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Abstract. Let 𝜇1 and 𝜇2 be two, in general complex-valued, Borel measures on the real
line such that supp 𝜇1 “ r𝛼1, 𝛽1s ă supp 𝜇2 “ r𝛼2, 𝛽2s and 𝑑𝜇𝑖p𝑥q “ ´𝜌𝑖p𝑥q𝑑𝑥{2𝜋i,
where 𝜌𝑖p𝑥q is the restriction to r𝛼𝑖 , 𝛽𝑖s of a function non-vanishing and holomorphic in
some neighborhood of r𝛼𝑖 , 𝛽𝑖s. Strong asymptotics of multiple orthogonal polynomials
is considered as their multi-indices p𝑛1, 𝑛2q tend to infinity in both coordinates. The main
goal of this work is to show that the error terms in the asymptotic formulae are uniform
with respect to mint𝑛1, 𝑛2u.

1. Main Results

1.1. Multiple Orthogonal Polynomials. Let 𝜇1 and 𝜇2 be two, in general complex-valued,
Borel measures on the real line and ®𝑛 “ p𝑛1, 𝑛2q be a multi-index, where 𝑛1, 𝑛2 are non-
negative integers. A non-identically zero polynomial 𝑃®𝑛p𝑥q of degree at most |®𝑛| :“ 𝑛1 `𝑛2
is called a type II multiple orthogonal polynomial with respect to a system of measures
p𝜇1, 𝜇2q if it satisfies

(1)
ż

𝑃®𝑛p𝑥q𝑥𝑙𝑑𝜇𝑖p𝑥q “ 0, 𝑙 P t0, . . . , 𝑛𝑖 ´ 1u, 𝑖 P t1, 2u.

In what follows, we take 𝑃®𝑛p𝑥q to be the monic polynomial of minimal degree satisfying
(1), which makes it unique. Type I multiple orthogonal polynomials are not identically zero
polynomial coefficients of the linear form

(2)

$

&

%

𝑄 ®𝑛p𝑥q :“ 𝐴
p1q

®𝑛 p𝑥q𝑑𝜇1p𝑥q ` 𝐴
p2q

®𝑛 p𝑥q𝑑𝜇2p𝑥q, deg 𝐴p𝑖q

®𝑛 ă 𝑛𝑖 ,

ş

𝑥𝑙𝑄 ®𝑛p𝑥q “ 0, 𝑙 ă |®𝑛| ´ 1, 𝐴
p1q

p0,1q
“ 𝐴

p2q

p1,0q
” 0.

It is known [18, Section 23.1] that when deg 𝑃®𝑛 “ |®𝑛|, in which case the multi-index ®𝑛 is
called normal, the linear form𝑄 ®𝑛p𝑥q is defined uniquely up to multiplication by a constant.
In this case, it is customary to normalize it by requiring

(3)
ż

𝑥|®𝑛|´1𝑄 ®𝑛p𝑥q “ 1 .

The polynomials 𝐴p𝑖q

®𝑛 p𝑥q are no longer monic and their leading coefficients, which we
denote by 1{ℎ®𝑛´®𝑒𝑖 ,𝑖 , are closely related to the type II polynomials 𝑃®𝑛p𝑥q. Indeed, it holds
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that

ℎ®𝑛´®𝑒𝑖 ,𝑖 “ ℎ®𝑛´®𝑒𝑖 ,𝑖

ż

𝑥|®𝑛|´1𝑄 ®𝑛p𝑥q “ ℎ®𝑛´®𝑒𝑖 ,𝑖

ż

𝑃®𝑛´®𝑒𝑖 p𝑥q𝑄 ®𝑛p𝑥q

“ ℎ®𝑛´®𝑒𝑖 ,𝑖

ż

𝑃®𝑛´®𝑒𝑖 p𝑥q𝐴
p𝑖q

®𝑛 p𝑥q𝑑𝜇𝑖p𝑥q “

ż

𝑃®𝑛´®𝑒𝑖 p𝑥q𝑥𝑛𝑖´1𝑑𝜇𝑖p𝑥q(4)

as follows from (1)–(3). It is known [18, Theorem 23.1.11] that if indices ®𝑛 and ®𝑛 ` ®𝑒𝑖 ,
where ®𝑒1 “ p1, 0q and ®𝑒2 “ p0, 1q, are normal, multiple orthogonal polynomials satisfy
nearest-neighbor recurrence relations of the form

(5)

#

𝑥𝑃®𝑛p𝑥q “ 𝑃®𝑛`®𝑒𝑖 p𝑥q ` 𝑏 ®𝑛,𝑖𝑃®𝑛p𝑥q ` 𝑎 ®𝑛,1𝑃®𝑛´®𝑒1p𝑥q ` 𝑎 ®𝑛,2𝑃®𝑛´®𝑒2p𝑥q,

𝑥𝑄 ®𝑛p𝑥q “ 𝑄 ®𝑛´®𝑒𝑖 p𝑥q ` 𝑏 ®𝑛´®𝑒𝑖 ,𝑖𝑄 ®𝑛p𝑥q ` 𝑎 ®𝑛,1𝑄 ®𝑛`®𝑒1p𝑥q ` 𝑎 ®𝑛,2𝑄 ®𝑛`®𝑒2p𝑥q.

All these definitions can be formulated for a collection of more than two measures, however,
we shall not pursue such an extension here.

1.2. Angelesco Systems. Assume that each measure 𝜇𝑖 is compactly supported and let
Δ𝑖 be the smallest closed interval containing the support of 𝜇𝑖 . If Δ1 X Δ2 “ ∅, then
the pair p𝜇1, 𝜇2q is said to form an Angelesco system. Angelesco himself considered the
case of non-negative measures and had shown that such systems are always perfect (all
multi-indices are normal) [1]. In what follows, we are only interested in the case where

(6) supp 𝜇𝑖 “ Δ𝑖 “: r𝛼𝑖 , 𝛽𝑖s and 𝑑𝜇𝑖p𝑥q “ ´𝜌𝑖p𝑥q
𝑑𝑥

2𝜋i
,

i.e., each 𝜇𝑖 is supported by an interval and is absolutely continuous with respect to
the Lebesgue measure. We allow densities 𝜌𝑖p𝑥q to be complex-valued1 and assume for
definiteness that 𝛽1 ă 𝛼2.

When each i𝜌𝑖p𝑥q is positive almost everywhere on the corresponding interval Δ𝑖 , the
zero distribution of the polynomials 𝑃®𝑛p𝑥q and their |®𝑛|-th root (i.e., weak) asymptotic
behavior were studied in [17] along subsequences of indices that satisfy
(7) lim

|®𝑛|Ñ8
𝑛1{|®𝑛| exists and belongs to p0, 1q.

When the functions i𝜌𝑖p𝑥q are non-negative with integrable logarithms (Szegő class), strong
asymptotics of these polynomials along the diagonal sequence 𝑛1 “ 𝑛2 was obtained in
[2], see also [20, 24], and more generally under assumption (7) in [3]. When each function
𝜌𝑖p𝑥q is the product of a restriction to Δ𝑖 of a non-vanishing (complex-valued) holomorphic
function and a Fisher-Hartwig weight, the strong asymptotics of type II polynomials along
subsequences satisfying (7) was derived in [27]. Asymptotics of type I polynomials as
well as of the recurrence coefficients was later deduced in [4], but just for weights that are
restrictions of holomorphic functions only. Moreover, assuming more stringently that each
density 𝜌𝑖p𝑥q is a restriction of a holomorphic function and is positive on Δ𝑖 while allowing
the limit in (7) to be 0 or 1 under the additional assumption
(8) 𝜀 ®𝑛 :“ 1{ mint𝑛1, 𝑛2u Ñ 0 as |®𝑛| Ñ 8,

strong asymptotics of the polynomials of both types and the asymptotics of their recurrence
coefficients was derived in [5]. The goal of this work is to show that the error rates obtained
in [5] can be made uniform in ®𝑛; that is, the asymptotic formulae can be derived solely
under condition (8), no assumption on the existence of the limit in (7) is needed. We

1The specific choice of the normalization in (6) is there for two reasons. First, under such a normalization the
Markov function of 𝜇𝑖 becomes the Cauchy transform of 𝜌𝑖 , i.e.,

ş 𝑑𝜇𝑖p𝑥q

𝑧´𝑥
“

ş 𝜌𝑖p𝑥q

𝑥´𝑧
𝑑𝑥
2𝜋i . Second, when 𝜇𝑖 is a

positive measure, the density logp𝜌𝑖𝑤𝑐,𝑖`q, appearing in (22), is a real-valued function.
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shall assume that the densities 𝜌𝑖p𝑥q are restrictions of analytic, non-vanishing, and in
general complex-valued functions. Analyticity assumption can be relaxed, but this will be
addressed in a subsequent publication.

1.3. Riemann Surfaces. The functions describing strong asymptotics of multiple orthog-
onal polynomials naturally live on a sequences of Riemann surfaces. To describe these
surfaces, we need to start with the already mentioned work by Gonchar and Rakhmanov
[17]. There, assuming (6) and that each i𝜌𝑖p𝑥q is almost everywhere positive function
on Δ𝑖 , it was shown that if a subsequence of multi-indices satisfies (7) and 𝑐 is the limit,
then the normalized counting measures of the zeros of 𝑃®𝑛p𝑥q converge weak˚ to a certain
measure 𝜔𝑐 and

|®𝑛|´1 log |𝑃®𝑛p𝑧q| “ ´p1 ` 𝑜p1qq𝑉𝜔𝑐 p𝑧q

locally uniformly in CzpΔ1 YΔ2q along this subsequence of multi-indices, where𝑉𝜔p𝑧q :“
´
ş

log |𝑧 ´ 𝑥|𝑑𝜔p𝑥q is the logarithmic potential of a measure 𝜔 and 𝜔𝑐 :“ 𝜔𝑐,1 ` 𝜔𝑐,2
with 𝜔𝑐,1, 𝜔𝑐,2 being the unique pair of measures such that |𝜔𝑐,1| “ 𝑐, |𝜔𝑐,2| “ 1 ´ 𝑐

(here, |𝜔| is the total mass 𝜔), supp𝜔𝑐,𝑖 Ď Δ𝑖 , and
#

ℓ𝑐,𝑖 ´𝑉𝜔𝑐`𝜔𝑐,𝑖 p𝑥q ” 0, 𝑥 P supp𝜔𝑐,𝑖 ,

ℓ𝑐,𝑖 ´𝑉𝜔𝑐`𝜔𝑐,𝑖 p𝑥q ă 0, 𝑥 P Δ𝑖zsupp𝜔𝑐,𝑖 ,

𝑖 P t1, 2u, for some constants ℓ𝑐,1, ℓ𝑐,2 (the measures𝜔𝑐,1, 𝜔𝑐,2 can also be defined through
a certain vector energy minimization problem).

What is of main importance to us from the above results are the supports of the vector
equilibrium measures 𝜔𝑐,1 and 𝜔𝑐,2. It was explained in [17] that
(9) Δ𝑐,𝑖 :“ supp𝜔𝑐,𝑖 “ r𝛼𝑐,𝑖 , 𝛽𝑐,𝑖s Ď Δ𝑖 “ r𝛼𝑖 , 𝛽𝑖s

𝑖 P t1, 2u, where 𝛼𝑐,1 :“ 𝛼1 and 𝛽𝑐,2 :“ 𝛽2 for any 𝑐 P p0, 1q. However, it is possible
that 𝛽𝑐,1 ă 𝛽1 and 𝛼𝑐,2 ą 𝛼2 (this is so-called pushing effect). In fact, it is known [5,
Propositions 4.1-2] that there exist 0 ă 𝑐˚ ă 𝑐˚˚ ă 1 such that

(10)

#

𝛽𝑐,1 ă 𝛽1, 𝑐 ă 𝑐˚,

𝛽𝑐,1 “ 𝛽1, 𝑐 ě 𝑐˚,
and

#

𝛼𝑐,2 “ 𝛼2, 𝑐 ď 𝑐˚˚,

𝛼𝑐,2 ą 𝛼2, 𝑐 ą 𝑐˚˚.

Moreover, 𝛽𝑐,1 is a continuous strictly increasing function of 𝑐 on r0, 𝑐˚s with 𝛽0,1 :“ 𝛼1
while 𝛼𝑐,2 is a continuous strictly increasing function of 𝑐 on r𝑐˚˚, 1s with 𝛼1,2 :“ 𝛽2. It
is also known that the constants ℓ𝑐,1 and ℓ𝑐,2 are continuous functions of 𝑐 and so are the
measures 𝜔𝑐,1 and 𝜔𝑐,2 in the sense of weak˚ convergence of measures.

Given 𝑐 P p0, 1q, let 𝕾𝑐 be a 3-sheeted Riemann surface realized as follows. Define
Δ𝑐 :“ Δ𝑐,1 Y Δ𝑐,2, 𝐸𝑐 :“ 𝐸𝑐,1 Y 𝐸𝑐,2, where 𝐸𝑐,𝑖 :“ t𝛼𝑐,𝑖 , 𝛽𝑐,𝑖u.

Denote by𝕾p0q
𝑐 ,𝕾p1q

𝑐 , and𝕾p2q
𝑐 , three copies of C cut along Δ𝑐 , Δ𝑐,1, and Δ𝑐,2, respectively.

These copies are then glued to each other crosswise along the corresponding cuts, see
Figure 1. It can be easily seen from the Riemann–Hurwitz formula that 𝕾𝑐 has genus 0.
We denote by 𝜋 the natural projection from𝕾𝑐 to C and employ the notation z for a generic
point on 𝕾𝑐 with 𝜋pzq “ 𝑧. We let α1 “ α𝑐,1,β𝑐,1,α𝑐,2,β2 “ β𝑐,2 to stand for the
ramification points of 𝕾𝑐 with natural projections 𝛼1, 𝛽𝑐,1, 𝛼𝑐,2, 𝛽2, respectively. We set

#

E𝑐 :“ E𝑐,1 Y E𝑐,2, E𝑐,𝑖 “ tα𝑐,𝑖 ,β𝑐,𝑖u,

𝚫𝑐 :“ 𝚫𝑐,1 Y 𝚫𝑐,2, 𝚫𝑐,𝑖 :“ 𝕾p0q
𝑐 X𝕾p𝑖q

𝑐 “ B𝕾p𝑖q
𝑐 .

Notice that 𝚫𝑐,𝑖zE𝑐,𝑖 is a two-to-one cover of Δ˝
𝑐,𝑖

:“ p𝛼𝑐,𝑖 , 𝛽𝑐,𝑖q.
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𝛼1 𝛽𝑐,1 𝛼2 𝛽2
𝕾p0q
𝑐

𝕾p1q
𝑐

𝕾p2q
𝑐

Figure 1. Realization of the surface 𝕾𝑐 .

We call a linear combination
ř

𝑚𝑖z𝑖 , 𝑚𝑖 P Z, a divisor. Its degree is defined as
ř

𝑚𝑖 .
We say that

ř

𝑚𝑖z𝑖 is a zero/pole divisor of a meromorphic function if this function has a
zero at z𝑖 of multiplicity 𝑚𝑖 when 𝑚𝑖 ą 0, a pole at z𝑖 of order ´𝑚𝑖 when 𝑚𝑖 ă 0, and
has no other zeros or poles in the domain of its definition. Zero/pole divisors of rational
functions on𝕾𝑐 necessarily have degree zero. Conversely, since𝕾𝑐 has genus 0, any degree
zero divisor is a zero/pole divisor of a rational function, which is unique up to multiplication
by a constant. For any function 𝐺pzq, defined on 𝕾𝑐z𝚫𝑐 , we denote by

𝐺p𝑘qp𝑧q :“ 𝐺pzq, z P 𝕾p𝑘q
𝑐 zB𝕾p𝑘q

𝑐 , 𝑘 P t0, 1, 2u,

its pull-back under the natural projection from the 𝑘-th sheet to the cut complex plane.

1.4. Conformal Maps. To proceed, we introduce a certain conformal map of 𝕾𝑐 onto C,
say 𝜒𝑐pzq, which is a rational function with one pole and one zero, defined by the relation

(11) 𝜒
p0q
𝑐 p𝑧q “ 𝑧 ` O

`

𝑧´1˘ as 𝑧 Ñ 8.

Since prescribing the absence of a constant term around 8p0q (8p𝑘q is a point on𝕾p𝑘q
𝑐 whose

natural projection is the point at infinity) is equivalent to prescribing a zero, the function
𝜒𝑐pzq is uniquely determined by (11). Further, let the numbers 𝐴𝑐,1, 𝐴𝑐,2, 𝐵𝑐,1, 𝐵𝑐,2 be
defined by

(12) 𝜒
p𝑖q
𝑐 p𝑧q “: 𝐵𝑐,𝑖 ` 𝐴𝑐,𝑖𝑧

´1 ` O
`

𝑧´2˘ as 𝑧 Ñ 8, 𝑖 P t1, 2u.

Since 𝜒𝑐pzq is a conformal map, the numbers 𝐴𝑐,𝑖 are necessarily non-zero (otherwise
𝜒𝑐pzq´𝐵𝑐,𝑖 would have had a double zero). Moreover, by tracing the image of 𝜋´1pRqz𝚫𝑐

under 𝜒𝑐pzq, which is necessarily equal to the real line, one gets that each 𝐴𝑐,𝑖 ą 0 and
𝐵𝑐,2 ą 𝐵𝑐,1. Set

(13)

#

𝜑𝑖p𝑧q :“ p𝑧 ´ p𝛽𝑖 ` 𝛼𝑖q{2 ` 𝑤𝑖p𝑧qq{2,
𝑤𝑖p𝑧q :“

a

p𝑧 ´ 𝛼𝑖qp𝑧 ´ 𝛽𝑖q “ 𝑧 ` Op1q

to be the branches holomorphic off Δ𝑖 , 𝑖 P t1, 2u (𝜑𝑖p𝑧q is the conformal map of the
complement of Δ𝑖 onto the complement of t|𝑧| ą p𝛽𝑖 ´ 𝛼𝑖q{4u that behaves like 𝑧 at
infinity). It was also shown in [5, Proposition 2.1] that 𝐴𝑐,𝑖 and 𝐵𝑐,𝑖 are (real-valued)
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continuous functions of the parameter 𝑐 P p0, 1q such that

(14) lim
𝑐Ñ0

$

’

’

’

’

&

’

’

’

’

%

𝐴𝑐,2 “
“

p𝛽2 ´ 𝛼2q{4
‰2

“: 𝐴0,2,

𝐵𝑐,2 “ p𝛽2 ` 𝛼2q{2 “: 𝐵0,2,

𝐴𝑐,1 “ 0 “: 𝐴0,1,

𝐵𝑐,1 “ 𝐵0,2 ` 𝜑2p𝛼1q “: 𝐵0,1,

and the analogous limits hold when 𝑐 Ñ 1.
In the limit 𝑐 Ñ 0 (similar considerations apply to the case 𝑐 Ñ 1), the Riemann surface

𝕾𝑐 becomes disconnected: one connected component is a copy of C and the other one is
two copies of C glued together crosswise across Δ2. As expected, in this case the conformal
maps 𝜒𝑐pzq converge to a conformal map of the second connected component onto the
Riemann sphere. More precisely, it was shown in [5, Equation (5.2)] that

𝜒𝑐pzq ´ 𝐵𝑐,2 “ p1 ` 𝑜p1qq

$

’

’

’

&

’

’

’

%

𝜑2p𝑧q, z P 𝕾p0q
𝑐 ,

𝜑2p𝛼1q, z P 𝕾p1q
𝑐 ,

´

𝛽2´𝛼2
4

¯2
{𝜑2p𝑧q, z P 𝕾p2q

𝑐 ,

uniformly on𝕾𝑐 as 𝑐 Ñ 0 (the top two limits in (14) follow immediately from this formula).
The vector equilibrium measures discussed before admit the following explicit formulae.

Let Π𝑐pzq be the derivative of 𝜒𝑐pzq, that is, the derivative of 𝜒p𝑘q
𝑐 p𝑧q is equal to Π

p𝑘q
𝑐 p𝑧q,

for each 𝑘 P t0, 1, 2u. Equivalently, Π𝑐pzq is a rational function on 𝕾𝑐 with the zero/pole
divisor and normalization given by

(15) 2
`

8p1q ` 8p2q
˘

´ α1 ´ β𝑐,1 ´ α𝑐,2 ´ β2 and Π
p0q
𝑐 p8q “ 1.

Observe that lim𝑧Ñ8 𝑧2Π
p𝑖q
𝑐 p𝑧q “ ´𝐴𝑐,𝑖 , 𝑖 P t1, 2u. Set

(16) ℎ𝑐pzq :“ Π𝑐pzq
𝜒𝑐pzq ´ p1 ´ 𝑐q𝐵𝑐,1 ´ 𝑐𝐵𝑐,2

p𝜒𝑐pzq ´ 𝐵𝑐,1qp𝜒𝑐pzq ´ 𝐵𝑐,2q
.

Then ℎ𝑐pzq is a rational function on 𝕾𝑐 with the zero/pole divisor given by

(17) 8p0q ` 8p1q ` 8p2q ` z𝑐 ´ α1 ´ β𝑐,1 ´ α𝑐,2 ´ β2,

where z𝑐 is some point on𝕾𝑐 whose existence is guaranteed by the fact that zero/pole divi-
sors of rational functions on compact Riemann surfaces must have degree zero. Moreover,
it holds that
(18) lim

𝑧Ñ8
𝑧ℎ

p0q
𝑐 p𝑧q “ 1, lim

𝑧Ñ8
𝑧ℎ

p1q
𝑐 p𝑧q “ ´𝑐, and lim

𝑧Ñ8
𝑧ℎ

p2q
𝑐 p𝑧q “ 𝑐 ´ 1

(this, in particular, means that all three branches of ℎ𝑐pzq add up to the identically zero
function because their sum must be an entire function that is equal to zero at infinity). The
function ℎ𝑐pzq is uniquely determined by (17) and (18). Indeed, the ratio of any two such
functions (that is, functions corresponding to possibly different points z𝑐) minus 1 must
have at most one necessarily simple pole by (17) and at least three zeros (at the points on
top of infinity) by (18), which is only possible for the identically zero function. Now, it
follows from [27, Proposition 2.3], where the functions ℎ𝑐pzq were introduced differently,
that

(19) z𝑐 P 𝕾p0q
𝑐 and

$

’

&

’

%

z𝑐 “ β𝑐,1, 𝑐 P p0, 𝑐˚s,

𝜋pz𝑐q P p𝛽1, 𝛼2q, 𝑐 P p𝑐˚, 𝑐˚˚q,

z𝑐 “ α𝑐,2, 𝑐 P r𝑐˚, 1q
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(if either z𝑐 “ β𝑐,1 or z𝑐 “ α𝑐,2, then these points cancel each other out in (17) and
ℎ𝑐pzq has only three poles and three zeros). Finally, the following claim can be found in
[5, Section 4]. It holds that

(20) 𝑑𝜔𝑐,𝑖p𝑥q “

´

ℎ
p𝑖q

𝑐`p𝑥q ´ ℎ
p𝑖q

𝑐´p𝑥q

¯

𝑑𝑥

2𝜋i
, 𝑥 P Δ𝑐,𝑖 , 𝑖 P t1, 2u.

Notice that ℎp𝑖q

𝑐˘p𝑥q “ ℎ
p0q

𝑐¯p𝑥q for 𝑥 P Δ𝑐,𝑖 . Using the limiting behavior of 𝜒p0q
𝑐 p𝑧q as

𝑐 Ñ 0 discussed above, one can show that ℎ𝑐pzq converges to 1{𝑤2p𝑧q on the zero-th sheet
as 𝑐 Ñ 0. This, in particular, implies that 𝜔𝑐,2 converge to the arcsine distribution on Δ2
as 𝑐 Ñ 0 (of course, similar limits take place as 𝑐 Ñ 1).

1.5. Main Asymptotic Terms. The following construction was carried out in [27, Sec-
tion 6]. Similarly to (13), for each 𝑐 P p0, 1q, set

(21) 𝑤𝑐,𝑖p𝑧q :“
b

p𝑧 ´ 𝛼𝑐,𝑖qp𝑧 ´ 𝛽𝑐,𝑖q, 𝑧 P CzΔ𝑐,𝑖 , 𝑖 P t1, 2u,

to be the branch normalized so that 𝑤𝑐,𝑖p𝑧q “ 𝑧 ` Op1q as 𝑧 Ñ 8. Denote by Cz the
discontinuous Cauchy kernel on 𝕾𝑐 , that is, Cz is the third kind differential with three
simple poles, located at z and the other two points with the same natural projection, and
the residues 2 at z and ´1 at the other points. Put

(22) 𝑆𝑐pzq :“ exp

#

1
6𝜋i

2
ÿ

𝑖“1

ż

𝚫𝑐,𝑖

logp𝜌𝑖𝑤𝑐,𝑖`qCz

+

,

where we choose a continuous determination of log 𝜌𝑖p𝑥q and set

log𝑤𝑐,𝑖`p𝑥q :“ log |𝑤𝑐,𝑖p𝑥q| ` 𝜋i{2

(when 𝜇𝑖 is positive measure, we can take log 𝜌𝑖p𝑥q “ log |𝜌𝑖p𝑥q| ´ 𝜋i{2, see (6), so that
p𝜌𝑖𝑤𝑐,𝑖`qp𝑥q is a positive function on p𝛼𝑐,𝑖 , 𝛽𝑐,𝑖q). It is known [27, Proposition 2.4] that
𝑆𝑐pzq is holomorphic in 𝕾𝑐z𝚫𝑐 and has continuous traces on 𝚫𝑐,𝑖zE𝑐,𝑖 that satisfy

(23)

$

&

%

𝑆
p𝑖q

𝑐˘p𝑥q “ 𝑆
p0q

𝑐¯p𝑥qp𝜌𝑖𝑤𝑐,𝑖`qp𝑥q, 𝑥 P Δ˝
𝑐,𝑖
,

ˇ

ˇ𝑆
p0q
𝑐 p𝑧q

ˇ

ˇ „ |𝑧 ´ 𝑒|´1{4 as 𝑧 Ñ 𝑒 P 𝐸𝑐 .

