N-TH ROOT OPTIMAL RATIONAL APPROXIMANTS
TO FUNCTIONS WITH POLAR SINGULAR SET

LAURENT BARATCHART, HERBERT STAHL}, AND MAXIM YATTSELEV

ABsTRACT. Let D be a bounded Jordan domain and A be its complement on the Riemann sphere. We
investigate the asymptotic behavior in D of the best rational approximants in the uniform norm on
A of functions holomorphic on A that admit a multi-valued continuation to quasi every point of D
with finitely many possible branches. More precisely, we study weak™® convergence of the normalized
counting measures of the poles of such approximants as well as their convergence in capacity. We place
best rational approximants into a larger class of n-th root optimal meromorphic approximants whose
behavior we investigate using potential-theory on certain compact bordered Riemann surfaces.
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LisT oF SYMBOLS

General Point Sets:

T,D,C,C
T,,D,
T,D, A

unit circle, open unit disk, complex plane, and extended complex plane
circle and open disk of radius r centered at the origin
Jordan curve, its interior domain, and the closure of its exterior domain in C

Riemann Surfaces:

R*,p
R

T
rp(-)
m(z)
M

compact Riemann surface with natural projection p : Ry, — C
R:={ze Ry :p(z) e D}

a connected component of p~!(T) homeomorphic to T

the set of ramification points of a given Riemann surface
ramification order of a point z on a Riemann surface

total number of sheets of R

Classes of Functions:

Operators:
P,,P_
Iy
Sn (Ff )

continuous functions on a set £

functions analytic in some neighborhood of A

subclass of H(A) of functions multi-valued and quasi everywhere analytic off A
subclass of H(A) of functions single-valued and quasi everywhere analytic off A
class of functions quasi everywhere analytic on R

subclass of approximated functions analytic on A

algebraic polynomials of degree at most n

monic algebraic polynomials of degree n with all their zeros in D

PuM; (D)

space of bounded holomorphic functions in D

H*(D)M,; (D)

square integrable functions on the unit circle

essentially bounded functions on the unit circle

Hardy space of functions in L?(T) with vanishing Fourier coefficients of negative index
L*(T) S H?

orthogonal projections from L?(T) onto H?, H>
Hankel operator from H? to H>, h — P_(fh)
the n-th singular number of I'

Potential Theory:
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cap(K) logarithmic capacity of K

capg(K) Greenian capacity of K relative to Q

cap(E,K) capacity of the condenser (E, K)

ga(,w) Green function for Q with pole at w

g(0,Q;2) Green potential of the measure o relative to £

V7(z) logarithmic potential of the measure o

HQ.K Green equilibrium distribution on a set K < Q relative to Q
BE balayage function of a superharmonic function v relative to a set E
of balayage measure of a measure o~ onto a set E

o lift of a measure o~ on D to R

px(0) projection (pushforward) of a measure o- on R to D

0iA, clos((E)  fine boundary and closure of a set E
b(E),i(E) base and the set of finely isolated points of a set E

Various Symbols:

1) a conformal map from D onto D

Ky collection of “branch cuts” for f

Ky “branch cut” of minimal Greenian capacity for f € S(A)

|- Ik essential supremum norm on K

on(f,A) error of best rational approximation of f analytic on A by functions in R, (D)

1. INTRODUCTION

Rational approximation to holomorphic functions of one complex variable has long been a requisite
chapter of classical analysis with notable applications to number theory [30, 55, 33], spectral theory
[43, 26, 47] and numerical analysis [25, 32, 24, 17]. Over the last decades it became a cornerstone
of modeling in Engineering [64, 65, 50, 1, 27], and it can also be viewed today as a technique to
regularize inverse potential problems [22, 31, 4]. Finding best rational approximants of prescribed
degree to a specific function, say in the uniform norm on a given set, seems out of reach except in
rare, particular cases. Indeed, such approximants depend in a rather convoluted manner, both on
the approximated function and on the set where approximation should take place. Accordingly, the
constructive side of the theory has focused on estimating optimal convergence rates as the degree
grows large and devising approximation schemes coming close to meet them [66, 7, 23, 61], or
else studying the behavior of natural, computationally appealing candidate approximants like Padé
interpolants and their variants [3, 60, 44, 38, 41].

When a function is holomorphic in some neighborhood of a continuum A, the optimal speed
of convergence for rational approximants on A is at least geometric in the degree. Then, a coarse
but manageable estimate of this speed proceeds via asymptotics of the n-th root of the error of
approximation by rational functions of degree n. For functions continuable analytically off A except
over a polar set containing branchpoints (throughout polar means of logarithmic capacity zero), and
provided that A does not divide the extended complex plane, Gonchar and Rakhmanov constructed,
using multipoint Padé interpolants and dwelling on work by the second author, a sequence of rational
approximants whose n-th root error on A is asymptotically the smallest possible. They further showed
that these interpolants converge in capacity on the complement of a compact set K minimizing the
capacity of the condenser (A, K) under the constraint that the function is analytic off K, and proved that
the normalized counting measures of their poles converge to the condenser equilibrium distribution on
K [23]. Itis remarkable that the set K solves a certain geometric extremal problem from logarithmic
potential theory, close in spirit to the Lavrentiev type [34], and that it depends merely on the set where
approximation takes place, on the branchpoints of the approximated function and its monodromy
around them, but nothing else. Such a structure emerges because only the n-th root of the error is
considered, rather than the error itself. Since then, it has been an open issue whether any n-th root
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optimal sequence of approximants — in particular a sequence of best approximants — has the same
behavior. The present paper answers this question in the positive, at least when the branchpoints
are finite in number and order. In particular, our results connect, apparently for the first time, the
singularities of best uniform approximants to those of the approximated function. We also address
the case of no branchpoints, when the approximated function is analytic except over a polar set and
the speed of best rational approximation on A is known to be faster than geometric with the degree.
We prove that n-th root optimal approximants converge in capacity outside the singular set of the
function, and that the “most effective” poles converge in a sense to that set.

The gist of the paper becomes more transparent upon observing that the behavior of rational
approximants can be surmised when the function to be approximated extends analytically to a
multiply-sheeted Riemann surface over the complex plane. As rational functions are single-valued,
this topological discrepancy leads the approximants to mark out their domain of approximation by
accumulating poles so as to form a cut, thereby preventing single-valued continuation in the limit. In
the case of (diagonal) multipoint Padé interpolants, this cut has been characterized as being of smallest
weighted capacity in a field that depends on the limiting distribution of the interpolation points, and
poles asymptotically distribute according to the weighted equilibrium measure of that cut; moreover,
the Padé interpolants converge in capacity on the extremal domain thus demarcated. This was
established in [23], dwelling on the works [56, 57, 59, 60, 61] that deal with classical Padé interpolants
and correspond to the zero field and unit weight; see also [45] for early developments along these
lines, and [6] for applications to L2-best rational approximation on the circle. Subsequently, by
choosing interpolation points adequately and performing surgery to eliminate spurious poles, the
authors of [23] construct, on any continuum A not dividing the extended plane and contained in the
analyticity domain of a function indefinitely continuable except over a closed polar set containing
branchpoints, a sequence of rational approximants converging uniformly to that function on A as
their degree n grows large and whose n-th root error has a liminf which is smallest possible, as well
as a true limit. For this weakly optimal choice of interpolation points (meaning that the choice is
optimal in the n-th root sense), the cut K of minimum weighted capacity is also the cut minimizing the
condenser capacity of (A, K), as well as the cut of minimum Greenian capacity in the complement of
A. The smallest value for the limit of the n-th root error is a simple, explicit function of this Greenian
capacity, and the poles of the approximants thus constructed distribute asymptotically according to
the Green equilibrium measure of that cut.

Now, assuming in addition that the branchpoints of the continuation off A of the function to be
approximated are finite in number and of algebraic type, we shall prove that any sequence of rational
(or meromorphic) approximants of increasing degree n whose n-th root error on A converges to the
smallest possible limit — a fortiori every sequence of best approximants — has the same asymptotic
distribution of poles as the particular sequence constructed in [23]. More precisely, if a function
analytic in a simply connected neighborhood of a continuum A in the extended complex plane
is indefinitely continuable off that neighborhood except over a closed polar set containing finitely
many branchpoints, all of algebraic type, then the normalized counting measures of the poles of
any sequence of rational approximants of increasing degree n with asymptotically optimal n-th root
error on A do converge weak-star, as n grows large, to the Green equilibrium distribution of the
compact set of minimum Greenian capacity outside of which the function is single-valued; moreover,
convergence holds in Greenian capacity everywhere off that compact set. Here, Green functions
are understood with respect to the complement of the continuum A where approximation takes
place. Finally, if there are no branchpoints, that is, if the approximated function is single-valued
and analytic on the extended complex plane except possibly over a closed polar set E, then there are
rational approximants converging on A faster than geometrically with the degree. We shall prove
that such sequences of approximants (as well as their meromorphic analogs) converge in capacity
on the extended plane deprived from E, and that retaining the singular part that comes close to E
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generates new sequences of approximants, still converging faster than geometrically with the degree,
while satisfying in addition that any weak-star limit point of the normalized counting measures of
their poles is supported on E.

Previously cited references, which deal with Padé or multipoint Padé interpolants, exploit the
connection between denominators thereof and non-Hermitian orthogonal polynomials on a system
of arcs encompassing the singular set of the interpolated function. Indeed, the core of the work
in [59, 23] is to derive asymptotics of such polynomials on extremal systems of arcs like those
constructed in [56, 57], so as to qualify the behavior of the poles of the interpolants when the degree
grows large and deduce from it the desired convergence properties. Here, we proceed in the opposite
direction: we assume that the optimal rate is met in the n-th root sense and deduce from it the behavior
of the poles. For this we cannot make use of orthogonal polynomials, and in fact it is not even known
if interpolation takes place at all in the case of best approximants. However, the construction from
[56, 57] will still be basic to our purposes.

This work was initiated jointly by the three authors in 2009, but the untimely passing away of the
second one on April 22nd, 2013 prevented him from seeing its completion. Still, some fundamental
ideas are his.

2. PRELIMINARIES AND MAIN RESULTS

Given a function f holomorphic in a neighborhood of a closed set A < C, the error of approxi-
mation of f on A by rational functions of degree n is

2.1 JA) = inf — .
e pulfA)i= _inf 1f = rla
where | - ||4 stands for the supremum norm on A and, for Q@ c C, we let R,(Q) be the class of

rational functions of type (n, n) with all their poles in Q. That is, if $,, denotes the space of algebraic
polynomials of degree at most n and M,,(Q) the monic polynomials of degree n with all zeros in Q,
then R,,(Q) := P, M, 1(Q). It was shown by Walsh [66, 2], using interpolation techniques, that

2.2) limsup ;" (f, A) < exp{ — 1/cap(A, K)},
n—oo

where K is any closed set disjoint from A in the complement of which f is holomorphic and cap(A, K)
denotes the capacity of the condenser (A, K). A definition of condenser capacity can be found in
[54, Chapter VIII, Section 3]; for our purposes, it is enough to know that if @\A is connected, then
cap(A, K) coincides with the Greenian capacity capz 4 (K) defined in Section A.4, see [54, Chapter
VIII, Theorem 2.6 & Corollary 2.7] for this equivalence.

It is known that Walsh’s inequality (2.2) cannot be improved [37]. On the other hand, it was con-
jectured by Gonchar [28] and proven by Parfénov when A is a continuum with connected complement
[46] (also later by Prokhorov for any compact set A [51]) that

23) timin p," (£, 4) < exp { — 2/cap(4, K)}.

Hence, p,(f,A) has no limit in general as n — o0, and when the limit exists it cannot exceed the
right-hand side of (2.3). For certain classes of functions and certain loci of approximation A, it was
nevertheless shown that p, (f, A) does have a limit, which is equal to the right-hand side of (2.3).
More precisely, let H(A) denote the space of functions holomorphic on a (variable) neighborhood
of A, and S(A) < H(A) those functions continuable analytically into the complement of A along
any path that avoids some compact polar! subset of @\A (which may depend on the function); we
require in addition that this continuation is not single-valued, namely that there are paths with the
same endpoints leading to different analytic branches. Now, when A is a continuum that does not

Isee Section A.5 for a definition and basic properties of polar sets, that may be defined as sets of zero logarithmic capacity.
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separate the plane and f € S(A), it follows from work by the second author in [56, 57, 58] and it
was explicitly stated by Gonchar and Rakhmanov in [23, Theorem 1'] that

. 1/n . .
2.4 nangopn (f,A) = 1rléfexp{ 2/cap(A,K)},

where the infimum is taken over all compact sets K such that f admits a single-valued analytic
continuation to C\K.

Hereafter, we let T < C be a Jordan curve with interior domain D, and we put A := C\D. In this
setting o0 € A, which is no loss of generality for a preliminary Mobius transform can ensure this; in
contrast, our requirement that D be a Jordan domain is a regularity assumption on the set A where
approximation takes place. Given f € H(A), let K¢ be the collection of all compact sets K < D
such that f, initially defined on A, admits a single-valued analytic continuation to C\K. It follows
from [56, 57] that there exists Ky € K, unique up to addition and/or removal of a polar set, with

(2.5) cap,(Kyr) < capp(K), KeXKy.
We can and will normalize K¢ to be the smallest possible, i.e., we make it the intersection of all
K € K¢ for which cap, (K) is minimal, see [57]. As cap(K,A) = capp(K), in light of equation
(2.4), our main goal is to investigate the asymptotic behavior of sequences {r,, } of rational functions
of type (n, n) meeting this optimal n-th root rate:

. 1
(2.6) lim Hf—rnHA" :exp{ —2/capD(Kf)}.

n—oo

We call any such sequence {r,,} a sequence of n-th root optimal rational approximants to f on A.
In order to study {r, }, we are led to consider more general sequences of meromorphic approximants
of the form r, + h,, where h,, is holomorphic in D and continuous on D, see Section 2.3 for the
definitions. Even though best meromorphic approximants may look less natural than rational ones,
they make contact with both the spectral theory of Hankel operators (through AAK theory) and Green
potentials (because they generate errors with constant modulus on T'), while remaining essentially
equivalent to rational approximants as far as n-th root error rates are concerned [46]. This is why n-th
root optimal meromorphic approximants (meeting (2.6) in place of r,,) are of principal importance in
our study. Yet, the potential-theoretic tools on Riemann surfaces that we use only allow us to handle
compact surfaces so far, and this induces some finiteness conditions on the functions from the class
S(A) that we can deal with. These are set forth in the next section.

2.1. Class of Approximated Functions. We consider functions in 4 (A) such that

(i) they can be continued into D along any path originating on T that stays in D while avoiding
a closed polar subset of D (which may depend on the function);

(i1) they are not single-valued, meaning there are continuations along at least two paths as in (i)
with the same initial and terminal points that lead to distinct function elements, but still they
are finite-valued in that the number of such function elements lying above a point of D is
uniformly bounded (the bound may depend on the function);

(iii) their number of branchpoints (points in any neighborhood of which some analytic continu-
ation along a closed path in D encircling that point while avoiding the exceptional polar set
leads to a different function element) is finite.

In view of (i) and (ii), such functions lie in S(A). Note that (iii) is not superfluous, for there
are functions meeting (i) and (ii) with infinitely many branchpoints. For instance, an open Riemann
surface X made of two copies of @\{0}, glued along a sequence of disjoint cuts in D shrinking to the
point 0, has projection p : X — C\{0} a two sheeted covering with infinitely many branchpoints of
order 2. As X carries a holomorphic function f assuming more than one value on p~!(z) for z not a
critical value of p [18, Theorem 26.7], we deduce on putting D = D and A = @\D that each branch
of f o p~!is of the announced type.
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We formalize (i), (ii) and (iii) as follows. Let R, be an auxiliary algebraic Riemann surface, whose
set of ramification points rp(R;) lies on top of D. That is, there exists an irreducible polynomial
in two variables P(z,a), of degree at least 2 in a, such that R, = {(z,a) : P(z,a) = 0} and all
branchpoints of the algebraic function a(z) lie in D. We denote by p : Ry — C the natural projection
p((z,a)) = z, and we let R = R, be the (open) Riemann surface defined as

R:={z€e Ry :p(z) e D};

here and below, whenever it causes no confusion, we use letter z to denote both points in C and on
R Clearly, the ramification points of R, and R are identical: rp(R) = rp(R). Let us denote by
R the closure of R in R, and define a class of functions F(R) by

F(R) :={f: fisholomorphic and single-valued on R\Ey,
2.7 E¢ isclosed, p(Ey) is polar and contained in D,
f(z1) # f(z2) for some z1, 2> with p(z1) = p(z2)}.

In (2.7), we wrote E ¢ for the singular set of f on R but it would have been more appropriate to write
Ef(R), as the complete Riemann surface of f could be significantly larger than R and its singular
set bigger than E ¢ . Since all ramification points of R, lie on top of D, the simple-connectedness of
A implies that the preimage p—!(T') consists of finitely many homeomorphic copies of 7 under p—!;
we generically denote by 7 such a copy, so that p : 7~ — T is a homeomorphism. Then, denoting

with a subscript | E the restriction to a set E, the class of functions that we study is defined as
(2.8) F(A) := {f : f is holomorphic on A and IRy, 7, f € F(R) with fir = fo (pL«r)_l}.

From (2.7) and (2.8), one sees that F(A) ¢ S(A) < H(A) and members of F(A) meet (i), (ii),
(iii). Conversely, when f € H(A) satisfies (i), (ii) and (iii), one can check that f € F(A). Indeed,
if B is the closed polar subset of D defined by (i), we get from (ii) because D\B is connected, see
Section A.5, that the number of sheets of the Riemann surface of f above D\B is a finite constant,
say M. Therefore, since the branchpoints are finitely many by (iii), the algebraic surface R.. can be
constructed by a classical glueing process described in Section 3.2. The fine point, when applying
to the present case this familiar procedure based on glueing pairwise in a certain order the banks
of M copies of a system of cuts joining the branchpoints, is that any two points of D can be joined
by a smooth simple arc entirely contained in D\B, except for its endpoints if they lie in B. It is so
because D\B is a connected open set and each point of B is the center of a circle of arbitrary small
radius contained in D\B, as well as the endpoint of a segment contained in D\B (that may even be
chosen to have quasi-any direction). These properties hold because B is polar, and therefore thin at
each point of C, see Section A.6.

We also consider functions in H (A) meeting (i) but not (ii). These are analytic and single-valued
in @\E , where E < D is closed and polar, i.e., there are no branchpoints. This case complements
the previous one on putting Ry = C and omitting the last requirement in (2.7); we denote the
corresponding class of functions by E(A). Since cap(A, E) = cap,(E) = 0 when E — D is polar,
see Section A.4, we get from (2.3) and (2.2) that

2.9) Tim p)"(f,4) =0, fe8(A).

