and systems
[4, 52, 73, 99]. Moreover, they found an application in inverse problems, namely,
“crack detection” in homogeneous media from Neumann-to-Dirichlet data [9, 11, 55]
and electroencephalography [10, 62, 56, 34].

One intriguing and extremely important feature of the L2-best rational approx-
imants is that they interpolate the approximated functions at the reflections of
their poles across the boundary circle with order 2. This places them into the
intersection between the theory of meromorphic approximation and the theory of
rational interpolation with free poles. The latter is also known as multipoint Padé
approximation when the interpolation points are scattered over the extended com-
plex plane and as classical Padé approximation when interpolation is done at one
point only (in the Newton sense, of course).

Padé approximants, a truncation of continued fractions in the field of Laurent
series, are among the oldest and simplest constructions in function theory [57].
These are rational functions of type (m,n)1 that interpolate a function element at
a given point with order m + n + 1. They were introduced for the exponential
function by Hermite [54], who used them to prove the transcendency of e, and
later expounded more systematically by his student Padé [81]. Ever since their
introduction, Padé approximants have been an effective device in analytic number
theory [54, 101, 103, 59], and over the last decades they became an important tool
in physical modeling and numerical analysis [8, 29, 39, 95]. Padé approximants also
provide an important link between theory of rational interpolation and the field of
orthogonal polynomials [113].

As can be deduced from its definition, Padé approximant of type (m,n) is the
best rational approximant to the function at one point. However, proving the con-
vergence to the approximated function on a larger set is no small matter. Padé
approximants with denominators of fixed degree converge uniformly to the approx-
imated function in the disk of meromorphy of the latter granted the degree of the
denominators matches the number of poles of the function [36]. In fact, even the
converse statement takes place [49, 114, 115]. On the other hand, if the degree is
greater than the number of poles, convergence still holds, but in a smaller domain as
some poles of the Padé approximants cluster in the domain of meromorphy [27, 67].
This rather unpleasant feature (clustering of some poles in the domain of holomor-
phy of the approximated function) is in fact generic and has deep mathematical
reasons behind it. The poles asymptotically accumulating in the domain of holo-
morphy received the name of wandering or spurious poles [110] and are one of the
main objects of this review. Their behavior is so disruptive that the so-called Padé
conjecture, actually raised in [7], which laid hope for the next best thing namely
convergence of a subsequence, was eventually settled in the negative [66]. Shortly
after, a weaker form of the conjecture [108], dealing with hyperelliptic functions,
was disproved as well [26].

Even though, generically, uniform convergence cannot be achieved, it should be
possible to track the dynamics of the wandering poles and prove nearly uniform
convergence for a large class of functions, namely, Cauchy integrals on symmetric
contours. Some work in this direction has already been done in [80, 77, 78, 116, 117,

1These are rational functions with the numerators of degree at most m and the denominators of
degree at most n.
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118, 119, 58, 42], including by the author [20, 5, 123]. However, the current state of
knowledge is far from complete and concerns mostly classical Padé approximants.

2. Mathematical Framework

In this section we rigorously define all the main objects and describe their basic
properties.

2.1. Meromorphic Approximants. Denote by Hp, p ∈ [1,∞], the Hardy space
of the unit disk consisting of holomorphic functions f such that

‖f‖pp := sup
0<r<1

1

2π

∫
T
|f(rξ)|p|dξ| <∞ if p ∈ [1,∞),

‖f‖∞ := sup
z∈D
|f(z)| <∞ if p =∞.

A function in Hp is uniquely determined by its non-tangential limit on the unit
circle T and the Lp-norm of this trace is equal to the Hp-norm of the function,
where Lp is the space of p-summable functions on T. This way Hp can be regarded
as a closed subspace of Lp.

For p ∈ [1,∞] and n ∈ N, the class of meromorphic functions of degree n in Lp

is defined by

(1) Hp
n := Hp +Rn,

which is a closed subset of Lp, where

(2) Rn :=

{
p(z)

q(z)
=
pn−1z

n−1 + pn−2z
n−2 + · · ·+ p0

zn + qn−1zn−1 + · · ·+ q0
: p ∈ Pn−1, q ∈Mn

}
,

Pn is the space of algebraic polynomials of degree at most n and Mn is its subset
consisting of monic polynomials with n zeros in the unit disk D.

Meromorphic approximation problem in Lp consists in the following:

Given p ∈ [1,∞], f ∈ Lp, and n ∈ N, find gn ∈ Hp
n such that ‖f − gn‖p =

infg∈Hpn ‖f − g‖p.

The solution of this problem is known to be unique for p = ∞, provided that
f belongs to the Douglas algebra H∞ + C(T), where C(T) denotes the space of
continuous functions on T [1]. When p < ∞, a solution needs not be unique even
if f is very smooth [14].

2.2. L2-Best Rational Approximants. Denote by H̄2
0 the orthogonal comple-

ment of H2 in L2, L2 = H2 ⊕ H̄2
0 , with respect to the standard scalar product

〈f , g〉 :=

∫
T
f(τ)g(τ)|dτ |, f , g ∈ L2.

From the viewpoint of analytic function theory, H̄2
0 can be regarded as a space of

traces of functions holomorphic in C \ D and vanishing at infinity whose square-
means on the concentric circles centered at zero (this time with radii greater then
1) are uniformly bounded above.