Moreover,
`

𝑆
p0q
𝑐 𝑆

p1q
𝑐 𝑆

p2q
𝑐

˘

p𝑧q ” 1. These functions continuously depend on the parameter
𝑐 P p0, 1q and possess limits as 𝑐 Ñ 0 and 𝑐 Ñ 1. Namely, we have, see [5, Proposition 3.1],
that

𝑆
p𝑘q
𝑐 p𝑧q

𝑆
p𝑘q
𝑐 p8q

“ p1 ` 𝑜p1qq

$

’

’

&

’

’

%

𝑆𝜌2p𝑧q{𝑆𝜌2p8q, 𝑘 “ 0,
1, 𝑘 “ 1,
𝑆𝜌2p8q{𝑆𝜌2p𝑧q, 𝑘 “ 2,

as 𝑐 Ñ 0, where 𝑜p1q holds locally uniformly in Czt𝛼1u when 𝑘 P t0, 1u and uniformly in
C when 𝑘 “ 2, and 𝑆𝜌2p𝑧q is the classical Szegő function of 𝜌2p𝑥q, that is,

(24) 𝑆𝜌2p𝑧q :“ exp
"

𝑤2p𝑧q

2𝜋i

ż

Δ2

logp𝜌2𝑤2`qp𝑥q

𝑧 ´ 𝑥

𝑑𝑥

𝑤2`p𝑥q

*

.

Moreover, it holds that the limits of 𝑆p0q
𝑐 p8q𝑐1{3, 𝑆p1q

𝑐 p8q𝑐´2{3, and 𝑆p2q
𝑐 p8q𝑐1{3 exist and

are non-zero as 𝑐 Ñ 0. As usual, the above results have their counterparts when 𝑐 Ñ 1.
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The terms describing the geometric growth of multiple orthogonal polynomials can be
most conveniently defined as rational functions on the surfaces corresponding to rational
values of the parameter 𝑐. Namely, let 𝑐p®𝑛q :“ 𝑛1{|®𝑛| and set

(25)

$

&

%

Φ®𝑛pzq :“ 𝜏®𝑛p𝜒𝑐p®𝑛qpzq ´ 𝐵𝑐p®𝑛q,1q𝑛1p𝜒𝑐p®𝑛qpzq ´ 𝐵𝑐p®𝑛q,2q𝑛2 ,

𝜏3
®𝑛 :“ p´1q𝑛2𝐴

´𝑛1
𝑐p®𝑛q,1𝐴

´𝑛2
𝑐p®𝑛q,2p𝐵𝑐p®𝑛q,2 ´ 𝐵𝑐p®𝑛q,1q´|®𝑛|,

where we arbitrarily fix a cubic root of 𝜏®𝑛. Thus defined, the function Φ®𝑛pzq is rational on
𝕾𝑐p®𝑛q with the zero/pole divisor and the normalization given by

(26) 𝑛18p1q ` 𝑛28p2q ´ |®𝑛|8p0q and Φ
p0q

®𝑛 p𝑧qΦ
p1q

®𝑛 p𝑧qΦ
p2q

®𝑛 p𝑧q ” 1

(to see that Φ®𝑛pzq is normalized this way is enough to observe that the product of all
three branches is necessarily an entire function that assumes value 1 at infinity by (12)).
Equivalently, it holds that

(27) Φ®𝑛pzq “ exp

#

|®𝑛|

˜

ż z

β2

ℎ𝑐p®𝑛qpxq𝑑𝑥 ´
1
3

ż 𝛽
p1q

2

β2

ℎ𝑐p®𝑛qpxq𝑑𝑥

¸+

,

where 𝛽p1q

2 P 𝕾p1q

𝑐p®𝑛q
with 𝜋

`

𝛽
p1q

2
˘

“ 𝛽2, since the right-hand side of (27) is a well-defined
rational function on𝕾𝑐p®𝑛q with the divisor and normalization given by (26) due to (18). Let
us point out that it is not hard to argue using (20), see [27, Proposition 2.1], that
(28)

log |Φ®𝑛pzq| “ |®𝑛|

$

&

%

´𝑉𝜔𝑐p ®𝑛q,1`𝜔𝑐p ®𝑛q,2p𝑧q ` pℓ®𝑛,1 ` ℓ®𝑛,2q{3, z P 𝕾p0q

𝑐p®𝑛q
,

𝑉𝜔𝑐p ®𝑛q,𝑖 p𝑧q ` pℓ®𝑛,3´𝑖 ´ 2ℓ®𝑛,𝑖q{3, z P 𝕾p𝑖q

𝑐p®𝑛q
, 𝑖 P t1, 2u.

1.6. Main Results. Given Szegő functions 𝑆𝑐pzq as well as functions Φ®𝑛pzq and Π𝑐pzq

introduced in (25) and (15), respectively, we are ready to state our main results. Recall (8).
We start by describing the asymptotic behavior of type II polynomials.

Theorem 1.1. Let 𝜇1 and 𝜇2 be as in (6), where 𝜌1p𝑥q and 𝜌2p𝑥q are the restrictions to
Δ1 and Δ2, respectively, of non-vanishing functions analytic in some neighborhood of the
corresponding interval. Set

P®𝑛,𝑖p𝑧q :“ 𝛾®𝑛,𝑖{
`

𝑆𝑐p®𝑛qΦ®𝑛qp𝑖qp𝑧q, lim
𝑧Ñ8

P®𝑛,𝑖p𝑧q𝑧
´𝑛𝑖 “ 1,

where 𝑐p®𝑛q “ 𝑛1{|®𝑛| and 𝛾®𝑛,𝑖 are the normalizing constants, 𝑖 P t1, 2u. Let 𝑃®𝑛p𝑧q be the
type II multiple orthogonal polynomial defined via (1). Then for all 𝜀 ®𝑛 small enough we
can write 𝑃®𝑛p𝑧q “ 𝑃®𝑛,1p𝑧q𝑃®𝑛,2p𝑧q with the monic polynomials 𝑃®𝑛,𝑖p𝑧q satisfying

(29)

#

𝑃®𝑛,𝑖p𝑧q “ p1 ` 𝑜p1qqP®𝑛,𝑖p𝑧q,

𝑃®𝑛,𝑖p𝑥q “ p1 ` 𝑜p1qqP®𝑛,𝑖`p𝑥q ` p1 ` 𝑜p1qqP®𝑛,𝑖´p𝑥q,

uniformly for distp𝑧,Δ𝑐p®𝑛q,𝑖q ě 𝑑, 𝑧 P C, and distp𝑥, 𝐸𝑐p®𝑛q,𝑖q ě 𝑑, 𝑥 P Δ𝑐p®𝑛q,𝑖 , respectively,
for any 𝑑 ą 0 fixed, 𝑖 P t1, 2u. The error terms in the above formulae depend on 𝑑 and
satisfy

either 𝑜p1q “ O
´

𝜀
1{3
®𝑛

¯

or 𝑜p1q “ O
`

𝜀 ®𝑛
˘

uniformly for all 𝜀 ®𝑛 sufficiently small, where the second estimate holds if we additionally
assume that 𝑐p®𝑛q is uniformly separated from 𝑐˚, 𝑐˚˚.
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Remark. It easily follows from (29) that each polynomial 𝑃®𝑛,𝑖p𝑧q has exactly 𝑛𝑖 zeros and
they all belong to distp𝑧,Δ𝑐p®𝑛q,𝑖q ă 𝑑 for any 𝑑 ą 0 and all 𝜀 ®𝑛 small enough. Of course, if
the measures 𝜇1 and 𝜇2 are arbitrary positive, it is straightforward to show that each 𝑃®𝑛,𝑖p𝑥q

has exactly 𝑛𝑖 zeros and they all belong to Δ𝑖 , as initially has been observed in [1].

Remark. It readily follows from (25) that the constants 𝛾®𝑛,𝑖 can be expressed as

𝛾®𝑛,𝑖 “ 𝜏®𝑛 𝐴
𝑛𝑖
𝑐p®𝑛q,𝑖

`

𝐵𝑐p®𝑛q,𝑖 ´ 𝐵𝑐p®𝑛q,3´𝑖

˘𝑛3´𝑖
𝑆

p𝑖q

𝑐p®𝑛q
p8q, 𝑖 P t1, 2u.

Remark. Since the products of all the branches of 𝑆𝑐pzq as well as Φ®𝑛pzq are identically
equal to 1, we immediately deduce from (29) that

#

𝑃®𝑛p𝑧q “ p1 ` 𝑜p1qqP®𝑛p𝑧q,

𝑃®𝑛p𝑥q “ p1 ` 𝑜p1qqP®𝑛`p𝑥q ` p1 ` 𝑜p1qqP®𝑛´p𝑥q,

uniformly for distp𝑧,Δ𝑐p®𝑛qq ě 𝑑, 𝑧 P C, and distp𝑥, 𝐸𝑐p®𝑛qq ě 𝑑, 𝑥 P Δ𝑐p®𝑛q, respectively, for
any 𝑑 ą 0 fixed, where

(30) P®𝑛p𝑧q :“
p𝑆𝑐p®𝑛qΦ®𝑛qp0qp𝑧q

𝜏®𝑛 𝑆
p0q

𝑐p®𝑛q
p8q

“ P®𝑛,1p𝑧qP®𝑛,2p𝑧q.

Remark. It might seem that asymptotic formulae (29) do not significantly reduce complexity
as the functions on both sides of the equalities depend on ®𝑛. In this regard we would like to
stress that the Szegő functions only depend on one-dimensional parameter 𝑐p®𝑛q “ 𝑛1{|®𝑛|

rather than two-dimensional multi-index ®𝑛, while the geometric factors must depend on ®𝑛
to properly match the behavior at infinity of 𝑃®𝑛,1p𝑧q and 𝑃®𝑛,2p𝑧q, yet their absolute values
satisfy (28), where the measures 𝜔𝑐p®𝑛q,1 and 𝜔𝑐p®𝑛q,2 again depend only on 𝑐p®𝑛q.

Theorem 1.2. Under the conditions of Theorem 1.1, let 𝐴p1q

®𝑛 p𝑧q and 𝐴p2q

®𝑛 p𝑧q be the type I
multiple orthogonal polynomials defined via (2) and (3). Define

A ®𝑛,𝑖p𝑧q :“ 𝜏®𝑛𝑆
p0q

𝑐p®𝑛q
p8q𝑤𝑐p®𝑛q,𝑖p𝑧q

ˆ

´Π𝑐p®𝑛q

𝑆𝑐p®𝑛qΦ®𝑛

˙p𝑖q

p𝑧q.

Understanding the error terms 𝑜p1q exactly as in Theorem 1.1, we have that

(31)

$

&

%

𝐴
p1q

®𝑛 p𝑧q “

´

1 `
𝑜p1q

𝑐p®𝑛q

¯

A ®𝑛,1p𝑧q, 𝐴
p2q

®𝑛 p𝑧q “

´

1 `
𝑜p1q

1´𝑐p®𝑛q

¯

A ®𝑛,2p𝑧q,

𝐴
p𝑖q

®𝑛 p𝑥q “ p1 ` 𝑜p1qqA ®𝑛,𝑖`p𝑥q ` p1 ` 𝑜p1qqA ®𝑛,𝑖´p𝑥q,

uniformly for distp𝑧,Δ𝑐p®𝑛q,1q ě 𝑑, 𝑧 P C, distp𝑧,Δ𝑐p®𝑛q,2q ě 𝑑, 𝑧 P C, and distp𝑥, 𝐸𝑐p®𝑛q,𝑖q ě

𝑑, 𝑥 P Δ𝑐p®𝑛q,𝑖 , 𝑖 P t1, 2u, respectively, for any 𝑑 ą 0 fixed.

Remark. It is known, see (39) further below, that the length of Δ®𝑛,1 is proportional to 𝑐p®𝑛q

while the length of Δ®𝑛,2 is proportional to 1 ´ 𝑐p®𝑛q. Therefore, the bottom formula in (31)
is meaningful only when 𝑐p®𝑛q is separated from both 0 and 1 and thus there is no need to
divide the error factors by 𝑐p®𝑛q or 1 ´ 𝑐p®𝑛q.

Remark. It readily follows from the top formulae in (31) that 𝐴p𝑖q

®𝑛 p𝑧q has exactly 𝑛𝑖 zeros
which belong to distp𝑧,Δ𝑐p®𝑛q,𝑖q ď 𝑑 for all 𝜀 ®𝑛 small enough and 𝑐p®𝑛q separated from 0
and 1.
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Remark. Recall that we denoted by 1{ℎ®𝑛´®𝑒𝑖 ,𝑖 the leading coefficient of 𝐴p𝑖q

®𝑛 p𝑧q, 𝑖 P t1, 2u.
We readily get from the sentence after (15), (25), and (31) that

ℎ®𝑛´®𝑒1 ,1 “

ˆ

1 `
𝑜p1q

𝑐p®𝑛q

˙

𝐴
𝑛1´1
𝑐p®𝑛q,1

`

𝐵𝑐p®𝑛q,1 ´ 𝐵𝑐p®𝑛q,2
˘𝑛2
𝑆

p1q

𝑐p®𝑛q
p8q{𝑆

p0q

𝑐p®𝑛q
p8q

and an analogous formula holds for ℎ®𝑛´®𝑒2 ,2. In fact, we can deduce that these constants are
non-zero for all 𝜀 ®𝑛 small regardless of 𝑐p®𝑛q being close to 0 or 1 because ℎ®𝑛,𝑖 “

ş

𝑃®𝑛𝑃®𝑛,𝑖𝑑𝜇𝑖
by (4), which must be non-zero by Theorem 1.1 (deg 𝑃®𝑛 “ |®𝑛| for all 𝜀 ®𝑛 small means there
are no extra orthogonality conditions and hence ℎ®𝑛,𝑖 ‰ 0).

Theorem 1.3. In the setting of Theorem 1.1, let the coefficients 𝑎 ®𝑛,𝑖 , 𝑏 ®𝑛,𝑖 be as in (5) and
the numbers 𝐴𝑐p®𝑛q,𝑖 , 𝐵𝑐p®𝑛q,𝑖 as in (12). Then it holds that

(32) 𝑎 ®𝑛,𝑖 “ 𝐴𝑐p®𝑛q,𝑖 ` 𝑜p1q and 𝑏 ®𝑛,𝑖 “ 𝐵𝑐p®𝑛`®𝑒𝑖q,𝑖 ` 𝑜p1q,

𝑖 P t1, 2u, where the error terms 𝑜p1q should be understood exactly as in Theorem 1.1.

The map 𝜒𝑐pzq takes 𝚫𝑐 onto two Jordan curves. It was shown in [11, Lemma 4.1.2]
that these curves can be parametrized as

(33) 𝜒𝑐p𝚫𝑐q “

"

𝜒 P C :
𝐴𝑐,1

|𝜒 ´ 𝐵𝑐,1|2
`

𝐴𝑐,2

|𝜒 ´ 𝐵𝑐,2|2
“ 1

*

.

It follows from (17) and (19) that 𝜒pz𝑐q must belong to 𝜒𝑐p𝚫𝑐q when 𝑐 P p0, 𝑐˚sYr𝑐˚˚, 1q.
It must also hold that 𝜒pz𝑐q “ p1 ´ 𝑐q𝐵𝑐,1 ` 𝑐𝐵𝑐,2 as one can see from (15), (16), and
(17). Therefore, it necessarily holds that
(34) 𝑐´2𝐴𝑐,1 ` p1 ´ 𝑐q´2𝐴𝑐,2 “ 𝐵2

𝑐 ,

𝑐 P p0, 𝑐˚sYr𝑐˚˚, 1q, where we set 𝐵𝑐 :“ 𝐵𝑐,2 ´𝐵𝑐,1. In particular, relations (34) together
with (14) yield that

(35)

#

lim𝑐Ñ0 𝑐
´2𝐴𝑐,1 “

“

p𝛽2 ´ 𝛼2q{4
‰2

` 𝜑2
2p𝛼1q,

lim𝑐Ñ1p1 ´ 𝑐q´2𝐴𝑐,2 “
“

p𝛽1 ´ 𝛼1q{4
‰2

` 𝜑2
1p𝛽2q.

The recurrence coefficients 𝑎 ®𝑛,𝑖 , 𝑏 ®𝑛,𝑖 must satisfy what is known as compatibility con-
ditions, which are a system of discrete difference equations, see [25, Theorem 3.2]. This
suggests that 𝐴𝑐,𝑖 , 𝐵𝑐,𝑖 , as functions of the parameter 𝑐, must satisfy a system of differential
equation. This was conditionally confirmed in [7]. The conditional part came from the
requirement on the speed of convergence of the recurrence coefficients to their limits which
is beyond of what is currently has been demonstrated including Theorem 1.3 above. As
it happens, we are able to show the validity of these differential equation using only our
asymptotic analysis.

Theorem 1.4. Set 𝑅p𝑐q :“ p𝑐{p1 ´ 𝑐qq2p𝐴𝑐,2{𝐴𝑐,1q, which is a continuous function on
r0, 1s. It holds that

(36) 𝑅1p𝑐q “
6𝑅p𝑐qp1 ` 𝑅p𝑐qq

1 ´ 𝑐2 ` 𝑐p2 ´ 𝑐q𝑅p𝑐q

on p0, 𝑐˚q Y p𝑐˚˚, 1q. Moreover, we have that

(37)

$

’

&

’

%

𝐵1
𝑐

𝐵𝑐

“ ´
𝑐

1 ´ 𝑐

𝐴1
𝑐,1

𝐴𝑐,1
“ ´

1 ´ 𝑐

𝑐

𝐴1
𝑐,2

𝐴𝑐,2
“ ´2

1 ´ 𝑐 ´ 𝑐𝑅p𝑐q

1 ´ 𝑐2 ` 𝑐p2 ´ 𝑐q𝑅p𝑐q
,

𝑐𝐵1
𝑐,1 ` p1 ´ 𝑐q𝐵1

𝑐,2 “ 0 ô 𝐵1
𝑐,2 “ 𝑐𝐵1

𝑐 ô 𝐵1
𝑐,1 “ ´p1 ´ 𝑐q𝐵1

𝑐 ,

on p0, 𝑐˚q Y p𝑐˚˚, 1q, where 1 indicates the derivative with respect to the parameter 𝑐.
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Remark. Equation (36) together with the initial conditions coming from (14) and (35)
allows us to reconstruct 𝑅p𝑐q uniquely on r0, 𝑐˚s Y r𝑐˚˚, 1s. Since 𝑅p𝑐q ą 0, (36) also
shows that 𝑅p𝑐q is infinitely differentiable on p0, 𝑐˚q Y p𝑐˚˚, 1q and all the derivatives
extend continuously to r0, 𝑐˚s Y r𝑐˚˚, 1s. The first line of (37) now allows one to recover
𝐴𝑐,1, 𝐴𝑐,2 (to remove singularities, it is better two rewrite these equations for 𝑐´2𝐴𝑐,1 and
p1´𝑐q´2𝐴𝑐,2), and 𝐵𝑐 as well as to draw the same conclusions about infinite differentiability
and continuity; 𝐵𝑐,1 and 𝐵𝑐,2 are then recovered via the second line of (37).

To prove Theorems 1.1–1.4 we use the extension to multiple orthogonal polynomials
[16] of by now classical approach of Fokas, Its, and Kitaev [13, 14] connecting orthogonal
polynomials to matrix Riemann-Hilbert problems. The RH problem is then analyzed via
the non-linear steepest descent method of Deift and Zhou [10].

2. Model Local Parametrices

In this section we formulate several Riemann-Hilbert problems with constant jumps for
2 ˆ 2 matrices that will be used in the main part of the proof. In what follows, the symbol
I stands for the identity matrix of any size, 𝜎3 :“ diagp1,´1q is the third Pauli matrix, and
we let

(38) Kp𝜁q :“
𝜁´𝜎3{4

?
2

ˆ

1 i
i 1

˙

,

where the root is principal, i.e., argp𝜁q P p´𝜋, 𝜋q (a convention we follow for all the power
functions unless explicitly specified otherwise). Further, for brevity, we denote the rays
 

argp𝑧q “ ˘2𝜋{3
(

by 𝐼˘ and orient them towards the origin.

2.1. Hard Edge. Let 𝚿p𝜁q be a matrix-valued function such that

(a) 𝚿p𝜁q is holomorphic in Cz
`

𝐼` Y 𝐼´ Y p´8, 0s
˘

;
(b) 𝚿p𝜁q has continuous traces on 𝐼` Y 𝐼´ Y p´8, 0q that satisfy

𝚿`p𝜁q “ 𝚿´p𝜁q

$

’

’

&

’

’

%

ˆ

0 1
´1 0

˙

, 𝜁 P p´8, 0q,

ˆ

1 0
1 1

˙

, 𝜁 P 𝐼˘;

(c) 𝚿p𝜁q “ Oplog 𝜁q as 𝜁 Ñ 0, where Op¨q is understood entrywise;
(d) it holds uniformly for |𝜁 | large that

𝚿p𝜁q “ Kp𝜁q

´

I ` O
`

𝜁´1{2˘
¯

exp
!

2𝜁1{2𝜎3

)

.

The solution of RHP-𝚿 was constructed explicitly in [21, Section 6] with the help of
the modified Bessel and Hankel functions. Since the jump matrices in RHP-𝚿(b) have
determinant one, det𝚿p𝜁q is analytic in Czt0u. It then follows from RHP-𝚿(c,d) and (38)
that det𝚿p𝜁q ”

?
2.

Set 𝚿˚p𝜁q :“ 𝜎3𝚿p𝜁q𝜎3. Then 𝚿˚p𝜁q solves the following Riemann-Hilbert problem:
(a–d) 𝚿˚p𝜁q satisfies RHP-𝚿(a–d), but with the reverse orientation of the rays in RHP-

𝚿(b) and Kp𝜁q replaced by 𝜎3Kp𝜁q𝜎3 in RHP-𝚿(d).
2.2. Sliding Soft Edge. Let 𝜏 P r𝜏˚,8s for some 𝜏˚ ą 1 to be fixed later. If 𝜏 ă 8,
define 𝑈𝜏 to be the disk of unit radius centered at 𝜏 and orient B𝑈𝜏 clockwise. Denote by
𝚯p𝜁 ; 𝜏q the solution, if it exists, of the following Riemann-Hilbert problem (RHP-𝚯):
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(a) 𝚯p𝜁 ; 𝜏q is holomorphic in Cz
`

𝐼` Y 𝐼´ Y p´8, 𝜏s
˘

;
(b) 𝚯p𝜁 ; 𝜏q has continuous traces on 𝐼` Y 𝐼´ Yp´8, 0qYp0, 𝜏q that satisfy RHP-𝚿(b)

and
𝚯`p𝜁 ; 𝜏q “ 𝚯´p𝜁 ; 𝜏q

ˆ

1 1
0 1

˙

, 𝜁 P p0, 𝜏q;

(c) 𝚯p𝜁 ; 𝜏q “ Op1q as 𝜁 Ñ 0 and 𝚯p𝜁 ; 𝜏q “ Oplog |𝜁´𝜏|q as 𝜁 Ñ 𝜏 when 𝜏 is finite;
(d) it holds uniformly for 𝜏 ě 𝜏˚ and |𝜁 | large and such that 𝜁 R 𝑈𝜏 that

𝚯p𝜁 ; 𝜏q “ Kp𝜁q

˜

I ` O

˜

1
a

|𝜁 | mint𝜏, |𝜁 |u

¸¸

exp
"

´
2
3
𝜁3{2𝜎3

*

.

The solution𝚯𝐴𝑖p𝜁q :“ 𝚯p𝜁 ; 8q of RHP-𝚯 for 𝜏 “ 8 is well known [9] and is explicitly
constructed using Airy functions. As in the previous subsection, det𝚯p𝜁 ; 𝜏q ”

?
2.

To show that RHP-𝚯 is also solvable for finite 𝜏 ě 𝜏˚ and some 𝜏˚ ą 1, define

𝚯𝜏p𝜁q :“ Kp𝜁q𝑒´p2{3q𝜁 3{2𝜎3

ˆ

1 𝑙𝜏p𝜁q

0 1

˙

, 𝑙𝜏p𝜁q :“
1

2𝜋i
logp𝜁 ´ 𝜏q,

for 𝜁 P 𝑈𝜏zp𝜏 ´ 1, 𝜏q, where we take the principal branch of the logarithm. Since 𝑈𝜏

belongs to the right half-plane, the matrix 𝚯𝜏p𝜁q is analytic in the domain of its definition
and satisfies

𝚯𝜏`p𝜁q “ 𝚯𝜏´p𝜁q

ˆ

1 1
0 1

˙

, 𝜁 P p𝜏 ´ 1, 𝜏q.

That is, 𝚯𝜏p𝜁q solves RHP-𝚯 locally in 𝑈𝜏 . Consider the following Riemann-Hilbert
problem: find a matrix function Rp𝜁 ; 𝜏q such that

(a) Rp𝜁 ; 𝜏q is holomorphic in Cz
`

B𝑈𝜏 Y p𝜏 ` 1,8q
˘

and Rp𝜁 ; 𝜏q “ I ` Op𝜁´1q as
𝜁 Ñ 8;

(b) Rp𝜁 ; 𝜏q has continuous and bounded traces on B𝑈𝜏zt𝜏 ` 1u and p𝜏 ` 1,8q that
satisfy

R`p𝜁 ; 𝜏q “ R´p𝜁 ; 𝜏q

#

𝚯𝜏p𝜁q𝚯´1
𝐴𝑖

p𝜁q, 𝜁 P B𝑈𝜏zt𝜏 ` 1u,

𝚯𝐴𝑖´p𝜁q𝚯´1
𝐴𝑖`

p𝜁q, 𝜁 P p𝜏 ` 1,8q.