That is to say, some sequence {r,}nen, rn € Ry, of rational functions, converges faster than
geometrically towards f on A as the degree grows large, meaning that

(2.10) lim [ f —ra]" = 0.
n—ao0

We call any such sequence a sequence of n-th root optimal rational approximants to f € E(A) on A.
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2.2. Optimal Rational Approximants. Notions of potential theory in D and R play a fundamental
role in what follows, and the reader might want to consult Appendix A for a comprehensive account
thereof. Let us here recall the definition of Green potentials and Green equilibrium distributions.
The Green function gp (-, w) of the domain D with pole at w € D is the unique non-negative
harmonic function in D\{w}, with logarithmic singularity at w, whose largest harmonic minorant
is zero. The Green potential of a positive Borel measure v in D is g(v, D;z) := §gp(z, w)dv(w).
Putting |v| for the total mass of v, the Greenian capacity (in D) of a Borel set B — D is defined by

(2.11)  capp(B) = < i‘l{fsupvaBlD(V)>_l’ Ip(v) := Jfg(z,W)dV(W)dV(Z);

v=0,|v|=

the infimum above is taken over all probability Borel measures v supported on B. For any set S < D,
the outer Greenian capacity of S in D is defined as capp,(S) = infcapp, (U), where the infimum
is taken over all open sets U © § in D (using again the symbol cap,, causes no confusion for
the outer Greenian capacity is known to coincide with the Greenian capacity on Borel sets). Polar
subsets of D are those whose outer Greenian capacity is 0. If K is a non-polar compact subset of
D, then there exists a unique Borel probability measure up g supported on K, called the Green
equilibrium distribution on K relative to D, such that cap,,(K) = 1/Ip(up. k). It is characterized
by the property that its Green potential is bounded on D and equal to its maximum (which is then
necessarily 1/cap,, (K)) quasi everywhere (that is, up to a polar set) on K. To recap:

< l/capp(K), ze€ D,
(2.12) g(up.x,D;z) § = 1/capp(K), forqe. z€K,
< l/capp(K), z€ D\K,

where the last inequality follows from the (generalized) maximum principle for harmonic functions.
We are concerned with two types of asymptotics for sequences of rational approximants: the
weak™ behavior of the normalized counting measures of their poles, and the convergence in capacity
of the functions themselves. More precisely, given a rational function r of type (n, n), we define
1
(2.13) u(r) = — Oz,
T

0

where each pole z appears in the sum as many times as its order. Equivalently —2mu(r) is the
distributional Laplacian A(log |¢|'/"), with ¢ the denominator of an irreducible form of r. One says
that a sequence {v, } of finite Borel measures on D converges weak™® to a measure v, denoted as

Wk
Vo, — Vv as n— oo,

if S hdv,, — Shdv for every continuous compactly supported function 4 on D. We further say that a
sequence of functions h,, converges in Greenian capacity to a function h on aset U < D if

(2.14) nlLr&capD({z €F :|hy(z) —h(z) > €}) =0

for each € > 0 and every compact F < U; we denote this claim by £, L hinU. The convergence
(2.14) is said to hold at a geometric rate if we can replace € in (2.14) by a” for some positive
a = a(F) < 1; the convergence rate is called faster than geometric if (2.14) holds with € replaced
by a" for any a > 0.

Theorem 2.1. Let T < C be a Jordan curve, D its interior and A the complement of D U T on the
Riemann sphere. Given f € F(A), let Ky € Ky be such that (2.5) holds and {ry} be a sequence of
n-th root optimal rational approximants to f on A, as defined in (2.6). Then,

(2.15) 1(rn) 3 1ok,
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where u(ry,) is the normalized counting measure of the poles of r, and up g  isthe Green equilibrium
distribution on Ky relative to D. Furthermore, it holds that

1 , )
(2.16) %1og|f—rn|°—““>’g(pD,Kf.,D;-) in D\K; as n— o,

capp (Ky)
where g(up k,,D; ") is the Green potential of up k, in D.

Theorem 2.1 and (2.12) imply that n-th root optimal rational approximants converge to f in
capacity in D\K at a geometric rate, given pointwise by exp{g(up k,,D;z) — 1/capp(Ks)}. In
fact, convergence in Greenian capacity in D\K ¢ and uniform convergence on A together with the
limiting behaviour (2.15) for the poles imply convergence in logarithmic capacity on B\K Foata
geometric rate, less than or equal to exp{g(up k,, D;z) — 1/capp, (K )} pointwise; see Section A.4
for a definition of logarithmic capacity. This remark is a consequence of the proof of (2.16) given
in Section 3.11, and it equally applies to the forthcoming Theorem 2.4, as well as Theorems 2.2
and 2.5 in which K gets replaced by a polar set £ and the convergence takes place at faster than
geometric rate. Moreover, if in Theorem 2.4 the n-th root optimal approximants M,, are their own
Nehari modification, then a more precise conclusion holds: exp{g(up.k,,D;z) — 1/capp(Ky)}
is the exact pointwise rate of geometric convergence in logarithmic capacity on D\K ¢ like it is in
Greenian capacity on D\K s ; see Section 3.3 for a definition of Nehari modifications.

FIGURE 1. Surface R with five ramification points rp(R) = {aj, as,a3,a4,as5} (ay is
not labeled) and four sheets. Ramification point a; has order 3 and the remaining points
have order 2. The sequence @-@-®-®-O represents the monodromy around a; while
encircling it clockwise, where the transitions happen across the dashed curves that stand
for the cuts between different sheets of R. The domain Uy is depicted as a shaded region.
In this example Ey = @, E1 = {p(ay), p(az), p(a3)} are the active branch points, and
Ejg = {b}, where b = p(b1) = p(b2) = p(b3). The set K is a threefold equal to the
natural projection of the solid (purple) curves. The solid curves also represent a different
choice of the transition cuts between different sheets of R, with the latter the domain (Llf
will lie entirely on one sheet.

In view of its importance, let us describe in greater detail the set Ky. As mentioned before, the
problem of finding elements of minimal capacity in K was extensively studied by the second author
[56, 57, 58]. The existence of such sets for f € H(A) was proven in [56], and one can choose K SO
that Ky < K for any K € Ky with cap,,(K) = infg cap,,(K), which makes K s unique [57]. The
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topological structure of Ky was investigated in [58], where it is shown that

(2.17) Kp =EoUE vl
i

where the J; are open analytic arcs, E; comprises the endpoints of the arcs J;, and E| is a subset of the
singular set of f in D (the singular set consists of those points in D to which some continuation of f
from T has a singularity). As soon as f € S(A), the set Ej is polar by definition. To understand this
decomposition better when f € F(A), let J; := u;J; so that Ey < J¢. Then f possesses a single-
valued continuation into D\J¢ with singular set E, consisting of polar and essential singularities
(but no branching singularities). If 7, f are as in (2.8) and Uy is the connected component of
p~'(D\Jy) containing 7 in its boundary, then we can further decompose:

E():p(Efﬁ(uf), E1 :E10UE11, E11 Z:p(l‘p(R)ﬁT[f), E10 = E1\E11.

That is, E;; is the set of “active” branchpoints of f, i.e., branchpoints that can be reached by
continuation of f from T into D\J, as opposed to those points in rp(R) that cannot be so reached.
Also, each e € Ejg is an endpoint of at least three arcs J;, and generically f possesses analytic
continuations to e from any direction within D\J¢ (unless by chance e is a singularity of f as well),
see Figure 1. As rp(R) is finite, so is the collection {J;} in cases that we consider.

For f € #(A), Theorem 2.1 asserts two things: (i) the weak® convergence of u(r,) to up i,
whenever {r,} is an n-th root optimal sequence of rational approximants to f on A, and (ii) the
convergence in capacity of r, to f at a geometric rate on D\K¢. If now f € E(A) and {r,} is a
sequence of n-th root optimal rational approximants to f on A, i.e., a sequence meeting (2.10) and
thus converging faster than geometrically to f on A, then we shall see that r,, converges in capacity to
f at faster than geometric rate in D. However, one can no longer expect a specific behavior of y(r,)
in this case, for if R, is a sequence in R, (D) that converges to zero faster than geometrically on 7,
then r,,» + Ry is again a sequence of n-th root optimal rational approximants to f on A, whereas
the weak™ limit points of u(R;) can be arbitrary amongst positive measures of mass at most 1 on
D. Thus, faster than geometric convergence does not qualify rational approximants enough to imply
much on the behavior of their poles. Still, those poles of r,, that stay away from the singular set of
f cannot account for the rate of convergence. This is made precise in the following result, which
complements Theorem 2.1 in the case of no branchpoints.

Theorem 2.2. Let T, A and D be as in Theorem 2.1. Given f € E(A), let {rn} be a sequence of
rational functions of type (n,n) meeting (2.10). Then, it holds that

M3 f in D\E
at faster than geometric rate, where E — D a closed polar set outside of which f is analytic and
single-valued. Moreover, for any neighborhood V of E there is a sequence {Ry, }, Rk, € R, (V),
kn < n, such that the poles of Ry, are among the poles of r,, lying in'V and

2.18) lim |f — R, |{" = 0.
n—aoo

Using neighborhoods V shrinking to E and a diagonal argument, Theorem 2.2 yields a corollary
of independent interest.

Corollary 2.3. If f € E(A) and E < D a closed polar set outside of which f is analytic and
single-valued, then there is a sequence of rational functions {ry}, r, € R,(D), converging faster
than geometrically to f on A, and such that every weak® cluster point of the sequence {u(ry)} of
normalized counting measures of the poles is supported on E.
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2.3. Optimal Meromorphic Approximants. Let H* (D) denote the space of bounded analytic
functions on D and A(D) the subspace of those extending continuously to D. When T is rectifiable
each h € H* (D) has a non-tangential limit almost everywhere on T with respect to arclength, that
we still call 4, and putting | - ||z for the essential supremum norm on T (with respect to arclength)
it holds that ||| = |A|p [12, Theorems 10.3 & 10.5]. When T is a non-rectifiable Jordan curve,
however, limiting values of H* (D)-functions on T generally exist at sectorially accessible points
only, and such points may reduce to a set of zero linear measure [49, Theorem 6.25]. This will force
us into a somewhat careful discussion of meromorphic approximants. Remember the set M,,(D) of
monic polynomials of degree n whose zeros belong to D, and put

{H;C(D) :={h/q: he H*(D), g € Mu(D)},
An(D) :={h/q: he A(D), g€ M,(D)}.

That is, H (D) is the set of meromorphic function with at most n poles in D that are bounded near 7,
and Ay (D) is the subset of those extending continuously to 7. We shall say that {M,,} is a sequence
of n-th root optimal meromorphic approximants to f € S(A) on T if M,, € A, (D) and

(2.19) limsup | f — My[y/" < exp { — 2/capp (Ky)}.
n—oo

Any sequence of n-th root optimal rational approximants is a particular sequence of n-th root optimal
meromorphic ones, by (2.6). When T is rectifiable, Corollary 2.6 to come will entail that in (2.19)
the condition M,, € A, (D) can be traded for the seemingly weaker requirement M,, € H.°(D).
However, it is important to require that M,, € A,(D) when T is not rectifiable, for otherwise
the left-hand side of (2.19) may no longer make sense for the essential supremum norm (with
respect to arclength) and the considerations below would not apply. In his proof of (2.3), Parfénov
[46] has shown that the limit inferior of p,ll "( f,A) is the same as the one of the n-th root of the
error in best meromorphic approximation, see (2.22) for a definition of best (not just n-th root
optimal) meromorphic approximants. Hence, in light of (2.6), replacing rational approximants with
meromorphic ones does not improve the rate of decay of the n-th root error, and n-th root optimal
meromorphic approximants to functions in S(A) could be defined with the limit superior and the
inequality sign replaced by a full limit and the equality sign in (2.19).

Theorem 2.4. With the notation of Theorem 2.1, let {M,} be a sequence of n-th root optimal
meromorphic approximants tof € F(A) onT, see (2.19). Then, the conclusions of Theorem 2.1 hold
with r,, replaced by M,,.

Let us reiterate that n-th root optimal rational approximants are just an instance of n-th root optimal
meromorphic approximants, and therefore Theorem 2.1 is a special case of Theorem 2.4.

When f € E(A), we define meromorphic approximants in a manner similar to (2.19) but this time
with an eye on (2.9). Namely, we say that {M,,} is a sequence of n-th root optimal meromorphic
approximants to f € E(A) on T if My, € A, (D) and
(2.20) lim | f — M, | " = 0.

n—oo
The following complements Theorem 2.4 in the case of no branchpoints, and subsumes Theorem 2.2.

Theorem 2.5. With the notation of Theorem 2.2, let {M,} be a sequence of n-th root optimal
meromorphic approximants on T to f € E(A), see (2.20). Then, the conclusions of Theorem 2.2
hold with r,, replaced by M,,.

Besides best rational approximants, a noteworthy instance of n-th root optimal meromorphic
approximants are the AAK (short for Adamyan-Arov-Krein) approximants. These are best mero-
morphic approximants with at most n poles. Specifically, consider the following (Nehari-Takagi)
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problem: given f € L*(T), find M,° € H’(D) such that
@21 If =M |xr= —inf |f—M]r
MeH® (D)

If n = 0, then (2.21) reduces to the question of best analytic approximation of bounded functions on
the unit circle by elements of H* (D), which is the so-called Nehari problem named after [42] (that
deals with an equivalent issue). It is known that M, always exists and that it is unique when f lies in
C(T)+ H* (D), see [47, Chapter 4]. Moreover, if f is Dini-continuous on T, then M° is continuous
on T. Indeed, if we write M° = r,, + g where r,, € R,(D) and g € H* (D), we see that g must be
the best Nehari approximant to f — r,, which is Dini-continuous on T, and the claim follows from
[9]. When T is a rectifiable Jordan curve, one can readily replace D by D in (2.21) and carry over
to T all the properties of best meromorphic approximants on T by conformal mapping. When T is
non-rectifiable, the very existence of approximants depends on the analyticity of f on T, and follows
from the proof of the next corollary to Theorem 2.4.

Corollary 2.6. Let T, A and D be as in Theorem 2.1. Given f € F(A) or E(A), to each integer n
there exists a unique M° € A, (D) such that

(2.22) If =M lr = inf |f— M|
MeA, (D)

T

and if T is rectifiable then A, (D) can be replaced by H,° (D) in (2.22) without changing M. Of
necessity, the conclusions of Theorem 2.4 and 2.5 hold with M,, replaced by M°.

Much interest in best meromorphic approximants stems from their striking connection to operator
theory. Denote by L?(T) the space of square integrable functions on T, and let H> — L*(T) be the
Hardy space of functions whose Fourier coefficients with negative index do vanish. It is known that
H? can be identified with (non-tangential limits on T of) analytic functions in D whose L*-means on
circles centered at the origin are uniformly bounded, see [12, Theorem 3.4]. Set H> := L*(T) © H*
to be the orthogonal complement of H?, which is the Hardy space of L?-functions whose Fourier
coeflicients with nonnegative index are equal to zero. The latter can be identified with functions
analytic in @\ﬁ that vanish at infinity, and whose L?-means with respect to normalized arclength
on circles centered at the origin are uniformly bounded. Let P_ : L?>(T) — H? be the orthogonal
projection. Given f € L*(T), one defines the Hankel operator with symbol f to be

(2.23) Ty: H> > H>, Ty(g):=P_(gf).

For n a non-negative integer, let s, (I'y ) be the (n + 1)-th singular number of the operator I'f, that
is 5,(I'f) := infrank r<n [T’y — R|, where the infimum is taken over all operators R : H? — H? of
rank at most n and | - || stands for the operator norm. Then, one has that

(2.24) |f = M2 r = sn(Ty).

If, in addition, f € C(T) + H*(D), then I' is compact so that s (I'y ) is the (n + 1)-st eigenvalue
of I ’; 'y when these are arranged in non-increasing order, and (2.24) becomes a pointwise equality:
(2.25) [(f = M;°)(2)| = sa(Ty) ae onT.

Moreover, if v, is an (n + 1)-st singular vector of T r,1.e., an eigenvector of F;‘Z 'y with eigenvalue

s2(Tf), then MY is explicitly given in terms of f and v,, by the formula

(v
(2.26) f—MF = M
Vn
Though not obvious at first glance, the right-hand side of (2.26) is independent of which n-th singular
vector v, is chosen and it has constant modulus on T, in accordance with (2.25). The next corollary,

of independent interest, follows from (2.25), (2.19), (2.9), and Theorems 2.4-2.5.
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Corollary 2.7. Let 'y be the Hankel operator with symbol f € T(@\D) Then, it holds that
.
Jim s/"(Ty) = exp { — 2/capy (Ks)}.
Moreover, if f € &(C\D), then the above limit is equal to 0.

3. Proor oF THEOREM 2.4

3.1. Existence of Best Meromorphic Approximants. Below, we establish the existence and unique-
ness part of Corollary 2.6, along with the assertion that H,°(D) may replace A, (D) when T is
rectifiable. The rest of the corollary will follow from Theorem 2.4 upon conclusion of its proof.

Let ¢ : D — D be a conformal map. As mentioned in the paragraph before (2.5), ¢ extends
to a homeomorphism from D to D. Let L?(T), H?, and H> be as defined after Corollary 2.6 and
P, : L*(T) — H? P_ : L*(T) — H? be the orthogonal projections. If we pick a continuous
function f on T, then f o ¢ is continuous on T and a fortiori it lies in L?(T). Set F := P_(f o ¢) and
G :=P,.(fo¢) sothat Fe H*> and G € H>. Since P, + P_ is the identity operator, it holds that

CRY F(z) = (fo¢)(z) =G(z), ae.zeT.

Now, if f € H(A), then f o ¢(z) is holomorphic in r < |z| < 1 and continuous in r < |z| < 1, for r
close enough to 1. Hence, the right-hand side of (3.1) is holomorphic in r < |z| < 1 with uniformly
bounded L3-means on circles centered at the origin, while the left-hand side lies in H? and both
sides have the same non-tangential limit on T. By an easy variant of Morera’s theorem [21, Chapter
II, Exercise 12], the function equal to F(z) for |z] > 1 and to (f o ¢)(z) — G(z) forr < |z] < 1 is
holomorphic across T, in particular F' extends analytically across T and G extends continuously to
D. Then, as described after (2.21), the best meromorphic approximant M* € H* (D) to f o ¢ exists
and is unique, moreover it is readily checked that M° is equal to the sum of G (a member of A (D))
and of the best approximant to F from Hy° (D), which lies in A, (D) because F is analytic across T
and so is a fortiori Dini-continuous on T; hence, we get that M;° € A, (D). If now M € A,(D),
then M o ¢ € A, (D) and

If =Mlr =[feop—Moglr=|fo¢p—M|r

by definition of M. As M* o ¢! € A, (D), it is the unique best meromorphic approximant to f
we are looking for. The previous argument also shows that, when f € H(A), the best meromorphic
approximant to f o ¢ necessarily belongs to A, (D). Because composition with ¢ is an isometric
isomorphism L*(T) — L*(T) (understood with respect to arclength measure) when T is rectifiable,
one can equivalently use H.,°(D) instead of A, (D) in definition (2.22).

3.2. Reduction to the Unit Disk. Let K be a compact subset of D. Since Green potentials are non-
negative superharmonic functions whose largest harmonic minorant is zero, while a characteristic
property of Green equilibrium potentials is to be constant quasi everywhere on the support of their
defining measure while being no greater than this constant everywhere in the domain, it holds that

g(up.x.D;5z) = g(up,¢(k). D #(z)) and capp(K) = capp(4(K))

where ¢ : D — D is a conformal map, see (2.12) as well as Sections A.3 and A.4. One has in this
case that up ¢ (x) = ¢+ (up, k), the pushforward of up x under ¢. Hence, we get that

| * 1 < "
— 0, — if and only if — Op(z) — R
p Z z > MD,K y n Z #(zi) 7 HD.¢p(K)
i=1 i=1
where the weak® convergence is understood for n — co. Furthermore, by conformal invariance,
a sequence of functions h, converges in Greenian capacity to a function 4 in D if and only if the
functions &, o ¢ converge in Greenian capacity to the function 4 o ¢ in D.
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Let now R, and R be as in Section 2.1. Denote by M the number of sheets of R, so that a generic
point in D has M preimages under the natural projection p : R — D. Let J < D be a smooth
oriented Jordan arc joining two points of p(rp(R)) while passing through all others exactly once.
Constructing J is tantamount to enumerating the points of p(rp(R)). Write J = u;J; where each J;
connects exactly two points in p(rp(R)). The surface R can be realized as M copies Uy, . .., Ups of
D\J, suitably glued to each other along the banks of the cuts J; in each copy U; (the glueing rule can
be encoded, for example, as a collection of 4-tuples (1, , j, k) telling one that the left and right banks
of the cut J; in U; need to be glued to the right bank of the cut J; in U; and the left bank of the cut J;
in Uy, respectively, see [40] for a discussion of Hurwitz’s theorem). Using the same gluing rule, we
can construct another M-sheeted surface S out of the domains ¢~'(U;),...,¢ ! (Ups). The map
¢ can then be lifted to a conformal map ® : S — R for which ¢(n(z)) = p(®(z)), z € S, where
7 : S — D is the natural projection.