Let now f ∈ L2 and gn ∈ H2
n be an L2-best meromorphic approximant to f .

The orthogonal decomposition L2 = H2 ⊕ H̄2
0 yields that

‖f − gn‖22 = ‖f+ − g+
n ‖22 + ‖f− − g−n ‖22,

where f = f+ + f−, gn = g+
n + g−n , and f+, g+

n ∈ H2, f−, g−n ∈ H̄2
0 . One can

immediately see that in order for gn to be a best approximant it is necessary
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that g+
n = f+. Moreover, it follows from (1) that g−n ∈ Rn. Thus, meromorphic

approximation problem for p = 2 can be equivalently stated as the following rational
approximation problem:

Given f ∈ H̄2
0 and n ∈ N, find rn ∈ Rn such that ‖f − rn‖2 = infr∈Rn ‖f − r‖2.

2.3. Irreducible Critical Points. L2-best rational approximants are a part of the
larger class of critical points in rational H̄2

0 -approximation. From the computational
viewpoint, critical points are as important as best approximants since a numerical
search is more likely to yield a locally best rather than a best approximant. For a
fixed f ∈ H̄2

0 , critical points can be defined as follows. Set

(3)
Σf ,n : Pn−1 ×Mn → [0,∞)

(p, q) 7→ ‖f − p/q‖22.

In other words, Σf ,n is the squared error of approximation of f by r = p/q in Rn.
The cross-product Pn−1×Mn is topologically identified with an open subset of C2n

with coordinates pj and qk, j, k ∈ {0, . . . ,n−1}, see (2). Then a pair of polynomials
(pc, qc) ∈ Pn−1 ×Mn, identified with a vector in C2n, is said to be a critical pair
of order n, if all the partial derivatives of Σf ,n do vanish at (pc, qc). Respectively,
a rational function rc ∈ Rn is a critical point of order n if it can be written as the
ratio rc = pc/qc of a critical pair (pc, qc) in Pn−1 ×Mn. A particular example of a
critical point is a locally best approximant. That is, a rational function rl = pl/ql
associated with a pair (pl, ql) ∈ Pn−1 ×Mn such that Σf ,n(pl, ql) ≤ Σf ,n(p, q) for
all pairs (p, q) in some neighborhood of (pl, ql) in Pn−1 ×Mn. We call a critical
point of order n irreducible if it belongs to Rn \ Rn−1. Best approximants, as well
as local minima, are always irreducible critical points unless f ∈ Rn−1. In general
there may be other critical points, reducible or irreducible, which are saddles or
maxima.

One of the most crucial features of the critical points is the fact that they are
“maximal” rational interpolants. More precisely, if f ∈ H̄2

0 and rn is an irreducible
critical point of order n, then rn interpolates f at the reflection (z 7→ 1/z̄) of each
pole of rn with order twice the multiplicity that pole [63], [24], which is the maximal
number of interpolation conditions (i.e., 2n) that can be imposed in general on a
rational function of type (n− 1,n).

2.4. Padé Approximants. Let f be a function holomorphic and vanishing at
infinity (the second condition is there for convenience only as functions in H̄2

0

vanish at infinity by definition). Then f can be represented as a power series

(4) f(z) =

∞∑
k=1

fk
zk

.

A diagonal Padé approximant to f is a rational function [n/n]f = pn/qn of type
(n,n) that has maximal order of contact with f at infinity [81, 8]. It is obtained
from the solutions of the linear system

(5) Rn(z) := qn(z)f(z)− pn(z) = O
(
1/zn+1

)
as z →∞

whose coefficients are the moments fk in (4). System (5) is always solvable and
no solution of it can be such that qn ≡ 0 (we may thus assume that qn is monic).
In general, a solution is not unique, but yields exactly the same rational function
[n/n]f . Thus, each solution of (5) is of the form (lpn, lqn), where (pn, qn) is the
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unique solution of minimal degree. Hereafter, (pn, qn) will always stand for this
unique pair of polynomials.

The n-th diagonal Padé approximant [n/n]f as well as the index n are called
normal if deg(qn) = n [72]. The occurrence of non-normal indices is a consequence
of overinterpolation. That is, if n is a normal index and2

f(z)− [n/n]f (z) ∼ z−(2n+l+1) as z →∞
for some l ≥ 0, then [n/n]f = [n + j/n + j]f for j ∈ {0, . . . , l}, and n + l + 1 is
normal.

2.5. Multipoint Padé Approximants. Let f be given by (4) and {En}n∈N be
a triangular scheme of points in the domain of holomorphy of f , i.e., each En
consists of 2n not necessarily distinct nor finite points. Further, let vn be the
monic polynomial with zeros at the finite points of En. The n-th diagonal Padé
approximant to f associated with En is the unique rational function [n/n;En]f =
pn/qn satisfying:

• deg pn ≤ n, deg qn ≤ n, and qn 6≡ 0;

• (qn(z)f(z)− pn(z)) /vn(z) is analytic in the domain of analyticity of f ;

• (qn(z)f(z)− pn(z)) /vn(z) = O
(
1/zn+1

)
as z →∞.