By using the definition of 𝚯𝜏p𝜁q as well as RHP-𝚯(d) with 𝜏 “ 8, one can readily
check that the jump of Rp𝜁 ; 𝜏q on B𝑈𝜏 can be estimated as

ˆ

I ` Kp𝜁q

ˆ

0 𝑙𝜏p𝜁q𝑒´p4{3q𝜁 3{2

0 0

˙

K´1p𝜁q

˙

`

I ` O
`

𝜁´1˘˘ “ I ` O
`

𝜏´1˘ ,

where the error term is uniform in 𝜏. Similarly, by using RHP-𝚯(b,d) with 𝜏 “ 8 we get
that the jump of Rp𝜁 ; 𝜏q on p𝜏 ` 1,8q can be estimated as

I ´ 𝚯𝐴𝑖´p𝜁q

ˆ

0 1
0 0

˙

𝚯´1
𝐴𝑖´

p𝜁q “ I ` O

´

a

𝜁𝑒´p4{3q𝜁 3{2
¯

“ I ` O
`

𝜏´1˘ ,

where again the estimate is uniform in 𝜏. Therefore, we can conclude from [12, Theo-
rem 8.1] that Rp𝜁 ; 𝜏q exists for all 𝜏 ě 𝜏˚ and some 𝜏˚ ą 1 and satisfies

Rp𝜁 ; 𝜏q “ I ` O
`

𝜏´1p1 ` |𝜁 |q´1˘

uniformly for all 𝜁 P C and 𝜏 ě 𝜏˚, that is, including the boundary values (uniformity of
the estimate in 𝜁 is achieved by varying the jump contour slightly, which is possible due to
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analyticity of the jump matrices). Now, it only remains to observe that RHP-𝚯 is solved by

𝚯p𝜁 ; 𝜏q “ Rp𝜁 ; 𝜏q

#

𝚯𝜏p𝜁q, 𝜁 P 𝑈𝜏 ,

𝚯𝐴𝑖p𝜁q, 𝜁 P Cz𝑈𝜏 .

2.3. Critical Soft Edge. Given 𝑠 P p´8,8q, let 𝚽p𝜁 ; 𝑠q be such that
(a–c) 𝚽p𝜁 ; 𝑠q satisfies RHP-𝚿(a–c);

(d) it holds uniformly for |𝜁 | large and locally uniformly in 𝑠 that

𝚽p𝜁 ; 𝑠q “ Kp𝜁q

´

I ` O
`

𝜁´1{2˘
¯

exp
"

´
2
3

p𝜁 ` 𝑠q3{2𝜎3

*

.

The solvability of this problem was obtained in [26]. The fact thatOp¨q is locally uniform
in 𝑠 was pointed out in [19]. Again, observe that det𝚽p𝜁 ; 𝑠q ”

?
2.

Further, given 𝑠 ď 0, consider a similar Riemann-Hilbert problem (RHP-r𝚽):

(a–c) r𝚽p𝜁 ; 𝑠q satisfies RHP-𝚿(a–c);
(d) it holds uniformly for all 𝑠 ď 0 and locally uniformly for 𝜁{p1 ´ 𝑠q P Czt0u that

r𝚽p𝜁 ; 𝑠q “ Kp𝜁q

´

I ` O

´

p1 ´ 𝑠q´1𝜁´1{2
¯¯

exp
"

´
2
3

´

𝜁3{2 ` 𝑠𝜁1{2
¯

𝜎3

*

.

It was observed in [27] that solvability of RHP-𝚽 for 𝑠 ď 0 is equivalent to solvability of
RHP-r𝚽 for 𝑠 ď 0. It was also stated in [27, Equation (4.3)] that the error term in RHP-r𝚽(d)
behaves like O

`

p1 ´ 𝑠q1{2𝜁´1{2˘ uniformly for all 𝑠 ď 0. Below, we show how the bound
from [27, Equation (4.3)] can be improved to the one stated in RHP-r𝚽(d).

It has been already mentioned that the desired bound in RHP-r𝚽(d) must hold locally
uniformly for 𝑠 ď 0, see [19]. Therefore, we are only interested in what happens for ´𝑠

large enough. To this end, let

𝑔p𝜉q :“ p2{3qp𝜉 ´ 1q𝜉1{2

be the principal branch holomorphic in Czp´8, 0s. Given 𝜅 ě 𝜅0 ą 0 for some 𝜅0 large
enough, consider the following Riemann-Hilbert problem:

(a–c) p𝚽p𝜉; 𝜅q satisfies RHP-𝚿(a–c);
(d) it holds uniformly for 𝜅 ě 𝜅0 and locally uniformly for 𝜉 P Czt0u that

p𝚽p𝜉; 𝜅q “ Kp𝜉q

´

I ` O

´

𝜅´1𝜉´1{2
¯¯

𝑒´𝜅𝑔p𝜉q𝜎3 .

We shall show that there exists 𝜅0 ą 0 such that RHP-p𝚽 is uniquely solvable. In this
case it can be readily verified that the solution of RHP-p𝚽 yields the solution of RHP-r𝚽 via

r𝚽p𝜁 ; 𝑠q “ p´𝑠q´𝜎3{4
p𝚽p´𝜁{𝑠; 𝜅q, 𝜅 “ p´𝑠q3{2.

Let 𝑈0 be a disk centered at the origin of any radius 𝑟0 ă 1 small enough so that 𝑔2p𝜉q

is conformal in it. Set 𝐼˚
˘ :“

`

𝑔2˘´1
p𝐼˘q X 𝑈0 and orient these arcs towards the origin.

Notice that the principal square root branch of 𝑔2p𝜉q is equal to ´𝑔p𝜉q and that

´𝑔p𝐼˘ X𝑈0q Ă

!?
𝑥
`

2𝑥 ` 1 ˘
?

3i
˘

{3 : 𝑥 ą 0
)

,

which are arcs that lie within the sector |argp𝜁q| ă 𝜋{3. As 𝑔2p𝜉q preserves the negative
and positive reals, the curve 𝐼˚

` lies between the rays 𝐼` and p´8, 0q (since 𝑔2p𝐼˚
`q “ 𝐼`

lies between 𝑔2p𝐼`q and the negative reals) and the curve 𝐼˚
´ lies between the rays 𝐼´ and

p´8, 0q.
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Let 𝚿p𝜁q be the solution of RHP-𝚿. For 𝜉 P 𝑈0, define

p𝚽0p𝜉; 𝜅q :“ Kp𝜉q
`

K´1𝚿
˘

´

`

𝜅𝑔p𝜉q{2
˘2
¯

$

’

&

’

%

˜

1 0
˘1 1

¸

, 𝜉 P 𝑆˚
˘,

I , otherwise,

where 𝑆˚
` and 𝑆˚

´ are the sectors within𝑈0 delimited by 𝐼` and 𝐼˚
` in the second quadrant,

and 𝐼´ and 𝐼˚
´ in the third quadrant, respectively (notice that the sectors 𝑆˚

˘ do not depend
on 𝜅 because the preimages of 𝐼˘ under 𝑔2p𝜉q and p𝜅𝑔p𝜉q{2q2 must coincide). One can
readily verify that the matrix p𝚽0p𝜉; 𝜅q satisfies RHP-p𝚽(a–c) within 𝑈0. Moreover, since
the domains ´𝜅𝑔p𝑆˚

˘q{2 lie with the sector |argp𝜁q| ď 𝜋{3, it holds that
ˇ

ˇ

ˇ
𝑒2𝜅𝑔p𝜉q

ˇ

ˇ

ˇ
“ 𝑒´2𝜅|Re 𝑔p𝜉q| ă

1
2𝜅|Re 𝑔p𝜉q|

ď
1

𝜅|𝑔p𝜉q|
, 𝜉 P 𝑆˚

˘,

and therefore

𝑒´𝜅𝑔p𝜉q𝜎3

ˆ

1 0
˘1 1

˙

“

ˆ

I ` O

ˆ

1
𝜅𝑔p𝜉q

˙˙

𝑒´𝜅𝑔p𝜉q𝜎3 ,

uniformly for 𝜉 P 𝑆˚
˘ and all 𝜅 ą 0. Since |𝑔p𝜉q| is uniformly bounded away from 0 on

B𝑈0, the last estimate and RHP-𝚿(d) yield that

p𝚽0p𝜉; 𝜅q “ Kp𝜉q
`

I ` O
`

𝜅´1˘˘ 𝑒´𝜅𝑔p𝜉q𝜎3

uniformly for 𝜉 P B𝑈0.
Orient B𝑈0 clockwise. Consider the following Riemann-Hilbert problem: find pRp𝜉; 𝜅q

such that
(a) pRp𝜉; 𝜅q is holomorphic in C away from B𝑈0 Y pp𝐼` Y 𝐼´qz𝑈0q and pRp𝜉; 𝜅q “

I ` Op𝜉´1q as 𝜉 Ñ 8;
(b) pRp𝜉; 𝜅q has continuous and bounded traces on B𝑈0zp𝐼` Y 𝐼´q and p𝐼` Y 𝐼´qz𝑈0

that satisfy

pR`p𝜉; 𝜅q “ pR´p𝜉; 𝜅q

$

’

’

&

’

’

%

p𝚽0p𝜉; 𝜅q𝑒𝜅𝑔p𝜉q𝜎3K´1p𝜉q, 𝜉 P B𝑈0zp𝐼` Y 𝐼´q,

Kp𝜉q

˜

1 0
𝑒2𝜅𝑔p𝜉q 1

¸

K´1p𝜉q, 𝜉 P p𝐼` Y 𝐼´qz𝑈0.

As we have already observed, 3Re p𝑔p𝜉qq “ ´2|𝜉|3{2 ´ |𝜉|1{2 for 𝜉 P 𝐼˘. Thus,

pR`p𝜉; 𝜅q “ pR´p𝜉; 𝜅q
`

I ` O
`

𝜅´1˘˘

uniformly on B𝑈0 Ypp𝐼` Y 𝐼´qz𝑈0q (with respect to both 𝜉 and 𝜅). Hence, as in the previous
subsection, we can conclude on the basis of [12, Theorem 8.1] and the deformation of the
contour technique that pRp𝜉; 𝜅q does indeed uniquely exist for all 𝜅 ě 𝜅0 and some 𝜅0 large
enough and satisfies

pRp𝜉; 𝜅q “ I ` O
`

𝜅´1p1 ` |𝜉|q´1˘

uniformly for all 𝜉 P C and 𝜅 ě 𝜅0. It remains to observe that the solution of RHP-p𝚽 is
given by

p𝚽p𝜉; 𝜅q :“ pRp𝜉; 𝜅q

#

p𝚽0p𝜉; 𝜅q, 𝜉 P 𝑈0,

Kp𝜉q𝑒´𝜅𝑔p𝜉q𝜎3 , 𝜉 P Cz𝑈0.
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3. Conformal Maps

The framework of the Riemann-Hilbert analysis, which we use, consists in formulating
a multiplicative Riemann-Hilbert problem for 3 ˆ 3 matrices, whose jump relations are
then factorized and partially moved into the complex plane onto the so-called “lens”. The
construction of this lens depends on the value of the parameter 𝑐 via properties of local
conformal maps around each point in 𝐸𝑐 . In this section we define these maps and discuss
some of their properties.

In what follows, it will be sometimes useful for us to recall that

(39) lim
𝑐Ñ0

|Δ𝑐,1|

𝑐
“ 4|𝑤2p𝛼1q| and lim

𝑐Ñ1

|Δ𝑐,2|

1 ´ 𝑐
“ 4|𝑤1p𝛽2q|,

which was shown in [5, Equation (4.8)], where the roots 𝑤𝑖p𝑧q were introduced in (13). We
shall also use the following well known fact: according to Koebe’s 1/4 theorem, if 𝜁p𝑧q is
conformal in t|𝑧 ´ 𝑒| ď 𝑟˚u with 𝜁p𝑒q “ 0, then

(40) p𝑟{4q|𝜁 1p𝑒q| ď |𝜁p𝑧q|, |𝑧 ´ 𝑒| “ 𝑟, 𝑟 ď 𝑟˚.

3.1. Conformal Maps. The material of this section is taken from [5, Section 7.4]. We
work only with the interval Δ𝑐,1, the maps around Δ𝑐,2 are constructed similarly. Given
𝑐 P p0, 1q, define

(41) 𝜁𝑐,𝛼1p𝑧q :“
ˆ

1
4

ż 𝑧

𝛼1

´

ℎ
p0q
𝑐 ´ ℎ

p1q
𝑐

¯

p𝑠q𝑑𝑠

˙2
, Re 𝑧 ă 𝛽𝑐,1,

where ℎ𝑐pzq was defined in (16). Then the following lemma holds, see [5, Lemma 7.4].

Lemma 3.1. For each 𝑐 P p0, 1q, the map 𝜁𝑐,𝛼1p𝑧q is positive on p´8, 𝛼1q and negative
on p𝛼1, 𝛽𝑐,1q with a simple zero at 𝛼1. Moreover, there exist constants 𝛿𝛼1 ą 0 and
𝐴𝛼1 ą 0, independent of 𝑐, such that 𝜁𝑐,𝛼1p𝑧q is conformal in t|𝑧 ´ 𝛼1| ď 𝛿𝛼1𝑐u and
satisfies 4𝑐𝐴𝛼1 ď |𝜁 1

𝑐,𝛼1p𝛼1q|.

As already apparent from (41), the function ℎ𝑐pzq plays the central role in this subsection.
Recall the special point z𝑐 , see (17), and its relation to β𝑐,1, see (10) and (19). Hence,
while constructing conformal maps at 𝛽𝑐,1, we need to consider several cases.

Given 𝑐 P p0, 𝑐˚s, in which case β𝑐,1 “ z𝑐 and ℎ𝑐pβ𝑐,1q is finite, define

(42) 𝜁𝛽𝑐,1p𝑧q :“

˜

´
3
4

ż 𝑧

𝛽𝑐,1

´

ℎ
p0q
𝑐 ´ ℎ

p1q
𝑐

¯

p𝑠q𝑑𝑠

¸2{3

, 𝛼1 ă Re 𝑧 ă 𝛼2,

where the choice of the root is made so that 𝜁𝛽𝑐,1p𝑧q is positive for 𝑥 ą 𝛽𝑐,1. Then the
following lemma holds, see [5, Lemma 7.5].

Lemma 3.2. For each 𝑐 P p0, 𝑐˚s, the map 𝜁𝛽𝑐,1p𝑧q is positive on p𝛽𝑐,1, 𝛼2q and negative
on p𝛼1, 𝛽𝑐,1q with a simple zero at 𝛽𝑐,1. Moreover, there exist constants 𝛿𝛽1 ą 0 and
𝐴𝛽1 ą 0, independent of 𝑐, such that 𝜁𝛽𝑐,1p𝑧q is conformal in t|𝑧 ´ 𝛽𝑐,1| ď 𝛿𝛽1𝑐u and
satisfies 4𝑐´1{3𝐴𝛽1 ď 𝜁 1

𝛽𝑐,1
p𝛽𝑐,1q.

When 𝑐 ą 𝑐˚, we can and do define a conformal around 𝛽1 similarly to (41), see (44).
However, the radii of conformality of these maps necessarily shrink as 𝑐 Ñ 𝑐˚` since
ℎ𝑐pz𝑐q “ 0 and z𝑐 approaches β1 in this situation. Hence, we use a special construction
when 𝑐 close to and larger than 𝑐˚. The next lemma was shown in [5, Lemma 7.6].
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Lemma 3.3. The constant 𝛿𝛽1 from Lemma 3.2 can be adjusted so that there exist 𝑐1 ą 𝑐˚

and functions 𝜁𝑐,𝛽1p𝑧q, 𝑐 P r𝑐˚, 𝑐1s, conformal in t|𝑧 ´ 𝛽1| ď 𝛿𝛽1𝑐u, satisfying

(43) ´
3
4

ż 𝑧

𝛽1

´

ℎ
p0q
𝑐 ´ ℎ

p1q
𝑐

¯

p𝑠q𝑑𝑠 “ 𝜁
3{2
𝑐,𝛽1

p𝑧q ´ 𝜁𝑐,𝛽1p𝛽1 ` 𝜖𝑐q𝜁
1{2
𝑐,𝛽1

p𝑧q

for some 𝜖𝑐 ą 0. Each conformal map 𝜁𝑐,𝛽1p𝑧q is positive on p𝛽1, 𝛼2q and negative on
p𝛼1, 𝛽1q with a simple zero at 𝛽1. Moreover, they form a continuous family in parameter
𝑐 P r𝑐˚, 𝑐1s and 𝜁𝑐˚ ,𝛽1p𝑧q “ 𝜁𝛽1p𝑧q (recall that 𝛽𝑐˚ ,1 “ 𝛽1).

Similarly to (41), given 𝑐 P p𝑐˚, 1q, define

(44) 𝜁𝑐,𝛽1p𝑧q :“
ˆ

1
4

ż 𝑧

𝛽1

´

ℎ
p0q
𝑐 ´ ℎ

p1q
𝑐

¯

p𝑠q𝑑𝑠

˙2
, 𝛼1 ă Re 𝑧 ă 𝛼2.

Then the following lemma holds, see [5, Lemma 7.7].

Lemma 3.4. There exists a continuous and non-vanishing function 𝛿𝛽1p𝑐q ą 0 on p𝑐˚, 1s

such that 𝜁𝑐,𝛽1p𝑧q is conformal in t𝑧 : |𝑧´𝛽1| ď 𝛿𝛽1p𝑐qu, has a simple zero at 𝛽1, is positive
on p𝛽1, 𝛼2q and negative on p𝛼1, 𝛽1q. The constant 𝐴𝛽1 in Lemma 3.2 can be adjusted so
that 4𝐴𝛽1p𝑧𝑐 ´ 𝛽1q ď |𝜁 1

𝑐,𝛽1
p𝛽1q|.

For any 𝑐 P p0, 1q, define

(45) H𝑐p𝑧q :“ Re

˜

ż 𝑧

𝛽𝑐,1

´

ℎ
p0q
𝑐 ´ ℎ

p1q
𝑐

¯

p𝑠q𝑑𝑠

¸

, 𝛼1 ă Re 𝑧 ă 𝛼2,

(please, note the change in notation as compared to [5, Lemma 7.8], see [5, Equa-
tion (7.30)]).

Lemma 3.5. The constant 𝛿𝛽1 can be made smaller, if necessary, so that for any 𝛿 P p0, 𝛿𝛽1s

it holds that
H𝑐p𝑥 ` i𝑦q ď ´𝐵𝛿3{2𝑐, 𝑥 P r𝛽𝑐,1 ` 𝛿𝑐, 𝛼2 ´ 𝛿𝑐s, 𝑦 P r´𝛿𝑐{2, 𝛿𝑐{2s,

for any 𝑐 P p0, 𝑐˚q and some constant 𝐵 ą 0 independent of 𝛿 and 𝑐. Moreover, for any
fixed 𝑟 ą 0 small enough there exist 𝑐𝑟 ą 0 and 𝜖p𝑟q ą 0 such that

H𝑐p𝑥 ` i𝑦q ď ´𝜖p𝑟q, 𝑥 P r𝛼1 ` 𝑟, 𝛼2 ´ 𝑟s, 𝑦 P r´𝑟{2, 𝑟{2s,

for all 𝑐 P p0, 𝑐𝑟 q. Furthermore, it holds that

H𝑐p𝑥 ˘ i𝛿𝑐q ě 𝐵𝛿5{2𝑐, 𝑥 P r𝛼1, 𝛽𝑐,1s, 𝑐 P p0, 1q.

3.2. Additional Properties. Two questions were left unanswered in [5, Section 7.4],
namely, the behavior of the constants 𝜖𝑐 in Lemma 3.3 and of the function 𝛿𝛽1p𝑐q in
Lemma 3.4 as 𝑐 Ñ 𝑐˚`.

Lemma 3.6. The limit lim𝑐Ñ𝑐˚` 𝜖𝑐{
?
𝑧𝑐 ´ 𝛽1 exists and is non-zero. Moreover, 𝛿𝛽1p𝑐q ě

𝐶
?
𝑧𝑐 ´ 𝛽1, 𝑐 ą 𝑐˚, for some constant 𝐶 independent of 𝑐.

Proof. Because ℎ𝑐pzq has a simple pole at β1 when 𝑐 ą 𝑐˚, we can write

ℎ
p0q
𝑐 p𝑥q ´ ℎ

p1q
𝑐 p𝑥q “ 2𝑢𝑐p𝑥 ´ 𝛽1q´1{2 `

8
ÿ

𝑘“0
2𝑢𝑘,𝑐p𝑥 ´ 𝛽1q𝑘`1{2,

where p𝑥 ´ 𝛽1q1{2 is a branch positive for 𝑥 ą 𝛽1. Then it holds that

1
p𝑥 ´ 𝛽1q1{2

ˆ

´
3
4

ż 𝑥

𝛽1

´

ℎ
p0q
𝑐 ´ ℎ

p1q
𝑐

¯

p𝑠q𝑑𝑠

˙

“ ´3𝑢𝑐 ´

8
ÿ

𝑘“0

3𝑢𝑘,𝑐
2𝑘 ` 3

p𝑥 ´ 𝛽1q𝑘`1.
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Thus, we get from (43) and the last claim of Lemma 3.3 that

´3𝑢𝑐 “ ´𝜁𝑐,𝛽1p𝛽1 ` 𝜖𝑐q𝜁 1
𝑐,𝛽1

p𝛽1q1{2 “ ´p1 ` 𝑜p1qq

´

𝜁 1
𝛽1

p𝛽1q3{2𝜖𝑐 ` O
`

𝜖2
𝑐

˘

¯

as 𝑐 Ñ 𝑐˚`, where 𝜁 1
𝛽1

p𝛽1q ą 0 by Lemma 3.2. The first claim of the lemma now follows
from the fact that 𝑢𝑐{

?
𝑧𝑐 ´ 𝛽1 has a limit as 𝑐 Ñ 𝑐˚`, which has been shown in the proof

of [5, Lemma 7.7].
The function 𝛿𝛽1p𝑐q in Lemma 3.4 was defined simply as the largest radius of confor-

mality of 𝜁𝑐,𝛽1p𝑧q from (44) (times a fixed constant less than 1 to ensure conformality in
the closed disk). Combining (43) and (44) we can see that

9𝜁𝑐,𝛽1p𝑧q “ 𝜁𝑐,𝛽1p𝑧q
`

𝜁𝑐,𝛽1p𝑧q ´ 𝜁𝑐,𝛽1p𝛽1 ` 𝜖𝑐q
˘2

“: p𝑧 ´ 𝛽1qp𝑧 ´ 𝛽1 ´ 𝜖𝑐q2𝐹𝑐p𝑧q,

where the functions 𝐹𝑐p𝑧q are analytic and non-vanishing in t|𝑧 ´ 𝛽1| ď 𝛿𝛽1𝑐
˚u, continu-

ously depend on the parameter 𝑐 (this is a property of the functions ℎ𝑐pzq), and converge
there uniformly to 𝐹𝑐˚ p𝑧q :“ p𝜁𝛽1p𝑧q{p𝑧 ´ 𝛽1qq3 as 𝑐 Ñ 𝑐˚`. Observe that 𝐹𝑐˚ p𝛽1q ą 0
by Lemma 3.2 and therefore the values 𝐹𝑐p𝛽1q are uniformly separated away from zero.
Similarly, there exists a constant 𝐾 , independent of 𝑐, such that

|𝐹𝑐p𝑧q|, |𝐹1
𝑐p𝑧q|, |pp𝑧 ´ 𝛽1q𝐹𝑐p𝑧qq1| ď 𝐾

for 𝑧 in t|𝑧 ´ 𝛽1| ď 𝛿𝛽1𝑐
˚u and any 𝑐 P r𝑐˚, 𝑐1s. To simplify the notation slightly, let

𝐺𝑐p𝑧q “ 𝐹𝑐p𝑧 ` 𝛽1q. Let 𝐴 be such that 0 ă 𝐴 ď min𝑐˚ď𝑐ď𝑐1 𝐺𝑐p0q{p20𝐾q. For further
simplicity, assume that 𝑐 is sufficiently close to 𝑐˚ so that 𝜖𝑐 ď 1 and 𝐴𝜖𝑐 ă 𝛿𝛽1𝑐

˚.
Trivially, it holds that

𝐷p𝑧1, 𝑧2q :“
𝑧1p𝑧1 ´ 𝜖𝑐q2𝐺𝑐p𝑧1q ´ 𝑧2p𝑧2 ´ 𝜖𝑐q2𝐺𝑐p𝑧2q

𝑧1 ´ 𝑧2
“ 𝜖2

𝑐𝐺𝑐p0q`

𝑧1
p𝑧1 ´ 𝜖𝑐q2𝐺𝑐p𝑧1q ´ 𝜖2

𝑐𝐺𝑐p0q

𝑧1
` 𝑧2

p𝑧1 ´ 𝜖𝑐q2𝐺𝑐p𝑧1q ´ p𝑧2 ´ 𝜖𝑐q2𝐺𝑐p𝑧2q

𝑧1 ´ 𝑧2
.