Let f € F(A) and f € F(R) be as in (2.8) and (2.7). Clearly f o ® € F(S), and the surface
S, can be constructed by gluing M copies of @\D to S along the M homeomorphic copies of T that
comprise the boundary of S. Argueing as we did after (3.1), we find that F := P_(f o ¢) lies in
F(C\D) with the corresponding F € F(S) given by f o ® — G o xr, where G := P, (f o ¢). Note
that the conformal equivalence of Greenian capacities implies that K = ¢! (K ). Hence, if {M,, }
is an n-th root optimal sequence of meromorphic approximants of f in D as defined in (2.19), then
{]\7In := M,, o ¢ — G} is an n-th root optimal sequence of meromorphic approximants to F on T and

(f = Ma)(6(2)) = (F = My)(z), zeD\Kr.

Therefore, it is sufficient to study the asymptotic behavior of F' — M,, as well as the limit distribution
of poles of M,,. That is, it is enough to prove Theorem 2.4 on the unit disk.

3.3. Nehari Modifications. For f € H(C\D) and M,, € A, (D), let his _p, be the best holomorphic
(Nehari) approximant of f — M,, in H* (D). Thatis, | f — M, —hy _p, |1 = infpego oy | f — My —
h||7, and hy_pg, € H* (D). Let us set

(3.2) N(Mp)(z) :== (My + hy_pm,)(2),

and call N(M,,) the Nehari modification of M,,. The discussion after (2.21) shows that N(M,,) lies
in A, (D). Indeed, we may write M,, = g, + r, with r, € R, (D) and g, € A(D). Then, one
can readily check that hy_p;,, = gn + hy_y,. As f — ry is analytic across T and in particular
Dini-continuous there, it follows that i ¢ _,, belongs to A (D) and so does ¢ _py,.

Since | f — N(M,)|lt < ||f — My|r and N(M,,) lies in A, (D), the sequence {N(M,,)} is one of
n-th root optimal meromorphic approximants to f, whenever {M,, } is such a sequence. It is beneficial
for us to consider Nehari modifications because they enjoy the additional property that the error they
generate has constant modulus on T, i.e., it follows from (2.24) that

(3.3) |(f = N(My,))(z)| = |[Tf-m,| forae zeT.

We claim that it is enough to prove Theorem 2.4 for Nehari modifications only, as we now show.

Assume that Theorem 2.4 holds for {N(M,,)}. As the poles of M,, and N(M,,) are the same, this
automatically yields the statement about weak™® convergence of the counting measures of the poles.
Moreover, given € > 0 and K < D\Ky a compact set, let us put

E(K,e,N(M,)) := {Z ek: %log|(f—N(Mn))(z)| — g(up.k;>D52) + m‘ > e}.

Define E(K, €, M,,) analogously. According to our assumption it holds that
(34 lim capy (E(K,€,N(M,))) =0,
n—aoo
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and we need to show that (3.4) holds with N(M,,) replaced by M,,. Given ¢ € (0, 1), define

1
" capp(Ky) 8’"’{} ’
where mg := ming g(/JD,Kf,D; ) > 0. Since N(M,)) — M, is analytic in D, we get from the

maximum modulus principle and the triangle inequality that |N(M,)(z) — M, (z)| < 2|f — M|t
for z € D. Since exp{(l — &)mg} > 1, relation (2.19) implies that

1
Fre = {z€ K: 108/ = N > #loury i)

1 2n
2|f — M| < = 1—¢)2 -
If = e < gexp {1 = ep2mmy — 2]

for all n large enough. Hence, by the previous estimates, it holds for all such n and z € F,, . that
‘N(Mn)(z) — Ma(2) !
flz) =N

1 ol .
_ezn(ml( g(up.kp»D52)) <

(Mn)(z) | 2 2
In particular, for any 0 < & < &/, there exists ng depending on K and &’ — & such that
f(z) — Mn(2)

(3.5) < (&' —e)mk

20 | 7@ = N M) (2)
for all z € F,, - and n > ngp. Therefore, we get from the triangle inequality that

E(K,e'mg,M,) S (K\Fy.s) U E(K,emg,N(M,)) = E(K,emg,N(M,))

for all n > ng. The above inclusion clearly yields that (3.4) holds with N(M,,) replaced by M, for
€ =¢&'mk. As g, &, and K were arbitrary, the claim follows.

3.4. Notation. We fix f € ¥ (C\D) and, with a slight abuse of notation, we keep denoting by f the
corresponding function in # (R) (that was denoted by fin (2.8)). Take {M,,} to be a sequence of n-th
root optimal meromorphic approximants of f and let {N(M,,)} be the sequence of corresponding
Nehari modifications. Since {N(M,,)} is also n-th root optimal, it holds that

2
capp (Ky )’
see the discussion after (2.19). We shall need an exhaustion of R\E by open sets with “nice”
boundaries. That is, we consider a sequence {Q,, }>1 of open sets such that

3.7 QncR\Ef, QucQuit, ORCOQn, R\Ef=UnQn,

and each Q,,,, when viewed as an open subset with compact closure of R, is regular for the Dirichlet
problem, see Section A.7. We will require in addition that 1(0Q,,\0R) = 0 for some Radon measure
A on R that will be specified at the beginning of Section 3.5 (a Radon measure is a positive Borel
measure which is finite on compact sets). To design regular Q,, that meet (3.7) is possible because
E ¢, being compact in R, is a countable intersection of compact sets K; < R with smooth boundary.
Indeed, there is a smooth function & > 0 on R such that E is the zero setof hand h > ¢ > 0
outside a compact neighborhood of E s, hence we can pick K; to be the sublevel set {z : h(z) < 1;},
where {#;} a sequence of regular values of & tending to 0 (almost every positive number is a regular
value by Sard’s theorem). In fact, using smooth partitions of unity and local coordinates, existence
of such A quickly reduces to the corresponding issue in Euclidean space, where it follows easily from
a combination of [62, Chapter VI, Theorem 2] and [67, Theorem I] (this result is named after H.
Whitney). Furthermore, since the sets C, 5 := {z : a < h(z) < b} are compactfor0 <a < b < ¢
and & > 0 small enough, A(Cs,p) < 0. So, A({z : h(z) = t}) # 0 for at most countably many
positive ¢ < &, and we can assume that #; chosen above are not such values. The domains Q,, thus
constructed satisfy all our requirements.

Let Q be a subdomain of D or R. Given a Borel measure o on 2, we denote the Green potential
of o relative to Q by g(o, Q; -), see Section A.2. Hereafter, every measure is Borel unless otherwise

1
(3.6) lim —log |f = N(My) = = —

n—oo
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stated. If o is a measure on a Borel set containing Q, we write for simplicity g(o-, Q; ) to mean
g(0 |, ;). Conversely, for a measure o~ on a Borel set By < Q, we still denote by o~ the measure
on Q mapping a Borel set B to o"(B N By), and write g(o, Q; -) for its potential. When o = >, 6,
is a (possibly infinite) sum of Dirac delta measures, we put

(3.8) b(o,Q;z7) = exp{ — g*(o-,Q;z)}

to stand for the corresponding generalized Blaschke product, where g* (o, Q;-) is a complexified
Green potential, i.e., it is locally holomorphic in Q\supp(c-) and Reg* (o, Q;-) = g(o,Q;-). If
g(0,Q;-) = +o0, which can happen when the points z; accumulate in Q or to the boundary 0Q
sufficiently slowly, then b(o-, Q; ) is identically zero. Otherwise, b(o, Q;-) is well defined up to a
unimodular constant (because the periods of a conjugate function of g(o-, Q; -) are integral multiples
of 27 by Gauss’ theorem), holomorphic in €, unimodular quasi everywhere on 0Q (everywhere if
the latter is regular and the points z; are finite in number), and it vanishes only at the points z; (with
multiplicities represented by repetition).

3.5. Stripped Error of Approximation. We shall study the asymptotics of the error functions
|f — N(M,) o p|. In this section, we strip off their poles and zeros to take logarithms and obtain
harmonic functions whose limiting behavior we then investigate. To this end, we set

(3.9) Ly = Z5vn,,-’ Un = [n/n, and v, = Zéun,j’ Vp 1= V/n,

where {v, ;} < D are the poles of N(M,) and {u, ;} < R\E the zeros of f — N(M,) o p, with
multiplicities counted by repetition. Before we proceed, let us specify the measure A appearing in
the definition of the exhaustion {€,,} in the previous subsection. To this end, recall that on a locally
compact space X, a sequence of Radon measures {07, } converges vaguely to a Radon measure o if
{gdo, — Sgdo- for every g in C.(X), the space of continuous functions with compact support on
X endowed with the sup-norm. Moreover, if the measures o, are locally bounded on X, then they do
contain a vaguely convergent subsequence, see for example [14, Theorem 1.41] for an argument on
R™ which is applicable to any o-compact locally convex space?. Hence, since the measures y,, have
mass at most 1, we get if v, is locally bounded along some sequence of integers that there exists a
subsequence N' < N, a measure v* on R\E and a measure y on D such that v,, and y, converge
vaguely to v* and p, respectively, along N; if the measures v, have no locally bounded subsequence,
i.e., if there exists a compact set K < R\E such that v, (K) — o0 as N 3 n — oo, then we put
v* = 0 and we only require the vague convergence y, — u along N. In any case we take A to be
v* + [1, where i is the lift of u to R defined via (A.33).

Using (3.8), we define Blaschke products vanishing at the poles of N(M,,) and the zeros of
f — N(M,) o p. Namely, we put

bgole(z) = b(fn,D12) and  bR%0(z) := b(Vn, Qi 2).

These functions are not identically zero, as the number of poles of N(M,,) is at most n while the
number of zeros of f — N(M,) o p in each Q,, is finite. To see the latter point, recall from (3.3)
that | f — N(M,,)| is constant on T, hence the error f — N(M,) can be meromorphically continued
across T by reflection. It implies that N(M,,) can be meromorphically continued across T and this
continuation is necessarily analytic in some neighborhood of T. Thus, f — N(M,,) o p is analytic in a
neighborhood of IR by the analyticity of f there, so the zeros of f — N(M,,) o p can only accumulate
on Ey and not on 0R. Thus, there are at most finitely many of them in each Q,,.
Using these Blaschke products, we define

G100 () = log|(f — N(M) 0 p) (IR 0 )BT 2 e

2Vague convergence is called weak convergence in [14].
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which is harmonic in Q,,. Recall that superharmonic functions on a hyperbolic Riemann surface
are either identically 400 or finite quasi everywhere, and any two of them that coincide almost
everywhere (with respect to Lebesgue measure in local coordinates) are in fact equal (the weak
identity principle), see Section A.1.

Lemma 3.1. There exist a subsequence N' = N and a non-negative superharmonic function u’(z)
on R such that

(3.11) — hp,,m(z) > u'(z) as m— o,

locally uniformly in z € R\E, for any subsequence {n,,}°_, = N'. If u’ is finite quasi everywhere,
then one has a decomposition

(3.12) u' =g(v,R;)+ 1,

where V' is a finite positive Borel measure supported on Ey and h' is a non-negative harmonic
Sfunction on R.

Proof. The regularity of 0, implies that |63 (z)| = 1 for z € 0Q, and likewise |bj, ) =1
for z on T. In particular we get that
N (M) ()b (2)| < [N(Mp) |z, zeD,

by the maximum modulus principle for H*-functions. Set I', := I'y_p, be the Hankel operator
with symbol f — M, see (2.23). It follows from the definition of the singular values, (2.24), and
(3.2) that |Ty || = so(T'n) = | f — N(My)|lt < | f — My||T. Since the norms || f — M, ||t tend to zero
by assumption, we get that

(3.13) IN(Mp)|r < [|fllr + ITW] < C

for some constant Cy that depends only on f and the sequence {M,}. Thus, we get from the
maximum principle for harmonic functions that

(3.14) nan(2) <~ log (I

Set Ny := N. Proceeding inductively on m > 1, we deduce from (3.14) that the sequence
{hn.m}nen,,_, is uniformly bounded above in Q,, and therefore, by Harnack’s theorem, see Sec-
tion A.1, there exists a subsequence N,, & N,,— such that

(3.15) hom(z) = hm(z) as Npdn— o0

locally uniformly in Q,,, where A,,(z) is either identically —co or a non-positive harmonic function.
Define N to be the diagonal of the table {N,}>_,; that is, the m-th element of N is the m-th
element of N,,,. Then, (3.15) holds along n € N, for each m.

Additionally, it follows from the maximum modulus principle for holomorphic functions that

270 > DS 2€ Qe my < ma.

n,m n,my

o0 +Cr), 7 € Q.

Therefore, we get from (3.10) and (3.14) that h,,, (z) < hm,(z) < 0 for z € Q,,,, when m; < mo.
Thus, if a finite limit /,,,,, (z) exists for some index m, then it exists for all m > m,.. Hence, either
the functions #,, ,,, converge to —a0 as Ny 3 n — o0 locally uniformly in each Q,,, in which case
hy, = —oo for all m, or else the functions #,, are finite and harmonic for all m large enough.

If h,, = —oo for all m, select for each m some n,, € Ny such that h, ,,(z) < —m for z € Q1
and all n > n,,; we may require in addition that n,, > n,_; for m > 1. Then (3.11) holds with
N = {ny}*_ and u’ = +oo.

If on the contrary the functions #,, are finite, they form an increasing sequence on Q, for m > ¢
and fixed £. As they are non-positive, they converge locally uniformly in R\E ¢ to a non-positive
harmonic function, say —u’, again by Harnack’s theorem. Since Ey is a closed polar set and u’
is non-negative, it follows from the Removability theorem, see Section A.5, that u’ extends to a
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superharmonic function on R that we keep denoting by u’. Because u’ is superharmonic on R and
harmonic on R\E, its Laplacian is a negative Radon measure —v’ supported on E s, which is
necessarily finite since E ¢ is compact. Thus, by the Riesz representation theorem, see Section A.3,
equation (3.12) takes place with A’ the largest harmonic minorant of u’.

Given m, choose fi,, € Ny such that |7, (z) — hm(z)] < 1/m for z € Q,,_y and all n > iy,
Define N’ := {ii,}7_,, where we again additionally require that 7i,,, > 7i,,, 1. Given a compact set
K < R\E¢ and € > 0, we can pick m large enough that

K<SQu 1, 1/m<e/2, and [u'(2)+ hm(z)| <€/2, z€eK.
Then, it follows from the last two inequalities that |h, ,(z) + u'(z)] < € for z € K and any
N’ 5n > fi,,. Since € and K were arbitrary, this finishes the proof of (3.11). O
Lemma 3.2. Ifu’ # +o0 in Lemma 3.1, then I’ in (3.12) continuously extends to 0R and
2
(3.16) H(z) = { capp(Ky)
0, 7€ OR\T .

, Z€7T,

Proof. Let Qy := p~'({z : r < |z| < 1}), with r > 0 close enough to 1 that Q,\0R — Q,, for
each m. It follows from the proof of Lemma 3.1 that A, ,,(z) — hu(z) as N’ 3 n — o0, locally
uniformly in Q, \@R. Given a connected component Q of Q. let 65\9 be its harmonic measure, see
Section A.9. Then

G toglp(a) — (14 p(@)] = [Ioelp(@) — (1 + p()dsF Q). ze g,

for any £ € 0Q N OR and € > 0, see (A.28). It then follows from the monotone convergence theorem
that we can take € = 0 in (3.17). Recall that f — N(M,,) o p is analytic across 0R n 0Q and hence
is non-vanishing there except perhaps for finitely many zeros counting multiplicities. Since A, ,, is
harmonic in Q, is continuous on dQ\JR, and is equal to % log|f — N(M,) o p| on 0R n 0Q (i.e.,
it is continuous on 0Q\JR except perhaps for finitely many logarithmic singularities), we get from
(3.17) and (A.28) that

1
B (2) = J BmdS R + f ~log|f — N(M,) o p|lds®'®, zeq.
0Q\0R ORAOQ N

By (3.6) the pointwise limit of % log|f — N(M,,) o p| on 0R is minus the right-hand side of (3.16)
except perhaps for a finite subset of R\, where | f — N(M,,) o p| may go to zero, contained in

{Z13n#¢: p(0)=pM). f(O)=f)\T.

As 6?9 does not charge polar, thus finite sets, the convergence in fact holds almost everywhere with
respect to éf\g for each fixed z. So, if we can justify the second equality in the following relation:

1
(3.18) hu(z) = lim ( f hmd6 XS + f —log|f — N(M,) o p|d5f\9>
N'sn—a \ JoQ\oR oRAoQ N
1
= f hmdo X + J lim —log|f — N(M,) o p|ldsX'®,
AQ\OR ARAOQ Nan—w n

we shall get that /,,(z) solves a Dirichlet problem on © with boundary data equal to /,,|s0\o% 0N
0Q\OR, and to the negative of the right-hand side of (3.16) on dR N Q. As such, h,, must extend
continuously to 0Q where it is equal to the boundary data, since 0Q is non-thin at any of its points.
Subsequently, as h,, converges to —u’ locally uniformly on R\E; (see the proof of Lemma 3.1),
passing to the limit in the leftmost and rightmost sides of (3.18) when m — o0 yields that u’ extends
continuously to 0Q n JR with values given there by the right-hand side of (3.16). This will give us
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the desired conclusion, because v’ is compactly supported in R and therefore g(v’, R; -) continuously
extends by zero to 0R since R is regular.

Altogether, it only remains to justify the swapping of the limit and integration signs in (3.18). On
0Q\OR, one can invoke the dominated convergence theorem. Thus, we only need to consider the
integral over 0R n 0Q. According to Vitali’s convergence theorem, it is enough to show that for
every € > 0 there exists 6 > 0 and n, € N for which

1
(3.19) f ‘—10g|fN(Mn)op|’d65\Q<e as soon as |6§\Q(E)|<6 and n > n,.
E|N

For this, we first deduce from (3.13) that

1 1
(3.20) f 081 = N0 0 pldoT® < o (1 flor + 1)

as 65\9 is a probability measure. Now, if 0R n 0Q = 7, then it follows from (3.6) that
1
(3.21) J ~log|f — N(M,) o plds® > % (E),
E

for any E < 7 and some positive constant ¢. If 0R N 0Q = T # T, set d(n) := f(n) — f({)
wheren € 7', ¢ € T, and p(n) = p(¢). Then, we get from (3.13) that

|d()> — [Tl
|d(n)| + [Tl
> log |ld(n)|* — |Tul?| = log(If |7 + Cy).

Since E ¢, the singular set of f, and rp(R), the ramification set of R, are closed and lie on top of D,
d(n) extends to a holomorphic function, non-identically zero in a neighborhood of 7. Then,

(322) log|(f — N(My,) o p)(n)| = log|ld(n)| — |Tnll| = log

D(n) :=d(m)d(p='(1/p(n)) satisfies D(n) = [d(n)]>. neT”,

and is holomorphic about 7”. Pick an open set W > 7 such that W n rp(R) = @ and D is
holomorphic in W with no zero on 0W; then, so is D — |[,||* for n large as |T',|> — 0. Let £ and
¢, be minimal degree polynomials, normalized by imposing | €|t = |£. |t = 1, such that

D) ., D) — ||
t(p(n)) tu(p(n))

are holomorphic and non-vanishing in W. Since |T',||> — 0, the zeros of D — || in W tend to
those of O by Rouché’s theorem, and so our normalization implies that £, — ¢ uniformly in W as
n — . Hence, (D — |T|?)/(€, o p) converges to D/(£, o p) uniformly in W, in particular it is
uniformly bounded away from zero there. Consequently, it follows from (3.22) that

(3.23) log|[(f — N(Myn) o p)(n)| = C +log|tu(p(n)), neT,

for some finite constant C. Note that log |£,| < 0 in D according to our normalization. Let us write
ln(x) = an [ [;(x — x;,,) and define the reciprocal polynomial ¢, of £, by

- xX—x;n, if|x; . =1,
fn(x) = anH{ ’ | ' |
i

1— _X)Ei’n if |xi’n| < 1.
Clearly |£,(&¢)| = |£,(€)] for |£€] = 1, and the maximum principle for harmonic functions implies that

(3.24) J 1og |2, (p())|d6%"* = log|6u(p(2))], zeQ,
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since both sides of (3.24) are harmonic in Q and have the trace log |6, (p(n7))| on 7 while the
left-hand side has zero trace on dQ\7 and the right-hand side satisfies log |£,, o p| < 0 there. Thus,
we get from (3.23) and (3.24) that

R\Q R\Q

1 C 1 -
j Dioglf = N(Mp) o plas®® = S 41 f log £, (p(n))|d5”
T n n n id

c 1. ..
(3.25) > —+ ~log|l(p(2))|-

As the last term goes to zero uniformly on £ and since £, — €, where { is the reciprocal polynomial
of ¢ defined similarly to ¢, the estimate (3.19) now follows from (3.20), (3.21), and (3.25). |

3.6. Asymptotic Distributions of Poles and Zeros. Recall the measures u, introduced in (3.9).
Since these measures have mass at most 1, it follows from_Helly’s selection theorem [54, Theo-
rem 0.1.3] that there exists a Borel measure u’, supported in D with mass at most 1, such that

(3.26) un 34’ as N'sn— oo,

perhaps at a cost of further restricting N/, where ¥ stands for weak* convergence of finite (signed)
measures (a sequence of Borel measures {07} on a locally compact space X converges weak™ to a
measure o if { gdo, — § gdo for every continuous function g in Co(X), the completion of C..(X) in
the supremum norm). Observe that ”/LD = u, where p was defined as the vague limit u,, in D along

N 2 N'. In particular, u,, 3 uin D.