Multipoint Padé approximants always exist since the conditions for pn and qn
amount to solving a system of 2n + 1 homogeneous linear equations with 2n + 2
unknown coefficients, no solution of which can be such that qn ≡ 0 (we may thus
assume that qn is monic).

As mentioned above, irreducible critical points rn = pn/qn in rational H̄2
0 -

approximation turn out to be multipoint Padé approximants where vn := q̃2
n and

q̃n(z) := znqn(1/z̄) is the reciprocal polynomial of qn.

2.6. Approximated Functions. To define the first class of functions we need
several notions from potential theory [98, 100, 61]. For any compact set K in C,
the logarithmic capacity of K is defined by

cp(K) := exp

{
− inf

supp(ν)⊆K

∫
log

1

|z − u|
dν(z)dν(u)

}
,

where the infimum is taken over all probability Borel measures supported on K.
It is known that either cp(K) = 0 (K is polar) or there exists the unique measure
ωK , the logarithmic equilibrium distribution on K, that realizes the infimum. The
Green’s function for the unbounded component of the complement of K, say D, is
defined by

gD(z) := I[ωK ] +

∫
log |z − t|dωk(t)

and is the unique positive harmonic function in D \ {∞} that is equal to zero
everywhere on ∂D perhaps with the exception of a polar set (quasi everywhere)
and such that gD(z) ∼ log |z| as z →∞.

We denote by C the class of functions analytic at infinity that have meromorphic,
possible multi-valued, continuation along any arc in C \ Ef starting from infinity
with Ef compact and polar. We further say that f belongs to the class A ⊂ C if f

admits analytic, possibly multi-valued, continuation along any arc in C\Ef starting
from infinity, where Ef is non-empty, finite, and the meromorphic continuation of

2We say that a(z) ∼ b(z) if 0 < lim infz→∞ |a(z)/b(z)| ≤ lim supz→∞ |a(z)/b(z)| <∞.
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f from infinity has a branch point at each element of Ef . The primary example of
functions in A is that of algebraic functions. Other examples include functions of
the form g ◦ log(l1/l2) + r, where g is entire and l1, l2 ∈ Pm while r ∈ Rk for some
m, k ∈ N. However, A is defined in such a way that it contains no function in Rn,
n ∈ N, in order to avoid degenerate cases.

Together with the classes A and C we shall consider functions defined by a
Cauchy integral for suitable classes of measures. Namely, we set

(6) fµ(z) :=

∫
dµ(t)

t− z
, z 6∈ supp(µ).

Observe that by Cauchy integral theorem, each function given by (4) can equiva-
lently written as fµ. However, we shall be interested in (6) only for finite measures
in the following classes:

• class of positive measures Reg of [113] (the definition of this class is rather
complicated, but, in particular, it includes measures supported on an in-
terval with almost everywhere positive Radon-Nikodym derivative);
• class Bvt consisting of complex-valued measures µ compactly supported

on the real line with an argument of bounded variation and such that
|µ|([x− δ,x+ δ]) ≥ cδL for all x ∈ supp(µ) and δ small enough with some
constants c,L;
• class Sz([a, b]) of positive measures µ supported on [a, b] satisfying the Szegő

condition there:
∫

[a,b]
logµ′(t)dt > −∞, dµ(t) = µ′(t)dt;

• class Dini(∆) of complex-valued measures supported on an analytic arc ∆
with endpoints a, b satisfying dµ(t) = [µ̇(t)/w+

∆(t)]dt, where µ̇ is a Dini-

continuous non-vanishing function on ∆ and w∆(z) :=
√

(z − a)(z − b) is
a branch holomorphic outside of ∆ such that w∆(z) ∼ z as z →∞.

3. Convergence Theory

In this section we outline the current state of knowledge about convergence of
meromorphic approximants and rational interpolants with free poles to the approx-
imated functions.

3.1. Padé Approximants. As briefly described in the introduction, uniform con-
vergence of Padé approximants to the approximated function is rather rare. Few
positive results include certain classes of entire functions [6, 64, 65] and some
Markov functions as mentioned further below. However, it is still true that only a
small number of poles ruins the uniform convergence and, in particular, convergence
in measure holds [126].

3.1.1. Convergence in Capacity. In order to established positive results, the re-
quirement of the uniform convergence should be weakened. The proper type, as

turned out, is convergence in capacity. That is, fn
cp→ f in a bounded domain D if

for every ε > 0 it holds that

lim
n→∞

cp
(
{z ∈ D : | |(fn − f)(z)| > ε}

)
= 0.

For unbounded domains this property is defined by first composing with the map
z 7→ 1/(z − a) some, hence any, a 6∈ D.

The first results in this direction belong to Nuttall [74] and Pommerenke [94]
who showed convergence in capacity of the diagonal Padé approximants to functions
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f ∈ C that are single-valued in C \ Ef (in a way, such functions generalize entire
functions). When f ∈ C is multi-valued, the whole new problem arrises: if diagonal
Padé approximants converge at all then where? Indeed, Padé approximants are
single-valued and so should be there limit. This issue was resolved in a series of
pathbreaking papers [105, 106, 107, 109] by Stahl following the initial study of
Nuttall [75, 76, 80, 77, 79].