Let 𝑧1, 𝑧2 be in t|𝑧| ď 𝐴𝜖𝑐u. Since 𝜖𝑐 , 𝐴 ď 1, we get that
ˇ

ˇ

ˇ

ˇ

p𝑧1 ´ 𝜖𝑐q2𝐺𝑐p𝑧1q ´ 𝜖2
𝑐𝐺𝑐p0q

𝑧1

ˇ

ˇ

ˇ

ˇ

ď |𝑧1𝐺𝑐p𝑧1q|`2𝜖𝑐|𝐺𝑐p𝑧1q|`𝜖2
𝑐

ˇ

ˇ

ˇ

ˇ

𝐺𝑐p𝑧1q ´ 𝐺𝑐p0q

𝑧1

ˇ

ˇ

ˇ

ˇ

ď 4𝐾𝜖𝑐 .

Similarly, we obtain that
ˇ

ˇ

ˇ

ˇ

p𝑧1 ´ 𝜖𝑐q2𝐺𝑐p𝑧1q ´ p𝑧2 ´ 𝜖𝑐q2𝐺𝑐p𝑧2q

𝑧1 ´ 𝑧2

ˇ

ˇ

ˇ

ˇ

ď |𝑧1 `𝑧2||𝐺𝑐p𝑧1q|`|𝑧2|2
ˇ

ˇ

ˇ

ˇ

𝐺𝑐p𝑧1q ´ 𝐺𝑐p𝑧2q

𝑧1 ´ 𝑧2

ˇ

ˇ

ˇ

ˇ

` 2𝜖𝑐
ˇ

ˇ

ˇ

ˇ

𝑧1𝐺𝑐p𝑧1q ´ 𝑧2𝐺𝑐p𝑧2q

𝑧1 ´ 𝑧2

ˇ

ˇ

ˇ

ˇ

` 𝜖2
𝑐

ˇ

ˇ

ˇ

ˇ

𝐺𝑐p𝑧1q ´ 𝐺𝑐p𝑧2q

𝑧1 ´ 𝑧2

ˇ

ˇ

ˇ

ˇ

ď 6𝐾𝜖𝑐 .

Hence, we can conclude that
|𝐷p𝑧1, 𝑧2q| ě 𝜖2

𝑐𝐺𝑐p0q ´ 10𝐴𝐾𝜖2
𝑐 ě 𝜖2

𝑐𝐺𝑐p0q{2 ą 0.

That is, we have shown that 𝑧p𝑧 ´ 𝜖𝑐q2𝐺𝑐p𝑧q is conformal in t|𝑧| ă 𝐴𝜖𝑐u. Thus, 𝜁𝑐,𝛽1p𝑧q

is conformal in t|𝑧 ´ 𝛽1| ă 𝐴𝜖𝑐} and therefore 𝛿𝛽1p𝑐q ě 𝐴𝜖𝑐 . In view of the first claim of
the lemma, the second one follows. �

Notice that we can assume that 𝛿𝛽1p𝑐q is an increasing function of 𝑐 P p𝑐˚, 1s. Indeed,
this always can be achieved by replacing 𝛿𝛽1p𝑐q with min𝑥Pr𝑐,1s 𝛿𝛽1p𝑥q. The corresponding
bound of Lemma 3.6 will not change since

min
𝑥Pr𝑐,1s

𝛿𝛽1p𝑥q “ 𝛿𝛽1p𝑥𝑐q ě 𝐶
a

𝑧𝑥𝑐 ´ 𝛽1 ě 𝐶
a

𝑧𝑐 ´ 𝛽1
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for some 𝑥𝑐 P r𝑐, 1s, where the last inequality holds since 𝑧𝑐 is an increasing function of 𝑐.

3.3. Polygons of Conformality. In this section we describe domains of conformality that
we shall use to define the “lens”. The construction is not deep but somewhat technical.

Let constants 𝛿𝛼1 , 𝛿𝛽1 be as in the preceding lemmas of this section and constants 𝛿𝛼2 , 𝛿𝛽2

be defined similarly but with respect to Δ2. It follows from (39) that

(46) 𝛿Δ :“ min
"

1, 𝛿𝛼1 , 𝛿𝛽1 , 𝛿𝛼2 , 𝛿𝛽2 ,
𝛼2 ´ 𝛽1

3
, inf
𝑐Pp0,1q

"

|Δ𝑐,1|

3𝑐
,

|Δ𝑐,2|

3p1 ´ 𝑐q

**

ą 0.

Because the conformal maps 𝜁𝑐,𝛽1p𝑧q from Lemma 3.3 form a continuous family in the
parameter 𝑐 P r𝑐˚, 𝑐1s, it follows from Lemma 3.6 that there exists a constant 𝐾1 ą 0 such
that

𝜁𝑐,𝛽1p𝛽1 ` 𝜖𝑐q ď 𝐾1
a

𝑧𝑐 ´ 𝛽1.

On the other hand, the same continuity in the parameter 𝑐 and (40) imply that there exists
a constant 𝐾2 ą 0 such that for every 𝛿 P p0, 𝛿Δq and 𝑐 P r𝑐˚, 𝑐1s it holds that

(47) min
!

ˇ

ˇ𝜁𝑐,𝛽1p𝑠q
ˇ

ˇ : |𝑠 ´ 𝛽1| “ 𝛿𝑐˚{
?

2
)

ě 𝐾2𝛿.

Since 𝑧𝑐 is an increasing function of 𝑐, given 𝛿 P p0, 𝛿Δq, there exists a unique 𝑐1p𝛿q ą 𝑐˚

such that 𝑧𝑐1p𝛿q ´ 𝛽1 “ p𝐾2{𝐾1q2𝛿2, where we adjust the constants 𝐾1, 𝐾2 so that 𝑐1p𝛿Δq ď

𝑐1. Then

(48) 𝜁𝑐,𝛽1p𝛽1 ` 𝜖𝑐q ď min
!

ˇ

ˇ𝜁𝑐,𝛽1p𝑠q
ˇ

ˇ : |𝑠 ´ 𝛽1| “ 𝛿𝑐{
?

2
)

, 𝑐 P r𝑐˚, 𝑐1p𝛿qs,

a technical inequality that will be important to us later. Another consequence of this
definition of 𝑐1p𝛿q and Lemma 3.6 is that

𝐾 1 :“ min
"

1, inf
0ă𝛿ă𝛿Δ

𝛿𝛽1p𝑐1p𝛿qq

𝛿

*

ą 0.

Denote by𝑈p𝑧, 𝑟q the interior of the square with vertices 𝑧˘𝑟, 𝑧˘i𝑟 . For any 𝛿 P p0, 𝛿Δq,
set

(49) 𝐾 “ 𝐾p𝛿, 𝑐q :“

$

’

’

&

’

’

%

1{3, 𝑐 ă 𝑐1p𝛿q, 𝛽1 ´ 𝛽𝑐,1 ą 2𝛿𝑐{3,
1, 𝑐 ă 𝑐1p𝛿q, 𝛽1 ´ 𝛽𝑐,1 ď 2𝛿𝑐{3,
𝐾 1, 𝑐 ě 𝑐1p𝛿q.

Since 𝛿𝛽1p𝑐q is an increasing function of 𝛿, it therefore holds that 𝛿𝛽1p𝑐q ě 𝛿𝛽1p𝑐1p𝛿qq ě 𝐾𝛿

when 𝑐 P r𝑐1p𝛿q, 1q. Define

(50) 𝑈𝑐,𝑒 :“ 𝑈p𝑒, 𝐾𝛿𝑐q, 𝑒 P t𝛼1, 𝛽𝑐,1u.

This definition achieves the following:
‚ the map 𝜁𝑐,𝛼1p𝑧q from Lemma 3.1 is conformal in𝑈𝑐,𝛼1 ;
‚ since 𝛽1 ´ 𝛽𝑐,1 is a decreasing function of 𝑐 while 2𝛿𝑐{3 is clearly increasing, the

squares 𝑈𝑐,𝛽𝑐,1 start out (as 𝑐 increases from 0) with 𝐾 “ 1{3 and in these cases
the point 𝛽1 does not belong to the interior of the squares and lies distance at least
𝛿𝑐{3 from their boundary;

‚ when the parameter 𝑐 reaches the value for which 𝛽1 ´ 𝛽𝑐,1 “ 2𝛿𝑐{3, the value
of 𝐾 changes to 1 and from that point on 𝛽1 belongs to the interior of the squares
𝑈𝑐,𝛽𝑐,1 and lies distance at least 𝛿𝑐{3

?
2 from their boundary;

‚ when 𝛽1 belongs to the interior of the square 𝑈𝑐,𝛽𝑐,1 it is not at its center unless
𝑐 ě 𝑐˚;
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‚ the map 𝜁𝛽𝑐,1p𝑧q from Lemma 3.2 is conformal within𝑈𝑐,𝛽𝑐,1 for each 𝑐 ď 𝑐˚;
‚ when 𝑐 P p𝑐˚, 𝑐1p𝛿qq the point 𝛽1 ` 𝜖𝑐 belongs to the interior of the square 𝑈𝑐,𝛽1

by (48) and the map 𝜁𝑐,𝛽1p𝑧q from Lemma 3.3 is conformal in this square;
‚ when 𝑐 P r𝑐1p𝛿q, 1q, the map 𝜁𝑐,𝛽1p𝑧q from Lemma 3.4 is conformal within the

square 𝑈𝑐,𝛽1 whose size is proportional to 𝛿𝑐 as in all the other cases, which was
the motivating reason behind the definition of 𝑐1p𝛿q.

𝛽𝑐,1 ` 𝛿𝑐{2

𝛽1

(a)

𝛽𝑐,1 ` 𝛿𝑐{2

𝛼1 ` 3𝑟{2

𝛽1

(b)

Figure 2. Polygons B𝑈𝑐,𝛽1 ; panel (a) 𝑐 P r𝑐𝑟 , 𝑐
˚q; panel (b) 𝑐 P p0, 𝑐𝑟 q.

When 𝛽1 does not belong to the interior of the square 𝑈𝑐,𝛽𝑐,1 , we need to define
a polygon 𝑈𝑐,𝛽1 containing 𝛽1 in its interior. For reasons that have to do with future
asymptotic analysis, the definition of this polygon is rather technical as well. Let 𝑟 ą 0 be
small enough (in particular, 3𝑟{2 ă 𝛽1 ´𝛼1) and 𝑐𝑟 be as in Lemma 3.5. When 𝑐 P p0, 𝑐˚q

and 𝛽1 R 𝑈𝑐,𝛽𝑐,1 , we set

(51) 𝑈𝑐,𝛽1 :“
ď

𝑥Pr𝛽𝑐,1`𝛿𝑐{2,𝛽1s

𝑈p𝑥, 𝛿𝑐{6q Y
ď

𝑥Pr𝛼1`3𝑟{2,𝛽1s

𝑈p𝑥, 𝑟{2q,

where the second union is present only if 𝑐 ă 𝑐𝑟 and always stays within the rectangle of
the second estimate of Lemma 3.5, see Figure 2 (we always can decrease 𝑐𝑟 if necessary
so that 𝛽𝑐𝑟 ,1 ` 𝑐𝑟{2 ă 𝛼1 ` 3𝑟{2). Notice that the domains 𝑈𝑐,𝛼1 , 𝑈𝑐,𝛽𝑐,1 , and 𝑈𝑐,𝛽1 are
disjoint, however, B𝑈𝑐,𝛽𝑐,1 and B𝑈𝑐,𝛽1 share a common point when both sets are distinct
and non-empty.

The domains 𝑈𝑐,𝛼2 , 𝑈𝑐,𝛼𝑐,2 , and 𝑈𝑐,𝛽2 can be defined similarly. We use domains with
polygonal boundary rather then disks for a not very deep reason that in this case it is
easier to explain uniform boundedness of Cauchy operators on our variable lenses, see [5,
Lemma 7.9].

4. Orthogonal Polynomials and Riemann-Hilbert Problems

To slightly simplify the notation we agree that from now on all the quantities that depend
on the parameter 𝑐 will simply be labeled by ®𝑛 when referred to with 𝑐 “ 𝑐p®𝑛q “ 𝑛1{|®𝑛|.

We let rAs𝑖, 𝑗 stand for p𝑖, 𝑗q-th entry of a matrix A and E𝑖, 𝑗 be the matrix with all zero
entries except for rE𝑖, 𝑗s𝑖, 𝑗 “ 1. Also, we set 𝜎p®𝑛q :“ diag p|®𝑛|,´𝑛1,´𝑛2q, ®𝑛 “ p𝑛1, 𝑛2q.

4.1. Initial RH Problem. Consider the following Riemann-Hilbert problem (RHP-Y ):
find a 2 ˆ 2 matrix function Y p𝑧q such that

(a) Y p𝑧q is analytic in CzpΔ1 Y Δ2q and lim
𝑧Ñ8

Y p𝑧q𝑧´𝜎p®𝑛q “ I;
(b) Y p𝑧q has continuous traces on each Δ˝

𝑖
that satisfy

Y`p𝑥q “ Y´p𝑥qpI ` 𝜌𝑖p𝑥qE1,𝑖`1q, 𝑖 P t1, 2u;
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(c) the entries of the p𝑖 ` 1q-st column of Y p𝑧q behave like O plog |𝑧 ´ 𝑒|q while the
remaining entries stay bounded as 𝑧 Ñ 𝑒 P t𝛼𝑖 , 𝛽𝑖u, 𝑖 P t1, 2u.

Let 𝑅p𝑖q

®𝑛 p𝑧q, 𝑖 P t1, 2u, be the 𝑖-th function of the second kind associated with 𝑃®𝑛p𝑥q.
That is,

(52) 𝑅
p𝑖q

®𝑛 p𝑧q :“
1

2𝜋i

ż

𝑃®𝑛p𝑥q𝜌𝑖p𝑥q𝑑𝑥

𝑥 ´ 𝑧
“

ℎ®𝑛,𝑖
𝑧𝑛𝑖`1 ` O

ˆ

1
𝑧𝑛𝑖`2

˙

, 𝑧 P CzΔ𝑖 ,

where the estimate follows from (1) and (4) and holds as 𝑧 Ñ 8. Assume that the
multi-index ®𝑛 is such that

(53) degp𝑃®𝑛q “ |®𝑛| and ℎ®𝑛´®𝑒1 ,1ℎ®𝑛´®𝑒2 ,2 ‰ 0.

The following lemma holds, see [27, Proposition 3.1].

Lemma 4.1. If 𝑃®𝑛p𝑧q satisfying (1) and 𝑅p𝑖q

®𝑛 p𝑧q, 𝑖 P t1, 2u, given by (52), satisfy (53), then
RHP-Y is solved by

(54) Y p𝑧q “

¨

˚

˚

˝

𝑃®𝑛p𝑧q 𝑅
p1q

®𝑛 p𝑧q 𝑅
p2q

®𝑛 p𝑧q

ℎ´1
®𝑛´®𝑒1 ,1

𝑃®𝑛´®𝑒1p𝑧q ℎ´1
®𝑛´®𝑒1 ,1

𝑅
p1q

®𝑛´®𝑒1
p𝑧q ℎ´1

®𝑛´®𝑒1 ,1
𝑅

p2q

®𝑛´®𝑒1
p𝑧q

ℎ´1
®𝑛´®𝑒2 ,2

𝑃®𝑛´®𝑒2p𝑧q ℎ´1
®𝑛´®𝑒2 ,2

𝑅
p1q

®𝑛´®𝑒2
p𝑧q ℎ´1

®𝑛´®𝑒2 ,2
𝑅

p2q

®𝑛´®𝑒2
p𝑧q

˛

‹

‹

‚

.

Conversely, if a solution of RHP-Y exists, then it is unique and is given by (54) with 𝑃®𝑛p𝑧q

and 𝑅p𝑖q

®𝑛 p𝑧q, 𝑖 P t1, 2u, necessarily satisfying (53).

4.2. Opening of the Lenses. The next step in the Riemann-Hilbert analysis consists in
factorizing the jump matrix and moving some of the jump relations into the complex plane,
the so-called “opening of the lenses”. In constructing this lens we rely heavily on the
material of Section 3.3.

𝛼1 𝛽®𝑛,1

B𝑈®𝑛,𝛼1 B𝑈®𝑛,𝛽 ®𝑛,1

Γ
`

®𝑛,1

Γ
´

®𝑛,1

Ω®𝑛,1

Figure 3. The boundaries B𝑈®𝑛,𝛼1 and B𝑈®𝑛,𝛽 ®𝑛,1
, arcs Γ˘

®𝑛,1, and domains Ω˘

®𝑛,1 (shaded).

Given 𝛿 P p0, 𝛿Δs, see (46), let 𝑈®𝑛,𝑒, 𝑒 P t𝛼1, 𝛽®𝑛,1, 𝛽1u, be the squares defined in (50)
and (51) (and via similar formulae at t𝛼2, 𝛼®𝑛,2, 𝛽2u). Recall the definition of the rays 𝐼˘
after (38) and the conformal maps constructed in (41)–(44). Let 𝜏˚ be as in Section 2.2, 𝑐˚

as in (10), and 𝑐1p𝛿q as defined before (48). Set 𝜁®𝑛,𝛼1p𝑧q :“ 𝜁𝑐p®𝑛q,𝛼1p𝑧q, see (41),

(55) 𝜁®𝑛,𝛽1p𝑧q :“

#

𝜁𝛽 ®𝑛,1p𝑧q, 𝑐p®𝑛q ď 𝑐˚, 𝜁𝛽 ®𝑛,1p𝛽1q ą 𝜏˚|®𝑛|´2{3,

𝜁𝛽 ®𝑛,1p𝑧q ´ 𝜁𝛽 ®𝑛,1p𝛽1q, 𝑐p®𝑛q ď 𝑐˚, 𝜁𝛽 ®𝑛,1p𝛽1q ď 𝜏˚|®𝑛|´2{3,

where 𝜁𝛽 ®𝑛,1p𝑧q is given by (42) (notice that 𝜁𝛽𝑐,1p𝛽1q ě 0 when 𝑐 ď 𝑐˚), and

(56) 𝜁®𝑛,𝛽1p𝑧q :“

#

𝜁𝑐p®𝑛q,𝛽1p𝑧q, 𝑐˚ ă 𝑐p®𝑛q ă 𝑐1p𝛿q, see (43),

𝜁𝑐p®𝑛q,𝛽1p𝑧q, 𝑐1p𝛿q ď 𝑐p®𝑛q, see (44)
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(let us emphasize that the choice whether (43) or (44) is used does depend on the value of
𝛿; in the first line of (56) we also slightly departed from our labeling convention, hopefully
without much ambiguity). The maps 𝜁®𝑛,𝛼2p𝑧q and 𝜁®𝑛,𝛽2p𝑧q can be defined similarly.

We now select open Jordan arcs Γ˘

®𝑛,𝑖 connecting 𝛼®𝑛,𝑖 to 𝛽®𝑛,𝑖 so that

(57) 𝜁®𝑛,𝛽𝑖
`

Γ
˘

®𝑛,𝑖 X𝑈®𝑛,𝛽 ®𝑛,𝑖

˘

Ă 𝐼˘, 𝜁𝛼®𝑛,𝑖

`

Γ
˘

®𝑛,𝑖 X𝑈®𝑛,𝛼®𝑛,𝑖

˘

Ă 𝐼¯,

and that consist of straight line segments outside of𝑈®𝑛,𝑒, 𝑒 P 𝐸 ®𝑛, see Figure 3. These arcs
are oriented from 𝛼®𝑛,𝑖 to 𝛽®𝑛,𝑖 . We denote by Ω

˘

®𝑛,𝑖 the domains delimited by Γ
˘

®𝑛,𝑖 and Δ®𝑛,𝑖 .
As 𝜌𝑖p𝑥q is a restriction of an analytic function, that we keep denoting by 𝜌𝑖p𝑧q, we

can decrease the constant 𝛿Δ, if necessary, so that 𝜌𝑖p𝑧q is analytic and non-vanishing in a
simply connected neighborhood of the connected component intersecting Δ𝑖 of the above
constructed lens for any value of 𝛿 ď 𝛿Δ.

4.3. Factorized Riemann-Hilbert Problem. For compactness of notation, we introduce
transformations T𝑖 , 𝑖 P t1, 2u, that act on 2 ˆ 2 matrices in the following way:

T1

ˆ

𝑒11 𝑒12
𝑒21 𝑒22

˙

“

¨

˝

𝑒11 𝑒12 0
𝑒21 𝑒22 0
0 0 1

˛

‚ and T2

ˆ

𝑒11 𝑒12
𝑒21 𝑒22

˙

“

¨

˝

𝑒11 0 𝑒12
0 1 0
𝑒21 0 𝑒22

˛

‚.

Given Y p𝑧q, the solution of RHP-Y , set

(58) Xp𝑧q :“ Y p𝑧q

$

’

’

&

’

’

%

T𝑖

˜

1 0
¯1{𝜌𝑖p𝑧q 1

¸

, 𝑧 P Ω
˘

®𝑛,𝑖 ,

I , otherwise.

Then Xp𝑧q solves the following Riemann-Hilbert problem (RHP-X):

(a) Xp𝑧q is analytic in Cz Y2
𝑖“1

`

Δ𝑖 Y Γ
`

®𝑛,𝑖 Y Γ
´

®𝑛,𝑖
˘

and lim
𝑧Ñ8

Xp𝑧q𝑧´𝜎p®𝑛q “ I;

(b) Xp𝑧q has continuous traces on Y2
𝑖“1

`

Δ˝
𝑖

Y Γ
`

®𝑛,𝑖 Y Γ
´

®𝑛,𝑖
˘

that satisfy

X`p𝑠q “ X´p𝑠q

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

T𝑖

˜

0 𝜌𝑖p𝑠q

´1{𝜌𝑖p𝑠q 0

¸

, 𝑠 P Δ®𝑛,𝑖 ,

T𝑖

˜

1 0
1{𝜌𝑖p𝑠q 1

¸

, 𝑠 P Γ
`

®𝑛,𝑖 Y Γ
´

®𝑛,𝑖 ,

T𝑖

˜

1 𝜌𝑖p𝑠q

0 1

¸

, 𝑠 P Δ˝
𝑖
zΔ®𝑛,𝑖;

(c) the entries of the first and p𝑖 ` 1q-st columns of Xp𝑧q behave like O plog |𝑧 ´ 𝑒|q

while the remaining entries stay bounded as 𝑧 Ñ 𝑒 P t𝛼𝑖 , 𝛽𝑖u.
The following lemma is a combination of [27, Lemma 8.1] and [8, Lemma 6.4].

Lemma 4.2. RHP-X and RHP-Y are simultaneously solvable and the solutions are unique
and connected by (58).

5. Global Parametrix

As will become apparent later, away from the intervals Δ®𝑛,1 and Δ®𝑛,2 we expect Xp𝑧q

to behave like the solution of the following Riemann-Hilbert problem (RHP-N ):
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(a) Np𝑧q is analytic in CzpΔ®𝑛,1 Y Δ®𝑛,2q and lim
𝑧Ñ8

Np𝑧q𝑧´𝜎p®𝑛q “ I;
(b) Np𝑧q has continuous traces on each Δ˝

®𝑛,𝑖 that satisfy

N`p𝑠q “ N´p𝑠qT𝑖

ˆ

0 𝜌𝑖p𝑠q

´1{𝜌𝑖p𝑠q 0

˙

;

(c) it holds that Np𝑧q “ O
`

|𝑧 ´ 𝑒|´1{4˘ as 𝑧 Ñ 𝑒 P 𝐸 ®𝑛.

LetΦ®𝑛pzq,𝑤 ®𝑛,𝑖p𝑧q, and 𝑆 ®𝑛pzq be the functions given by (25), (21), and (22), respectively.
Recall also the definition of 𝜒®𝑛pzq in (11) as well as (12). Set

(59) Υ®𝑛,𝑖pzq :“ 𝐴®𝑛,𝑖
`

𝜒®𝑛pzq ´ 𝐵®𝑛,𝑖
˘´1

, 𝑖 P t1, 2u.

It follows from (12) that Υ®𝑛,𝑖pzq is a conformal map of 𝕾 ®𝑛 onto C that maps 8p𝑖q into 8

and 8p0q into 0. More precisely, it holds that

Υ
p𝑖q

®𝑛,𝑖p𝑧q “ 𝑧 ` Op1q and Υ
p0q

®𝑛,𝑖 p𝑧q “ 𝐴®𝑛,𝑖𝑧
´1 ` O

`

𝑧´2˘

as 𝑧 Ñ 8. Put Sp𝑧q :“ diag
`

𝑆
p0q

®𝑛 p𝑧q, 𝑆
p1q

®𝑛 p𝑧q, 𝑆
p2q

®𝑛 p𝑧q
˘

and define

(60) Mp𝑧q :“ S´1p8q

¨

˚

˚

˝

1 1{𝑤 ®𝑛,1p𝑧q 1{𝑤 ®𝑛,2p𝑧q

Υ
p0q

®𝑛,1p𝑧q Υ
p1q

®𝑛,1p𝑧q{𝑤 ®𝑛,1p𝑧q Υ
p2q

®𝑛,1p𝑧q{𝑤 ®𝑛,2p𝑧q

Υ
p0q

®𝑛,2p𝑧q Υ
p1q

®𝑛,2p𝑧q{𝑤 ®𝑛,1p𝑧q Υ
p2q

®𝑛,2p𝑧q{𝑤 ®𝑛,2p𝑧q

˛

‹

‹

‚

Sp𝑧q.

Then it can be readily verified using (23) that RHP-N is solved by Np𝑧q :“ CpMDqp𝑧q,
see [5, Section 7.3], where C is a diagonal matrix of constants such that

(61) lim
𝑧Ñ8

CDp𝑧q𝑧´𝜎p®𝑛q “ I and Dp𝑧q :“ diag
´

Φ
p0q

®𝑛 p𝑧q,Φ
p1q

®𝑛 p𝑧q,Φ
p2q

®𝑛 p𝑧q

¯

.