Lemma 3.3. For any subsequence {n,,}°_, < N, it holds that

1 -1 =
(3.27) lim inf — log |2 (2)] ' { } g(u,D; z),
m—o M,y =
where the inequality holds for every z € D and equality holds for quasi every z € D.
Proof. Observe that % log ‘bZ"le (z)|71 = g(un,D;z), see (3.8). Since u, "% ron D, the conclusion
follows from the Principle of Descent and the Lower Envelope Theorem, see Section A.7. O

We cannot immediately get an analog of the previous lemma for the measures v,, = v,,/n, because
we do not know if these Radon measures on R\E  have uniformly bounded masses. Instead, we
shall study the asymptotic behavior of their Green potentials in the style of Lemmas 3.1 and 3.2.

Lemma 3.4. [f the Radon measures o, converge vaguely to o, K < E is compact, and o(0K) = 0,
then the restrictions o, g have uniformly bounded masses, |k iy ok on K, and on(0K) — 0.

Proof. For each & > 0 there is an open set V © 0K such that o-(V) < & (by outer regularity of o),
and an open set W with compact closure satisfying V. > W > W o dK together with a continuous
function ¢ > 0, supported in V, which is 1 on w (by Urysohn’s lemma). Thus, K, := K\W is a
compact subset of int K (the interior of K) such that, for n large enough that | S<pda’,, — Sgada'| <&,

02 (0K) < 0 (K\K¢) < 0 (W) < qudo;, <e+ Jtpda’ < 2e.

Therefore § gdo, — §gdo as n — o for any bounded continuous function g on intK [11, Propo-
sition 6.18], and since 0, (0K) — 0 while o-(0K) = 0 it implies the weak™ convergence of o, |k to
ok - The uniform boundedness of the masses 0, (K) = { 1do, now follows. ]

From now on we employ standard notation D, := {z : |z] < r} and T, := JD,..
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Lemma 3.5. There exist a subsequence N” = N’ and a non-negative superharmonic function u” (z)
on R such that

1 _ >
(3.28) liminf — log [bZ" (z)| 1{ - }u”(z)
m—oo n ’ =

Jorany {n,}°_ = N", where the inequality in (3.28) holds everywhere on R\E y while the equality
needs only to hold quasi everywhere. When u” # +oo, it holds that

(3.29) u” =g(v",R;) + h"

for some Radon measure v" carried by R and some non-negative function h" harmonic on R.

Proof. Observe that 1 log |bff;f(z)|_1 = g(vn, Qm;z) according to (3.8). Below, we distinguish
two cases: (i) when the measures v, possess a subsequence which is locally bounded in R\E, i.e.,
having uniformly bounded masses on each compact subset of R\E s, and (ii) when there exists a
compact set K < R\E¢ such that v,,(K) — o0 as N’ 3 n — .

In case (ii) relation (3.28) holds with u” = o0 and N” = N’ because minyex gq,(z, w) > 0 for
z € Q¢ and every ¢ such that K < Q,, and therefore

gVu s Qi 2) = gy, » Qo5 2) = vy (K) VIVHEIII; ga,(z,w) —

as m — oo and {n;,}°_ < N’, where the first inequality holds for m > ¢.

In case (i), the measures v, converge vaguely to v* in R\E; along N’. Let {r;};°, be a positive
real sequence increasing to 1 with r| large enough that p(0Q,,\0R) < D,, and v*(p~!(T,,)) = 0
for each [. This is possible, because for 0 < a < b < 1 the set Ug<,<pp~ ' (T,) is compact, so there
are at most countably many r € [a, 1) with v*(p~!(T,)) # 0.

We now argue by double induction over m and /: the reasoning below should be applied inductively
inm > 1, so as to define a sequence of integers N, for each m. Let Q,,; := Q, N p_l (Dy,) and
proceed inductively in [ > 1, starting with N, o := Nj,—; where Ny = N’. Since v, (ﬁm) < oo for
each n, m by definition of v,,, we can define

(330) hn,m,l (Z) = g(an Qm; Z) - g(Vn Lﬁm,l’ Qm; Z)’ ZE€ Qm,l,

which is a non-negative harmonic function in €, ;. By Harnack’s theorem, either there is a subse-
quence Ny;,.; © Ni1—1 of indices n along which hy, 1 — hp 1, locally uniformly in €2, ;, for some
non-negative harmonic function A, ;, or else hy, ,,; tends to infinity with n € N,,;_1, locally uni-
formly in Q,,, ;. In the latter case, we set Ny, := Ny.1—1 and hy, ; = +00. Clearly, hy, m.1 = hnom.i+1
and so, for fixed m, either h,,; = 400 for all [ or the h,,; are finite for / large enough. Let N,, be
the diagonal of the table {le}?il' Since N, is eventually a subsequence of every N, , it holds
that 11, ;.1 — hm,1 as Ny 3 n — oo for every [ > 1, locally uniformly in Q,, ;.

In another connection, since v*(0Q,,,;) = 0 by construction and the v, o have uniformly
bounded mass over n by the assumptions of the considered case, we deduce from Lemma 3.4 that

VG vy Vrﬁm,l on Q,; as Ny3n— .

Now, v, o defines a measure on €, in a natural way, and the weak® convergence above implies
weak™ convergence on Q,,,, because every continuous function with compact support in Q,,, restricts to
a continuous function on ,,, » p—1(D,,) which itself extends to Q,,; = Q,, » p~1(D,,) continuously
by zero. As £, is aregular open set with compact closure on the surface Ry, the Principle of Descent
and the Lower Envelope Theorem yield for any subsequence N* < A that

lim inf g(vnl_Qm,z’Qm;Z){ > }g(v* Qm;Z),

N*¥3n—00 = Qo

where the inequality holds everywhere in Q,,, and the equality may only hold quasi everywhere.
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In view of (3.30), the above inequality and the very definition of N,,, imply that

I.ﬁm,l

. ) = * .

(3.31) /\}’llglnlgl;og(vm Q3 2) { }g(v Qi 2) + hi(2), 7€ Qi

along any subsequence N* < N, where the inequality holds everywhere in Q,, ; while the equality
needs only to hold quasi everywhere. As the left-hand side of (3.31) does not depend on / and
the right-hand side is superharmonic, we get from the weak identity principle that successive right-
hand sides are superharmonic continuations of each other when [ increases. Let u,,(z) be the
superharmonic function in Q,, given on each €, ; by the right-hand side of (3.31). Since a smooth
function with compact support in €, is eventually supported in Q,, ; for large [, we get from the

definition that either u,, = +00 or Au,, = —v*. In the latter case, the Riesz representation theorem
yields that
(3.32) Un(z) = gOv*, Qs 2) + hm(z), 7€ Qu,

for some non-negative harmonic function #,,, which is the largest harmonic minorant of u,,.
Let AV be the diagonal of the table {N,,,}*_,. As N is eventually a subsequence of each N, we
get from (3.31) that for each m and any subsequence N* < N it holds that

}um(z),

where the inequality takes place everywhere in Q,,, and equality at least quasi everywhere. Because
the left-hand side of (3.33) increases with m, we have that u,,,(z) < u,+1(z) for quasi every z € Q.
Thus, either u,, = 400 for all m large enough or else u,, is finite quasi everywhere on Q,, for all m.
In the latter case, since Au,, = Auyyy11q,, (= —VTQm), we get that u,,+1 — U, is harmonic on Q,,.

\%

N*sn—00

(3.33) liminf g(v,, Qm;2) {

Hence, 0 < u,, < uyyy1 everywhere on €, and so u” := limy, u,, is positive and superharmonic
on R\E¢. If u” = +o0 we are done, for we get (3.28) from (3.33) with N” = N. Otherwise u” is
locally integrable and therefore (3.32), together with the Riesz representation theorem, imply that

(3.34) u"(z) = g(v*,R\Er;z) + h(z), zeR\Ey,
where /1(z) is a non-negative function that is the largest harmonic minorant of u” on R\E .

As Ey is polar and compact in R, we deduce from the Removability theorem and the Riesz
representation theorem that

(3.35) h(z) =1h"(z) +g(7.R;z), zeR\Ey,
where h” is a non-negative harmonic function on R and ¥ a finite positive measure supported on
Ey. Moreover, since for z € R\Ey the function gg(z,") — gr\k, (z,") is non-negative harmonic

on R\E; and bounded above near E s, the Removability theorem for harmonic functions yields that
gr(z,")— 8R\Ey (z,+) = Oasitextends to a non-negative harmonic minorant of gg(z, -) on R. Hence,

(3.36) gV R\Ef;z) = g(v*,R;z), zeR\Ey,
and equations (3.34)—(3.36) imply that u”(z) extends superharmonically to the entire surface R by
(3.37) u"(2) =gV, R;2) + h'(z), V'=v*+7.

Now, for any subsequence {in },-_, < N, it holds in view of (3.33) that for each mp € Nand z € Qyyy,
(3.38) limin g (v, Qi 2) > Iminf g (v, Qi) >t ().

and we obtain the inequality in (3.28) by letting m tend to infinity.

Thus, it only remains to prove the equality quasi everywhere in (3.28) when u”(z) is quasi
everywhere finite. As before, the argument should be applied inductively on m with No := N. The
functions g, 1.m = &§(vn, Q) — g(Vn, Qu; ) are non-negative and harmonic in Q,, for [ > m.

~

Therefore, by Harnack’s theorem, there are subsequences Ny;,.; © Nii—1, Nin,o := Nim—1 such that
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8n.1,m converges locally uniformly to some function H; ,, harmonic in Q,, as /\N/m,l 3 n — o (note
that g, .» cannot go to +00 otherwise so would g(v,,€;-), and in view of (3.33) u;(z) would be
infinite for quasi every z, contradicting that u; < u” < o). Of necessity, H ;, = u; — u,, by (3.33),
and a diagonal argument gives us a single subsequence /\7:; =N along which the convergence
8n.l.m — Hj n, takes place for any / > 0. Now, for fixed m and each [ > m, select 7i; € K/n"; such that

(339) |gn,l,m(Z) - (ul(Z) - um(Z)>| < l/l, ZE€E ﬁm—ls np<ne Nr:k,

Since the functions u; — u,, are harmonic in Q,, and increase with /, they converge locally uniformly
to u” — u,, there by Harnack’s theorem and the definition of u”. Thus, taking (3.39) into account,
for any € > 0 there exists L > 0 such that

(3.40) gnm(z) — (u"(2) —um(2))| <€, z€ Qu_1, I>L, & <neN:

Define N, := {71}, Then it follows from (3.40) and (3.33) that

(3.41) liminf g (vy,, Q;z) = liminf g (v, Qu3;z) + lim gn,.1.m(2) = u”(2)
-0 -0 -0

for quasi every z € Q,,_1, whenever {mi}2, < N,y Finally, let N” be the diagonal sequence of the
table {/\7,,1}::1. Since N’ is eventually a subsequence of every N,y it follows from (3.41) that

(3.42) liminf g (vy,,, Q3 z) = u"(z), {nm}_, S N”, forqe. zeR\Ey,
m—o0 ;
which is the equality case in (3.28). O

3.7. Logarithmic Error Function. Hereafter, we redefine NV to be N” constructed in Lemma 3.5.
By Lemmas 3.1, 3.3 and 3.5, the limits (3.6), (3.11), (3.27), and (3.28) hold along this new sequence.

Since u is finite, there is a G s polar set Ny = D such that g(u,Dyx) < +oo forx € D\ﬁo, see
Sections A.3 and A.5. Let us put Ny := p‘l (ﬁo), which is a G s polar subset of R, see Section A.5.
We now introduce the function ler : R\Ny — [—00, +00) (“ler” for “logarithmic error”), by putting

(3.43) ler(z) := g(u.D; p(2)) —u'(z) —u"(z),  z€R\No.

where u’ and u” are as in Lemmas 3.1 and 3.5. Clearly, ler(z) is a §-subharmonic function (the
difference of two subharmonic functions), and it is well defined for z ¢ Ny since g(u,D; p(z)) is
finite there. As introduced, ler depends on the choice of the subsequence N, but later we shall see
that it is in fact unique.

Lemma 3.6. There exists a polar set Ag = R\Ny such that, whenever z1, 2, are distinct points in
R\No with p(z1) = p(z2) and ler(z;) < 0fori = 1,2, then 21,22 € Ay.

Proof. By the equality quasi everywhere in (3.27), there exists a polar set A; < D such that, for
every x € D\Aj, one can find a sequence N, € N along which

lim  *log b2 ()|~

Nydn—owo n

Together with (3.10), (3.11), the inequality in (3.28) and (3.43), this gives us

= g(u, D;x).

(3.44) limsup ~log |(f — N(Ma) o p) (2)] < Ler(2)

Nx3n—o0

for every z ¢ Np such that z € p~!(x) with x ¢ A; U p(Ey). Assume now that z1,z2 € R\No
satisfy z; # zp and p(z1) = p(z2), as well as ler(z;) < 0 fori = 1,2. Let x € D be such that
21,22 € p~1(x). If x ¢ A; U p(Ey), it follows from (3.44) that

flz) = ngir?;w N(M,)(p(z1)) = leai,?Loo N(M,)(p(z2)) = f(z2)
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and necessarily 21,22 € Ay == {{|3n # ¢ p({) = p(n), f({) = f(n)}. Now, the conditions
placed on the class F(R) imply that the set A, is finite, and therefore the lemma holds with
Ao :=p~' (A1 U p(Es) U p(Az)) which is polar, as inverse image under p of a polar set. O

Lemma 3.7. The inequality ler(z) > —o0 holds for quasi every z € R\Ny. In particular u’ # +o
and u” # 400 in Lemmas 3.1 and 3.5, so h' and h" are finite non-negative harmonic functions on R.

Proof. Since g(u; D; p(+)) is finite on R\ Ny while u’, u” are non-negative and either identically +o0
or finite quasi everywhere, ler is in turn either identically —oo or finite quasi everywhere on R\Nj.
The former possibility contradicts Lemma 3.6, therefore the latter prevails so that u’ # +o0 and
u” # +o00. Hence, Lemmas 3.1 and 3.5 imply that 4’ and 4" are finite on R. m]

Due to the previous lemma, we can rewrite (3.43) as
(3.45) ler(z) = g(u, D;p(2)) — g(v,R;2) — hgr(z), z € R\No,

where we have set v := v/ + v”, which is a locally finite measure on R with quasi everywhere finite
potential, and hg := k' + h” which is a positive harmonic function on R.

Lemma 3.8. It holds that lim,_,; hg(z) = O for every { € OR\T.

Proof. Fix £ € OR\T, and let ¢ € T be such that p({) = p(&). We claim that
(3.46) lim i?f hg(z) = 0.
Z—)

Indeed, if liminf,_,, hg(z) = I > 0, take 0 < 2¢ := min{/, 2/capy(Ks)}. Let S < D be the radial
segment {z : z = rp({), r € [l —6,1)} and Sy (resp. S¢) be the connected component of p~!(S)
accumulating on 0R to ¢ (resp. £). If 6 > 0 is small enough, then

(3.47) hg(z) =€, z€S; U8,

by Lemma 3.2. Furthermore, Lemma 3.6 yields that either ler(z;) = 0 or ler(zz) = 0if p(z1) =
p(z2) € S\p(Ap U Np). In particular, we get from (3.45) and (3.47) that

(3.48) g(u,Diz) =€, zeS\p(Aygu Np),

where we notice that Ag U Ny as well as p(Ag U Np) are polar. This contradicts Lemma A.5, applied
with g(o, D;+) = g(u,D;-) and & being p({), since R > from that lemma would necessarily be a
subset of p(Ag U Ny). This proves our claim (3.46).

Next, assume for a contradiction that limsup,_,, hg(z) = I > 0, and pick 0 < 2¢ <
min{/’,2/capp, (Ks )} such that the level line L. := {z : hg(z) = €} is a smooth 1-dimensional
submanifold of R (this can be achieved according to Sard’s theorem). Notice that { must be a limit
point of L, because any neighborhood of £ in R, contains a connected open set U 3 £ with U n R
connected (p is a local homeomorphism at ¢ and we may take p(U) to be a disk) in which hg
assumes values arbitrary close to 0 and I’ by definition of lim inf and lim sup; hence, as Az (U N R)
is connected, it contains the value €.

Let Dg be a disk centered at p(¢) of small enough radius so that D and D ¢, the components of
p~1(Dg) in R, that contain respectively £ and &, are in one-to-one correspondence with Dy under p.
Decreasing the radius of Dy if necessary, we can assume that hg(z) > €/2 forz € Dz by Lemma 3.2.
Let us redefine

(3.49) S;i=LenDyg, S:=p(S;), and Sg:=p '(S)nDg.

Observe that hg cannot be constant in view of (3.46) and (3.16). Therefore, no connected component
of S can be a closed curve in D by the maximum principle for harmonic functions. In addition, if §
has a connected component, say Sy, accumulating at z, € T, then

g(u.D;z) > €/2, zeSi\p(Ag U No),
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exactly as in (3.48). Let R /3 be as in Lemma A.5, applied with g(o-, D;-) = g(u,D; ) and & being
7. Then S, must intersect every circle {z € D : |z — 24| = | —r}, r € R 3, by connectedness.
Necessarily, the intersection must be a subset of p(Ag U Np) and therefore polar. Since contractive
maps do not increase the logarithmic capacity [52, Theorem 5.3.1], this means that R, 3 is polar,
which contradicts Lemma A.5 (as we explain in Section A.4, polar subsets of D have Greenian and
logarithmic outer capacity zero). Thus, S is a system of smooth curves, each connected component
of which has at least one limit point on dDg n D. Consequently, if Ty < Dy is a circle centered at
p({), then any connected component of S intersecting the interior of 7) must intersect Tp as well
since it accumulates at a point of ¢Dg. That is, S must intersect any such circle and we arrive at a
contradiction exactly as above. O

The exceptional set where inequality is strict in Lemmas 3.3 and 3.5 a priori depends on the
subsequence {n,,} under consideration. The next lemma shows that there exists a polar set outside
of which equality holds, both in (3.27) and (3.28), for one and the same subsequence, see (3.50).

Lemma 3.9. For quasi every z € R, there is a sequence N, = {n%,}*_. < N such that

m=1 —
lim g(vpz, Qmiz) = u"(2),
m—o0
Jim g(uu,. Dip(z)) = 8(u.Dip(2)).

Proof. Our goal is to show that there exists a subsequence {n¥} < N such that
(3.50) liminf (g(v,x. Qu:z) + g% D1 p(2))) = g(w.D: p(2)) +u”(2)

for quasi every z € R. Since the inequalities in (3.27) and (3.28) hold for every z € R, this will
indeed imply the claim of the lemma.