Theorem 1. Given a multi-valued f ∈ C, there exists the unique admissible com-
pact3 ∆f such that cp(∆f ) ≤ cp(K) for any admissible compact K and ∆f ⊆ K
for any admissible K satisfying cp(∆f ) = cp(K). Moreover,∣∣f − [n/n]f

∣∣1/2n cp→ exp
{
− gDf

}
in Df ,

where Df := C \∆f and gDf is the Green’s function with pole at infinity for Df .
The domain Df is optimal in the sense that the convergence does not holds in any
other domain D such that D \Df 6= ∅.

Another fascinating part of Stahl’s work is the geometrical description4 of ∆f .

Theorem 2. It holds that

(7) ∆f = E0 ∪ E1 ∪
⋃

∆j ,

where
⋃

∆j is a union of open analytic arcs, E0 ⊆ Ef , E1 is a set of points such
that each element of E1 is an endpoint of at least three arcs ∆j, and

(8)
∂gD
∂n+

=
∂gD
∂n−

on
⋃

∆j ,

where ∂/∂n± are the partial derivatives with respect to the one-sided normals on
each ∆j.

Due to the content of Theorems 1 and 2 contours ∆f , f ∈ C, received the names
of minimal capacity contours and S-contours (symmetric contours).

When f ∈ A, the set Ef is finite and so are the number of arcs in
⋃

∆j and the
cardinality of E0 ∪E1. For such functions f , a simpler proof of the existence of ∆f

has been given in [93, 41] using the variational argument. The minimal capacity
contours associated with f ∈ A also admit a description via critical trajectories of
rational quadratic differentials (for f ∈ C this is also true although differentials are
no longer rational). More precisely, let us formally define:

Definition 3. A compact set ∆ is called an algebraic S-contour if the complement
of ∆, say D, is connected, ∆ can be decomposed as in (7), where

⋃
∆j is a finite

union of open analytic arcs, E0 ∪E1 is a finite set of points such that each element
of E0 is an endpoint of exactly one arc ∆j while each element of E1 is an endpoint
of at least three arcs, and (8) holds with gDf replaced by gD.

Any algebraic S-contour is a minimal capacity contour for some f ∈ A. Indeed,
given ∆, an eligible function f∆ ∈ A can be constructed in the following way.
Denote by m the number of connected components of ∆, by E0j the intersection

3Given f ∈ C, a compact set K is called admissible if C\K is connected and f has a meromorphic

and single-valued extension there.
4This theorem holds even without the requirement cp(Ef ) = 0 as shown in [112]. However, as of
now, convergence theory in this case is not understood.
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of E0 with the j-th connected component, and by mj the cardinality of E0j . Then

one can take f∆(z) =
∑m
j=1

(∏
e∈E0j

(z − e)
)−1/mj

.

To describe the connection to quadratic differentials, set

(9) h∆(z) := 2∂zgD(z),

where 2∂z := ∂x − i∂y. The function h∆ is holomorphic in D and vanishes at
infinity. For each point e ∈ E0 ∪ E1 denote by i(e) the bifurcation index of e, that
is, the number of different arcs ∆j incident with e. It follows immediately from
the definition of an algebraic S-contour that i(e) = 1 for e ∈ E0 and i(e) ≥ 3 for
e ∈ E1. Denote also by E2 the set of critical points of gD with j(e) standing for the

order of e ∈ E2, i.e., ∂jzgD(e) = 0 for j ∈ {1, . . . , j(e)} and ∂
j(e)+1
z gD(e) 6= 0. The

set E2 is necessarily finite. We attribute the following theorem to Perevoznikova
and Rakhmanov [93], where the variation approach to algebraic S-contours was
introduced.

Theorem 4. Let ∆ be an algebraic S-contour with the complement D. Then the
arcs ∆j are negative critical trajectories of the quadratic differential h2

∆(z)dz2. That
is, for any smooth parametrization z(t) : (0, 1)→ ∆j it holds that

h2
∆(z(t))

(
z′(t)

)2
< 0 for all t ∈ (0, 1).

Moreover,

(10) h2
∆(z) =

∏
e∈E0∪E1

(z − e)i(e)−2
∏
e∈E2

(z − e)2j(e)

and h2
∆(z) = z−2 +O

(
z−3
)

as z →∞.

3.1.2. Markov Functions. Let now fµ be given by (6) and [n/n]fµ = pn/qn be the
n-th diagonal Padé approximant to fµ. Using (5), it is not hard to show that
polynomials qn satisfy

(11)

∫
zjqn(z)dµ(z) = 0, j ∈ {0, . . . ,n− 1}.

That is, the polynomials qn are non-Hermitian orthogonal polynomials with respect
to a generally complex-valued measure µ. However, when µ is a positive measure
supported on R, fµ is called a Markov function and polynomials qn become standard
orthogonal polynomials on the real line, which is an extremely well-studied topic
[120, 46, 45, 71, 102]. Initially, Markov [68] showed the uniform convergence outside
of the convex hull of supp(µ) without providing exact rates. By now these rates are
well-understood: in the n-th root sense when µ ∈ Reg and in the sense of strong
asymptotics when µ ∈ Sz.