Since the jump matrices in RHP-N (b) have determinant 1, it follows from the second
identity in (23) and the normalization at infinity that detNp𝑧q is holomorphic in the entire
extended complex plane except for at most square root singularities at the elements of 𝐸 ®𝑛.
As those singularities are isolated, they are removable and detNp𝑧q ” 1. In fact, it holds
that detMp𝑧q ” detDp𝑧q ” detC “ 1.

Lemma 5.1. It holds that2 Mp𝑧q “ O
`

𝛿´1{2˘ uniformly for 𝑧 such that 𝛿𝑐p®𝑛q ď

distp𝑧, 𝐸 ®𝑛,1q and 𝛿p1 ´ 𝑐p®𝑛qq ď distp𝑧, 𝐸 ®𝑛,2q, where the constants in Op¨q are indepen-
dent of 𝑐p®𝑛q and 𝛿. Moreover, it holds that

|Mp𝑧q| „

¨

˝

𝛿´1{4 𝛿´1{4 1 ´ 𝑐p®𝑛q

𝛿´1{4 𝛿´1{4 𝑐p®𝑛qp1 ´ 𝑐p®𝑛qq

p1 ´ 𝑐p®𝑛qq𝛿´1{4 p1 ´ 𝑐p®𝑛qq𝛿´1{4 1

˛

‚

uniformly on |𝑧 ´ 𝛼1| “ 𝛿𝑐p®𝑛q and |𝑧 ´ 𝛽®𝑛,1| “ 𝛿𝑐p®𝑛q and a similar formula holds on
|𝑧´𝛼®𝑛,2| “ 𝛿p1´𝑐p®𝑛qq and |𝑧´ 𝛽2| “ 𝛿p1´𝑐p®𝑛qq, where the constants of proportionality
are independent of 𝑐p®𝑛q and 𝛿.

Proof. This is [5, Lemma 7.3]. There it was stated that Mp𝑧q “ O𝛿p1q. However, the
actual proof shows that Mp𝑧q “ O

`

𝛿´1{2˘, see also the forthcoming Lemma 5.2. �

2We write |𝐴p𝑧q| „ |𝐵p𝑧q| if 𝐶´1|𝐴p𝑧q| ď |𝐵p𝑧q| ď 𝐶|𝐴p𝑧q| for some 𝐶 ą 1 and |Ap𝑧q| „ |Bp𝑧q| if
|rAs𝑖, 𝑗p𝑧q| „ |rBs𝑖, 𝑗p𝑧q| for each pair 𝑖, 𝑗 P t1, 2, 3u.
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Let Π®𝑛pzq be the rational function defined in (15). Furthermore, let Π®𝑛,𝑖pzq, 𝑖 P t1, 2u,
be the rational functions on𝕾 ®𝑛 with the zero/pole divisors and the normalizations given by

(62) 8p0q ` 8p𝑖q ` 28p3´𝑖q ´ α1 ´ β®𝑛,1 ´ α®𝑛,2 ´ β2 and Π
p𝑖q

®𝑛,𝑖p𝑧q “
1
𝑧

` O
ˆ

1
𝑧2

˙

as 𝑧 Ñ 8. It was shown in [5, Equation (7.7)] that

(63) M´1p𝑧q “ S´1p𝑧q

¨

˚

˚

˚

˝

Π
p0q

®𝑛 p𝑧q Π
p0q

®𝑛,1p𝑧q Π
p0q

®𝑛,2p𝑧q

𝑤 ®𝑛,1p𝑧qΠ
p1q

®𝑛 p𝑧q 𝑤 ®𝑛,1p𝑧qΠ
p1q

®𝑛,1p𝑧q 𝑤 ®𝑛,1p𝑧qΠ
p1q

®𝑛,2p𝑧q

𝑤 ®𝑛,2p𝑧qΠ
p2q

®𝑛 p𝑧q 𝑤 ®𝑛,2p𝑧qΠ
p2q

®𝑛,1p𝑧q 𝑤 ®𝑛,2p𝑧qΠ
p2q

®𝑛,2p𝑧q

˛

‹

‹

‹

‚

Sp8q.

Then the following lemma takes place.

Lemma 5.2. It holds that M´1p𝑧q “ O
`

𝛿´1{2˘ uniformly for 𝑧 satisfying 𝛿𝑐p®𝑛q ď

distp𝑧, 𝐸 ®𝑛,1q and 𝛿p1 ´ 𝑐p®𝑛qq ď distp𝑧, 𝐸 ®𝑛,2q, where the constants in Op¨q are independent
of 𝑐p®𝑛q and 𝛿. Moreover, it holds that

M´1p𝑧q “ O

¨

˝

𝛿´1{4 𝛿´1{4 p1 ´ 𝑐p®𝑛qq𝛿´1{4

𝛿´1{4 𝛿´1{4 p1 ´ 𝑐p®𝑛qq𝛿´1{4

1 ´ 𝑐p®𝑛q 1 ´ 𝑐p®𝑛q 1

˛

‚

uniformly on |𝑧 ´ 𝛼1| “ 𝛿𝑐p®𝑛q and |𝑧 ´ 𝛽®𝑛,1| “ 𝛿𝑐p®𝑛q and a similar formula holds on
|𝑧 ´ 𝛼®𝑛,2| “ 𝛿p1 ´ 𝑐p®𝑛qq and |𝑧 ´ 𝛽2| “ 𝛿p1 ´ 𝑐p®𝑛qq, where Op¨q is independent of 𝑐p®𝑛q

and 𝛿.

Proof. It was shown in [5, Lemma 7.3] that
(64)
#

Sp8q „ diag
`

𝑐p®𝑛q´1{3p1 ´ 𝑐p®𝑛qq´1{3, 𝑐p®𝑛q2{3p1 ´ 𝑐p®𝑛qq´1{3, 𝑐p®𝑛q´1{3p1 ´ 𝑐p®𝑛qq2{3˘ ,

|Sp𝑧q| „ Sp8qdiag
`

𝛿´1{4, 𝛿1{4, 1
˘

,

uniformly on |𝑧´𝛼1| “ 𝛿𝑐p®𝑛q and |𝑧´𝛽®𝑛,1| “ 𝛿𝑐p®𝑛q, where the constants of proportionality
are independent of 𝑐p®𝑛q and 𝛿. It was further shown in [5, Lemma 5.3] that

(65) p´1q3´𝑖p𝑤 ®𝑛,1𝑤 ®𝑛,2qp𝑧qΠ®𝑛,3´𝑖pzq “

$

’

’

’

’

&

’

’

’

’

%

´

Υ
p2q

®𝑛,𝑖 ´ Υ
p1q

®𝑛,𝑖

¯

p𝑧q, z P 𝕾p0q

®𝑛 ,
´

Υ
p0q

®𝑛,𝑖 ´ Υ
p2q

®𝑛,𝑖

¯

p𝑧q, z P 𝕾p1q

®𝑛 ,
´

Υ
p1q

®𝑛,𝑖 ´ Υ
p0q

®𝑛,𝑖

¯

p𝑧q, z P 𝕾p2q

®𝑛 ,

for 𝑖 P t1, 2u and

(66) p𝑤 ®𝑛,1𝑤 ®𝑛,2qp𝑧qΠ®𝑛pzq “

$

’

’

’

’

&

’

’

’

’

%

´

Υ
p2q

®𝑛,2Υ
p1q

®𝑛,1 ´ Υ
p1q

®𝑛,2Υ
p2q

®𝑛,1

¯

p𝑧q, z P 𝕾p0q

®𝑛 ,
´

Υ
p0q

®𝑛,2Υ
p2q

®𝑛,1 ´ Υ
p2q

®𝑛,2Υ
p0q

®𝑛,1

¯

p𝑧q, z P 𝕾p1q

®𝑛 ,
´

Υ
p1q

®𝑛,2Υ
p0q

®𝑛,1 ´ Υ
p0q

®𝑛,2Υ
p1q

®𝑛,1

¯

p𝑧q, z P 𝕾p2q

®𝑛 .

Next, it was proven, see [5, Equation (5.23)], that

(67)
b

3p𝛼2 ´ 𝛽1q ă |𝑤 ®𝑛,1p𝑧q|{p𝑐p®𝑛q
?
𝛿q ă 3

a

𝛽2 ´ 𝛼1
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on |𝑧´𝛼1| “ 𝛿𝑐p®𝑛q and |𝑧´ 𝛽®𝑛,1| “ 𝛿𝑐p®𝑛q. Finally, it was deduced in [5, Lemma 5.2] that

(68)

$

’

&

’

%

𝑐p®𝑛q´1
ˇ

ˇΥ
p0q

®𝑛,1p𝑧q
ˇ

ˇ, 𝑐p®𝑛q´1
ˇ

ˇΥ
p1q

®𝑛,1p𝑧q
ˇ

ˇ, 𝑐p®𝑛q´2
ˇ

ˇΥ
p2q

®𝑛,1p𝑧q
ˇ

ˇ „ 1,

p1 ´ 𝑐p®𝑛qq´2
ˇ

ˇΥ
p0q

®𝑛,2p𝑧q
ˇ

ˇ, p1 ´ 𝑐p®𝑛qq´2
ˇ

ˇΥ
p1q

®𝑛,2p𝑧q
ˇ

ˇ,
ˇ

ˇΥ
p2q

®𝑛,2p𝑧q
ˇ

ˇ „ 1,

on t𝑧 : distp𝑧,Δ𝑐,1q ď 𝑐𝛿˚u for all 0 ă 𝛿˚ ď p𝛼2 ´ 𝛽1q{2, where the constants of
proportionality depend only on 𝛿˚. Then it follows from (63) and (65)–(68) that

(69) M´1p𝑧q “ S´1p𝑧qO

¨

˚

˝

𝛿´1{2 𝑐p®𝑛q´1𝛿´1{2 𝛿´1{2

𝑐p®𝑛q 1 𝑐p®𝑛q

p1 ´ 𝑐p®𝑛qq2 p1 ´ 𝑐p®𝑛qq2𝑐p®𝑛q´1 1

˛

‹

‚
Sp8q

uniformly on |𝑧 ´ 𝛼1| “ 𝛿𝑐p®𝑛q and |𝑧 ´ 𝛽®𝑛,1| “ 𝛿𝑐p®𝑛q, where Op¨q is independent of 𝑐p®𝑛q

and 𝛿 and one needs to observe that the functions in the third row of the middle matrix
in (63) are holomorphic at 𝛼1 and 𝛽®𝑛,1 and therefore their estimates, stated in (69), can
be obtained via (65)–(68) and the maximum modulus principle for holomorphic functions.
The second claim of the lemma now follows from (64) and (69). To see the validity of the
first claim, one needs to combine (68)–(69) with the maximum modulus principle as well
as the estimate

|S˘p𝑥q|´1 À S´1p8qdiag
`

1, 𝛿´1{4, 𝛿´1{4˘,

𝑥 P p𝛼1 ` 𝛿𝑐p®𝑛q, 𝛽®𝑛,1 ´ 𝛿𝑐p®𝑛qq Y p𝛼®𝑛,2 ` 𝛿𝑐p®𝑛q, 𝛽2 ´ 𝛿𝑐p®𝑛qq,

that follows from [5, Lemma 5.4]. �

6. Local Parametrices

To describe the behavior of Xp𝑧q within the domains 𝑈®𝑛,𝑒, we are seeking solutions of
the following Riemann-Hilbert problems (RHP-P 𝑒):

(a–c) P𝑒p𝑧q satisfies RHP-X(a–c) within𝑈®𝑛,𝑒;
(d) P𝑒p𝑠q “ Mp𝑠q

`

I ` O
`

𝛿´3{2𝜀
1{3
®𝑛
˘˘

Dp𝑠q uniformly on B𝑈®𝑛,𝑒.

The asymptotic formula in RHP-P 𝑒(d) will hold as long as 𝛿´3{2𝜀 ®𝑛 ď 𝔟 for some 𝔟 ą 0
fixed and small enough, which is of course the only asymptotically interesting case, and
constants in Op¨q will depend on 𝔟, but will be independent of 𝛿 and ®𝑛. We solve RHP-P 𝑒

only for 𝑒 P t𝛼1, 𝛽®𝑛,1, 𝛽1u with the understanding that solutions for 𝑒 P t𝛼2, 𝛼®𝑛,2, 𝛽2u are
constructed similarly.

6.1. Local Parametrix at 𝛼1. Observe that the principal branch 𝜁1{2
®𝑛,𝛼1

p𝑧q is positive on
p´8, 𝛼1q, see Lemma 3.1. Since Φ®𝑛pzq has a pole at 8p0q and a zero at 8p1q, it follows
from (27) and (41) that

(70) exp
!

4|®𝑛|𝜁
1{2
®𝑛,𝛼1

p𝑧q

)

“ Φ
p0q

®𝑛 p𝑧q{Φ
p1q

®𝑛 p𝑧q, 𝑧 P 𝑈®𝑛,𝛼1 .

According to (50), the square 𝑈®𝑛,𝛼1 contains a disk of radius at least 𝐾𝛿𝑐p®𝑛q{
?

2 centered
at 𝛼1. Then Lemma 3.1 and (40) yield that
(71) 𝐴˚

𝛼1

`

𝛿𝑛2
1
˘

ď |®𝑛|2 min
𝑠PB𝑈®𝑛,𝛼1

ˇ

ˇ𝜁®𝑛,𝛼1p𝑠q
ˇ

ˇ,

where 𝐴˚
𝛼1 :“ 𝐴𝛼1𝐾{

?
2. Then RHP-𝚿˚(a–c) and (70) imply that

(72) P𝛼1p𝑧q :“ E𝛼1p𝑧qT1

”

𝚿˚

`

|®𝑛|2𝜁®𝑛,𝛼1p𝑧q
˘

exp
!

´2|®𝑛|𝜁
1{2
®𝑛,𝛼1

p𝑧q𝜎3

)

𝜌
´𝜎3{2
1 p𝑧q

ı

Dp𝑧q
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satisfies RHP-P 𝛼1 (a–c) for any holomorphic prefactor E𝛼1p𝑧q. Using RHP-N (b) and the
definition of Np𝑧q in terms of Mp𝑧q after (60), which implies that these matrices obey
exactly the same jump relations, one can readily check that

(73) E𝛼1p𝑧q :“ Mp𝑧qT1

”

`

𝜎3K𝜎3
˘ `

|®𝑛|2𝜁®𝑛,𝛼1p𝑧q
˘

𝜌
´𝜎3{2
1 p𝑧q

ı´1

is holomorphic in 𝑈®𝑛,𝛼1zt𝛼1u. Since the first and second columns of Mp𝑧q have at most
quarter root singularities at 𝛼1 and the third one is bounded, see Lemma 5.1, E𝛼1p𝑧q is in
fact holomorphic in𝑈®𝑛,𝛼1 . Therefore, it follows from RHP-𝚿˚(d) and (71) that

(74) P𝛼1p𝑠q “ Mp𝑠q

´

I ` O

´

𝛿´1{2𝑛´1
1

¯¯

Dp𝑠q, 𝑠 P B𝑈®𝑛,𝛼1 ,

where Op¨q is independent of ®𝑛 and 𝛿, but does depend on 𝔟, which needs to be small
enough so that RHP-𝚿˚(d) is applicable. Recall also that detMp𝑧q ” detDp𝑧q ” 1 as
explained between (61) and (63). Hence, it holds that detE𝛼1p𝑧q ” 1{

?
2 and respectively

detP𝛼1p𝑧q ” 1.

6.2. Local Parametrix at 𝛽1 when 𝑐1p𝛿q ď 𝑐p®𝑛q. In this case 𝜁®𝑛,𝛽1p𝑧q is given by the
second line in (56), i.e., by (44). Lemma 3.4 yields that the principal square root branch of
this map is positive for 𝑥 ą 𝛽1 (within the domain of conformality). Thus, we can deduce
from continuity in the parameter 𝑐 as well as (43) that this branch is given by the expression
within the parenthesis in (44). Hence, it follows from (27) that

exp
!

4|®𝑛|𝜁
1{2
®𝑛,𝛽1

p𝑧q

)

“ Φ
p0q

®𝑛 p𝑧q{Φ
p1q

®𝑛 p𝑧q, 𝑧 P 𝑈®𝑛,𝛽1 .

Recall that
?
𝑧𝑐 ´ 𝛽1 ě p𝐾2{𝐾1q𝛿 for 𝑐 ě 𝑐1p𝛿q by the very definition of 𝑐1p𝛿q just before

(48). Since 𝑐˚ ă 𝑐p®𝑛q, the square𝑈®𝑛,𝛽1 contains a disk of radius at least 𝐾𝛿𝑐˚{
?

2 centered
at 𝛽1 “ 𝛽®𝑛,1, see (50). Then it follows from Lemma 3.4 and (40) that

(75) 𝐴˚
𝛽1

`

𝛿3|®𝑛|2
˘

ď |®𝑛|2 min
𝑠PB𝑈®𝑛,𝛽1

ˇ

ˇ𝜁®𝑛,𝛽1p𝑠q
ˇ

ˇ,

where 𝐴˚
𝛽1

:“ 𝑐˚𝐴𝛽1𝐾p𝐾2{𝐾1q2{
?

2. Similarly to (72)–(73), a solution of RHP-P 𝛽1 is
given by
(76)
$

’

&

’

%

P𝛽1p𝑧q :“ E𝛽1p𝑧qT1

”

𝚿
`

|®𝑛|2𝜁®𝑛,𝛽1p𝑧q
˘

exp
!

´2|®𝑛|𝜁
1{2
®𝑛,𝛽1

p𝑧q𝜎3

)

𝜌
´𝜎3{2
1 p𝑧q

ı

Dp𝑧q,

E𝛽1p𝑧q :“ Mp𝑧qT1

”

K
`

|®𝑛|2𝜁®𝑛,𝛽1p𝑧q
˘

𝜌
´𝜎3{2
1 p𝑧q

ı´1
.

It again holds that detP𝛽1p𝑧q ” 1. We also get from RHP-𝚿(d) and (75) that the error
term in RHP-P 𝛽1 (d) is of order O

`

𝛿´3{2|®𝑛|´1˘ with constants independent of 𝛿 and ®𝑛 but
dependent on 𝔟, which needs to be small enough so that RHP-𝚿(d) is applicable.

6.3. Local Parametrix at 𝛽1 when 𝑐˚ ă 𝑐p®𝑛q ă 𝑐1p𝛿q. In this case 𝜁®𝑛,𝛽1p𝑧q is defined by
the first line of (56), i.e., (43). Hence, it follows from (27) and (43) that

(77) exp
"

´
4
3

´

𝜁
3{2
®𝑛,𝛽1

p𝑧q ´ 𝜁®𝑛,𝛽1p𝛽1 ` 𝜖 ®𝑛q𝜁
1{2
®𝑛,𝛽1

p𝑧q

¯

*

“ Φ
p0q

®𝑛 p𝑧q{Φ
p1q

®𝑛 p𝑧q, 𝑧 P 𝑈®𝑛,𝛽1 .

In the considered region of the parameter 𝑐p®𝑛q each square 𝑈®𝑛,𝛽1 is defined in (50) with
𝐾 “ 1. Thus, it follows directly from (47) and (48) that

(78) |®𝑛|2{3 min
𝑠PB𝑈®𝑛,𝛽1

|𝜁®𝑛,𝛽1p𝑠q| ě

#

|®𝑛|2{3𝜁®𝑛,𝛽1p𝛽1 ` 𝜖 ®𝑛q “: ´𝑠®𝑛,

𝐾2𝛿|®𝑛|2{3.
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Then, as in the previous two subsections, one can verify using (77)–(78), RHP-r𝚽, and
RHP-N (b) that RHP-P 𝛽1 is solved by
(79)
$

’

’

&

’

’

%

P𝛽1p𝑧q :“ E𝛽1p𝑧qT1

„

r𝚽
`

|®𝑛|2{3𝜁®𝑛,𝛽1p𝑧q; 𝑠®𝑛
˘

´

Φ
p0q

®𝑛 {Φ
p1q

®𝑛

¯´𝜎3{2
p𝑧q𝜌

´𝜎3{2
1 p𝑧q



Dp𝑧q,

E𝛽1p𝑧q :“ Mp𝑧qT1

”

K
`

|®𝑛|2{3𝜁®𝑛,𝛽1p𝑧q
˘

𝜌
´𝜎3{2
1 p𝑧q

ı´1
,

where E𝛽1p𝑧q is holomorphic in 𝑈®𝑛,𝛽1 and the error term in RHP-P (d) is of order
O
`

𝛿´1{2|®𝑛|´1{3˘ with constants independent of 𝛿 and ®𝑛 but dependent on 𝔟, which needs
to be small enough so that RHP-r𝚽(d) is applicable. Observe that if 𝑐p®𝑛q’s are separated
away from 𝑐˚, then 𝑠®𝑛 „ ´|®𝑛|2{3 and the error term can be improved to O

`

𝛿´1{2|®𝑛|´1˘.
As before, detP𝛽1p𝑧q ” 1.

6.4. Local Parametrix at 𝛽®𝑛,1 when 𝑐p®𝑛q ď 𝑐˚ and 𝜁𝛽 ®𝑛,1p𝛽1q ď 𝜏˚|®𝑛|´2{3. Recall also
that we set 𝜁®𝑛,𝛽1p𝑧q “ 𝜁𝛽 ®𝑛,1p𝑧q ´ 𝜁𝛽 ®𝑛,1p𝛽1q in (55). We get from Lemma 3.2 that the
principal branch 𝜁

3{2
𝛽 ®𝑛,1

p𝑧q is positive on p𝛽𝑐,1, 𝛼2q. It can be readily inferred from (45)
and the first estimate of Lemma 3.5 that this branch is equal to the expression within the
parenthesis in (42). Thus, it follows from (27) that

(80) exp
"

´
4
3

|®𝑛|𝜁
3{2
𝛽 ®𝑛,1

p𝑧q

*

“ Φ
p0q

®𝑛 p𝑧q{Φ
p1q

®𝑛 p𝑧q, 𝑧 P 𝑈®𝑛,𝛽 ®𝑛,1 .

Define 𝑠®𝑛 :“ |®𝑛|2{3𝜁𝛽 ®𝑛,1p𝛽1q P r0, 𝜏˚s, where the last conclusion is the restriction placed
on 𝑠®𝑛 in this subsection. This restriction, Lemma 3.2, and (40) imply that

ˇ

ˇ𝛽®𝑛,1 ´ 𝛽1
ˇ

ˇ ď
`

𝑐˚q1{3𝐴´1
𝛽1
𝜏˚|®𝑛|´2{3.

In particular, as 𝛽𝑐,1 is a continuous increasing function of 𝑐 P r0, 𝑐˚s with 𝛽𝑐˚ ,1 “ 𝛽1,
recall (10), it must necessarily hold that 𝑐p®𝑛q Ñ 𝑐˚. Thus, by recalling (50), we see
that uniformly for all |®𝑛| large enough the square 𝑈®𝑛,𝛽 ®𝑛,1 contains a disk of radius at least
𝛿𝑐˚{2

?
2 centered at 𝛽1 (the factor 1{2 is there to move the center from 𝛽®𝑛,1 to 𝛽1). Then

Lemma 3.2 and (40) yield that

(81) �̃�𝛽1

`

𝛿|®𝑛|2{3˘ ď |®𝑛|2{3 min
𝑠PB𝑈®𝑛,𝛽 ®𝑛,1

ˇ

ˇ𝜁®𝑛,𝛽1p𝑠q
ˇ

ˇ,

where �̃�𝛽1 :“ p𝑐˚q2{3𝐴𝛽1{2
?

2. As before, one can check using RHP-𝚽(a–c) and RHP-
N (b) that
(82)
$

&

%

P𝛽 ®𝑛,1p𝑧q :“ E𝛽 ®𝑛,1p𝑧qT1

”

𝚽
`

|®𝑛|2{3𝜁®𝑛,𝛽1p𝑧q; 𝑠®𝑛
˘

exp
!

2
3 |®𝑛|𝜁

3{2
𝛽 ®𝑛,1

p𝑧q𝜎3

)

𝜌
´𝜎3{2
1 p𝑧q

ı

Dp𝑧q,

E𝛽 ®𝑛,1p𝑧q :“ Mp𝑧qT1
“

K
`

|®𝑛|2{3𝜁𝛽 ®𝑛,1p𝑧q
˘

𝜌
´𝜎3
1 p𝑧q

‰´1
,

satisfies RHP-P 𝛽 ®𝑛,1 (a–c) and that the prefactor E𝛽 ®𝑛,1p𝑧q is holomorphic in𝑈®𝑛,𝛽 ®𝑛,1 (it is by
design that 𝜁®𝑛,𝛽1p𝑧q is used as the argument of 𝚽p𝜁q and 𝜁𝛽 ®𝑛,1p𝑧q is used everywhere else).
Since

ˇ

ˇ

ˇ

ˇ

ˇ

𝜁𝛽 ®𝑛,1p𝑠q

𝜁®𝑛,𝛽1p𝑠q

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1 `

ˇ

ˇ

ˇ

ˇ

ˇ

𝜁𝛽 ®𝑛,1p𝛽1q

𝜁®𝑛,𝛽1p𝑠q

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1 `
p𝜏˚{�̃�𝛽1q

𝛿|®𝑛|2{3 ,

it holds that

K´1
´

|®𝑛|2{3𝜁𝛽 ®𝑛,1p𝑧q

¯

K
´

|®𝑛|2{3𝜁®𝑛,𝛽1p𝑧q

¯

“ I ` O

´

𝛿´1|®𝑛|´2{3
¯



26 MAXIM L. YATTSELEV

where Op¨q is independent of 𝛿 and ®𝑛 as long as 𝛿|®𝑛|2{3 ě 𝜏˚{2�̃�𝛽1 . Assume further that
𝛿|®𝑛|2{3 is large enough so that RHP-𝚽(d) takes place. Then (80), (81), and RHP-𝚽(d) that
imply that RHP-P 𝛽 ®𝑛,1 (d) holds with the error term of order O

`

𝛿´1|®𝑛|´1{3˘. As in the
previous subsections, we point out that detP𝛽 ®𝑛,1p𝑧q ” 1.