To prove (3.50), we shall rewrite the sum of two potentials in the left-hand side as a single potential
on R. To this end, we lift 4, and u to R via the construction described in (A.33). Specifically, with
the notation introduced there, it follows from (A.34) that

(3.51) 8(in, R;2) = g(un, D p(2)) and  g(it,R;2) = g(u, D5 p(2)), zeR.
Now, we can write g (v, Qi z) + g(un, D; p(z)) as a sum of three terms:

(352 g(Vn + fin. Qi) + (8(Ani,, R.2) = 8(fin. Qi 2)) + g(An R0, R: 2),
and we shall study their behavior separately.

To start, recall that yu = u’LD, where g is the weak™® limit of u, along A in D. Thus, by the
discussion after (A.34), an analogous relation holds between g and f,,. Namely, since u, has total
mass 1, the total mass of [i,, is equal to M, the number of sheets of R. In particular, the sequence [,
converges weak® on R to /1, and on R to ﬁIL'R = [

Since the sets Q,,, exhaust R\E s, it holds that i(R\Q,,) — (Ef) — 0 as m — c0. Moreover,
as each R\Q,, is compact with boundary of ji-measure zero, it follows from Lemma 3.4 that the
measures i, |g\q,, converge weak* to ii|g\q,, along N. In particular, i, (R\Q) — @(R\Qmn) — 0
as n — co. Hence, for each m there exists n/,, € N such that

|fin (R\Qun) — A(Ef )| < 2|A(R\Qum) — fi(Ey)| assoonas n > m,.
Let o be a weak™ limit point on R of the family {iz,; |z\q,, }men. Clearly supp(c-) S Ey and o is
also a weak™ limit point of this family on the fixed compact set R\Q;. Thus, integrating against any
function which is identically 1 on R\Q; and passing to the limit gives us c(E¢) = [i(E¢) by our
very choice of n},. In another connection, if ¢ : R — [0, 1] is a continuous function with compact
support which is 1 on a compact set K < E, then

o(K) < ft,oda' < limsupf¢dﬁn;n [R\Q < limfgodﬁn;n = f¢dﬁ.
m m
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As the infimum over ¢ of the rightmost term above is f(K) by Urysohn’s lemma and the outer
regularity of Radon measures, we get that o < 1| by the inner regularity of Radon measures on
R, see [53, Theorem 2.18]. Altogether, we deduce that o = [ LE> and consequently the measures
Anlyy | R\Q,, cONverge weak™ to i g, along N’ := {n,, }. In particular,

(3.53) Jim g (i, 1R\, R32) = g(H1E, R32),  z€ R\Ef,

which settles the asymptotic behavior of the last term in (3.52) along the sequence of indices {n/, } .
Notice that by the definition of n),,, if N’ is replaced by an arbitrary subsequence {n’, },, thereof, then
(3.53) continues to hold along this new subsequence of indices. This will be used in the forthcoming
steps.

Next, let f,,(z,w) := gr(z, w) — gq,,(z, w) for z,w € Q. Clearly, f,(z,-) is harmonic in €,
and continuous on ,,, by the regularity of Q,,. Its boundary values are equal to gz (z, -) on 0y, in
particular they are identically zero on 0R. Fix z € R\Ef, and let k be an integer such that z € Q.
Then, we get for all m > k that
(3.54) 0 < fin(z,w) < wef?rslilnx\aﬂ gr(z,w) < Wéralgf+l gr(z,w) =: Cx, weEQ,,
where the constant Cy is finite, independent of m, and we used the maximum principle for harmonic
functions twice (once for f,,(z, -) on Q,, and once for gr(z, ) on R\Q ). Observe further that the
functions f,,(z, ), m > k, are not only positive harmonic in each Q; for fixed  satisfying k < [ < m,
but form a decreasing sequence there. Therefore they converge in €2; to a non-negative harmonic
function, say f{}(z,-), by Harnack’s theorem. As this claim is true for all large /, the f19(z,")
inductively define a harmonic function f(z, -) on R\E ¢ that satisfies 0 < f(z,-) < Cr when z € Q.
Thus, it extends harmonically to the entire surface R by the Removability theorem for harmonic
functions, and as its trace on OR is zero we conclude that f(z,-) = 0.

Observe now that fi,(z,w) = fiu(w,z) for m large enough so that z,w € Q,,. Thus, it is
jointly harmonic in both variables [35, p. 561]. Hence, by Harnack’s theorem and the diagonal
argument, any subsequence of {fy,(-, )} has a further subsequence converging locally uniformly
in R\Ey x R\Ey, and we know from what precedes that the limit function can only be zero. In
particular, it holds that
(3.535) Nim = max fi(z,w) >0 as m — o,

zZ,wey
where we used thateach f,,, (-, -) extends continuously by zero to IR x 0R, and therefore the maximum
principle for harmonic functions can be applied to show that the convergence is indeed uniform on
ﬁl. Given m, define
Lpi=max{l : 1<l <m, nm,<1/l}.

It follows from (3.55) that [,,, — o0 and 17;,, ,» — 0 when m — oo, whence for each fixed z € Q and

all m > k lt hOldS that
( Qm\le Q

(3.56) < Crfin(Qm\Qu,,) + M1y, m.

0< L Fonlzo w)dfin () )fm<z,w>dﬁn<w>

Im

where we used (3.54) while recalling that M is the number of sheets of R, which is a bound for the
total mass of each [i,,. Now, we obtain from Lemma 3.4 and our choice of €,, that the measures [,
converge weak* to g along N, not only on R, but also on every compact set of the form ﬁm\ﬂzm-
Hence, taking into account that ((R\E;)\€,,) — 0 as m — o0, we can associate to each m an
integer n), € N’ such that n}, > n, and

i (ﬁm\le) —0 as m — 0.
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Clearly, the choice of N” := {n],} is independent of z. Thus, we get from (3.56) together with the
choices of {/,,} and N that for every z € R\E it holds

(3.57) lim g(fu 10, R:2) — &(fny . Qm3z) = lim Jm(z, w)d iy, (w) =0,
m—0o0 m—0o0 Qn
which settles the asymptotic behavior of the middle term in (3.52) along N”.

Lastly, to describe asymptotics of the first term in (3.52), we need to repeat some steps of the proof
of Lemma 3.5 with v, replaced by v,, + [i,. Recall the definition of the sets Q,,; given just before
(3.30). We may adjust it so that (v* + @) (0Q,1) = 0. Indeed, 0Qy,; = (0Q,,\OR) U p~(T,,). We
already know that (v* + ) (0Q,,\0R) = 0, so we only need to ensure that (v* + ) (p~'(T,,)) = 0
for each [. This can be achieved as before since [ is finite and therefore v* + (i is still a Radon
measure. Since &' (0Qy.1) = {(0Qpm,1) = 0 by construction, it follows from Lemma 3.4 that

~ w¥

~ ~
19,0\ ltﬁm\szm,, and ,un(p (Tn))*’O

for all m, [. So, when z € Q,, ;, we get that

N"3n— N"asn—o0

G58)  Jim gl 0@ @2 = N g(i, g, Oni2)
=8 (ﬁ/Lﬁm\Qm,l 5 Qm; Z) =8 (ﬁLQm\ﬁm’l’ Qm; Z)

since gq,, (+, z) is continuous on ﬁm\Qm,l and vanishes on 0R by regularity of ,,. Moreover, the
convergence is locally uniform in z € Q,, ; by the continuity of Green functions with respect to both
variables off the diagonal. From (3.58) and the reasoning used after (3.30), it follows that

llm o g ((Vn + ﬁn) I:Q'm\ﬁm,l B Qm; Z) = hm,l (Z) + g (ﬁl.gm\ﬁm,l ’ Qm; Z) ’

N"sn—
locally uniformly in Q,, ; for each / and some subsequence N, of N”. Arguing as we did to obtain
(3.31), but applying this time the Lower Envelope theorem to (v, + [i,) , we get in view of the
above limit that

I_am,[

liminf g(vy + fn, Qs z) = g((V* + i) Q. Q) + hmi(2) + g(ﬁLQm\ﬁm,z’ Qs Z)

N"3n—00

= g(V* + 1, Qi 2) + hip(2)

for quasi every z € Q,,, where N is the diagonal of the table {N}>_, and to get the second
equality we used (3.32) along with the explanation preceding it on the inductive definition of u,, by
the right-hand side of (3.31). The previous equation stands analog to (3.33), and continues to hold
it N is replaced by any subsequence thereof. Now, the last part of the proof in Lemma 3.5 was
predicated on the limit

um(2) = g(v*, Qu3z) + him(z) > u”"(z) as m— o, zeR\Ey,

where u,,, were initially defined inductively by the right-hand side of (3.31) and their limit «” assumed
the form (3.34). In the present case, u,, is replaced by u,,, + g ({1, Q,,; -) and the monotone convergence
theorem together with the polar character of E ¢ imply that

lim g (i, Q3 ) = g(1, R\Ef32) = g(fr\Es» R32), 26 R\Ef.
Hence, arguing as we did after (3.38), we obtain similarly to (3.42) that

(3.59) lim io%fg(vn:’; + [, Qs 2) = u”(2) + (AR, R 2),s

for quasi every z € R\Ey and some subsequence {n},} < N The desired limit (3.50) now follows
from (3.51), (3.52), (3.53), (3.57), and (3.59). O
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Hereafter we shall deal with the fine topology, which is the coarsest topology for which super-
harmonic and therefore d-subharmonic functions are continuous. In this connection, the reader may
want to consult the definitions and properties collected in Section A.5.

Recall the definition of Ny < R before (3.43) as being the +o-set of g(u, D; p(+)), i.e., No =
p~'(No) where Ny — D is the +oo-set of g(u, D; -). Clearly, Ny is a finely closed and polar G s-set.
Let us define

(3.60) Gy :={zeR\Ny : tler(z) > 0}.
It is easily seen from (3.43) that ler : R\Ny — [—0, +00) is finely continuous and that G_ and G
are finely open in R\Ny. Since Ny is polar, if the complement of either G, or G _ in R\ Ny is thin at

a point z, then the respective complement in R is also thin at z. Hence, G and G _ are in fact finely
open in R. Hereafter, we put Dy := p(G ).

Lemma 3.10. For z € G, and any { € R with p({) = p(z), it holds that ¢ € G and ler(z) =
ler({). In particular G, = p~'(D ). Moreover, D, is finely open.

Proof. By the definition of ler given in (3.45), we get from equation (3.10) together with Lem-
mas 3.1, 3.7, and 3.9 (recall N” was renamed as N at the top of Section 3.7) that there exists a polar
set B < R with the following property: for each z € G ;.\ B there is a subsequence N; < N such that

3.61) Nzgr{goo%h)gl(fN(Mn)op)(z)| = ler(z),
aiim &k, D5 p(2)) — g(uD;p(2),

where we note that g(u, D; p(z)) < +0o0 since z ¢ No. Without loss of generality, we may assume
that B contains p~!(p(Es)) and Ay, since both sets are polar, see Lemma 3.6 for the definition of
Ao. Asler(z) > 0and f(z) is finite on G 1 \B, the above limit implies that

lim llog IN(M,)(p(2))| = ler(z).

Nzsn—wo n
Now, if £ € R\B is such that p(¢) = p(z), obviously ¢ ¢ Ny and in addition ¢ ¢ E ¢, by definition
of B. Thus, on account of the finiteness of (), we get that
. 1 . 1
im ~log|(f ~ N(Ma) o p) () = lim  ~log [N(M,)(p(2)| = ler(z).

1
Nzsn—w n N sn—oo n

(3.62)
On the other hand, from the second equation in (3.61), we deduce as in (3.44) that the first limit in
(3.62) is at most ler(¢), whence 0 < ler(z) < ler({). In particular, { € G, and reversing the roles
of z and ¢ gives ler(z) = ler({). This proves the first assertion of the lemma when z € G \B.

To prove it on all of G, pick z,{ € R such that p(z) = p(¢) and let Dy D be a disk centered
at p(z). Denote by D, D the connected components of p~1(Dy) that contain z, £ respectively, and
make Dg small enough so that D, nrp(R) < {z} and D; nrp(R) < {{}. Let as before m(£) be
the ramification order of &, so that D, (resp. D) is (isomorphic to) an m(z)-sheeted cyclic covering
of Dy. Forx € Do\ﬁo, define

gx):=m() Y, m@ler(€)-mi) D, mé)ler(é).
éep~H(x)nD; fep—1(x)nDy
It follows from (3.45) and (A.32) that
D1 m(@)ler(€) = m(z)g(u.Dix) — g (p« (v p.). Dix)
&ep~l(x)nD;

- ) m@) (giro. R:E) + hr(€)) -

fep~1(x)nDy
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Notice that the last summand above is a continuous, even harmonic function in Dy. Hence, the
sum itself is finely continuous in Do\ﬁo. Likewise, the second sum in the definition of g is finely
continuous in Do\Np and so is g. In particular, U := {x € Do\Np : g(x) # 0} is finely open, and
since p(G ) is finely open by Lemma A.2 the set U n p(G 4. ) is in turn finely open. From the first part
of the proof, it follows that if x € (Do n p(G+))\p(B) then g(x) = 0, whence U n p(G ) < p(B).
Thus, U n p(G ) must be empty as p(B) is polar, that is, g = 0 on Do n p(G ;). Now, it can be
readily checked that
g(p(2)) = m(zx)m(¢)(ler(z) — ler (L)),

and therefore ler(z) = ler(¢) if z € G4, thereby proving the first assertion of the lemma. The
second is then obvious, and the third follows from Lemma A.2. m]

Lemma 3.11. The set G _ lies schlicht over D. That is, p : G_ — D_ is a bijection. Moreover,
G_ nrp(R) = @, and for each z € G _ we have that

(3.63) ler(¢) =0 forall ¢ €p ' (p(z)\{z}.

Proof. Pick z € G_\rp(R) and let Dy = R\rp(R) be a conformal disk centered at z, homeomorphic
under p to a Euclidean disk p(Dy); note that p~!(Dg)\Dy is open. Define U := G_ n Dy and
V= (p~'(Do)\Do) n p~'(p(U)). Clearly U and V are disjoint finely open subsets of R, by
Lemma A.2. In view of Lemma 3.6, there is a polar set Ag — R\Np such that V. n G_ < Ay.
Thus, V n G_ must be empty as otherwise it is finely open. This shows that G_\rp(R) lies schlicht
over D. However, the complement of a schlicht set is always non-thin at any ramification point by
Lemma A.4. Hence, G _ cannot be a fine neighborhood of a ramification point, and since it is finely
open G_ nrp(R) = @. Altogether, G_ lies schlicht over D and (3.63) now follows from this and
Lemma 3.10. O

3.8. Modified Logarithmic Error Function. In this subsection we modify the function ler(z) by
clearing out parts of D and R from the support of i and v, respectively. We shall accomplish this via
the technique of balayage, described in Section A.9. Let us start with some preliminary geometric
considerations. Recall that any connected (topological) 1-manifold embedded in R is a Jordan curve.

Lemma 3.12. For each € > 0 there exists a Jordan curve J < G _ such that p(J) is a Jordan curve
included in {z : 1 — € < |z| < 1} and p(rp(R)) belongs to the interior domain of p(J). Moreover,
there exists a finely connected component of G_, say G, such that J < Gj.

Proof. We may assume that € is small enough that p(rp(R)) < Dj_.. In particular, p is injective
on every conformal disk centered at a point of 0R with radius smaller than or equal to €.
Recall that R is a subset of a Riemann surface R, lying over C. Define G* := G_ u T U D,

where D is the connected component of p~! (@\ﬁ) that borders 7. Let us show that for eachp € 7
there is a disk D,,  {z: 1 — € < |z| <1 + €}, centered at p(n7) with radius r,,, such that the circle
0D, is included in p(G* ). In fact, we can pick r,, so that there exist radii r;, arbitrarily close but
not equal to r,, for which each disk Dj, centered at p(n) of radius r), also satisfies 0D, = p(G* ).
Indeed, like we did to establish Lemma 3.9, let & be the lift u to R , see (A.33). By definition,
ler(z) = 0 for z € R\(G_ U Ny). Therefore, if 5 € 7 is a limit point of R\G_, then we get from
(3.16), (3.45), the definition of g (z), and the identity g (i1, R; ) = 400 when { € Ny that

liminf g(4, R;¢) =2 K.
R\g}lslé{lwg(ﬂ {) = 2/capp(Ky)

The claim now follows from Lemma A.5 by taking 1 — r;, to be an accumulation point of Ry jcap, (k)
in(l—¢1).

Let U;, be the connected component of p~! (D) containing 7, which is an open subset of R,
satisfying 0U,, < G*. Since the collection {U,}, covers 7, which is compact, it contains a
finite subcover, say {U,,}. Replacing D, by some D’m as above if needed, we can ensure by
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(finite) induction on i that dU,, and oU,, may intersect only transversally for i # j, and that
ouy,, n (?U,h, N 0U,, = @ifi,j,k are all distinct. Then V := u;U,, is an open neighborhood
of 7~ with boundary JV included in G* that consists of a finite union of disjoint Lipschitz-smooth
Jordan curves. In fact, there are exactly two such curves, one in R and D, because each connected
component of 0V can be continuously deformed into 7~ via radial retraction within V. We can choose
the component within R to be J since Lipschitz curves are finely connected in R, see Section A.5. O

Recall now the finely open subsets D and D_ of D introduced before Lemma 3.10. Denote by
D ; the union of all finely connected components of D u D_ that lie entirely within the interior
domain of p(J), where J was introduced in Lemma 3.12. Note that D is finely open because so are
the fine components of finely open sets, see Section A.5. Define

(3.64) D' :=D; ui(D\Dy) and V' :=p (D),

where i(-) is the subset of finely isolated points. Thus, it follows from (A.9) and Lemma A.2 that D’
and V' are finely open while

(3.65) b(D\D') =D\D’' and b(R\V') =R\V,

where b(-) stands for the base of a set (in particular, D\D’ has no finely isolated points). In other
words, D’ and V' are regular finely open sets, see Section A.7. Recall from Section A.9 the notation
o F for the balayage of the measure o~ onto the set E.

Lemma 3.13. Let Ny := p~'(N}), where N is the +o0-set of g(u,D;-) and we set
(3.66) /1(1) = ,uD\D/ and vV =RV,
Then N1 S No, N1\V’' = No\V’, and for every z € R\N| we can define
lerM(z) := g(u(l),D;p(z)) - g(v(l),R;Z) — hg(z)
with values in [—o0, +0). This function satisfies

l /
(3.67) ler® () — { er(z), zeR\(V'UN),
0, Z€ VI\Nl.

Proof. Since the Green potential of a measure dominates the Green potential of any balayage of that
measure, as explained at the beginning of Section A.9, it holds that

g(ﬂ(l),D’ Z) < g(lu,D,Z) < 400, Z e R\NOa

by the very definition of Ny. Thus, N; S Ny and the upper equality in (3.67) as well as equality
Ni\V' = No\V’ are consequences of (3.65) and (A.22). Since hg(z) is a harmonic function on R
and V' n 0R = @ by construction (recall that p(V’) lies interior to p(J)), equation (A.39) yields that

(3.68) J hr(x)dsX"Y (x) = hg(z), zeV'.
Since V' is a regular finely open set, Lemma A.6 implies that 6f\V/ is carried by 0V’ and does not
charge polar sets. As ler(z) = 0 for quasi every z € dV’ by the definition of V', we get from the
definition of ler(), (3.68), (A.25), Lemma A.7, and (3.45) that
R\V’
1erD@) = [ (gl 22 p(3) gl Rix) — () o (1)
- fler(x)ddf\vl(x) =0

for z € V/\ N, which proves the lower equality in (3.67). ]
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Let G be as in Lemma 3.12 for some small € > 0. Denote by G the union of G and the annular
region delimited by J and 7°; the latter is diffeomorphic under pto {z: 1 — € < |z] < 1} if we fix €
small enough. Clearly, Gj is a fine domain that lies schlicht over D. Let G be the collection of all fine
domains G < R lying schlicht over D and containing G. The set G is partially ordered by inclusion
and every chain in it is bounded above by the union of its elements. Therefore, by Zorn’s lemma, G
possesses a maximal element, say Gmax. Note that if R\Gmay is thin at two points {1, ¢ € R, then
p(&1) # p(&) as otherwise Gmax could not be schlicht over D by Lemma A.2. Hence, it follows
from (A.9) and the maximality of G max that R\G may is its own base.