In any case, the uniform convergence holds only outside of the convex hull of
supp(µ). Indeed, it can be deduced from (11) that if supp(µ) = ∪Jj=1[aj , bj ] than
each gap (bj , aj+1) contains exactly one zero of qn for all n large enough. That
is, Padé approximant [n/n]fµ will have a pole in each interval (bj , aj+1) which is a
subset of the domain of holomorphy of fµ. The location of each zero in a gap changes
with n and the dynamics of these zeros has been under thorough investigation in
the last decade [104, 86, 31, 32, 33, 30, 102]. These zeros are the perfect example of
wandering poles which turn uniform convergence into nearly uniform convergence
(by clearing those poles the approximants will converge in the gaps).
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3.1.3. Nearly Uniform Convergence. Relinquishing the condition of the positivity
of µ greatly complicates the analysis. For starters, wandering poles, when present,
are no longer confined to the real line. In fact, their union over n can be dense ev-
erywhere in the complex plane. To explain the situation, we need more definitions.

Let ∆ be an algebraic S-contour and h∆ be given by (9), see also (10). Denote
by R the Riemann surface defined by h∆. It can be represented as a two-sheeted
ramified cover of C constructed in the following manner. Two copies of C are cut
along each arc ∆j , see (7). These copies are clipped together at the elements of
E∆ ⊆ E0 ∪ E1, which consists of those points that have odd bifurcation index
(branch points of h∆). These copies are further glued together along the cuts
in such a manner that the right (resp. left) side of the arc ∆j belonging to the

first copy, say R(0), is joined with the left (resp. right) side of the same arc ∆j

only belonging to the second copy, R(1). The genus of R, which we denote by g,
satisfies the equality 2(g + 1) = |E∆|. According to the above construction, each
arc ∆j together with its endpoints corresponds to a cycle, say ∆j , on R. We set

∆ :=
⋃
j ∆j , denote by π the canonical projection π : R→ C, and define

D(k) := R(k) ∩ π−1(D) and z(k) := D(k) ∩ π−1(z)

for k ∈ {0, 1} and z ∈ D. We further set E∆ := π−1(E∆), which is comprised
exactly of the ramification points of R. An integral divisor on R is a formal symbol
of the form D =

∑
njzj , where {zj} is an arbitrary finite collection of distinct

points on R and {nj} is a collection of positive integers. The sum
∑
nj is called

the degree of the divisor D. A general divisor is a difference of two integral divisors.

Theorem 5. Let p be a non-vanishing polynomial on ∆ and

(12) p̂(z) :=
1

πi

∫
∆

1

t− z
dt

p(t)w+
∆(t)

, z ∈ D,

where w2
∆(z) :=

∏
e∈E∆

(z − e). There exists a sectionally meromorphic in R \∆

function Ψn whose zeros and poles there5 are described by the divisor (n−g)∞(1) +
Dn−n∞(0), where Dn is an integral divisor of degree g that solves a special Jacobi
inversion problem on R with parameters depending on ∆, p, and n; and whose
traces are continuous on ∆ \E∆ and satisfy

(13) Ψ+
n = (p ◦ π)Ψ−n .

Given [n/n]p̂ = pn/qn, it holds that

(14)

 qn = γn

(
Ψ

(0)
n + pΨ

(1)
n

)
Rn = 2γnw

−1
∆ Ψ

(1)
n

for all 2n > 3g+deg(p), where Rn is defined by (5), γn is a normalization constant

turning qn into a monic polynomial and Ψ
(k)
n (z) := Ψn(z(k)), z ∈ D, k ∈ {0, 1}.

More restrictive versions of this theorem appeared in [40, 2, 3, 121, 83, 84, 85, 20].
In its full generality it was proven by Nuttall and Singh in [80] and by the aurthor
in [123], who was unaware of [80] at the moment. It is important to note that

5Ψn is non-vanishing and finite in R \∆ except at the elements of its divisor that stand for zeros
(resp. poles) if preceded by the plus (resp. minus) sign and the integer coefficients in front of

them indicate multiplicity.
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in (14) the functions Ψ
(0)
n nearly geometrically diverge to infinity6 as n → ∞ and

the functions Ψ
(1)
n geometrically converge to zero. Thus, near each tn,k ∈ D(0),

Dn =
∑g
k=1 tn,k, the Padé approximant [n/n]p̂ has a wandering pole, and at each

tn,k ∈ D(1) it has an additional interpolation point.
Using Theorem 5 as an intermediate step, one can prove a similar theorem where

p in (12) is replaced by a non-vanishing Hölder continuous function as it was done
by Suetin in [116, 117] for ∆ consisting of disjoint arcs and by Baratchart and the
author in [20] for ∆ consisting of three arcs meeting at one point. In this case
formulae (14) become asymptotic.

The dynamics of the wondering poles is quite complicated and is understood to
a degree only when ∆ consists of either two disjoint arcs or three arcs meeting at
one point (in both cases g = 1). The following theorem is due to Baratchart and
the author and is contained in [20].