6.5. Local Parametrix at 𝛽®𝑛,1 when 𝑐p®𝑛q ď 𝑐˚ and 𝜁𝛽 ®𝑛,1p𝛽1q ą 𝜏˚|®𝑛|´2{3. It follows
from (42) that (80) still holds with 𝜁®𝑛,𝛽1p𝑧q “replaced” by 𝜁𝛽 ®𝑛,1p𝑧q as these symbols denote
the same function in the considered case, see (55). Definition of𝑈®𝑛,𝛽 ®𝑛,1 in (50) implies that
this square contains a disk of radius at least 𝛿𝑐p®𝑛q{3

?
2. Therefore, Lemma 3.2 and (40)

yield that

(83) 𝐴˚
𝛽1

`

𝛿𝑛
2{3
1

˘

ď |®𝑛|2{3 min
𝑠PB𝑈®𝑛,𝛽 ®𝑛,1

ˇ

ˇ𝜁®𝑛,𝛽1p𝑠q
ˇ

ˇ,

where 𝐴˚
𝛽1

:“ 𝐴𝛽1{3
?

2. Let E𝛽 ®𝑛,1p𝑧q be the same as in (82), where once again we must
keep in mind the relabeling of 𝜁𝛽 ®𝑛,1p𝑧q as 𝜁®𝑛,𝛽1p𝑧q. Define

𝜏®𝑛 :“

#

8, 𝛽1 R 𝑈®𝑛,𝛽 ®𝑛,1 ,

|®𝑛|2{3𝜁®𝑛,𝛽1p𝛽1q, otherwise.

Under the conditions considered in this subsection it holds that 𝜏®𝑛 ą 𝜏˚.
The following paragraph is applicable only if 𝛽1 P 𝑈®𝑛,𝛽 ®𝑛,1 , i.e., when 𝜏®𝑛 is finite. It

follows from (49) that 𝛽1 ´ 𝛽®𝑛,1 ď 2𝛿𝑐p®𝑛q{3 ď 2𝑐p®𝑛q{3 in this case. Since 𝛽1 ´ 𝛽𝑐,1 is
a strictly decreasing function of 𝑐 while 2𝑐{3 is obviously strictly increasing, there exists
a unique 𝑐 ă 𝑐˚ such that 𝛽1 ´ 𝛽�̃�,1 “ 2𝑐{3 (so, 𝑐p®𝑛q ě 𝑐 when 𝜏®𝑛 is finite). Each map
𝜁𝛽𝑐,1p𝑧q is conformal in𝑈p𝛽𝑐,1, 𝛿𝑐q for 𝑐 P r𝑐, 𝑐˚s and as a family they continuously depend
on the parameter 𝑐. As 𝛽1 is separated from B𝑈®𝑛,𝛽 ®𝑛,1 by a distance of at least 𝛿𝑐{3

?
2 when

𝛽1 P 𝑈®𝑛,𝛽 ®𝑛,1 , it follows from a compactness argument that

|𝜁®𝑛,𝛽1p𝛽1q ´ 𝜁®𝑛,𝛽1p𝑠q| ě 𝑑 ą 0, 𝑠 P B𝑈®𝑛,𝛽 ®𝑛,1 ,

where 𝑑 is independent of 𝑛 (but does depend on 𝛿). Since |®𝑛|2{3𝑑 ą 1 for all |®𝑛| large
enough, we get that |®𝑛|2{3𝜁®𝑛,𝛽1p𝑈®𝑛,𝛽 ®𝑛,1q contains t|𝜁 ´ 𝜏®𝑛| ď 1u in its interior.

We now get from (83) and RHP-𝚯 that RHP-P 𝛽 ®𝑛,1 is solved by
(84)

P𝛽 ®𝑛,1p𝑧q :“ E𝛽 ®𝑛,1p𝑧qT1

„

𝚯
´

|®𝑛|2{3𝜁®𝑛,𝛽1p𝑧q; 𝜏®𝑛
¯

exp
"

2
3

|®𝑛|𝜁
3{2
®𝑛,𝛽1

p𝑧q𝜎3

*

𝜌
´𝜎3{2
1 p𝑧q



Dp𝑧q,

where the error term in RHP-P 𝛽 ®𝑛,1 (d) is of orderO
`

𝛿´1{2𝑛
´1{3
1

˘

with constants independent
of 𝛿 and ®𝑛, which can be improved to O

`

𝛿´1{2𝑛´1
1
˘

if 𝑐p®𝑛q’s are separated from 𝑐˚. As in
all the previous subsections, we have that detP𝛽 ®𝑛,1p𝑧q ” 1.

6.6. Local Parametrix at 𝛽1 when 𝛽1 R 𝑈®𝑛,𝛽 ®𝑛,1 . Observe that it necessarily holds in the
considered case that 𝑐p®𝑛q ă 𝑐˚. Let

𝐼1p𝑧q :“
ż

Δ1

𝜌1p𝑥q

𝑥 ´ 𝑧

𝑑𝑥

2𝜋i
´
𝜌1p𝛼1q

2𝜋i
logp𝑧 ´ 𝛼1q, 𝑧 R p´8, 𝛽1s,

where we use the principal branch of the logarithm (logp𝑥 ´ 𝛼1q ą 0 for 𝑥 ą 𝛼1).
𝐼1p𝑧q is analytic in the domain of its definition, has continuous traces on Δ˝

1 that satisfy
p𝐼1` ´ 𝐼1´qp𝑥q “ 𝜌1p𝑥q according to Plemelj-Sokhotski formulae, see [15, Section I.4.2], it
has a logarithmic singularity at 𝛽1 and is bounded in the vicinity of𝛼1, see [15, Section I.8.2].
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Due to the construction of 𝑈®𝑛,𝛽1 in (51), B𝑈®𝑛,𝛽1 never approaches 𝛽1 and hence, |𝐼1p𝑠q| is
uniformly bounded on B𝑈®𝑛,𝛽1 with the bound dependent on the chosen value of 𝑟.

Now, it follows from (45), the first and second claims of Lemma 3.5, and the definition
of𝑈®𝑛,𝛽1 in (51) that

(85)
ˇ

ˇΦ
p0q

®𝑛 p𝑧q{Φ
p1q

®𝑛 p𝑧q
ˇ

ˇ “ 𝑒|®𝑛|H ®𝑛p𝑧q ď 𝑒´𝐵p𝛿{3q3{2𝑛1 “ O
´

𝛿´3{2𝑛´1
1

¯

, 𝑧 P 𝑈 ®𝑛,𝛽1

(here we are using the facts that the second estimate of Lemma 3.5 is needed only when
𝑐p®𝑛q ă 𝑐𝑟 and we always can make 𝑐𝑟 small enough so that 𝐵𝑐𝑟 ă 33{2𝜖p𝑟q). Hence, a
solution of RHP-P 𝛽1 in this case is given by

(86)

#

P𝛽1p𝑧q :“ Mp𝑧q
`

I ` 𝐼®𝑛,1p𝑧qE1,2
˘

Dp𝑧q,

𝐼®𝑛,1p𝑧q :“ 𝐼1p𝑧qΦ
p0q

®𝑛 p𝑧q{Φ
p1q

®𝑛 p𝑧q,
𝑧 P 𝑈®𝑛,𝛽1zΔ1,

Indeed, as matrices Mp𝑧q and Dp𝑧q are holomorphic in 𝑈®𝑛,𝛽1 and 𝐼1p𝑧q is holomorphic
in 𝑈®𝑛,𝛽1zΔ1, the above matrix satisfies RHP-P 𝛽1 (a). Requirement RHP-P 𝛽1 (b) easily
follows from the form of the additive jump of 𝐼1p𝑧q. Since 𝐼1p𝑧q appears only in the second
column of P𝛽1p𝑧q and has a logarithmic singularity at 𝛽1, RHP-P 𝛽1 (c) is fulfilled. Finally,
RHP-P 𝛽1 (d) is a consequence of (85).

7. Small Norm Problem

In this section we make the last preparatory step before solving RHP-X . Recall (57).
Set

Σ®𝑛, 𝛿 :“ B𝑈®𝑛 Y
`

Γ®𝑛z𝑈 ®𝑛
˘

, 𝑈®𝑛 :“ Y𝑒𝑈®𝑛,𝑒, Γ®𝑛 :“ Y2
𝑖“1

`

Γ
`

®𝑛,𝑖 Y Γ
´

®𝑛,𝑖
˘

,

see Figure 4. The parts of Σ®𝑛, 𝛿 that belong to Γ®𝑛 inherit their orientation from the original
arcs and the individual polygons in B𝑈®𝑛 are oriented clockwise. We shall further denote
by Σ®𝑛, 𝛿,1 and Σ®𝑛, 𝛿,2 the left and right, respectively, connected components of Σ®𝑛, 𝛿 and by
Σ˝

®𝑛, 𝛿 the subset of points around which Σ®𝑛, 𝛿 is locally a Jordan arc.

B𝑈®𝑛,𝛽2B𝑈®𝑛,𝛼2

B𝑈®𝑛,𝛼1 B𝑈®𝑛,𝛽 ®𝑛,1

B𝑈®𝑛,𝛽1Γ
`

®𝑛,1z𝑈 ®𝑛

Γ
´

®𝑛,1z𝑈 ®𝑛

Γ
`

®𝑛,2z𝑈 ®𝑛

Γ
´

®𝑛,2z𝑈 ®𝑛

Figure 4. Lens Σ®𝑛, 𝛿 consisting of two connected components Σ®𝑛, 𝛿,1 (the left
one) and Σ®𝑛, 𝛿,2 (the right one).

Given the global parametrix Np𝑧q “ CpMDqp𝑧q solving RHP-N , see (60) and (61),
and local parametrices P𝑒p𝑧q solving RHP-P 𝑒 and constructed in the previous section,
consider the following Riemann-Hilbert Problem (RHP-Z):

(a) Zp𝑧q is a holomorphic matrix function in CzΣ®𝑛, 𝛿 and Zp8q “ I;
(b) Zp𝑧q has continuous and bounded traces on Σ˝

®𝑛, 𝛿 that satisfy

Z`p𝑠q “ Z´p𝑠q

#

pMDqp𝑠qpI ` 𝜌´1
𝑖

p𝑠qE1,𝑖`1qpMDq´1p𝑠q, 𝑠 P Γ®𝑛z𝑈 ®𝑛,

P𝑒p𝑠qpMDq´1p𝑠q, 𝑠 P B𝑈®𝑛,𝑒,

where 𝑒 P t𝛼1, 𝛽®𝑛,1, 𝛽1, 𝛼2, 𝛼®𝑛,2, 𝛽2u.
Then the following lemma takes place.
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Lemma 7.1. For each 𝛿 P p0, 𝛿Δ{2q, there exists 𝜀𝛿 ą 0 such that RHP-Z is solvable
for all 𝜀 ®𝑛 ď 𝜀𝛿 . Moreover, for each 𝑟 ą 0 small enough there exists a constant 𝐶2,𝑟 ,
independent of 𝛿 and ®𝑛, such that3

(87) |𝑍𝑖,𝑘p𝑧q| ď 𝐶2,𝑟
𝜀

1{3
®𝑛
𝛿5 ,

#

|𝑧 ´ 𝛼1| ě 2𝑟, 𝑐p®𝑛q ď 𝑐˚˚,

|𝑧 ´ 𝛽2| ě 2𝑟, 𝑐p®𝑛q ě 𝑐˚,

𝑖, 𝑘 P t0, 1, 2u, where, for the ease of the future use, we let 𝑍𝑖,𝑘p𝑧q :“ rZp𝑧qs𝑖`1,𝑘`1 ´ 𝛿𝑖𝑘 ,
𝛿𝑖𝑘 is the Kronecker symbol, and 𝑍𝑖,𝑘p𝑧q needs to be replaced by 𝑍𝑖,𝑘˘p𝑧q for 𝑧 P Σ®𝑛, 𝛿 . The
exponent 1{3 of 𝜀 ®𝑛 can be replaced by 1 if we additionally require that |𝑐p®𝑛q ´ 𝑐˚|, |𝑐p®𝑛q ´

𝑐˚˚| ě 𝜖 ą 0, where the constants 𝜀𝛿 and 𝐶2,𝑟 will depend on 𝜖 in this case.

Proof. Let us more generally consider RHP-Z on Σ®𝑛,𝜈 𝛿 , where 𝜈 P r1{2, 2s and we also
scale the parameter 𝑟 by 𝜈, see (51). Put

I ` V p𝑠q :“
`

Z´1
´ Z`

˘

p𝑠q, 𝑠 P Σ˝

®𝑛,𝜈 𝛿 ,

to be the jump of Zp𝑧q on Σ®𝑛,𝜈 𝛿 . It can be readily seen from analyticity of Mp𝑧q, Dp𝑧q,
P𝑒p𝑧q, and RHP-Z(b) that V p𝑠q can be analytically continued off each Jordan subarc
of Σ®𝑛,𝜈 𝛿 . Thus, the solutions of RHP-Z for different values of 𝜈, if exist, are analytic
continuations of each other.

Let us now estimate the size of V p𝑠q in the supremum norm. We shall do it only on
Σ®𝑛,𝜈 𝛿,1, understanding that the estimates on Σ®𝑛,𝜈 𝛿,2 can be carried out in a similar fashion.
For 𝑠 P B𝑈®𝑛,𝑒, 𝑒 P t𝛼1, 𝛽®𝑛,1, 𝛽1u, it holds that

V p𝑠q “ P𝑒p𝑠qpMDq´1p𝑠q ´ I “ Mp𝑠qO

´

𝛿´3{2𝜀
1{3
®𝑛

¯

M´1p𝑠q “ O

´

𝛿´2𝜀
1{3
®𝑛

¯

by RHP-P 𝑒(d) and Lemmas 5.1–5.2 (since 𝜈 ě 1{2, there is no need to explicitly include
it in the estimates). Notice also that the power 1{3 of 𝜀 ®𝑛 comes only from the local
problems discussed in Sections 6.4–6.5. When |𝑐p®𝑛q ´ 𝑐˚|, |𝑐p®𝑛q ´ 𝑐˚˚| ě 𝜖 ą 0, the
material of Section 6.4 is no longer relevant and the estimate in Section 6.5 is of order 𝜀 ®𝑛
as remarked after (84). For 𝑠 P Γ

˘

®𝑛,1z𝑈®𝑛, it follows from the third inequality in Lemma 3.5
and Lemmas 5.1–5.2 that

V p𝑠q “ pMDqp𝑠qpI ` 𝜌´1
1 p𝑠qE1,2qpMDq´1p𝑠q ´ I

“ 𝜌´1
1 p𝑠q

´

Φ
p1q

®𝑛 p𝑠q{Φ
p0q

®𝑛 p𝑠q

¯

Mp𝑠qE2,1M
´1p𝑠q “ O

´

𝛿´7{2𝜀 ®𝑛

¯

.

Altogether, we have shown that }V }Σ ®𝑛,𝜈𝛿 “ O
`

𝛿´4𝜀
1{3
®𝑛
˘

, where Op¨q is independent of 𝛿
and ®𝑛, and that }V }Σ ®𝑛,𝜈𝛿 “ O𝜖

`

𝛿´4𝜀 ®𝑛
˘

when |𝑐p®𝑛q ´ 𝑐˚|, |𝑐p®𝑛q ´ 𝑐˚˚| ě 𝜖 .
It was explained in [5, Lemma 7.9] that the norms of Cauchy operators (functions

are mapped into traces of their Cauchy integrals) as operators from 𝐿2pΣ®𝑛,𝜈 𝛿q into itself
are uniformly bounded above independently of ®𝑛 and 𝜈𝛿. Then, as in Section 2, [12,
Theorem 8.1] allows us to conclude that RHP-Z is solvable for all 𝜀 ®𝑛 ď 𝜀˚𝛿

12 and

(88) }Z˘}𝐿2pΣ ®𝑛,𝜈𝛿q ď 𝐶1𝛿´4𝜀
1{3
®𝑛 or }Z˘}𝐿2pΣ ®𝑛,𝜈𝛿q ď 𝐶1

𝜖 𝛿
´4𝜀 ®𝑛

where 𝐶1, 𝐶1
𝜖 are independent of ®𝑛 and 𝛿 and the second estimate holds when |𝑐p®𝑛q ´

𝑐˚|, |𝑐p®𝑛q ´ 𝑐˚˚| ě 𝜖 .
Recall now that the squares 𝑈®𝑛,𝛼1 and 𝑈®𝑛,𝛽 ®𝑛,1 have diameters that are at most 2𝜈𝛿𝑐p®𝑛q

and at least mint1{3, 𝐾 1u𝛿𝑐p®𝑛q long, see (50), while the narrowest part of𝑈®𝑛,𝛽1 is similarly
proportioned, see (51). Moreover, analogous claims hold for 𝑈®𝑛,𝛼2 and 𝑈®𝑛,𝛼®𝑛,2 , and 𝑈®𝑛,𝛽2

3in particular, the estimate holds in C when 𝑐˚ ď 𝑐p®𝑛q ď 𝑐˚˚.
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with 𝑐p®𝑛q replaced by 1 ´ 𝑐p®𝑛q. Hence, one can choose a finite collection of values for the
parameter 𝜈 (the values 1{2, 1, 2 should do the job) to make sure that there exists a constant
𝛾 P p0, 1q such that every 𝑧 is at least distance 𝛾𝛿𝜍 ®𝑛 away from one of the lenses Σ®𝑛,𝜈 𝛿 ,
where 𝜍 ®𝑛 “ mint𝑐p®𝑛q, 1 ´ 𝑐p®𝑛qu. Since the arclengths of Σ®𝑛,𝜈 𝛿 are uniformly bounded
above, it readily follows from the Cauchy integral formula, a straightforward estimate, and
the Hölder inequality that
(89) |𝑍𝜈

𝑖,𝑘p𝑧q| ď 𝐶2
`

}Z`}𝐿2pΣ ®𝑛,𝜈𝛿q ` }Z´}𝐿2pΣ ®𝑛,𝜈𝛿q

˘

{p𝛾𝜍 ®𝑛𝛿q,

for all distp𝑧,Σ®𝑛,𝜈 𝛿q ě 𝛾𝜍 ®𝑛𝛿 and 𝑖, 𝑘 P t0, 1, 2u, and some constant 𝐶2, independent of ®𝑛
and 𝛿, where the superscript 𝜈 signifies that these functions come from Zp𝑧q with jump on
Σ®𝑛,𝜈 𝛿 . As matrices Zp𝑧q for different values of 𝜈 are analytic continuations of each other,
inequality (89) can be improved to
(90) |𝑍𝑖,𝑘p𝑧q| ď 𝐶2 max

𝜈

`

}Z`}𝐿2pΣ ®𝑛,𝜈𝛿q ` }Z´}𝐿2pΣ ®𝑛,𝜈𝛿q

˘

{p𝛾𝜍 ®𝑛𝛿q

for all 𝑧 P C and 𝑖, 𝑘 P t0, 1, 2u, where 𝑍𝑖,𝑘p𝑧q needs to be replaced by 𝑍𝑖,𝑘˘p𝑧q for 𝑧 P Σ®𝑛, 𝛿 .
To prove (87), assume that 𝑐p®𝑛q ď 𝑐˚˚ (the cases 𝑐˚ ď 𝑐p®𝑛q can be handled similarly).

Recall the definition of the polygon B𝑈®𝑛,𝛽1 in (51), see also Figure 2(b). If we only consider
indices ®𝑛 such that 𝑐p®𝑛q ě 𝑐𝑟 , then (88) and (90) clearly yield (87). When 𝑐p®𝑛q ă 𝑐𝑟 , the
part of Σ®𝑛,𝜈 𝛿,1 that lies in t|𝑧 ´ 𝛼1| ě 2𝜈𝑟u only depends on 𝜈𝑟 (this must be a part of the
boundary of the second union in (51)) and every point of t|𝑧 ´ 𝛼1| ě 2𝑟u lies distance at
least 𝛾𝛿 from one of the sets Σ®𝑛,𝜈 𝛿,2, 𝜈 P r1{2, 1s (perhaps at expense of decreasing 𝛾).
Thus, similarly to (89), it holds that

|𝑍𝜈
𝑖,𝑘p𝑧q| ď 𝐶2

𝑟

`

}Z`}𝐿2pΣ ®𝑛,𝜈𝛿q ` }Z´}𝐿2pΣ ®𝑛,𝜈𝛿q

˘

{p𝛾𝛿q

for distp𝑧,Σ®𝑛,𝜈 𝛿q ě 𝛾𝛿 and |𝑧 ´ 𝛼1| ě 2𝜈𝑟 , and 𝑖, 𝑘 P t0, 1, 2u. We now get (87) from
(88) and the appropriate analog of (90) that is obtained from the above estimate by varying
𝜈 P r1{2, 1s over a finite set of values. �

8. Proofs of Theorems 1.1 and 1.2

The proofs of all the main results are based on the following lemma, which is an
immediate consequence of Lemma 7.1.

Lemma 8.1. A solution of RHP-X exists for all 𝜀 ®𝑛 small enough and is given by

(91) Xp𝑧q :“ CZp𝑧q

#

pMDqp𝑧q, 𝑧 P Cz𝑈 ®𝑛,

P𝑒p𝑧q, 𝑧 P 𝑈®𝑛,𝑒, 𝑒 P t𝛼1, 𝛽®𝑛,1, 𝛽1, 𝛼2, 𝛼®𝑛,2, 𝛽2u,

where Zp𝑧q solves RHP-Z, Np𝑧q “ CpMDqp𝑧q solves RHP-N , and P𝑒p𝑧q solve RHP-
P 𝑒.

8.1. Proof of Theorem 1.1. Let 𝐾®𝑛,𝑑 :“ t𝑧 P C : distp𝑧,Δ®𝑛q ě 𝑑u. We can choose
parameter 𝛿 in the definition of the contour Σ®𝑛, 𝛿 so that 𝐾®𝑛,𝑑 does not intersect the
closures of those connected components of the complement of Σ®𝑛, 𝛿 that intersect each
Ω

˘

®𝑛,𝑖 , 𝑖 P t1, 2u, see Figures 3 and 4, and recall (51). However, 𝐾®𝑛,𝑑 can intersect 𝑈®𝑛,𝛽1

or 𝑈®𝑛,𝛼2 when 𝛽1 R 𝑈®𝑛,𝛽 ®𝑛,1 or 𝛼2 R 𝑈®𝑛,𝛼®𝑛,2 , respectively (these two things cannot happen
simultaneously). We also assume that 2𝑟 ă 𝑑 in (87).