Lemma 3.14. Any maximal domain Gnax € G is a Euclidean domain. Moreover, no connected
component of R\G max (resp. D\p(Gmax)) consists of a single point.

Proof. Observe that G max cannot contain a ramification point of R as it is finely open and lies schlicht
over D, see Lemma A.4. Thus, for every { € Gnax there exists ry > 0 such that each component of

p ' ({zeD: |z—p(2)] < ro})
is in one-to-one correspondence with {z € D : |z — p({)| < ro} under p. Let V be the component
containing £. Since the intersection V N Gmay is finely open, V\Gmax is thin at  and therefore there
is r1 € (0, rp) such that

Vmpil({ZED: |Z_p(§)| = }’1}) < Gmax»
see Section A.6. Now, as G max lies schlicht over D, it holds that

(3.69) Gmax 0 (p7'({z€D: [z—p0)| =r})\V) = 2.
Further, since Gy is finely connected, we necessarily have that
Gmax 0 (P ({z€ D [z = p(O) <1 })\V) = 2,
otherwise Gmax would intersect the fine boundary of p~'({z € D : |z — p({)| < r1})\V which

is contained in p~!({z € D : |z — p(¢)| = ri})\V (in fact, equal to it by regularity), thereby
contradicting (3.69). The maximality of G max now yields that

p'({zeD: |z=¢|<ri}) NV S Gmax,

hence ¢ belongs to the Euclidean interior of G max and so Gax is Euclidean open. Thus, its connected
components are open and therefore finely open. Hence, Gmay is a Euclidean domain since it is finely
connected by definition.

To prove the second assertion, assume to the contrary that a point { € R\Gmax is a connected
component of the latter. We claim that any open neighborhood W of { contains an open set O 3 ¢
whose boundary 0O is a smooth Jordan curve C contained in Gnyax. To see this, assume with no
loss of generality that W < R, and put F := R\Gmax N W. The latter is closed in R, so there is a
smooth function & : R — R™T of which F is the zero set, see Section 3.4. Given a sequence {c,}
of regular values of % tending to 0, let O,, be the connected component containing ¢ of the open set
{z: h(z) < cu}. The sets O,, form a (strictly) nested sequence of connected open sets containing £,
whose intersection is connected and contained in F' whence reduces to {. If O, N oW # @ for some
increasing subsequence of indices ny, take z,, € Oy, N 0W and extract from {z,, } a subsequence
converging to z € 0W, which is possible due to compactness of the latter. On the other hand, since
5"k+1 c Op, 2 € m,ﬁnk ={{} e W\(?W, which is a contradiction. Therefore, O,, = W for n large
enough and 00, n F = @ by construction, so we may set O = O, and C := 00, for any n large
enough, because 00, is a connected component of the level set h! (cn), and thus it is a smooth
Jordan curve. This proves the claim.

If £ ¢ rp(R), letus pick W so small that p is injective on each connected component of p~! (p(W)).
We now argue as before, observing that C © Gax and (p~!(p(C))\C) NG max = @ (by schlichtness),
so that Gax N (p~'(p(0))\0O) = @ because Gay is connected and (p~'(p(C))\C) is the boundary
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of p~!(p(0))\O. Thus, by maximality, Gmax should contain O which contradicts the fact that £ € O.
Finally, if £ € rp(R) then Lemma A.3 contradicts the existence of C.

This proves that no connected component of R\G nax consists of a single point. To show the same
is true of D\ p(Gmax), observe that such a component would consist, by the same reasoning as before,
of a z € 0p(Gmax) lying interior to Jordan curves of arbitrary small diameter contained in p(Gmax)-
For y : [0,27] — p(Gmax) such a parametrized Jordan curve, let £ € Gmay satisfy p(¢) = y(0)
(= y(27)). Let further £ : [0,27] — R be a continuous lift of y starting at &, i.e., €(0) = & and
p(€(t)) = y(¢t) for t € [0,2rx]. Of necessity £([0,27]) = Gmax, because p(0Gmax) N p(Gmax) = @
since Gmay 1S open and lies schlicht over D, while p is an open map; then schlichtness again implies
that £ is a parametrized Jordan curve in Gnay, and it is the unique lift of y to Gnax.

Set p~'(z) = {1,...,4¢}, and let D, be an open disk centered at z such that each connected
component of p~'(D_) is (isomorphic to) a m({;)-sheeted cyclic covering Dy, of D; in addition,
we require that D is so small that Dy, < Uy, for all j, where Uy; is as in Lemma A.3. Let
v : [0,2n] — D, be a parametrized Jordan curve containing z in its interior, and ¢ : [0, 2] — G max
the associated lift. Necessarily £([0, 2x]) is contained in a single component of p~'(D.), say Dy,
and it must contain {; in its interior (otherwise ¢ would be a unit in 71 (D, \{;) and so would be
y =potinm(D,\z)). Now, if m({;) > 1, then we contradict Lemma A.3. Hence, ¢ is valued in a
D¢, such that m(Z;) = 1, which is thus homeomorphic to D, under p.

Let vy, be a sequence of Jordan curves in D, containing z in their interior and shrinking to z
when n — 0. Let further £, be the corresponding sequence of lifts to Gnax. By what precedes,
some subsequence £y, shrinks to {; in D, for some j such that D; is homeomorphic to D, under
p. Moreover, £,,, contains {; in its interior. We can now argue as we did to show that no connected
component of R\G max consists of a single point, and contradict the maximal character of G max. This
completes the proof of the lemma. O

Define Dmay := p(Gmax) and Vinax := p~!'(Dmax). Notice that both sets are open by Lemma 3.14
along with openness and continuity of p.

Lemma 3.15. Let N, := p~! (ﬁz), where N» is the +o0-set ofg(,u(z), D; ) and we set

(3.70) /,t(Z) — (/J(l)>D\Dmax and v® = (V(l))R\Vmax'
Then N, = N1\Vmax, and for z € R\N, we can define
3.7 ler®(z) := g(/,t(z),D;p(z)) — g(v(z),R;z) — hg(z).

In this case it holds that

limsup ler® (7) < —2/capp(Kyr), z€T,
(3.72) {2
ler(z)(é’) =0, ZE R\(Gmax Y N2)~

Moreover, we have that

- ' M Dmax = 2,
(3.73) |ﬂ(2)||{ lul i supp(uV) N Dinax = @

< ||u| otherwise.
Proof. By Lemma 3.14 the set D\ Dpay is closed in D and none of its connected components reduces
to a point. Hence, it has no finely isolated points (remember that a connected set cannot be thin at
an accumulation point, see discussion after (A.8)). Thus, D\Dnay is its own base. Consequently,
R\Vimax 18 also its own base by Lemma A.2. Therefore, we get from (A.22) that
(3.74) 1P (Dimax) = v® (Vinax) = 0.

This implies that the potentials of ,u(z) and v are harmonic in Dmay and Vipax, respectively.
Moreover, since 0D max \T is separated from T by the very definition of Gmax, 0Vimax \@R is necessarily
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separated from J0R and these potentials extend continuously by zero to T and R respectively by the
regularity of the latter, see the discussion after (A.12). Therefore, [er(®) extends harmonically to
the whole of Vinax and continuously to 0R\7 by Lemma 3.8. So, as in Lemma 3.13, the inclusion
Ny © Ni\Vmax follows directly from (A.21) and the equality No = N;\Vmax is then deduced from
(A.22). In addition, the first inequality in (3.72) holds in view of (3.16), the definition of g given
after (3.45), and the fact that 4” is non-negative, see Lemma 3.5.

Since N1 \V’ = No\V’ by Lemma 3.13 we have that R\ (V' U Vinax U No) = R\(V’ U Vinax U Ny).
Moreover, ler(z) = 0 on this set by the very definitions of V/ and Vinay. Further,

R\(Vinax U N2) = R\(Vimax U N1) = (R\(V' U Vimax U N1)) U (V\N}).
Since D\Dmax and R\Vmax are their own bases, it therefore follows from (A.22) and (3.67) that
(3.75) ler®(z) = lerM(z) =0, z€ R\(Viax U Na).

To study the values of ler® on Vimax\Gmax, let us show that this is an open set. Indeed, since
P(Gmax) = P(Vinax) = Dmax. for each { € Viay there exists a disk D ;) © Dmax, centered at
p(¢), and a point z € Gmax With p(z) = p({) such that Dy C Vimax and D; © Gmax, Where Dy
and D, are the connected components of p~! (D p(¢)) that contain £ and z, respectively. If £ # z,
then Dy N Gmax = @ since Gpax lies schlicht over D and therefore D, < Vimax\Gmax as claimed.
Moreover, since R\Vinax is its own base, we get from Lemma A. 1 that R\(Viax\Gmax) is also its own
base.

Pick z € Vimax\Gmax and notice that Vima\Gmax consists of at most finitely many connected
components. Let V, be the component containing z. As Gmax contains the annular region delimited
by J and 7 and lies schlicht over D, it follows that 0(Vinax\Gmax) N R = 0R\T . Since hg = 0 on
OR\T by Lemma 3.8, we get from Lemmas A.6 and A.10 that

(3.76) f hg(x)do2\V= (x) = thq(x)déf\(vm“\c;m“)(x) — hg(z).

Since V;, Viax\Gmax, and Gmax are Euclidean open sets, it holds that 0V, S 0(Vimax\Gmax) S Vmax-
a set on which ler(!)(z) is zero except possibly on N by (3.75). Consequently, in view of (3.71), we
see upon using Lemma A.7, (A.25), and (3.76) that

ler® (z) = fler(l)(x)déf\vz (x) =0,

where the second equality follows from Lemma A.6 as 6V, < 0V, and ler")(x) = 0 quasi and
R\V -
therefore ¢, ' *-almost everywhere on ¢;V;.
Finally, we get from (A.24) and (A.38) that || = x| when supp(u")) A Dimax = @ and

@ < 1D otherwise as well as that [|u")| = ||, which proves (3.73). O

3.9. Projected Logarithmic Error Function. Recall that 7 € 0G o is called accessible if there
exists a continuous map ¢ on [0, 1] such that ¢ () € Gmay for t € [0, 1) and ¥ (1) = z.

Lemma 3.16. It holds that card (p~'(z) N (0Gmax\E*)) < 2 for all except countably many z €
0D max, where E* < 0Gnay is the subset of non-accessible points.

Proof. Since T < 0Dpax and p~'(T) N 0Gmax = T, we only need to consider z € dDpmax N D.
The set (0Dmax N D)\p(rp(R)) can be covered by countably many open sets of the form D, where
X € (0Dgmax N D)\p(rp(R)) and D, < D is a disk centered at x, small enough that each component
of p_1 (D) is homeomorphic to D, under p. Hence, it is enough to show that for each such D and
all z € dDmax N D but countably many, one has card (p~'(z) N (0Gmax\E*)) < 2. Fix D, and let
X1,...,xn denote the preimages of x under p. We write V, for the connected component of p_1 (Dy)
containing x¢, 1 < £ < N. Then, each z € D has preimages zi,...,zy under p, with zp € V,,.
When z € dDmax N Dy, it follows from the definition of accessibility that if z; € dGmax\E*, then
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there is a continuous arc ¢/, : [0, 1] — Gmax such that ¢, (1) € Gax forz € [0, 1) and ¥, (1) = z,.
Moreover, on shortening and reparametrizing the arc if necessary, we may assume that i, is valued
in Vy,. Now, if p~'(z) N (0Gmax\E*) contains 3 distinct points, say z¢, for j = {1,2,3}, then
p(l//zfj) are Jordan arcs having only the point z in common, because Gmax lies schlicht over D and
the fo,- are disjoint. Thus, T, := u; p(wzfl,) is a triod, and if we had uncountably many such z then
some triple (£}, £, £3) would occur uncountably many times. Assigning different colors to i 20 Yz,
and ¢, . We get and uncountable collection of colored triods 7, whose arcs of different colors never
meet, again because Gmax lies schlicht over D and the prj are disjoint. However, this contradicts the
Moore triod theorem [49, Proposition 2.18], thereby finishing the proof. O

Put Kmax := D\Dmay. It follows from Lemma 3.14 that f has a single-valued meromorphic
continuation throughout Dmax\p(E ) and Kmax is a compact subset of D. Hence, Kmax € K, where
K was defined just before (2.5). Clearly, the measure 1@ is supported on Kpmay.

Lemma 3.17. Let m; be the ramification order of { € R. Define
(3.77) lerp(z) := Y, mgler®(Z), zeD\N,.
¢ep~i(2)
Then lery is a §-subharmonic function in D such that lery(z) = 0 when z € Kmax\ﬁz and

limsup lery(z) < —2/capy(Ky), (€.

z—4
Moreover, there exist non-negative measures o, and vy, supported on 0Dmax, and a non-negative
Sfunction hy, harmonic in D, such that pp, < 21® and for z € D\ﬁz
(3.78) lerp(z) = g(tpr, D5 2) — 8(Vor, D, 2) — hpr(z) — 2/capp (K¢ ).

Proof. The first two claims of the lemma follow readily from (3.72) and the computation in (A.11).
Let [J(z) be the pullback of u(z) onto R, see (A.33) and (A.34). Then we can equivalently write

ler®(z) = g (A%, R;z) — g(vP, R z) — hg(z)
= g(ur, R:z) — g(vr, Riz) — hr(2),
where g — vg = ®) —v(® and ug, vg are positive mutually singular measures on p ! (Kmax ), 1-€.,
UR — VR is the Riesz charge of a §-subharmonic function ler(®). Clearly, vg < v?, ur < 2, and
for any Borel set B < p~! (Kmax)\rp(R) that lies schlicht over D it holds that
(3.79) ur(B) < u®(p(B)).

Similarly to the computation in (A.11), one can show that 3¢ -1, m¢h({) is harmonic in D
when £ is harmonic on R. Hence, it follows from the maximum principle for harmonic functions
and Lemma 3.2 that

D mehr(l) = 2/capp(Kp) + hpe(2).  hpe(z) := > mgh"(2).
Zep~i(2) cep~'(2)
Thus, if we set ppr = p«(ur) and vor = p«(vR), see (A.32), we get (3.78).

As explained in Lemma 3.15, R\Vmax is its own base and Vinax\Gmax, Gmax are disjoint open sets.
Hence, R\G max is its own base by Lemma A.1. Moreover, the function / er®? is equal to zero on this
set by (3.72). Hence, we get from the proof of [13, Theorem 2] (that carries over mutatis mutandis
to any hyperbolic surface) the implication:

(3.80) oRGm () —0 = (up+vR)(F) =0

for any F < R\Gmax and some (therefore any) z € Gax. In particular, it follows from Lemma A.6
that supp(ur + vR) S 0Gmax\7 and that this measure does not charge polar sets. Hence, since G max



OPTIMAL RATIONAL APPROXIMANTS 35

lies schlicht over D ma, it holds that supp(upr + Vpr) S 0Dmax\T. Moreover, let E be the set of points
2 € 0D max such that card (p~!(z) N (0Gmax\E*)) > 2, where E* is the set of non-accessible points
of 0Gmax. It follows from Lemma 3.16 that E is at most countable and therefore is not charged by
Hpr. Of course, the same is true of p(rp(R)), as it is a finite set. For any Borel set B & 0Dmay, let
B := B\(E U p(rp(R))). Then, we obtain

luPF(B> = Hpr(é) = MR (p_l(g) N aGmax)

= MR (P_l(g) N (aGmaX\E*)) < Zﬂ(z)(B)»

where the third equality follows from [13, Corollary 2], which says that the Riesz charge of a §-
subharmonic function cannot charge points that are non-accessible from the complement of the base
of its zero set, and the last inequality is due to Lemma 3.16 and (3.79). O
3.10. Computation of the logarithmic error function. Lemma 3.17 implies that lerp(z) = 0 for
zE€ Kmax\ﬁz. Hence, it follows from (3.78) and properties of the Green equilibrium potential that
capp (Kmax)
capy (K )
for z € Kmax\ﬁz (since Kmax is equal to its own base, g(yD,Kmax,D; ) = 1/capp(Kmax) on Kmax)-
Assume that either vp, is a non-zero measure or Ay, is strictly positive (harmonic) function in D.
Then, since Kmax is separated from T, it would hold that
capp (Kmax)
capp (K )
for z € Kmax\ﬁg. Since supp(Up.ky.) S Kmax and Kmay is its own base, the Strong Domination
Principle, see Section A.6, implies that the above inequality holds everywhere in D. Thus, integrating
both sides of this inequality against up, k.., Which is a probability measure, we get on using Tonelli’s
theorem on the left-hand side and multiplying by capp (Kmax) that
capp (Kmax)
capp (Ky)
On the one hand, by Lemma 3.17 and equation (3.73) together with the very construction of u, we
have that || upr| < 2||#®|| < 2|u| < 2. On the other hand holds capy, (Kmax) = capp (K ), see (2.5).
These observations clearly show that (3.82) is impossible. Hence, it is necessarily the case that
(3.83) Vor =0 and hy(z) =0, zeD.

Then, one can rewrite (3.81) as

(3.81) 8 (kpr D3 2) — g(vpr. D5 2) — hpe(z) = 2 8 (D, Kaer D3 2)

g (upr. D5 2) > 2 8 (U, Ky D3 2)

(3.82) Ipprll > 2

capp (Kmax)
capp (K )

forz e Kmax\ﬁz. Using now the Strong Domination Principle in both directions, we get that (3.84)
holds for every z € D. Therefore,

(3.84) g (kpr. D5 2) =2 8 (U, Kppe» D3 2)

@ > l capp (Kmax)
capp (Kr)
which, upon recalling once again (2.5) and the fact that up .., is a probability measure, gives us

(3.85) H D, Kmax

(3.86) capp (Kmax) = capp(Ky) and u? = D Kooy -
In particular N, = @ and the first equality in (3.86), combined with the minimality and uniqueness
of Ky, yields that Kmax = K. In addition, as [u®)| = 1 by (3.86), we get from (3.73) that

supp(uV) N Dmax = @ and therefore (1) = 4, by (A.22), (3.70), and the fact that D\Dpax is its
own base (because so is R\Gmax and we can use Lemma A.2). Moreover, we also get from (3.73) that
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supp; (") N Dax = @ (note that supp;(u(!)) exists because u(!) is admissible, see Section A.9).
Remembering that the fine open set D’ is regular by (3.65), we get from (A.24) and Lemma A.6 that
suppy(u1)) > U, D} where D) are the finely connected components of D’ such that u(D,) # 0.
However, since Kmax(= K¢ ) has no fine interior by inspection of (2.17), each ¢;D; must intersect
Dnmax whenever D) is nonempty. Hence, u cannot charge D’ as otherwise it would contradict that
supp; (") N Dinax = @. Consequently, since D\D’ is its own base, we conclude in view of (A.22)
and (3.66) that (1) = y1. Thus, we obtain altogether that

2

(3.87) po, = p =V =p =y,

where the last equality comes from the inequalities u < p’ and |[¢'| < 1, see (3.26). In addition,
since up, k, has finite potential everywhere, we get that Ny = Ny = @ whence also Ny = N = @.