Theorem 6. Let ∆ = {a1, a2, a3} ∪ {b} ∪
⋃3
k=1 ∆k, see (7), and ω∆ be the equi-

librium measure on ∆. The set Z := ∪n{tn} (g = 1 and therefore Dn = tn) is
equal to R when the numbers ω∆(∆k), k ∈ {1, 2, 3}, are rationally independent;
it is the union of finitely many pairwise disjoint arcs when ω∆(∆k) are rationally
dependent but at least one of them is irrational; Z is a finite set of points when
ω∆(∆k) are all rational. All the points tn are mutually distinct in the first two
cases and {tn} = Z in the third one. The set of triples (a1, a2, a3) for which the
numbers ω∆(∆k) are rationally dependent form a dense subset of zero measure in
C3. The triples (a1, a2, a3) for which ω∆(∆k) are rational are also dense.

To understand the second part of the theorem, recall that for a given points
{a1, a2, a3}, there exists exactly one choice of the arcs ∆k (and necessarily of the

meeting point b) such that {a1, a2, a3} ∪ {b} ∪
⋃3
k=1 ∆k is an algebraic S-contour.

The first part of this theorem was originally proven in for ∆ consisting of two arcs
by Suetin [117] where the constants ω∆(∆k), k ∈ {1, 2, 3}, are replaced by ω∆(∆k),
k ∈ {1, 2}, and the third number τ which essentially carries the information how
far apart the two arcs are.

The most general (in terms of classes of algebraic S-contours) theorem on near
convergence was obtained in [5] by Aptekarev and the author.

Theorem 7. Let ∆ be an algebraic S-contour such that no point of E1 has the
bifurcation index greater than 3. Let also ρ̂ be defined as in (12) with p replaced
by a function ρ such that ρ|∆k

= wk, where wk is holomorphic and non-vanishing
in a neighborhood of ∆k. Finally, let Ψn be as in Theorem 5 with p replaced by
ρ/h+

∆ in (13). Then for all n such that no two distinct points in Dn have the same
standard projection onto C and all the points in Dn are uniformly bounded away
from ∞(0),∞(1), it holds that{

qn = (1 + υn1) γnΨ(0)
n + υn2γ

∗
nΨ

(0)
n−1,

Rn = (1 + υn1) γnh∆Ψ(1)
n + υn2γ

∗
nh∆Ψ(1)

n ,

locally uniformly in D, where |υnj | ≤ c(ε)/n in C while υnj(∞) = 0, γn is a
normalizing constant, and γ∗n is an explicitly defined constant.

6That is, the functions Ψ
(0)
n could have at most g zeros coming from Dn. However, after remov-

ing those zeros (for example, multiplying by a polynomial), the remaining functions do diverge

geometrically.
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Let us note that the collection of the indices n satisfying the requirements of
the theorem is of infinite cardinality. Another important distinction between The-
orem 7 and Theorem 5 with its generalizations is the method of proof. The proof
of Theorem 7 is based on a Riemann-Hilbert problem for 2× 2 matrices [43, 44] to
which the steepest descent analysis [38, 37] is applied.

3.2. Multipoint Padé Approximants.

3.2.1. Convergence in Capacity. In the case of multipoint Padé approximants the
definition of an S-contour should be appropriately modified to reflect the fact that
interpolation is done at many points. For that we shall need the following defini-
tions.

Let ν be a probability Borel measure supported in D. We set

Uν(z) := −
∫

log |1− zū|dν(u).

Uν is a harmonic function outside of supp(ν∗), in particular, in D. Considering
−Uν as an external field acting on non-polar compact subsets of D, we define the
ν-capacity of K ⊂ D (weighted capacity) by

cpν(K) := exp

{
−min

ω

(∫∫
log

1

|z − u|
dω(z)dω(u)− 2

∫
Uν(z)dω(z)

)}
,

where the minimum is taken over all probability Borel measures ω supported on
K. Clearly, Uδ0 ≡ 0 and therefore cpδ0(·) is simply the classical logarithmic capac-
ity cp(·), where δ0 is the Dirac delta at the origin. As in the case of the classical
logarithmic capacity, there exists a unique measure that realizes the infimum. More-
over, this measure can be characterized as the balayage of ν onto K relative to the
unbounded component of the complement of K.

Let D be an open connected set with non-polar boundary. The Green’s function
for D with pole at t ∈ D, denoted by gD(·, t) is the unique positive harmonic
function in D \ {t}, which is zero quasi everywhere on ∂D, and behaves like log |z|
near t =∞ or like − log |z − t| near finite t. Notice that gD(·,∞) = gD as defined
before. For any positive measure ν, supp(ν) ⊂ D, the Green’s potential of ν relative
to D is defined by

V νD(z) :=

∫
gD(z, t)dν(t).

The following theorem generalizes Theorem 1 for functions in A.

Theorem 8. Given f ∈ A with Ef ⊂ D and a probability Borel measure ν supported

in D, there exists the unique admissible compact ∆ν such that cpν(∆ν) ≤ cp(K) for
any admissible compact K and ∆ν ⊆ K for any admissible K satisfying cpν(∆ν) =
cpν(K). Further, let {[n/n;En]} be the sequence of multipoint Padé approximants

to f associated to an interpolation scheme {En} satisfying 1
2n

∑
e∈En δe

∗→ ν∗,

where
∗→ denotes weak∗ convergence of measures and ν∗ is the reflection of ν across

T by the map z 7→ 1/z̄. Then∣∣f − [n/n;En]
∣∣1/2n cp→ exp

{
− V ν

∗

Dν

}
in Dν := C \∆ν .