Recall the definition of 𝐼®𝑛,1p𝑧q in (86). We define these functions to be non-zero only in
𝑈®𝑛,𝛽1 and only when 𝛽1 R 𝑈®𝑛,𝛽 ®𝑛,1 . The functions 𝐼®𝑛,2p𝑧q are defined similarly in𝑈®𝑛,𝛼2 and
only when 𝛼2 R 𝑈®𝑛,𝛼®𝑛,2 . Then

(92) Y p𝑧q “ CpZMqp𝑧q
`

I ` 𝐼®𝑛,1p𝑧qE1,2 ` 𝐼®𝑛,2p𝑧qE1,3
˘

Dp𝑧q, 𝑧 P 𝐾®𝑛,𝑑 ,
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by (58), (86), and Lemma 8.1. To be more precise, we need to write Y˘p𝑧q and 𝐼®𝑛,𝑖˘p𝑧q

for 𝑧 P ΔzΔ®𝑛 when this set is non-empty as well as Z˘p𝑧q for 𝑧 P 𝐾®𝑛,𝑑 X 𝑈®𝑛,𝛽1 or
𝑧 P 𝐾®𝑛,𝑑 X 𝑈®𝑛,𝛼2 when 𝛽1 R 𝑈®𝑛,𝛽 ®𝑛,1 or 𝛼2 R 𝑈®𝑛,𝛼®𝑛,2 , respectively. With the notation of
Lemma 7.1, we get from (54), (92), the definition of Mp𝑧q in (60) and of C, Dp𝑧q in (61)
that

𝑃®𝑛p𝑧q “ rY p𝑧qs1,1 “ rCs1,1rpZMqp𝑧qs1,1rDp𝑧qs1,1

“

´

1 ` 𝑍0,0p𝑧q ` 𝑠®𝑛,1Υ
p0q

®𝑛,1p𝑧q𝑍0,1p𝑧q ` 𝑠®𝑛,2Υ
p0q

®𝑛,2p𝑧q𝑍0,2p𝑧q

¯

P®𝑛p𝑧q,(93)

where one needs to recall (30) and we set 𝑠®𝑛,𝑖 :“ 𝑆
p0q

®𝑛 p8q{𝑆
p𝑖q

®𝑛 p8q, 𝑖 P t1, 2u, as well as
observe that rCs1,1 “ 1{𝜏®𝑛, see (25). Estimates (68) imply that

(94) 𝑐p®𝑛q´1ˇ
ˇΥ

p0q

®𝑛,1˘
p𝑥q

ˇ

ˇ À 1 and p1 ´ 𝑐p®𝑛qq´2ˇ
ˇΥ

p0q

®𝑛,2˘
p𝑥q

ˇ

ˇ À 1

for 𝑥 P Δ®𝑛,1, where the constants in À are independent of ®𝑛. It essentially follows from
symmetry and was rigorously shown in [5, Lemma 5.2] that

(95) 𝑐p®𝑛q´2ˇ
ˇΥ

p0q

®𝑛,1˘
p𝑥q

ˇ

ˇ À 1 and p1 ´ 𝑐p®𝑛qq´1ˇ
ˇΥ

p0q

®𝑛,2˘
p𝑥q

ˇ

ˇ À 1

for 𝑥 P Δ®𝑛,2. Moreover, we get from the first estimate in (64) that

(96) 𝑠®𝑛,1 „ 𝑐p®𝑛q´1 and 𝑠®𝑛,2 „ p1 ´ 𝑐p®𝑛qq´1,

where the constants in „ are independent of ®𝑛. Hence, we deduce from the maximum
modulus principle that

(97)
ˇ

ˇ𝑠®𝑛,1Υ
p0q

®𝑛,1p𝑧q
ˇ

ˇ,
ˇ

ˇ𝑠®𝑛,2Υ
p0q

®𝑛,2p𝑧q
ˇ

ˇ À 1

uniformly for all ®𝑛 and 𝑧 in the extended complex plane, including the traces onΔ®𝑛. Plugging
(97) and (87) into (93) yields

𝑃®𝑛p𝑧q “ p1 ` 𝑜p1qqP®𝑛p𝑧q

uniformly on 𝐾®𝑛,𝑑 , where the error terms are exactly as described in the statement of the
theorem. Recall now that P®𝑛p𝑧q “ P®𝑛,1p𝑧qP®𝑛,2p𝑧q. Let Γ®𝑛,𝑑,𝑖 :“ t𝑧 : distp𝑧,Δ®𝑛,𝑖q “ 𝑑u,
𝑖 P t1, 2u. Assume that 𝑑 is small enough so that these two curves have disjoint interiors. It
is easy to see from their very definitions that P®𝑛,𝑖p𝑧q has winding number 𝑛𝑖 on Γ®𝑛,𝑑,𝑖 (it is
analytic and non-vanishing in the exterior of Γ®𝑛,𝑑,𝑖 with a pole of order 𝑛𝑖 at infinity) while
P®𝑛,3´𝑖p𝑧q has winding number 0 (it is analytic and non-vanishing in the interior of Γ®𝑛,𝑑,𝑖).
Hence, P®𝑛p𝑧q has winding number 𝑛𝑖 on Γ®𝑛,𝑑,𝑖 and so does 𝑃®𝑛p𝑧q for all 𝜀 ®𝑛 sufficiently
small. For all such ®𝑛, let 𝑃®𝑛,𝑖p𝑧q be the monic subfactor of 𝑃®𝑛p𝑧q of degree 𝑛𝑖 that has zeros
only in the interior of Γ®𝑛,𝑑,𝑖 . Then 𝑃®𝑛,𝑖p𝑧q{P®𝑛,𝑖p𝑧q is a holomorphic and non-vanishing
function in the exterior of Γ®𝑛,𝑑,𝑖 that assumes value 1 at infinity. As this exterior is simply
connected, we have that

𝑓®𝑛,𝑖p𝑧q :“ log
`

𝑃®𝑛,𝑖p𝑧q{P®𝑛,𝑖p𝑧q
˘

admits a holomorphic branch in the exterior of Γ®𝑛,𝑑,𝑖 that vanishes at infinity. Moreover,
𝑓®𝑛,1p𝑧q ` 𝑓®𝑛,2p𝑧q “ logp1 ` 𝑜p1qq “ 𝑜p1q uniformly in 𝐾®𝑛,𝑑 . Of course, this is true for any
𝑑 ą 0. Thus, we deduce from the Cauchy integral formula that

𝑓®𝑛,𝑖p𝑧q “

ż

Γ ®𝑛,𝑑{2,𝑖

𝑓®𝑛,𝑖p𝑠q

𝑧 ´ 𝑠

𝑑𝑠

2𝜋i
“

ż

Γ ®𝑛,𝑑{2,𝑖

𝑜p1q ´ 𝑓®𝑛,3´𝑖p𝑠q

𝑧 ´ 𝑠

𝑑𝑠

2𝜋i
“

ż

Γ ®𝑛,𝑑{2,𝑖

𝑜p1q

𝑧 ´ 𝑠

𝑑𝑠

2𝜋i

for 𝑧 in the exterior of Γ®𝑛,𝑑{2,𝑖 , where we used analyticity of 𝑓®𝑛,3´𝑖p𝑧q in the interior of
Γ®𝑛,𝑑{2,𝑖 on the last step. A trivial estimate now yields that 𝑓®𝑛,𝑖p𝑧q “ 𝑜p1q in the exterior of
Γ®𝑛,𝑑,𝑖 , which is equivalent to the first claim of (29).
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Let now 𝐹®𝑛,𝑑 Ă Δ˝

®𝑛 be such that distp𝐹®𝑛,𝑑 , 𝐸 ®𝑛q ě 𝑑. Again, we can adjust 𝛿 so that 𝐹®𝑛,𝑑
does not intersect the closure of𝑈®𝑛. Hence,

(98) Y˘p𝑥q “ CpZM˘D˘qp𝑥qpI ˘ 𝜌´1
𝑖

p𝑥qE𝑖`1,1q, 𝑥 P 𝐹®𝑛,𝑑 X Δ®𝑛,𝑖 ,

for 𝑖 P t1, 2u, again by (58) and Lemma 8.1. Then we get for 𝑥 P 𝐹®𝑛,𝑑 X Δ®𝑛,𝑖 that

𝑃®𝑛p𝑥q “
p𝑆 ®𝑛Φ®𝑛q

p0q

˘ p𝑥q

𝑆
p0q

®𝑛 p8q𝜏®𝑛

´

1 ` 𝑍0,0p𝑥q ` 𝑠®𝑛,1
`

Υ
p0q

®𝑛,1˘
𝑍0,1

˘

p𝑥q ` 𝑠®𝑛,2
`

Υ
p0q

®𝑛,2˘
𝑍0,2

˘

p𝑥q

¯

˘

1

𝑆
p0q

®𝑛 p8q𝜏®𝑛

p𝑆 ®𝑛Φ®𝑛q
p𝑖q

˘ p𝑥q

p𝜌𝑖𝑤 ®𝑛,𝑖˘qp𝑥q

´

1 ` 𝑍0,0p𝑥q ` 𝑠®𝑛,1
`

Υ
p𝑖q

®𝑛,1˘
𝑍0,1

˘

p𝑥q ` 𝑠®𝑛,2
`

Υ
p𝑖q

®𝑛,2˘
𝑍0,2

˘

p𝑥q

¯

.

Since 𝐺p0q

˘ p𝑥q “ 𝐺
p𝑖q

¯ p𝑥q on Δ®𝑛,𝑖 for any rational function 𝐺pzq on 𝕾 ®𝑛, it follows from the
definition of 𝐹®𝑛p𝑧q, (23), (87), and (97) that

𝑃®𝑛p𝑥q “ p1 ` 𝑜p1qqP®𝑛`p𝑥q ` p1 ` 𝑜p1qqP®𝑛´p𝑥q

uniformly on 𝐹®𝑛,𝑑 . From this we immediately deduce that

𝑃®𝑛,𝑖p𝑥q “
“

p1 ` 𝑜p1qqP®𝑛,𝑖`p𝑥q ` p1 ` 𝑜p1qqP®𝑛,𝑖´p𝑥q
‰ P®𝑛,3´𝑖p𝑥q

𝑃®𝑛,3´𝑖p𝑥q

uniformly on 𝐹®𝑛,𝑑 X Δ®𝑛,𝑖 , 𝑖 P t1, 2u. The second asymptotic formula of (29) now easily
follows from the first.

8.2. Proof of Theorem 1.2. We retain the notation introduced in the previous subsection.
Similarly to the matrix Y p𝑧q defined in (54), set

(99) pY p𝑧q :“

¨

˚

˚

˚

˝

𝐿 ®𝑛p𝑧q ´𝐴
p1q

®𝑛 p𝑧q ´𝐴
p2q

®𝑛 p𝑧q

´ℎ®𝑛,1𝐿 ®𝑛`®𝑒1p𝑧q ℎ®𝑛,1𝐴
p1q

®𝑛`®𝑒1
p𝑧q ℎ®𝑛,1𝐴

p2q

®𝑛`®𝑒1
p𝑧q

´ℎ®𝑛,2𝐿 ®𝑛`®𝑒2p𝑧q ℎ®𝑛,2𝐴
p1q

®𝑛`®𝑒2
p𝑧q ℎ®𝑛,2𝐴

p2q

®𝑛`®𝑒2
p𝑧q

˛

‹

‹

‹

‚

,

where 𝐿 ®𝑛p𝑧q :“
ş

p𝑧 ´ 𝑥q´1𝑄 ®𝑛p𝑥q. It was shown in [16, Theorem 4.1] that

(100) pY p𝑧q “
`

Y tp𝑧q
˘´1

,

where ¨t denotes the transpose. As before, let 𝐾®𝑛,𝑑 :“ t𝑧 P C : distp𝑧,Δ®𝑛q ě 𝑑u. We keep
all the restrictions on 𝛿 and 𝑟 in the definition of Σ®𝑛, 𝛿 and in (87), respectively, specified at
the beginning of the previous subsection. It follows from (92) and (100) that

pY p𝑧q “ C´1`Z´1˘t
p𝑧q

`

M´1˘t
p𝑧q

`

I ´ 𝐼®𝑛,1p𝑧qE2,1 ´ 𝐼®𝑛,2p𝑧qE3,1
˘

D´1p𝑧q,

𝑧 P 𝐾®𝑛,𝑑 , where one needs to remember that the functions 𝐼®𝑛,1p𝑧q and 𝐼®𝑛,2p𝑧q are never
non-zero simultaneously and we need to make the same affidavits about boundary values
as after (92). The above equation and (99) yield that

(101) ´ 𝐴
p𝑖q

®𝑛 p𝑧q “ 𝜏®𝑛
“`

Z´1˘t
p𝑧q

`

M´1˘t
p𝑧q

‰

1,𝑖`1{Φ
p𝑖q

®𝑛 p𝑧q, 𝑧 P 𝐾®𝑛,𝑑 ,

where one needs to remember that rCs1,1 “ 1{𝜏®𝑛, see (25) and (61). Let us rewrite (63) as

M´1p𝑧q “ diag

¨

˝

1

𝑆
p0q

®𝑛 p𝑧q
,
𝑤 ®𝑛,1p𝑧q

𝑆
p1q

®𝑛 p𝑧q
,
𝑤 ®𝑛,2p𝑧q

𝑆
p2q

®𝑛 p𝑧q

˛

‚𝚷p𝑧qSp8q,
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which also serves as a definition of the matrix 𝚷p𝑧q. Then it follows from (101) that

(102) ´ 𝐴
p𝑖q

®𝑛 p𝑧q “
“`

Z´1˘t
p𝑧qSp8q𝚷tp𝑧q

‰

1,𝑖`1
𝜏®𝑛𝑤 ®𝑛,𝑖p𝑧q

`

𝑆 ®𝑛Φ®𝑛
˘p𝑖q

p𝑧q
, 𝑧 P 𝐾®𝑛,𝑑 .

Observe that all the jump matrices in RHP-Z(b) have determinant one. Since Zp8q “ I ,
we therefore get that detpZp𝑧qq ” 1 in the entire extended complex plane. Hence,

(103) |p𝑍 𝑗 ,𝑘p𝑧q| ď 𝐶2,𝑟
𝜀

1{3
®𝑛
𝛿10 ,

#

|𝑧 ´ 𝛼1| ě 2𝑟, 𝑐p®𝑛q ď 𝑐˚˚,

|𝑧 ´ 𝛽2| ě 2𝑟, 𝑐p®𝑛q ě 𝑐˚,
, 𝑗 , 𝑘 P t0, 1, 2u,

by (87) with perhaps modified constant 𝐶2,𝑟 , where p𝑍 𝑗 ,𝑘p𝑧q :“
“

pZ´1qtp𝑧q
‰

𝑗`1,𝑘`1 ´ 𝛿 𝑗𝑘 .

Moreover, as in (87), 𝜀1{3
®𝑛 can be replaced by 𝜀 ®𝑛 when the parameters 𝑐p®𝑛q are uniformly

separated from 𝑐˚, 𝑐˚˚. Notice also that p𝑍 𝑗 ,𝑘p8q “ 0. Thus, we can write
“`

Z´1˘t
p𝑧qSp8q𝚷tp𝑧q

‰

1,𝑖`1 “ 𝑆
p0q

®𝑛 p8q

´

Π
p𝑖q

®𝑛 p𝑧q ` Π
p𝑖q

®𝑛 p𝑧qp𝑍0,0p𝑧q

` 𝑠´1
®𝑛,1Π

p𝑖q

®𝑛,1p𝑧qp𝑍0,1p𝑧q `𝑠´1
®𝑛,2Π

p𝑖q

®𝑛,2p𝑧qp𝑍0,2p𝑧q

¯

,

𝑧 P 𝐾®𝑛,𝑑 , where, as before, 𝑠®𝑛,𝑙 “ 𝑆
p0q

®𝑛 p8q{𝑆
p𝑙q

®𝑛 p8q. Now, observe that

Π®𝑛,𝑙pzq{Π®𝑛pzq “ ´𝐴´1
®𝑛,𝑙Υ®𝑛,𝑙pzq, 𝑙 P t1, 2u,

which follows by comparing zero/pole divisors in (15), (62), and the sentence after (59) as
well as the normalizations at 8p𝑙q, see the sentence after (15), (62), and the display after
(59). Therefore, (102) can be rewritten as

(104) 𝐴
p𝑖q

®𝑛 p𝑧q “

¨

˝1 ` p𝑍0,0p𝑧q ´
Υ

p𝑖q

®𝑛,1p𝑧q

𝑠®𝑛,1𝐴®𝑛,1
p𝑍0,1p𝑧q ´

Υ
p𝑖q

®𝑛,2p𝑧q

𝑠®𝑛,2𝐴®𝑛,2
p𝑍0,2p𝑧q

˛

‚A ®𝑛,𝑖p𝑧q.

Recall that 𝐴𝑐,𝑖 are continuous and non-vanishing functions of the parameter 𝑐 P r0, 1s

except for 𝐴0,1 “ 0 and 𝐴1,2 “ 0, see (14), which satisfy (35). Since Υp0q

®𝑛, 𝑗˘p𝑥q “ Υ
p𝑖q

®𝑛, 𝑗¯p𝑥q

for 𝑥 P Δ®𝑛,𝑖 , we get from (94), (95), and (96) that

(105)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Υ
p𝑖q

®𝑛,3´𝑖
p𝑧q

𝑠®𝑛,3´𝑖𝐴®𝑛,3´𝑖

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À

ˇ

ˇ

ˇ
𝑠´1
®𝑛,3´𝑖

ˇ

ˇ

ˇ
À 1

uniformly for all ®𝑛 and 𝑧 in the whole extended complex plane by the maximum modulus
principle for holomorphic functions). On the other hand, because Υp𝑖q

®𝑛,𝑖p𝑧q has a simple pole
at infinity, the same line of arguments yields that

(106)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Υ
p𝑖q

®𝑛,𝑖p𝑧q

𝑠®𝑛,𝑖𝐴®𝑛,𝑖

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À
2

𝛽®𝑛,𝑖 ´ 𝛼®𝑛,𝑖

ˇ

ˇ

ˇ

ˇ

𝑧 ´
𝛽®𝑛,𝑖 ` 𝛼®𝑛,𝑖

2
` 𝑤 ®𝑛,𝑖p𝑧q

ˇ

ˇ

ˇ

ˇ

uniformly for all ®𝑛 and 𝑧 in the whole extended complex plane (the right-hand side above
is simply the absolute value of a conformal map that takes the complement of Δ®𝑛,𝑖 onto
the complement of the unit disk normalized to take infinity into itself). Since the functions
p𝑍0,𝑖p𝑧q vanish at infinity, it then follows from (39), (96), (103), (105), and (106) that

𝐴
p𝑖q

®𝑛 p𝑧q{A ®𝑛,𝑖p𝑧q “ 1 ` 𝑜p𝑠®𝑛,𝑖q
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uniformly on 𝐾®𝑛,𝑑 , where 𝑜p1q has the same meaning as in Theorem 1.1. As the left-hand
sides above is analytic off Δ®𝑛,𝑖 , this estimate, in fact, holds uniformly for distp𝑧,Δ®𝑛,𝑖q ě 𝑑

by the maximum modulus principle. This finishes the proof of the top formulae in (31).
Let now 𝐹®𝑛,𝑑,𝑖 Ă Δ®𝑛,𝑖 such that distp𝐹®𝑛,𝑑,𝑖 , 𝐸 ®𝑛,𝑖q ě 𝑑. As usual, we can adjust 𝛿 so that

𝐹®𝑛,𝑑,𝑖 does not intersect the closure of𝑈®𝑛. Relations (98) and (100) give us
pY˘p𝑥q “ C´1`Z´1˘t

p𝑥q
`

M´1
˘

˘t
p𝑥qD´1

˘ p𝑥q
`

I ¯ 𝜌´1
𝑖

p𝑥qE1,𝑖`1
˘

, 𝑥 P 𝐹®𝑛,𝑑,𝑖 .

Similarly to the proof of the second formula in (29), observe that

¯𝜌´1
𝑖

p𝑥qΠ
p0q

®𝑛˘
p𝑥q{p𝑆 ®𝑛Φ®𝑛q

p0q

˘ p𝑥q “
`

𝑤 ®𝑛,𝑖¯Π
p𝑖q

®𝑛¯

˘

p𝑥q{p𝑆 ®𝑛Φ®𝑛q
p𝑖q

¯ p𝑥q, 𝑥 P Δ®𝑛,𝑖 ,

by (23). Hence, analogously to (104), the above two formulae yield that

𝐴
p𝑖q

®𝑛 p𝑥q “

¨

˝1 ` p𝑍0,0p𝑥q ´
Υ

p𝑖q

®𝑛,1˘
p𝑥q

𝑠®𝑛,1𝐴®𝑛,1
p𝑍0,1p𝑥q ´

Υ
p𝑖q

®𝑛,2˘
p𝑥q

𝑠®𝑛,2𝐴®𝑛,2
p𝑍0,2p𝑥q

˛

‚A ®𝑛,𝑖˘p𝑥q

`

¨

˝1 ` p𝑍0,0p𝑥q ´
Υ

p𝑖q

®𝑛,1¯
p𝑥q

𝑠®𝑛,1𝐴®𝑛,1
p𝑍0,1p𝑥q ´

Υ
p𝑖q

®𝑛,2¯
p𝑥q

𝑠®𝑛,2𝐴®𝑛,2
p𝑍0,2p𝑥q

˛

‚A ®𝑛,𝑖¯p𝑥q.

Since the estimates in (105) and (106) do hold on 𝐹®𝑛,𝑑,𝑖 , the bottom formula in (31) follows.

9. Proof of Theorems 1.3 and 1.4

We retain the notation from the previous section.

9.1. Asymptotics of 𝑎 ®𝑛,𝑖 . In this subsection we prove the first two equalities of the top line
of (37) and the first asymptotic formula in (32). To this end, we need the formula
(107) ℎ®𝑛,𝑖 “ 𝑎 ®𝑛,𝑖ℎ®𝑛´®𝑒𝑖 ,𝑖 ,

which is obtained by multiplying the first recurrence relation in (5) by 𝑥𝑛𝑖´1, integrating it
against 𝑑𝜇𝑖p𝑥q, and recalling (4).

To extract asymptotics of ℎ®𝑛,𝑖 we use (52). Formulae (54), (60), and (92) yield that

𝑅
p𝑖q

®𝑛 p𝑧q “ rY p𝑧qs1,𝑖`1 “ rpZMqp𝑧qs1,𝑖`1rDp𝑧qs𝑖`1,𝑖`1

“

´

1 ` 𝑍0,0p𝑧q ` 𝑠®𝑛,1Υ
p𝑖q

®𝑛,1p𝑧q𝑍0,1p𝑧q ` 𝑠®𝑛,2Υ
p𝑖q

®𝑛,2p𝑧q𝑍0,2p𝑧q

¯

rCs1,1

𝑆
p0q

®𝑛 p8q

p𝑆 ®𝑛Φ®𝑛qp𝑖qp𝑧q

𝑤 ®𝑛,𝑖p𝑧q

in a neighborhood of infinity. We get from (35), (39), (96), (105), and (106) that

𝑅
p𝑖q

®𝑛 p𝑧q “
`

1 ` 𝑜p𝑠®𝑛,𝑖q
˘ rCs1,1

𝑆
p0q

®𝑛 p8q

p𝑆 ®𝑛Φ®𝑛qp𝑖qp𝑧q

𝑤 ®𝑛,𝑖p𝑧q

in the vicinity of infinity, where 𝑜p1q is exactly the same as described in Theorem 1.1.
Hence, it follows from the second equality in (52) and the very definition of the matrix C
in (61) that

(108) ℎ®𝑛,𝑖 “
1 ` 𝑜p𝑠®𝑛,𝑖q

𝑠®𝑛,𝑖

rCs1,1

rCs𝑖`1,𝑖`1
.

On the other hand, since 1{ℎ®𝑛´®𝑒𝑖 ,𝑖 is the leading coefficient of 𝐴p𝑖q

®𝑛 p𝑧q, we get from the first
two formulae of (31), the limits stated right after (15), the definition of C, and (96) that

(109)
1

ℎ𝑛´®𝑒𝑖 ,𝑖
“
`

1 ` 𝑜p𝑠®𝑛,𝑖q
˘

𝑠®𝑛,𝑖𝐴®𝑛,𝑖
rCs𝑖`1,𝑖`1

rCs1,1
.
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Since 𝑠2®𝑛,𝑖𝐴®𝑛,𝑖 „ 1, the first claim in (32) follows by plugging (108) and (109) into (107).
The above formulae also allow us to prove the validity of the first two equations in the

top line of (37). First of all, let us observe that the differentiability of 𝐴𝑐,𝑖 and 𝐵𝑐,𝑖 as
functions of 𝑐 on p0, 𝑐˚q Y p𝑐˚˚, 1q was established in [7, Section 4] based on an explicit
parametrization of the Riemann surfaces 𝕾𝑐 established in [6, 22, 23].

Fix 𝑐 P p0, 𝑐˚q Y p𝑐˚˚, 1q and let N𝑐 be a sequence of multi-indices such that 𝑐p®𝑛q Ñ 𝑐

as |®𝑛| Ñ 8, ®𝑛 P N𝑐 . Clearly, we also have 𝑐p®𝑛 ´ ®𝑒𝑖q Ñ 𝑐 as |®𝑛| Ñ 8, ®𝑛 P N𝑐 . Notice
that the numbers 𝑠®𝑛,𝑖 and 𝑠®𝑛´®𝑒𝑖 ,𝑖 are uniformly bounded along N𝑐 and 𝑠®𝑛,𝑖{𝑠®𝑛´®𝑒𝑖 ,𝑖 Ñ 1
as |®𝑛| Ñ 8, ®𝑛 P N𝑐 , due to the continuous dependence of the Szegő functions on the
parameter. Hence, we get from (107)–(109) that

p1 ` 𝑜p1qq𝐴®𝑛,𝑖 “ 𝑎 ®𝑛,𝑖 “ p1 ` 𝑜p1qq
rC®𝑛s1,1

rC®𝑛s𝑖`1,𝑖`1

rC®𝑛´®𝑒𝑖 s𝑖`1,𝑖`1

rC®𝑛´®𝑒𝑖 s1,1

as |®𝑛| Ñ 8, ®𝑛 P N𝑐 , where we explicitly indicate the dependence of the matrices C on the
multi-index ®𝑛. Using (25) we then get that

1 ` 𝑜p1q “

ˆ

𝐴®𝑛,𝑖
𝐴®𝑛´®𝑒𝑖 ,𝑖

˙𝑛𝑖´1 ˆ
𝐵®𝑛
𝐵®𝑛´®𝑒𝑖

˙𝑛3´𝑖

as |®𝑛| Ñ 8, ®𝑛 P N𝑐 , where 𝐵®𝑛 “ 𝐵®𝑛,2 ´ 𝐵®𝑛,1. By taking logarithms of both sides and
using the mean-value theorem, we get that

𝑜p1q “
`

𝑐p®𝑛q ´ 𝑐p®𝑛 ´ ®𝑒𝑖q
˘

˜

p𝑛𝑖 ´ 1q

𝐴1

𝜉p®𝑛q,𝑖

𝐴𝜉p®𝑛q,𝑖

` 𝑛3´𝑖

𝐵1

𝜂p®𝑛q

𝐵𝜂p®𝑛q

¸

as |®𝑛| Ñ 8, ®𝑛 P N𝑐 , for some 𝜉p®𝑛q, 𝜂p®𝑛q that lie between 𝑐p®𝑛q and 𝑐p®𝑛 ´ ®𝑒𝑖q. Notice that

𝑐p®𝑛q ´ 𝑐p®𝑛 ´ ®𝑒𝑖q “
p´1q𝑖´1𝑛3´𝑖

|®𝑛|p|®𝑛| ´ 1q
.

Since 𝑛3´𝑖{|®𝑛| approaches either 𝑐 or 1 ´ 𝑐 along N𝑐 , it therefore holds that

𝑜p1q “
𝑛𝑖 ´ 1

|®𝑛|

𝐴1

𝜉p®𝑛q,𝑖

𝐴𝜉p®𝑛q,𝑖

`
𝑛3´𝑖

|®𝑛|

𝐵1

𝜂p®𝑛q

𝐵𝜂p®𝑛q

as |®𝑛| Ñ 8, ®𝑛 P N𝑐 . Because 𝜉p®𝑛q, 𝜂p®𝑛q Ñ 𝑐 as |®𝑛| Ñ 8, ®𝑛 P N𝑐 , the first two differential
equation in the top line of (37) follow by taking the limit in the above equality.