From (3.87) one sees that u does not charge Dnax, implying in view of (3.43) that /er is subhar-
monic on Vinax = p~ ! (Dmax)- In particular, since g(up k., ,D; ) extends continuously by zero on
T and /" by 2/capp (K¢ ) on T, see Lemma 3.2), while fine lim,_, ler(z) = ler({) < Owhen ¢ € J
by the fine continuity of /er and the fact that J = G _, it follows from the relative fine boundary max-
imum principle [20, Theorem 10.8] that ler < 0 in the annular region A(7, J) bounded by 7 and
J, since it is bounded above by the fine potential g({ip, k..., R; -) there, see (A.34). Let now G’ be a
finely connected component of G . Since G* = p~!(p(G*)) by Lemma 3.10 and A(7,J) = G _,
p(G’) lies in the interior of p(J). Hence, D’ = p(G’) € D; and by what precedes D' n Ky = @ as
otherwise t = up k, would charge D’ because it is carried by the whole set K s according to (A.30),
i.e., it cannot be carried by K;\D’ (which is finely closed). Consequently, G’ n p~!(K;) = @
which implies that ler < 0 on p~!(K ), and the relative fine boundary maximum principle in turn
implies that ler < 0 on Vinax. Moreover, ler < 0 on Gmay as it is strictly negative on A(T,J).
Immediately we deduce that G, = @ and Gmax S G_. Furthermore, since G_ lies schlicht over
D by Lemma 3.11 while K¢ has no fine interior, maximality of Gmnax implies that Gmax = G_.
Altogether, we obtain that D’ = V' = @ and G_ = Gnax. In particular, the step of Lemma 3.13 is
vacuous and v(!) = v as well as ler = ler(!). Moreover, ler(z) = 0 holds for z € R\Gmax-

Next, by (3.85), (3.87) and the construction of the measures pp, ur in Lemma 3.17, along with
the discussion after (3.80), one has

ZIJD,Kf = Z)u(Z) = :upr = p*(/’LR) and MR g (IZZD,Kf)I_aGmax'

Lemma 3.16 now yields that this last inequality is in fact an equality. As yr — vg is the Riesz charge
of ler® that vanishes on R\Gmax by (3.72), the discussion after (3.80) implies vg = )

V3G’ and
since vpr = p.(vR) we get from (3.83) and (3.70) that

(3.88) 0= V(z) (Emax) = V(l)(Emax) = V(Emax)’

where the middle equality holds by (A.24) and Lemma A.6 (because 6?\G"‘ax is a strictly positive
function of z in the regular open set Gnay), while the last equality comes from ler = ler(D). Recall
that v =v" + v/ = v* + ¥ +V/, see (3.45) and (3.37), where v* the vague limit point of {v,,} in R,
see Lemma 3.5. As ler(z) = 0 for z € R\Gmax and ler is a §-subharmonic function, we get from
[13, Theorem 2] that its Riesz charge is supported on 0Gnax. In view of (3.88), it entails that

"
=y =" =¥

(3-89) .k ) TR G
where 7 4+ v/ = 0 since it is a measure supported on E s, see Lemma 3.1 and (3.35), while v does
not charge polar sets by the first equality above. Since v = v(!) and v(!) has no mass in Vyay by
(3.89), the step of Lemma 3.15 was also vacuous. We thus get that ler = ler(?), and it follows from
(3.83) together with the construction of Ay, in Lemma 3.17 that hg = I'. Therefore, the inequality
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in (3.72) is in fact an equality by Lemma 3.2, and consequently

28(#D,Kan;P(Z)) —2/capp(Ky), 7€ Gmax,
ler(z) =

(3.90)
0, ZE R\GmaXs

as both sides of (3.90) are continuous on R, equal to zero on R\Gmax, equal to —2/capy (K ) on
7", and harmonic in G gy S0 that the equality in Gnayx is consequence of the maximum principle for
harmonic functions.

Notice that we started our proof with the limit (3.6) taking place along the full sequence N of
integers, that was later refined into a subsequence in Section 3.5, and refined still further in Section 3.7
to a subsequence N along which all the above results hold. However, we could have initiated our
argument using any subsequence Ny < N in (3.6) with the same conclusions holding along some
N < No. Hence, if there existed a subsequence along which either y" # up x,, v’ # 0,V # 0, or v*
are not as in the left-hand side of (3.89), or if 4" were not equal to zero, then we could use it as Np in
(3.6) to arrive at a contradiction. Hence, all lemmas of this section hold along the full sequence N.

3.11. Convergence in Capacity. Our next task is to establish that

1 Caj
(3.91) 5= log|(f = N(Mw)(2)] = g(up.x,.D:2) = . zeD\K;,

capp (Kr )
as n — 0. Let V be an open neighborhood of p~—! (Ky) on R whose closure is disjoint from K, and
U be an open subset of R containing K N Gmax Whose closure is disjoint from the closure of V. In
particular, 7~ — oU while 7~ and dU\7™ are disjoint compact sets. For convenience, we also assume
that V = p~!(p(V)). Recall from (3.8)~(3.10) the relation

%log [(f = N(My) o p)(2)| = %(hn,n(z) +8(un, D3 p(2)) — 8(Vn, Q3 7)), 2 € Q.

We have established in the previous section that the functions %, , converge to —hg locally uniformly
in R\Ef, see Lemma 3.1 (notice that N’ may now be replaced with N by the last remark in
Section 3.10). As in Lemma 3.2, we can write

1
Bon(z) = f hpndonV + f ~log|f — N(M,) o plds¥"Y, zeuU,
OU\T g n

where 6f\U is the harmonic measure of U. The above formula, the circularity of the error (3.3) and
the optimality of the approximants (3.6), (3.16) together with the locally uniform convergence just
mentioned show that the functions %, , converge uniformly to —hg on U and therefore on K. Since

1 1

5 (= hw(2) + &k ks D3 p(2) — 8(%:R;2)) = %le”(z) = 8k Dip(2)) = capp(Ky)

for z € Gmax by (3.45) and (3.90), we only need to establish that
lim cap({z € K : [g(un,D; p(z)) — g(up.k,»D; p(2))| > a}) =0,

n—aoo

(3.92)
nlinc}ocap({z €K :[g(vn, Qusz) —g(v.R;2)| > a}) =0,

for any a > 0, where cap(-) is the logarithmic capacity, see (A.6). This will simultaneously prove
the claim made after Theorem 2.1 as well as (3.91) because 7 — gp(t,z) + log |z — ¢ is bounded
uniformly for z € F for any compact F < D, so that (3.93) yields an analogous claim for the Greenian
capacity on any compact subset of Gmax.

Write p,, = 1+ Hn,2, Where up 1 1= py| p(v)- Notice that uy, 1 N HD,K - Since these measures
have at most unit mass, the differences g(un,1,D; p(+)) — g(pp.x,,D; p(+)) converge uniformly to
zero on OU\T . As they are identically equal to zero on 7, they converge to zero uniformly on U and
hence on K by the maximum principle for harmonic functions. Recall that any Green potential of a
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measure supported in the unit disk can be written as a difference of the logarithmic potentials of the
measure and of its balayage onto T, see (A.29). It was shown in [6, Lemma 21] that if compactly
supported measures converge weak™ to the zero measure, then their logarithmic potentials converge
to zero in capacity in C. Hence, the potentials g(u, 2, D; -) converge to zero in capacity on K, which
finishes the proof of the first limit in (3.93).

The proof of the second limit in (3.93) proceeds similarly, but requires more detailed analysis. As
we have shown in the previous subsection, the measures v, |q, converge vaguely to v* on R, where
v* stands for the left-hand side of (3.89). Hence,

(3.93) Vil = Vg, =V

on R. The functions gz (z,w) — gq, (z, w) uniformly converge to zero for w € V and z € K, see
(3.55) (we continue gq, (z, w) by zero to R\Q,). Therefore, as the measures v, ; have uniformly
bounded masses (they converge weak™ to a finite measure), we get that

(3.94) Tim (g(va,1.R:2) = g(Vi1,Qn:2)) = 0

uniformly on K. Moreover, since the potentials g(v,, 1, R; -) are positive harmonic functions on U for
all n large, they converge uniformly to g(v*, R; -) on K (they converge pointwise on U by (3.94), then
uniformly on dU\7 by Harnack’s theorem applied in a neighborhood of 0U\7", and thus uniformly
on U by the maximum principle for they are identically zero on 7). That is, we get from (3.95) that

(3.95) Jim gvn1, Qs 2) = g(v*, R, 2)

uniformly on K. Next, let v, 5 := Vi G \V As the measures v, converge vaguely to v*, the
measures v, » converge vaguely to the zero measure. We claim that these measures have uniformly
bounded masses with respect to n. To see this, pick € > 0 and let 0 < n < ¢ be such that

hnn(z) + 8(up,k,  Dip(2) < —&, z€Ry:={z€Gmax:1—n<|p(z)] <1}

for all n large enough. This is possible since g(up,k,,D; p(-)) is a continuous function in U and is
equal to 0 on 77, while £, , converge uniformly to hg, which is equal to —2/capp,(Ks) on 7. We
may assume that f does not vanish in R,,, for we may add a constant to it while adding the same
constant to the approximants M,,. If each circle T, for 1 — 25/3 < r < 1 —n/3 contained a z with
|g(1n. D, z) — g(p,k, - D, 2)| = &/2 for infinitely many n, then it would imply that

cap({z € Ry : [g(pn. D, 2) — g(up .k ;. D, 2)| > &/2}) = /12 >0,

because contractive maps, in particular, circular projection, do not increase the logarithmic capacity
[52, Theorem 5.3.1] and (remember that cap([a, b]) = |b — a|/4). Clearly, this would contradict the
first limit in (3.93). Hence, for each n large enough, there is r,, € [1 — 2/3, 1 — 1/3] such that

g(1n, D, p(2)) + hnn(z) — 8(vas R, 2) < g(1n, D, p(2)) + hnn(z) < —€/2

for z € p~!(T,,) N R,,. Thus, since f does not vanish in R,,, we get that |f — N(M,)| < |f|on T,
for all n large enough. Besides, the same inequality certainly holds on T and therefore, by Rouché’s
theorem, the number of zeros of f — N(M,,) in R, is less that the number of its poles (at most 1)
plus the degree of f on T U T,, (which is bounded by a constant independently of n). Hence v, has
bounded mass in R,,, which proves the claim. Thus, the measures v, » and respectively the measures
P« (vn.2) strongly converge to zero. As above, this means that the potentials g(p«(v,.2),D; p(+))
and, by (A.32), the potentials g(v,2, R; -) converge to zero in capacity on K. As the latter potentials
majorize g(vy,2, Qn; ), we get that the potentials g (v, 2, Q,; ) converge to zero in capacity on K.
Finally, define v, 3 := v,, — V4.1 — Vn2. The potentials g(v, 3, Q2,; ) form a sequence of positive
harmonic functions in Gmax\V. By Harnack’s theorem there exists a subsequence of indices, say
No, along which these potentials converge locally uniformly on U to some non-negative harmonic
function, say hg. Now, we can initiate the proof Theorem 2.4 in Section 3.5 with A instead of the



OPTIMAL RATIONAL APPROXIMANTS 39

whole sequence N. Then it would follow from (3.89) and (3.96) that the function 4” from Lemma 3.5
must coincide with Ag in U. Proceeding with the remainder of the proof we again inevitably arrive
at the conclusion that A” = 0. Hence, the potentials g(v, 3, Q,; ) converge to 0 locally uniformly
on Gmax\V, and, in particular, on 0U\7". As these potential are identically zero on 7, they converge
to zero uniformly on U and hence on K by the maximum principle for harmonic functions. This
finishes the proof of the second limit in (3.93) and, respectively, of Theorem 2.4.

4. Proor oF THEOREM 2.5

Since the considerations of Sections 3.2 and 3.3 still apply, we can assume that D = D, i.e., that f
is analytic in C\E, where E — D is closed polar, and we may replace {M,, } by the sequence {N(M,,)}
of its Nehari modifications. Write N(M,,) = h,,/b,, where h,, € A(D) and b,, is a Blaschke product
vanishing at the poles of N(M,) according to their multiplicities. That is, b,, = ¢,/qn, where
gn € M,(D) is a polynomial such that g, M, € A(D) and g,(z) := z"qn(1/Z) is the reciprocal
polynomial. We have that

1£(2) = (hu/bu)(2)| = [(bnf)(2) — hu(2)|, z€T,
since Blaschke products are unimodular on the unit circle. Thus, %, is in fact the best Nehari
approximant of b, f in A(D). Recall that the above expressions converge to zero faster than
geometrically to zero by the very choice of {M,,}.
Our goal is to show that h, /b, converge in logarithmic capacity to f in D\E at faster than
geometric rate. That is, we fix a compact set K — D disjoint from E and we will prove that

4.1) lingocap({z €K :leq,(z)] >a"}) =0 forany a >0,
n—s

where e,,(z) := f(z) — (hn/bn)(z) is the approximation error. This will establish convergence in
logarithmic capacity on compact subsets of D\E. Subsequently, as we pointed out in Section 3.11,
(4.1) yields an analogous claim for the Greenian capacity on any compact subset of D\E.

Since cap(E) = 0, it follows from [52, Theorems 5.5.2 & 5.5.4] that for each 7 > 0 there is k € N
and pj € My (E) (we can take py to be the k-th Fekete polynomial for E) such that

4.2) EcL,:={{eC:|p(0)| <n*}.

Pick n < min{dist(K, E), 1} to be adjusted later. Of necessity K n L,, = @, because |pi(z)| >
dist(K, E)k for z € K. Lety L, be a system of closed curves encompassing each point of E
exactly once, and such that dist(y, E) < dist(T, E)/4. Then, one has that

(&) d¢ b,

4.3 = | —==—=, C\inty,

4.3) f(2) T éoni ze C\inty
by the Cauchy formula, where int y is the union of the bounded components of the complement of .
Since P_ evaluated at |z| > 1 coincides with the Cauchy projection having kernel (27i(z — ¢))~'d¢

on T, the Hankel operator I',,  actson v € H % by

) oy 0= [ bu(QF V() di

s > 1.
T z—¢ 27 d

Inserting (4.3) into (4.4) yields by Fubini’s theorem and the Cauchy formula for H>-functions that
b EWv(E) d
4.5) Ty, s (v)(2) = J bn(€)1(E)v(€) dE
Y

z—¢& 21
Observe that (4.5), initially proven for |z| > 1, actually defines an analytic extension to the exterior of
y of Ty, 7 (v) = P_(b,fv) € H* (and therefore an extension to C\E since y could be taken arbitrary
close to E). Next, recall that a first singular vector of the Hankel operator I';,, ¢ is an element vo € H 2
of unit norm that maximizes |['p, s (v)| over all v € H* with |v|, = 1, and that it always can be

, z€ @\inty.
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chosen to be outer?, see for instance [5, p. 62]. Then, we get from (4.5) and (2.26) (applied with
n = 0 and f replaced by fb,) that

z € D\intvy.

(4.6) (enbn)(2) = (bnf — hn)(2) = 1 J bu(€)f(&)vo(€) dé
Y

vo(z) z—& 2mi’

Note that the right-hand side of (4.6) is analytic in D\inty, since v is outer and thus has no zeros in
D. Let By := px/Pk. Similarly to (4.3)—(4.6), it holds that

_ 1 [ @S E)BLE)
2 ), z—¢

where ¢ € N is such that £k < n < (€ + 1)k and the right-hand side again defines an analytic
extension of the left-hand side into the exterior of y. Indeed, we can express the left-hand side of
(4.7) for |z] > 1 as the Cauchy integral of e,,b,,Bi on T like we did in (4.4) for P_(b, fv). Since
enb, is analytic across T and By € H (ﬁ), we then deform the contour of integration into a circle
of radius slightly smaller than 1, which can be done without changing the value of the integral by
Cauchy’s theorem. Subsequently, we insert (4.6) in this integral and use Fubini’s theorem and the
residue formula as before to get (4.7).

Recall that dist(T, E) > dist(K, E) > 1 by construction. Observe also that |px| < 1* on y by
(4.2) and that |py| = dist(T, E)* in D. Since |b,| < 1, we get from our choice of ¢ that

(4.7) P_ (enbnBY) (2) dé, zeD\inty,

n—k
¢ n |7H|f“y —
“o - (enbnbi) ()] < (dist(T,E)) Gis(zy) ©COY

where |y| stands for the arclength of y. In another connection, it follows from [48, Lemma] that for
any ¢ € (0, 1/3) there exists W,, — D such that cap(W,,) < 3e and

P (Oan(O)] > & ¥ planllr, ¢ € D\W,.
r\{ ~

As [P4dn|(2) < [P4Gnlt = |P%gnl for z € D by the maximum principle and the definition of the
reciprocal polynomial, we get that |(b,, B )(z)| = &" X for z € D\W,,. Since P, +P_ is the identity
operator, we can use the analytic continuation provided by (4.7) to write

_ Py(enbnBy)(2) + P (enbnBy)(2)
bu(2)By (2)
The estimate |(b,,B%)(z)| > &" X for z € D\W,, (4.8), and the definition of £ give us that
P_(e,b,B%)(z 1 n—k o
B0 1 (n Yo,
b, (2)B(z) g2n \ dist(T, E) dist(z,y)

Now, given 0 < ¢ < land 0 < a < 1, choose n7in (4.2) sothat 0 < < aazdist(T,E). Choice of n
of course fixes k in (4.2). Then, since K lies exterior to y because K n L,, = @, we get from (4.10)
that there exists a natural number ny = no(f, K, &, 1, y) for which

P_ (enani)(Z)
b, (2)BL(2)

Next, as [le,bnBE |t = |len|lr — O faster than geometrically with n by hypothesis, (4.8) and the
triangle inequality yield that

4.9) en(2) . zeD\inty.

(4.10)

n

4.11) a®, nz=ng, z€K\W,.

T] n
(4.12) [P+ (enbnBY) |y = |enbnBy — P_(enbuBy)|, < C (W) . n=ng,

3An outer function w € H? is of the form w (z) = a exp { $r gt; log |w(§)\%}, with wi € L*(T) and || = 1.
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for some constant C = C(f, E,y) and some n; depending on C and the speed of approximation of f
by hn/b,. Subsequently, as in (4.11), we get from the estimate |(b,,B%)(z)| = &" X for z € D\W,,,
(4.12), and the maximum modulus principle that

P (enbnB)(2)
b, (2)BL(z)

for some natural number n; = ng(f,K,e,n,7). Because & and a can be arbitrarily small and

cap(W,) < 3e, (4.1) now follows from (4.9), (4.11) and (4.13).

Having proven that M, = f in D\E at faster than geometric rate whenever it is a sequence of
n-th root optimal meromorphic approximants to f, we turn to the construction of rational functions
Ry, € Ri, (D) such that the poles of Ry, are among the poles of M, lying in V and (2.18) holds,
where V any open set such that E © V < V < D. Let B © E be a closed set contained in V which is
regular for the Dirichlet problem, see Section A.7. Such a B is easily constructed as a sublevel set, for
some small regular value, of a smooth non-negative function whose zero set is E, see, for example,
discussion after (3.7). Then the Green equilibrium potential G(z) := g(up g, D;z) is harmonic in
D\B, continuous on D, strictly less than the constant 1/cap, (B) on D\B and equal to that constant
on B, see (2.12) or Section A.4 for a more detailed discussion. Since 0,G(z) is holomorphic in
D\B, the critical points of G are isolated and cannot accumulate in D\B, so we can find an interval
[t1,12] = (0,1/capp(B)) that is free of critical values and such that G~!([t;,#,]) = V. For any
t € [t1,t2], y(t) := G~'(¢) is a 1-dimensional compact manifold, i.e., a finite union of disjoint
real analytic closed curves y;;,...,Yn,:, none of which lies interior to another (by the maximum

(4.13) a", n=ny, zeK\W,,

principle), and such that B < inty(¢) < inty(¢) < V. Note that N is independent of 7 € [t;, #5] since
any such ¢ is a regular value; note also that the total length |y(z)| = Zj-v:] |¥j.¢| is bounded above
independently of ¢z, say by a constant L, because the gradient VG is normal to y; , at its every point
and therefore the divergence formula implies for any ¢ € [#1, #2]:

thy@)| min [VG(2)| < r2fy(r2)] max [VG(z)| - J IVG |dxdy.
zeG~1(1) 2eG~(n) G-'([t,2])
Pick a > 0, set K := max{|VG(2)|| : ze G~!([t1,1])} and let n, € N be so large that
1 —1
(4.14) cap({ze G~ ([t1,12]) : | £(z) = Ma(2)| > a"}) < %, n=n,.