This theorem was proved in [18] and is due to Baratchart, Stahl, and the au-
thor. The restriction Ef ⊂ D can be equivalently restated as requiring interpolating
sets En to be contained in the complement of the smallest disk encompassing Ef .
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The main contribution of [18] is in showing the existence of the weighted minimal
capacity contour ∆ν as the convergence in capacity of the multipoint Padé approx-
imants was shown in [51] by Gonchar and Rakhmanov assuming the existence of
such contours. The analog of Theorem 2 and 4 was also obtained in [18].

Theorem 9. The minimal weighted capacity contour ∆ν has the structure (7).
Moreover, (8) holds with gD replaced by V ν

∗

Dν . The function Hν := ∂zV
ν∗

Dν
is holo-

morphic in Dν \ supp(ν∗) and has continuous traces from each side of every ∆j in
∆ν that satisfy H+

ν = −H−ν on each ∆j. Moreover, H2
ν is a meromorphic function

in C \ supp(ν∗) that has a simple pole at each element of E0 and a zero at each
element e of E1 whose order is equal to the bifurcation index of e minus 2. The
arcs ∆j are negative critical trajectories of H2

νdz
2.

In the case where f = fµ, µ ∈ Bvt, the analog of Theorem 8 was derived by
Baratchart and the author in [23].

3.2.2. Uniform Convergence. At the present moment only the case of a single arc
has been developed. We shall assume for simplicity that the endpoints of ∆ are
±1. The following theorem by Baratchart and the author is from [21].

Theorem 10. Let ∆ be a rectifiable Jordan arc such that for x = ±1 and all t ∈ ∆
sufficiently close to x it holds that |∆t,x| ≤ const.|x− t|β, β > 1/2, where |∆t,x| is
the arclength of the subsarc of ∆ joining t and x and const. is an absolute constant.
Then the following are equivalent:

(a) there exists a positive compactly supported Borel measure ν, supp(ν) ⊂
D := C \∆, such that (8) holds with gD replaced by V νD on ∆ \ {±1};

(b) there exists a triangular scheme of points {En}, ∩n∈N∪k≥nEk ⊂ D, such
that |r±n | = O(1) uniformly on ∆, where

rn(z) :=
∏
e∈En

φ(z)− φ(e)

1− φ(e)φ(z)

and φ(z) := z +
√
z2 − 1 is a branch holomorphic in D;

(c) ∆ is an analytic Jordan arc, i.e., there exists a univalent function p holo-
morphic in some neighborhood of [−1, 1] such that ∆ = p([−1, 1]).

Effectively, this theorem says that any analytic Jordan arc can be seen as a
weighted S-contour and that the symmetry property can be equivalently restated
with the help of an appropriate triangular scheme in a way which more attuned to
the strong asymptotics, see (15) below.

Theorem 11. Let ∆ be an analytic Jordan arc connecting ±1 that is symmetric
with respect to a triangular scheme {En}. Further, let {[n/n;En]} be the sequence
of multipoint Padé approximants for fµ, µ ∈ Dini(∆). Then

(15) (fµ − [n/n;En])w = [2Gµ̇ + o(1)]S2
µ̇rn locally uniformly in D,

where Gµ̇ is constant (geometric mean of µ̇), Sµ̇ is the Szegő function of µ̇ on ∆
(holomorphic and non-vanishing in D satisfying S+

µ̇ S
−
µ̇ = Gµ̇µ̇ on ∆), and rn is

defined as in Theorem 10.

This theorem was also proved in [21]. An analog of this theorem for Jacobi-type
weights using ∂̄-extension of the matrix Riemann-Hilbert analysis was obtained by
Baratchart and the author in [25] via ∂̄-extension of the Riemann-Hilbert analysis.
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The case µ ∈ Sz([−1, 1]) was derived By Gonchar and López Lagomasino in [50],
see also Stahl’s work [111].

3.3. Meromorphic Approximants.

3.3.1. Weak Convergence. Let f be a function in A with Ef ⊂ D. Then f ∈ H̄2
0

and we can construct a sequence of irreducible critical points, say {rn}, in rational
H̄2

0 -approximation of f . As discussed before, each rn is also a multipoint Padé
approximant to f associated with the set En := {1/z̄j , 1/z̄j}nj=1 (it interpolates at
each point 1/z̄j with order 2), where {zj}nj=1 are the zeros of rn. Theorem 8 does
not directly apply as we do not know the weak∗ behavior of the probability counting
measures of the points in En. It has not been stated in Theorem 8, but it is shown
in [18] that the probability counting measures of the poles of [n/n;En] converge to
the balayage of ν onto Γν with respect to Dν . Thus, if the counting measures of the
poles of rn converge weakly to a probability measure ω, this measure should be the
balayage of its own reflection across the unit circle with respect to the complement
of its support and the support itself is the set of minimal ω-capacity for f . It turns
out that there is only one such measure for a given f and its support minimizes
the condenser capacity in D among all admissible sets K in D. Recall that the
condenser capacity of a compact set K ⊂ D with respect to D is defined as

cp(K,T) :=

(
inf

supp(µ)⊆K

∫∫
log

∣∣∣∣1− zūz − u

∣∣∣∣ dµ(u)dµ(z)

)−1

and the infimum is taken over all probability Borel measures supported on K (it
can be easily verified that the integrand is, in fact, gD(z,u), the Green’s function
for D with pole at u). As in the case of logarithmic capacity, for each non-polar K
there exists the unique measure, say ω(K,T), that realizes the infimum.