9.2. Proof of (36). In this subsection we prove (36) and the last equality in the top line of
(37). Let us set 𝑅1p𝑐q :“ 𝑐´2𝐴𝑐,1 and 𝑅2p𝑐q :“ p1 ´ 𝑐q´2𝐴𝑐,2, which are continuous non-
vanishing functions of the parameter 𝑐 P r0, 1s, see (35), that are continuously differentiable
on p0, 1qzt𝑐˚, 𝑐˚˚u. It follows from (34) that

(110) 𝑅1
1p𝑐q ` 𝑅1

2p𝑐q “ 2𝐵𝑐𝐵
1
𝑐 .

On the other hand, expressing 𝐴1
𝑐,𝑖

through 𝐴𝑐,𝑖 , 𝐵𝑐 , and 𝐵1
𝑐 by using the first two equalities

in the top line of (37) together with adding these expressions up gives

(111) 𝐴1
𝑐,1 ` 𝐴1

𝑐,2 “ ´
𝐵1
𝑐

𝐵𝑐

ˆ

1 ´ 𝑐

𝑐
𝐴𝑐,1 `

𝑐

1 ´ 𝑐
𝐴𝑐,2

˙

“ ´𝑐p1 ´ 𝑐q𝐵𝑐𝐵
1
𝑐 ,

where we also used (34) for the last step. Combining equations (110) and (111) to eliminate
𝐵𝑐𝐵

1
𝑐 as well as dividing by 𝑅1p𝑐q yields

(112) p1 ´ 𝑐qp2 ´ 𝑐q𝑅p𝑐q
𝑅1

2p𝑐q

𝑅2p𝑐q
` 𝑐p1 ` 𝑐q

𝑅1
1p𝑐q

𝑅1p𝑐q
“ ´4𝑐 ` 4p1 ´ 𝑐q𝑅p𝑐q.



UNIFORMITY OF STRONG ASYMPTOTICS IN ANGELESCO SYSTEMS 35

On the other hand, the first two relations in top line of (37) can be rewritten as

(113) p1 ´ 𝑐q2 𝑅
1
2p𝑐q

𝑅2p𝑐q
´ 𝑐2 𝑅

1
1p𝑐q

𝑅1p𝑐q
“ 2.

Equations (112) and (113) form a two by two linear system whose solution is given by

(114)
𝑅1

2p𝑐q

𝑅2p𝑐q
“ 2

2𝑐 ` 1 ` 2𝑐𝑅p𝑐q

1 ´ 𝑐2 ` 𝑐p2 ´ 𝑐q𝑅p𝑐q

and

(115)
𝑅1

1p𝑐q

𝑅1p𝑐q
“ ´2

2p1 ´ 𝑐q ` p3 ´ 2𝑐q𝑅p𝑐q

1 ´ 𝑐2 ` 𝑐p2 ´ 𝑐q𝑅p𝑐q
.

Equation (36) now follows by taking the difference between (114) and (115). Finally, the
last equality in the top line of (37) comes from (115) and the identity

𝐵1
𝑐

𝐵𝑐

“ ´
𝑐

1 ´ 𝑐

𝐴1
𝑐,1

𝐴𝑐,1
“ ´

2
1 ´ 𝑐

´
𝑐

1 ´ 𝑐

𝑅1
1p𝑐q

𝑅1p𝑐q
.

9.3. Differentiability of 𝜒𝑐 and 𝛽𝑐,1. In this subsection, we establish several facts that
will be needed in the remainder of the proof of Theorems 1.3 and 1.4. We investigate only
the case 𝑐 P p0, 𝑐˚q as the behavior for 𝑐 P p𝑐˚˚, 1q can be deduced similarly.

Since the symmetric functions of the branches of 𝜒𝑐pzq are necessarily polynomials,
we can use (11) and (12) to derive the cubic equation satisfied by 𝜒𝑐 . This equation, after
some straightforward algebraic simplifications, can be written as

(116) 𝑧 “ 𝜒𝑐pzq `
𝐴𝑐,1

𝜒𝑐pzq ´ 𝐵𝑐,1
`

𝐴𝑐,2

𝜒𝑐pzq ´ 𝐵𝑐,2
.

Given 𝑠 P C, the above equation can be interpreted as

(117) 𝑧p𝑐, 𝑠q :“ 𝜋
`

𝜒´1
𝑐 p𝑠q

˘

“ 𝑠 `
𝐴𝑐,1

𝑠 ´ 𝐵𝑐,1
`

𝐴𝑐,2

𝑠 ´ 𝐵𝑐,2
.

In particular, we see from (36), the top line of (37), and the remark made after Theorem 1.4
that B𝑐𝑧p𝑐, 𝑠q exists and is locally uniformly bounded in 𝑠 P Czt𝐵𝑐,1, 𝐵𝑐,2u (this estimate
is also uniform in 𝑐 P p0, 𝑐˚q if 𝑠 stays away from t𝐵𝑐,𝑖 : 𝑐 P r0, 𝑐˚su).

As pointed out right before (34), we have that 𝜒𝑐p𝛽𝑐,1q “ p1 ´ 𝑐q𝐵𝑐,1 ` 𝑐𝐵𝑐,2 when
𝑐 P p0, 𝑐˚q. Thus, we get from (116) that

𝛽𝑐,1 “ p1 ´ 𝑐q𝐵𝑐,1 ` 𝑐𝐵𝑐,2 `
1
𝐵𝑐

ˆ

𝐴𝑐,1

𝑐
´

𝐴𝑐,2

1 ´ 𝑐

˙

.

This, of course, immediately shows that 𝛽𝑐,1 is a differentiable function of 𝑐 on p0, 𝑐˚q.
The above two observations will be sufficient for us to finish the proof of Theorem 1.4, that
is, to prove the bottom line of (37).

Now we deduce from (34) and the bottom line of (37) (the use of the bottom line of (37)
is not really necessary but allows us to get a more compact formula) that

𝛽1
𝑐,1 “ p2𝑐 ´ 1q𝐵1

𝑐 `
1
𝐵𝑐

˜

𝐴1
𝑐,1

𝑐
´

𝐴1
𝑐,2

1 ´ 𝑐

¸

´
𝐵1
𝑐

𝐵2
𝑐

`

𝑐𝑅1p𝑐q ´ p1 ´ 𝑐q𝑅2p𝑐q
˘

.

Using the top line of (37), we obtain that
𝐴1
𝑐,1

𝑐
´

𝐴1
𝑐,2

1 ´ 𝑐
“
𝐵1
𝑐

𝐵𝑐

`

𝑐𝑅2p𝑐q ´ p1 ´ 𝑐q𝑅1p𝑐q
˘

.
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Thus, using (34), (36), and (37) once more, we arrive at

𝛽1
𝑐,1 “ p2𝑐 ´ 1q𝐵1

𝑐 `
`

𝑅2p𝑐q ´ 𝑅1p𝑐q
˘𝐵1

𝑐

𝐵2
𝑐

“ 2
`

𝑐𝑅2p𝑐q ´ p1 ´ 𝑐q𝑅1p𝑐q
˘𝐵1

𝑐

𝐵2
𝑐

“ 6
𝑅p𝑐q

𝑅1p𝑐q

ˆ

𝐵1
𝑐

𝐵𝑐

˙2
.(118)

Formula (118) clearly shows that 𝛽1
𝑐,1 is a bounded continuous function of 𝑐 P p0, 𝑐˚q (it

also shows that 𝛽𝑐,1 is an increasing function of 𝑐).

9.4. Differentiability of 𝜎p𝑐q. Before we go back to the proof of Theorems 1.3 and 1.4,
we need to analyze the behavior of one more auxiliary quantity, namely 𝜎p𝑐q, defined by

(119) 𝑆
p0q
𝑐 p𝑧q “ 𝑆

p0q
𝑐 p8q

ˆ

1 `
𝜎p𝑐q

𝑧
` O

ˆ

1
𝑧2

˙˙

, 𝑧 Ñ 8.

More precisely, we need to establish its differentiability with respect to 𝑐 and the bounded-
ness of 𝜎1p𝑐q. Again, we only consider the case 𝑐 P p0, 𝑐˚q as the behavior for 𝑐 P p𝑐˚˚, 1q

can be deduced similarly.
We shall utilize a representation of 𝑆𝑐pzq different from (22). To this end, let 𝑆𝜌2p𝑧q be

given by (24). Set �̂�1p𝑥q :“ 𝜌1p𝑥q𝑆𝜌2p𝑥q and define

𝑆𝑐,1p𝑧q :“ 𝑒𝐹𝑐,1p𝑧q, 𝐹𝑐,1p𝑧q :“
𝑤𝑐,1p𝑧q

2𝜋i

ż

Δ𝑐,1

logp�̂�1𝑤𝑐,1`qp𝑥q

𝑧 ´ 𝑥

𝑑𝑥

𝑤𝑐,1`p𝑥q
,

which is the standard Szegő function of p�̂�1𝑤𝑐,1`qp𝑥q considered as a weight on Δ𝑐,1. That
is, it is a non-vanishing holomorphic function off Δ𝑐,1 (including at infinity) with continu-
ous traces on both sides of p𝛼1, 𝛽𝑐,1q that satisfy 𝑆𝑐,1`p𝑥q𝑆𝑐,1´p𝑥qp�̂�1|Δ𝑐,1𝑤𝑐,1`qp𝑥q ” 1
and quarter-root singularities at 𝛼1, 𝛽𝑐,1. Next, recall that 𝜒𝑐p𝚫2q is a Jordan curve that
approaches the circle 𝜒0p𝚫2q :“ t|𝑧 ´ 𝐵0,2|2 “ 𝐴0,2u as 𝑐 Ñ 0, see (14) and (33). We
orient 𝜒𝑐p𝚫2q clockwise. The conformal map 𝜒𝑐pzq maps 𝕾p2q

𝑐 z𝚫2 and 𝕾𝑐z𝕾p2q
𝑐 onto the

interior and exterior domains of 𝜒𝑐p𝚫2q with 8p0q mapped into 8, see (11). Recall (117).
Set

S𝑐,2pzq :“ exp

$

’

&

’

%

¿

𝜒𝑐p𝚫2q

𝐹𝑐,1p𝑧𝑐p𝑠qq

𝑠 ´ 𝜒𝑐pzq

𝑑𝑠

2𝜋i

,

/

.

/

-

,

which is a sectionally analytic and non-vanishing function in 𝕾𝑐z𝚫2, S𝑐,2p8p0qq “ 1, and
S𝑐,2´pxq “ S𝑐,2`pxq𝑆𝑐,1p𝑥q on 𝚫2 (according to our chosen orientation of 𝚫2, the positive
approach to 𝚫2 is from 𝕾p0q

𝑐 ). The properties of 𝑆𝑐,1p𝑧q and S𝑐,2pzq readily yield that

𝑆𝑐pzq “ 𝑘𝑐

$

’

’

&

’

’

%

𝑆𝑐,1p𝑧qS𝑐,2pzq, z P 𝕾p0q
𝑐 ,

S𝑐,2pzq{𝑆𝑐,1p𝑧q, z P 𝕾p1q
𝑐 ,

S𝑐,2pzq, z P 𝕾p2q
𝑐 ,

where 𝑘𝑐 is a normalizing constant (one can readily check that the right-hand side above
satisfies (23) and 𝑘𝑐 is there to achieve the normalization

`

𝑆
p0q
𝑐 𝑆

p1q
𝑐 𝑆

p2q
𝑐

˘

p𝑧q ” 1). Therefore,

(120) 𝜎p𝑐q “ 𝐹1
𝑐,1p8q ´

1
2𝜋i

¿

𝜒0p𝚫2q

𝐹𝑐,1p𝑧p𝑐, 𝑠qq𝑑𝑠,

where we understand the derivative at infinity in local coordinates, that is, 𝑓 p𝑧q “ 𝑓 p8q `

𝑓 1p8q{𝑧` ¨ ¨ ¨, and we moved the curve of integration from 𝜒𝑐p𝚫2q to the circle 𝜒0p𝚫2q by
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the analyticity of 𝐹𝑐,1p𝑧𝑐p𝑠qq (if 𝜒0p𝚫2q does not work for all 𝑐 P p0, 𝑐˚q, we can partition
p0, 𝑐˚q into finitely many overlapping intervals and on each of them similarly replace 𝜒𝑐p𝚫2q

by a curve independent of 𝑐; this will not alter the forthcoming computations).
Let ℓ𝑐p𝑦q “

𝛽𝑐,1´𝛼1
2 p𝑦` 1q ` 𝛼1 be the linear function with positive leading coefficient

that takes r´1, 1s onto Δ𝑐,1. Then,

𝐹𝑐,1pℓ𝑐p𝑧qq “

?
𝑧2 ´ 1
2𝜋

ż 1

´1

log
´

i�̂�1pℓ𝑐p𝑦qq
𝛽𝑐,1´𝛼1

2

a

1 ´ 𝑦2
¯

𝑦 ´ 𝑧

𝑑𝑦
a

1 ´ 𝑦2
.

It can be readily verified that the above expression can be rewritten as
ż 1

´1

?
𝑧2 ´ 1
𝑦 ´ 𝑧

log �̂�1pℓ𝑐p𝑦qq𝑑𝑦

2𝜋
a

1 ´ 𝑦2
`

ż 1

´1

?
𝑧2 ´ 1
𝑦 ´ 𝑧

log
a

1 ´ 𝑦2𝑑𝑦

2𝜋
a

1 ´ 𝑦2
´

1
2

log
ˆ

i
2

p𝛽𝑐,1 ´ 𝛼1q

˙

.

Notice that we do not need to worry about the logarithmic term as it is constant in 𝑧 an will
disappear after integration on the circle 𝜒0p𝚫2q. The same reason allows us to subtract 1
from the kernel in the above integrals without altering the expression in (120). Hence, we
need to analyze integrals of the form

𝐼𝑑,𝑘p𝑧q :“
ż 1

´1

˜?
𝑧2 ´ 1
𝑦 ´ 𝑧

´ 1

¸

𝑑pℓ𝑐p𝑦qq𝑘p𝑦q𝑑𝑦

2𝜋
a

1 ´ 𝑦2
,

where either 𝑑p𝑥q “ log �̂�1p𝑥q and 𝑘p𝑦q “ 1 or 𝑑p𝑥q “ 1 and 𝑘p𝑦q “ log
a

1 ´ 𝑦2. It is
not hard to see that 𝐼𝑑,𝑘p𝑧q “ Op𝑧´1q and 𝐼 1

𝑑,𝑘
p𝑧q “ Op𝑧´2q, where O terms are uniform in

𝑐. Moreover, it follows from (118) that the above expression is differentiable with respect
to 𝑐 and it holds that

pB𝑐 𝐼𝑑,𝑘qp𝑧q “ 𝛽1
𝑐,1𝐼𝑑1 ,p¨`1q𝑘{2p𝑧q “ O

`

𝑧´1˘ ,

where O term is again uniform in 𝑐. Hence, we have that

B𝑐 𝐼𝑑,𝑘
`

ℓ´1
𝑐 p𝑧q

˘

“ pB𝑐 𝐼𝑑,𝑘q
`

ℓ´1
𝑐 p𝑧q

˘

` 𝐼 1
𝑑,𝑘

`

ℓ´1
𝑐 p𝑧q

˘

´2𝛽1
𝑐,1p𝑧 ´ 𝛼1q

p𝛽𝑐,1 ´ 𝛼1q2 “ Op1q

where ℓ´1
𝑐 p𝑧q is the inverse (not reciprocal) function of ℓ𝑐p𝑧q and O term is again uniform

in 𝑐 and locally uniform in 𝑧. Hence, we have that

B𝑐

¿

𝜒0p𝚫2q

𝐹𝑐,1p𝑧p𝑐, 𝑠qq𝑑𝑠 “ OpB𝑐𝑧p𝑐, 𝑠qq “ Op1q,

uniformly in 𝑐, where we used boundedness of B𝑐𝑧p𝑐, 𝑠q to reach the last conclusion, see the
sentence after (117). Similarly, since integrals of odd functions on p´1, 1q are necessarily
zero, we have that

𝐹1
𝑐,1p8q “ ´

𝛽𝑐,1 ´ 𝛼1

4𝜋

ż 1

´1
log �̂�1pℓ𝑐p𝑦qq

𝑦𝑑𝑦
a

1 ´ 𝑦2
.

Considerations virtually identical to the ones presented above show that 𝐹1
𝑐,1p8q is dif-

ferentiable with respect to 𝑐 and that B𝑐𝐹
1
𝑐,1p8q “ Op1q uniformly in 𝑐. Hence, we now

deduce from (120) that 𝜎p𝑐q is differentiable and 𝜎1p𝑐q is bounded for 𝑐 P p0, 𝑐˚q.
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9.5. Asymptotics of 𝑏 ®𝑛,𝑖 . In this subsection we prove the bottom formula in (37) and the
second asymptotic formula in (32), thus, finishing the proof of Theorems 1.3 and 1.4. Both
proofs rely on the formula

(121) 𝑏 ®𝑛,𝑖 “ lim
𝑧Ñ8

ˆ

𝑧 ´
𝑃®𝑛`®𝑒𝑖 p𝑧q

𝑃®𝑛p𝑧q

˙

,

which readily follows from the first relation in (5).
Consider (54) with ®𝑛 replaced by ®𝑛` ®𝑒𝑖 . It holds that ℎ®𝑛,𝑖rY p𝑧qs𝑖`1,1 “ 𝑃®𝑛p𝑧q. Hence,

similarly to (93), we have that

𝑃®𝑛p𝑧q “ ℎ®𝑛,𝑖P®𝑛`®𝑒𝑖 p𝑧q
rCs𝑖`1,𝑖`1

rCs1,1
ˆ

´

𝑍𝑖,0p𝑧q ` 𝑠®𝑛`®𝑒𝑖 ,𝑖Υ
p0q

®𝑛`®𝑒𝑖 ,𝑖
p𝑧qp1 ` 𝑍𝑖,𝑖p𝑧qq ` 𝑠®𝑛`®𝑒𝑖 ,3´𝑖Υ

p0q

®𝑛`®𝑒𝑖 ,3´𝑖
p𝑧q𝑍𝑖,3´𝑖p𝑧q

¯

for 𝑧 in a neighborhood of infinity. Recall that the functions 𝑍𝑖,𝑘p𝑧q and Υ®𝑛`®𝑒𝑖 ,𝑘p𝑧q vanish
at infinity and

Υ
p0q

®𝑛`®𝑒𝑖 ,𝑖
p𝑧q “

𝐴®𝑛`®𝑒𝑖 ,𝑖
𝑧

ˆ

1 `
𝐵®𝑛`®𝑒𝑖 ,𝑖
𝑧

` O
ˆ

1
𝑧2

˙˙

as 𝑧 Ñ 8, see (59). Since 𝑃®𝑛p𝑧q is a monic polynomial, it therefore follows from (87) and
(97) that

(122) 𝑃®𝑛p𝑧q “

ˆ

1
𝑧

`
𝑠®𝑛`®𝑒𝑖 ,𝑖𝐴®𝑛`®𝑒𝑖 ,𝑖𝐵®𝑛`®𝑒𝑖 ,𝑖 ` 𝑜p1q

𝑠®𝑛`®𝑒𝑖 ,𝑖𝐴®𝑛`®𝑒𝑖 ,𝑖 ` 𝑜p1q

1
𝑧2

` O
ˆ

1
𝑧3

˙˙

P®𝑛`®𝑒𝑖 p𝑧q

in the vicinity of infinity, where 𝑜p1q term in the denominator above is the constant next
1{𝑧 term of 𝑍𝑖,0p𝑧q. Of course, it also holds that

(123) 𝑃®𝑛`®𝑒𝑖 p𝑧q “ p1 ` 𝑜p1qqP®𝑛`®𝑒𝑖 p𝑧q

for 𝑧 around infinity. Plugging (122) and (123) into (121) gives

𝑏 ®𝑛,𝑖 “
𝑠®𝑛`®𝑒𝑖 ,𝑖𝐴®𝑛`®𝑒𝑖 ,𝑖𝐵®𝑛`®𝑒𝑖 ,𝑖 ` 𝑜p1q

𝑠®𝑛`®𝑒𝑖 ,𝑖𝐴®𝑛`®𝑒𝑖 ,𝑖 ` 𝑜p1q
` 𝑜p1q.

The above formula is insufficient to prove the second formula of (32) as 𝑠®𝑛`®𝑒𝑖 ,𝑖𝐴®𝑛`®𝑒𝑖 ,𝑖 „

𝑐p®𝑛q as 𝑐p®𝑛q Ñ 0 by (35) and (96). However, if 𝑐 P p0, 𝑐˚q Y p𝑐˚˚, 1q and N𝑐 is as in the
second paragraph after (109), then

(124) 𝑏 ®𝑛,𝑖 “ 𝐵®𝑛`®𝑒𝑖 ,𝑖 ` 𝑜p1q as |®𝑛| Ñ 8, ®𝑛 P N𝑐 .

On the other hand, (121), (123), and (123) with ®𝑛 ` ®𝑒𝑖 replaced by ®𝑛, give us that

(125) 𝑏 ®𝑛,𝑖 “ pP®𝑛q1 ´ pP®𝑛`®𝑒𝑖 q1 ` 𝑜p1q

for all 𝜀 ®𝑛 small enough, where the error term is as in Theorem 1.1 and we write P®𝑛p𝑧q “

𝑧|®𝑛| ` pP®𝑛q1𝑧
|®𝑛|´1 ` ¨ ¨ ¨. According to (25) and (30), it holds that

P®𝑛p𝑧q “

´

𝜒
p0q

®𝑛 p𝑧q ´ 𝐵®𝑛,1

¯𝑛1 ´

𝜒
p0q

®𝑛 p𝑧q ´ 𝐵®𝑛,2

¯𝑛2
𝑆

p0q

®𝑛 p𝑧q{𝑆
p0q

®𝑛 p8q.

Then we get from (11), (12), and (125) that

(126) 𝑏 ®𝑛,𝑖 “ 𝐵®𝑛`®𝑒𝑖 ,𝑖 ` 𝑛1
`

𝐵®𝑛`®𝑒𝑖 ,1 ´ 𝐵®𝑛,1
˘

` 𝑛2
`

𝐵®𝑛`®𝑒𝑖 ,2 ´ 𝐵®𝑛,2
˘

` 𝜎®𝑛 ´ 𝜎®𝑛`®𝑒𝑖 ` 𝑜p1q,

where 𝜎®𝑛 “ 𝜎p𝑐p®𝑛qq, see (119), and the error term is as in Theorem 1.1. When 𝑐p®𝑛q, 𝑐p®𝑛`

®𝑒𝑖q P r𝑐˚, 𝑐˚˚s, 𝕾 ®𝑛 “ 𝕾 ®𝑛`®𝑒𝑖 and therefore (126) simply reduces to the second formula in
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(32). To deal with the remaining cases, recall that 𝜎p𝑐q is a differentiable function of 𝑐 on
p0, 𝑐˚q Y p𝑐˚˚, 1q with bounded derivative there. Since

𝑐p®𝑛 ` ®𝑒𝑖q ´ 𝑐p®𝑛q “
p´1q𝑖´1𝑛3´𝑖

|®𝑛|p|®𝑛| ` 1q
,

it follows from (126) and the mean-value theorem that
(127)

𝑏 ®𝑛,𝑖 ´ 𝐵®𝑛`®𝑒𝑖 ,𝑖 ` 𝑜p1q “
p´1q𝑖´1𝑛3´𝑖

|®𝑛| ` 1

ˆ

𝑐p®𝑛q𝐵1

𝜉p®𝑛q,1 ` p1 ´ 𝑐p®𝑛qq𝐵1

𝜂p®𝑛q,2 `
𝜎1p𝜁p®𝑛qq

|®𝑛|

˙

,

where the error term is as in Theorem 1.1 and 𝜉p®𝑛q, 𝜂p®𝑛q, 𝜁p®𝑛q lie between 𝑐p®𝑛q and 𝑐p®𝑛` ®𝑒𝑖q.
To finish the proof of Theorem 1.4, let 𝑐 and N𝑐 be as (124). The last relation in (37)

now follows from (124) and (127) since 𝜉p®𝑛q, 𝜂p®𝑛q, 𝜁p®𝑛q Ñ 𝑐 as |®𝑛| Ñ 8, ®𝑛 P N𝑐 .
As pointed out right after Theorem 1.4, (36) and the top line of (37) imply infinite

differentiability and boundedness of all the derivatives. Thus, we get from the mean-value
theorem that

ˇ

ˇ𝐵1

𝜉p®𝑛q,1 ´ 𝐵1

𝑐p®𝑛q,1

ˇ

ˇ,
ˇ

ˇ𝐵1

𝜂p®𝑛q,2 ´ 𝐵1

𝑐p®𝑛q,2

ˇ

ˇ À |®𝑛|´1

with a constant independent of ®𝑛. Hence, we get from the bottom relation in (37) and (127)
that

𝑏 ®𝑛,𝑖 ´ 𝐵®𝑛`®𝑒𝑖 ,𝑖 ` 𝑜p1q “ O
`

|®𝑛|´1˘

uniformly in ®𝑛 when at least one of the numbers 𝑐p®𝑛q, 𝑐p®𝑛` ®𝑒𝑖q belong to p0, 𝑐˚s Y r𝑐˚˚, 1q

(notice that if for example 𝑐p®𝑛 ` ®𝑒1q ă 𝑐˚ ă 𝑐p®𝑛q, then 𝐵®𝑛,𝑖 “ 𝐵𝑐˚ ,𝑖 , 𝜎®𝑛 “ 𝜎p𝑐˚q and
therefore (126) still yields (127) with 𝜉p®𝑛q, 𝜂p®𝑛q, 𝜁p®𝑛q P p𝑐p®𝑛` ®𝑒1q, 𝑐˚q). This finishes the
proof of Theorem 1.3.
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