Theorem 12. Given f ∈ A with Ef ⊂ D, there exists the unique admissible
compact Γ such that cp(Γ,T) ≤ cp(K,T) for any admissible compact K and Γ ⊆ K
for any admissible K satisfying cp(Γ,T) = cp(K,T). If {rn} is a sequence of
irreducible critical points in rational H̄2

0 -approximation of f , then∣∣f − rn∣∣1/2n cp→ exp
{
−V ω

∗
(Γ,T)

C\Γ

}
in C \

(
Γ ∪ Γ∗

)
,

where ω∗(Γ,T) is the reflection of ω(Γ,T) across T and Γ∗ = supp(ω∗(Γ,T)) is the reflec-

tion of Γ across T.

This theorem is due to Baratchart, Stahl, and the author and is contained as
well as the variant of Theorem 9 in [18]. Moreover, [18] contains a generalization
of the above theorem to any domain G with rectifiable boundary T and L2-best
meromorphic approximants on T to any function f ∈ A with Ef ⊂ G. In the case
where f = fµ is a Markov function with µ ∈ Reg, the conclusion of Theorem 12
was obtained by Baratchart, Stahl, and Wielonsky in [16], and when µ ∈ Bvt it
was derived by Baratchart and the author in [22].

3.3.2. Uniform Convergence. As in the case of the multipoint Padé approximants,
only the case of a single arc is developed as of now when it comes to the uniform
convergence. The minimal condenser structure of this arc requires it to be a part of
the hyperbolic geodesic in D connecting the endpoints, which, in the case of points
on the real line, specializes to a segment. In this case, the following was shown by
the author in [124].
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Theorem 13. Let fµ be given by (6) with µ ∈ Dini([a, b]), [a, b] ⊂ (−1, 1). Further,
let {gn} be a sequence of Lp-best meromorphic approximants to fµ, p ∈ [2,∞]. Then
the error of approximation fµ − gn admits a formula similar to (15) in D \ [a, b]7.

Note that the asymptotics holds in D \ [a, b] only simply because meromorphic
approximants are meaningful only in D. The analogous result for Markov functions
with µ ∈ Sz([a, b]) was derived by Baratchart, Prokhorov, and Saff in [13, 12].

3.3.3. Uniqueness. Given f ∈ H̄2
0 , the functional Σf ,n, defined in (3), might have

multiple critical points (local minima, saddle points, maxima). From the construc-
tive viewpoint no algorithm is known to constructively obtain L2-best rational
approximants. So, from a computational perspective this is a typical non-convex
minimization problem whose numerical solution is often hindered by the occurrence
of local minima. It is therefore of major interest in practice to establish conditions
on the function to be approximated that ensure uniqueness of a local minimum.
The first step in this direction was taken by Baratchart and Wielonsky in [19].

Theorem 14. Let µ be a positive measure supported on [a, b] ⊂ (−1, 1) where a

and b satisfy b − a ≤
√

2
(
1−max

{
a2, b2

})
. Assume further that µ has at least n

points of increase, i.e., fµ /∈ Rn−1. Then there is a unique critical point in rational
H̄2

0 -approximation of degree n to fµ.

Removing the restriction on the size of the support makes the situation signifi-
cantly more difficult. The following theorem was proved by Baratchart, Stahl, and
Wielonsky in [15, 17].

Theorem 15. If µ ∈ Sz([a, b]), [a, b] ⊂ (−1, 1), then there is a unique critical point
in rational H̄2

0 -approximation of degree n to fµ for all n large enough. Moreover,
for each n0 ∈ N there exists a positive measure µ ∈ Sz([a, b]) such that for each odd
n between 1 and n0 there exist at least two different best rational approximants of
degree n to fµ.

The first part of the above theorem has an extension to complex-valued measures
[24] as shown by Baratchart and the author.

Theorem 16. Let f := fµ + r, where r ∈ Rm has no poles on supp(µ) = [a, b] ⊂
(−1, 1) and µ ∈ Dini([a, b]) with an argument of bounded variation. Then there is
a unique critical point in rational H̄2

0 -approximation of degree n to f for all n large
enough.
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approximant method. J. Math. Anal. Appl., 2:405–418, 1961. 2
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itor, International Colloquium on Advanced Computing Methods in Theoretical Physics,

volume 2, pages C–XIII–1. C.N.R.S. Marseille, 1973. 6

Department of Mathematics, University of Oregon, Eugene, OR, 97403
E-mail address: maximy@uoregon.edu

http://arxiv.org/abs/1205.3811
http://arxiv.org/abs/1205.3811
http://arxiv.org/abs/0906.0793

	1. Introduction
	2. Mathematical Framework
	2.1. Meromorphic Approximants
	2.2. L2-Best Rational Approximants
	2.3. Irreducible Critical Points
	2.4. Padé Approximants
	2.5. Multipoint Padé Approximants
	2.6. Approximated Functions

	3. Convergence Theory
	3.1. Padé Approximants
	3.2. Multipoint Padé Approximants
	3.3. Meromorphic Approximants

	References