Such a n, exists by the first part of the proof. Let A, be the set whose capacity is estimated in
(4.14). Assume for the moment that for each ¢ € [ty,#,] there exists z € G(t) n A,. Then the
image of A, under G/K : G~'([t1,1;]) — R is equal to the interval [¢;/K,t,/K] whose capacity
is (f2 — t1)/(4K). However, since contractive maps do not increase the logarithmic capacity [52,
Theorem 5.3.1], the capacity of G(A,)/K should be strictly smaller than (r, — #1)/(4K) by (4.14).
Hence, for each n > n,, there is t,, € [1}, 1] for which

(IR P
Yy Z—€ 27| T 2ndist(T, V)

Pick a positive sequence {ay} converging to 0 and, without loss of generality, arrange things so that
Ng; < Ngy, . Define

(4.15) zeT

J = = — e D\V, <n<ng,..
n(z) L(tnak) 71— ¢ 2ni Z \ Nay n<ng.,

Clearly, J,, is a rational function retaining the singular part of M,, inside the system of arcs y(tnuk ),
and it is of type (k, — 1, k,) where k,, < n is the number of the poles of M,, inside this system of
arcs, counting multiplicities. If we put Ry, := J,, then since ax — 0 we get from (4.15) and the
Cauchy formula that (2.18) holds, as desired.
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APPENDIX A. POTENTIAL THEORY ON A RIEMANN SURFACE

Even though the proof of Theorem 2.4 in Sections 3.3-3.10 was carried out for D = D, this
appendix is written for a general Jordan domain D since specializing D to the unit disk would only
shorten the proofs of Lemmas A.5 and A.10 by a couple of paragraphs but otherwise would not lead
to any further simplifications.

A.l. Subharmonic Functions. Let d be the differential and * the conjugation operators on a
connected Riemann surface. The Laplacian A := d*d takes smooth functions to 2-forms. If U is
an open subset of the surface and u : U — R a locally integrable function (against the area-form
*1, where 1 is the constant unit function, or equivalently against the Lebesgue measure (i/2)dz A dZ
in any system of local coordinates z, 7), the distributional Laplacian Au is the O-current acting on a
smooth compactly supported functions ¢ on U by { uAp. When Au = 0, one says that u is harmonic
on U, and such functions are in fact smooth (even real analytic) by Weyl’s lemma [18, Theorem 24.9].
Subharmonic functions on U are defined as upper-semicontinuous functions u : U — [—00, o0) such
that, if V is open in U and A& : V — R is harmonic, then u — & is either constant or fails to have
a maximum in V. On open subsets of C, this definition coincides with the usual one; see [52,
Definition 2.2.1 & Theorem 2.4.1]. A superharmonic function is the negative of a subharmonic
function. A difference of two subharmonic functions is sometimes called a §-subharmonic function.
Harmonicity and subharmonicity are local properties: u is harmonic (resp. subharmonic) on
U if and only if its restriction to every open subset is, or equivalently if and only if u o ¢! is
harmonic (resp. subharmonic) on the open set ¢(V n U) < C whenever (V, ¢) is a local chart.
Thus, standard facts regarding such functions on open subsets of a Riemann surface follow from their
planar counterparts, using charts. In particular, the integrability theorem [52, Theorem 2.5.1] states
that a subharmonic function which is not identically —oo is locally integrable, and therefore it has a
distributional Laplacian. Hence, two subharmonic functions that coincide almost everywhere (with
respect to area measure) are in fact equal, for either they are both identically —o0 or they have the
same distributional Laplacian, and so their difference is harmonic; this is the weak identity principle.
The following is a variant of Harnack’s theorem [52, Theorem 1.3.10] and of [52, Theorem 2.4.6].

Harnack’s Theorem. A sequence of harmonic functions on U that is bounded below has a sub-
sequence that converges locally uniformly on U, either to +00 or to a harmonic function. For
an increasing sequence, convergence holds along the full sequence. A decreasing sequence of
subharmonic functions converges pointwise to a subharmonic function.

A locally integrable function u is subharmonic if and only if Au is a Radon measure on the surface;
that is, Au is a positive linear form on continuous functions with compact support. Indeed, as this
statement is local, it reduces to its planar analog. The “only if”” part follows from [52, Section 3.7].
As to the “if” part, let W < C be open and v be a finite positive Borel measure carried by W.
The logarithmic potential of v, i.e., V¥(z) := {log|z — ¢t|~'dv(¢), is superharmonic on C with
distributional Laplacian —v, so if u is locally integrable on W with Au = v there, then & := u + VE’W
is harmonic and therefore u = —VE’W + h is subharmonic in W (as in the main text, for a set E (that
may require further qualification), a subscript | E indicates “restriction to E”).

A.2. Green Functions. Throughout, Q will be a subdomain of some ambient algebraic Riemann
surface R, such that p(Q) is a bounded domain in C, where p stands for the canonical projection;
in particular the results apply to Q = R with p(Q) = D, see beginning of Section 2.1. Since the
lift to Q of a positive non-constant superharmonic function on p () is again positive, non-constant,
and superharmonic, € is hyperbolic and as such possesses Green functions [15, Theorem IV.3.7].
Notice also that there exists a subdomain €' — Ry, with p(Q') bounded such that Q c ', where an
overline (as in ﬁ) always denotes the closure in R,.
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Recall that the Green function for Q with pole at w, denoted by gq (-, w), is the unique function that
is harmonic and positive in Q\{w} with a logarithmic singularity at w and whose largest harmonic
minorant is identically zero. By a logarithmic singularity at w, it is meant that if (V,¢) is a
coordinate chart on Q such that w € V and ¢(w) = 0, then go(¢~!(:),w) + log| - | is harmonic on
©(V). Obviously go(-, w) > 0 everywhere on Q, by the minimum principle for harmonic functions.
Recall also that if a superharmonic function on € is not identically +co and has a harmonic minorant,
then it has the largest one whose construction can be carried out as in the Euclidean case [29,
Theorem 4.3.5], because Poisson modifications can be performed locally.

Clearly, go(-, w) is superharmonic and Agq(-,w) = —&,,, where §,, is the Dirac mass at w.
Moreover, gq is symmetric in that go(z, w) = go(w, z) [15, Theorem IV.3.10]. Symmetry entails
that go(z, w) is separately harmonic in z and w, and therefore jointly harmonic on {(z,w) € Q x Q :
z # w} [36, p. 561]; in particular, (z, w) — ga(z, w) is continuous off the diagonal. Note that

(A.D) ga(zw) < g (z,w), zZweQc

because go (-, w) — g/ (-, w) is a harmonic minorant of g (-, w) and therefore must be non-positive.
Thus, if Fi, F, are relatively closed subsets of Q with F; nF = @, we deduce that (z, w) — gao(z, w)

is bounded on F; x F; because gqr(z, w) is continuous on the compact set Fl X Fz whenever Q < Q.
We also remark that to each w € Q there is an open set V 3 w and a constant C = C(V) such that

(A.2) J galz,w)*1(z) < C, w eV,
v

a result that follows by uniformization from the corresponding fact on the disk [29, Theorem 4.4.12].
Moreover, if a sequence of open sets €, increases to Q as n — o0, it follows from (A.1) that
ga(-w) e, — &a, (-, w) is a decreasing sequence of positive harmonic functions that must converge
locally uniformly in Q, by Harnack’s theorem; as the limit is necessarily a non-negative harmonic
minorant of g (-, w), it must be identically zero.

A.3. Green Potentials. A Green potential in Q is a non-negative superharmonic function whose
largest harmonic minorant is identically zero. Given o, a Radon measure in €, let us put

(A3) glo,Qz) = Jgg(z,w)do-(w).

This is a superharmonic function of z € Q which is either identically 400, or locally integrable
with distributional Laplacian —o- by Fubini’s theorem. If g(o-, Q; -) is not identically + o0, using the
monotone convergence and Fubini’s theorem, the proof of [29, Lemma 4.3.6] carries over to integrals
instead of sums to show that the largest harmonic minorant of g(o-, €; -) is the integral against do-(w)
of the largest harmonic minorants of the go (-, w), namely zero. Thus, g(o, Q; -) is a Green potential.
Conversely, it follows from the Riesz representation theorem stated below that every Green potential
has the form (A.3). Notice that if o-(Q) < oo, then g(0, Q;-) % +00, for if V. < Qs as in (A.2) and
W is a nonempty open set with W — V, then

J g(0,Q;2)*1(z) < Co (V) + CIO'(Q\V)J. *1
w w

by Fubini’s theorem, where C’ is an upper bound for go(z, w) on (Q\V) x W.

Riesz Representation Theorem. Let u # +00 be a superharmonic function on Q that has a
harmonic minorant. Then u = g(o,Q;-) + h, where h is the largest harmonic minorant of u and
o= —Au.

Proof. Assume first that o-(Q) < co. Then, g(o, Q;-) # +o0 and therefore h := u — g(o, Q; ) is
harmonic on Q. Clearly, % is a minorant of u. Since the largest harmonic minorant of g(o, Q;-) is
zero, h is the largest harmonic minorant of u. If 0-(Q) = oo, pick Q,, to be an increasing exhaustion
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of Q by relatively compact open sets. Put 0, := 0 |q,,, Which are finite measures on £,,, because
o is a Radon measure. By what precedes, u|q, = (T, Qms ) + hy, where hy, is the largest
harmonic minorant of u|q,,. As the functions gg, (-,w) increase locally uniformly to gq(-,w)
while £, decrease and are bounded below by any harmonic minorant of u, we get by monotone
convergence and Harnack’s theorem that u = g(o-, Q;-) + h, where A is harmonic and necessarily
g(0o,Q;-) # +00. We now conclude the proof as in the first case. i

This version of the Riesz representation theorem featuring the weak-Laplacian may be compared
to the more abstract formulation for Green spaces (of which Q is a special case) in [8, Section VI.7],
that does not refer to the Laplacian; see also the planar statement of [52, Theorem 4.5.4].

The previous considerations allow us to simplify in our case the notion of admissibility of a
measure given in [19, Section 1] and [20, Section 1.3]. According to that definition, a measure
o is admissible if it is integrable against continuous Green potentials with compactly supported
Laplacian. Fubini’s theorem immediately implies that g(o, Q;-) # +o0 if o is admissible. In
the present Greenian context the condition g(o-, Q;-) # +0 is also sufficient for (and therefore
equivalent to) admissibility of o-. Indeed, if v is compactly supported in Q with continuous potential,
let V be an open set such that suppy < V < V < Q. By continuity, there exists C such that
g(v,Q;z) < C, z€ Q. Since g(0,Q;-) # +00, the same is true for the potential of o q\y . As this
potential is harmonic in V and is not equal identically to 40 there, it is finite and locally bounded in
V. Hence, g(O-LQ\V, Q;z) < C’, z € supp v. Therefore, it follows from Fubini’s theorem that

Jg(v,Q;z)do-(z) < Co(V) + C'v(Q).
A.4. Capacities. Given two Radon measures ¢ and 0» on Q, we put

(o1,00)q = Jg(al,ﬂ; 2)dor(z) = fg(a’z,Q; z)do(z2),

which is either a non-negative number or +c0. The Green energy of o is defined as I (o) := (07, 0)q.
The Greenian capacity relative to Q of a compact set K < € is a non-negative number

1

(A4) capo(K) = ——
Pa(K) infep (k) Ia(p)

where P (K) is the set of Borel probability measures on K. The Greenian capacity of a Borel set B
is given by
(A3) capg(B) := sup capg(K) = inf capg(U),

KcB U>SB
where the supremum is taken over all compact subsets of B, the infimum is taken over all open
sets containing B, and the equality is due to a theorem by Choquet [8, Section VIIL.4]. When K
is compact and capg(K) > 0, there exists a unique pg x € P(K), called the Green equilibrium
measure of K in Q, to meet the infimum in (A.4). It is characterized by the fact that for some constant
C(= 1/capgy(K)), the Green equilibrium potential g(uq x,;z) satisfies g(pa x,Q;z) < C for
z € Q with g(ug.k,Q;z) = C for z € K\E, where E has Greenian capacity zero; this can be shown
as in the Euclidean case [54, Theorems I1.5.11 & I1.5.12].

In the case of an arbitrary set B, the infimum in (A.5) introduces the outer Greenian capacity of B
and will serve as a definition of capg (B). However, it may no longer match the supremum (the latter
defines the inner Greenian capacity of B).

When Q < C, another notion of capacity is instrumental in this paper, namely the logarithmic
capacity defined for a compact set K < C as

(A.6) cap(K) := exp {— inf fV”(z)d,u(z)},

ueP(K)
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where V#(z) is the logarithmic potential of u defined earlier in Section A.1. The logarithmic capacity
of a Borel subset of C and the outer logarithmic capacity of an arbitrary subset are defined via the
same process as for Greenian capacity, based on the analog of (A.5), see [52, 54] (note that in [52],
cap(E) denotes the inner logarithmic capacity and potentials carry a sign opposite to the current
one). If K is compact and cap(K) > 0, then there is a unique ux € P(K), called the logarithmic
equilibrium measure of K, that realizes the infimum in (A.6). It is characterized by the fact that for
some constant C(= — logcap(K)), the logarithmic equilibrium potential V*¥ (z) is at most C for
z € K and in fact equal to C on K except possibly for a subset of logarithmic capacity zero.

Both the Greenian and logarithmic capacities are right continuous on compact sets, meaning that

cap(n}LK;) = lirllncap(m;?=1Kj) and capg(n7lK;) = lirrlncapg(m;f:ll(j)

if the K; are compact; see [52, Theorem 5.1.3(a)] for the logarithmic case, the Greenian one being
argued the same way with an obvious adaptation of [52, Lemma 3.3.3]. In addition, the (outer)
Greenian and logarithmic capacities are left continuous:

cap(UjL Ej) = limcap(j_,E;) and capo (VL Ef) = lim capo (V_ E;);

for the logarithmic capacity this follows from [52, Theorem 5.1.3(b)] combined with Choquet’s
theorem, and the Greenian case can be handled similarly, compare to [8, Section VIIL.4].

One form of the domination principle for Green potentials says that if g(o-, Q;-) < v on supp &
(the support of o) for some superharmonic function v, then g(o-, Q; -) < v everywhere on ; in fact,
we shall state a stronger version in Section A.6. It implies the continuity theorem, saying that if the
restriction of g(o-, Q;-) to supp o is continuous at zg € supp o~ then g(o, Q; -) is continuous at z.
When ¢ is a positive Borel measure with compact support such that g(o-, Q;z) < +oo for o-a.e.
z, there is an increasing sequence of measures oy supported on supp o, having continuous Green
potentials and converging to ¢ in the strong (total variation) sense, such that g(o, Q;-) increases
pointwise to g(o-, Q; ) on Q. The proof is mutatis mutandis the same as for logarithmic potentials
[54, Lemma 1.6.10], using the continuity theorem for Green potentials. In particular, if K is compact
with capg(K) > 0, we find upon letting o~ be the Green equilibrium distribution that there exist
nonzero positive measures supported on K whose Green potentials are continuous.

When Q < C, a subset of Q has (outer) Greenian capacity zero if and only if it has (outer)
logarithmic capacity zero. Indeed, it is enough to verify this claim on compact sets since capacity
is left continuous and a set of outer (Greenian or logarithmic) capacity zero is contained in a Borel
(even G ¢) set of capacity zero, by definition. Moreover, by the increasing character of go(z, w) with
Q, we may assume that € is simply connected. Then the result follows by comparing the logarithmic
kernel log(1/|z — w|) with the Green kernel go(z, w) = log|(1 — ¢(z)e(w))/(¢(z) — ¢(w))|, where
¢ is a conformal map Q — D. A property holding pointwise except on a set of outer Greenian
capacity zero (equivalently: logarithmic capacity zero if Q < C) is said to hold quasi everywhere.

A.5. Fine Topology. A basis for the fine topology on Q is given by all sets of the form
(A7) A" {ze B ivi(z) < i},

where B < Q is open, v; are superharmonic functions on B, and «; are constants. Consequently,
all superharmonic functions Q — (—o0, +o0] are finely continuous (equivalently: all subharmonic
functions Q@ — [—o0, +0) are finely continuous), and the fine topology is the coarsest with this
property because, by the Riesz representation theorem and the monotonicity of Green functions with
respect to the domain, each set of the form (A.7) contains one for which v; are Green potentials. In
particular, we may as well require in (A.7) that v; be defined and superharmonic on the whole of Q.
Hence, the present definition modeled after [29, Definition 6.5.1] (which deals with the Euclidean
case) is equivalent to [8, Definition I.1]. It is known that the fine topology on € is locally connected
[20, Corollary to Theorem 9.11], and that the fine connected components of a finely open set are



46 LAURENT BARATCHART, HERBERT STAHL, AND MAXIM YATTSELEV

finely open [19, Corollary 1]. Moreover, Lipschitz curves are finely connected [19, Theorem 7], so
that Euclidean domains are fine domains as well.

As a general convention, we use the prefix “fine” to signify that a notion is understood with respect
to the fine topology. This way we distinguish the latter from the classical, Euclidean topology (more
precisely: the one induced on Q by the Euclidean topology of charts). The fine boundary of a set S
is denoted by ¢S, and its fine closure by clos;.

A set E < Qs called polar (in Q) if there is a superharmonic function u# % +00 on € such that
u(z) = 4o for z € E. Superharmonic functions not identically +oo are locally integrable, therefore
polar sets have area measure zero, see Section A.1. By definition a polar set is contained in a G5
polar set, and every G s polar set arises as the +00-set of a superharmonic function [8, Section VI.9].
If U is a fine domain and E is polar, then U\E is again a fine domain [19, Theorem 6]. In fact,
polar sets are exactly the sets of zero outer Greenian capacity (equivalently: of zero outer logarithmic
capacity if Q < C) defined in Section A.4; this is justified in Section A.9, but we take it presently
for granted (we stress that [52] defines polar sets as having inner capacity zero, thereby making for a
larger class of non-Borel polar sets). One consequence is: if Q' > Q is hyperbolic and E is polar in
Q, then it is polar in Q' as well; indeed, since g/ (-, w) = ga(-, w), it is clear that E has zero outer
Greenian capacity in Q' if it does in Q. Conversely, it is obvious from the definition that E is polar
in Q if it is polar in Q' > Q, therefore we may speak of a polar set without specifying a hyperbolic
subset of R, in which E is contained.

A countable union of polar sets is polar, for if Ey is included in the +o0-set of a superharmonic
function u; % +o0 while K < Q is compact and of positive Lebesgue measure, then there are ¢, > 0
such that u := )}, fruy is summable on K (therefore u # +00) and is superharmonic with value
+00 at each point of Ui Ex. So, if E < Q is polar and p : Ry — C is the natural projection, then
p(E) is polar. Indeed, for V = Q a domain such that p : V — p(V) is a homeomorphism, v o p~! is
superharmonic on p(V) when v is superharmonic on V, and Q\rp(R ) can be covered with countably
many such domains while rp(R.) is finite. Conversely, if V < C is a bounded open set and E < V
is polar, then p~!(E) is polar because v o p is superharmonic as soon as v is superharmonic on V.

If u # +o0 is superharmonic and finite on a polar set E, then E has outer Au-measure zero [8,
Section VL9, item 8)]. Consequently a Radon measure ¢ of finite Green energy cannot charge a
polar set E, for we may assume o~ has compact support (since Q is o--compact) and as in Section A.4
there is an increasing sequence of measures o converging strongly to o~ with g (o, Q; -) continuous,
whence o (E) = limy o (E) = 0.

Removability Theorem. If E — Q is a (relatively) closed polar set while u is superharmonic on
Q\E and locally bounded below in a neighborhood of E, then u extends in a unique manner to
a superharmonic function on Q. Moreover, if u is harmonic in Q\E and locally bounded in a
neighborhood of E, then u extends harmonically to Q.

Proof. The proof of the first statement carries over to hyperbolic Riemann surfaces from its planar
version, see [52, Theorem 3.6.1]. When u is harmonic in Q\E and locally bounded in a neighborhood
of E, it extends both to a subharmonic and a superharmonic function on € by the first part. Since Au
does not depend on the extension because E has Lebesgue measure zero, we deduce that Au = 0. O

The removability theorem implies the following result.

Generalized Minimum Principle. If u is superharmonic and bounded below on some open set
U c U c Q and if moreover liminfy s,z u(z) = 0 for quasi every & € U, then u = 0 in U.

Proof. Given € > 0, let E; := {{ € 0U : liminf, ¢ u(z) < —e&}. Then E is a closed polar
set and the function w : Q — (—0, +00] given by min(u, —&) on U and —& on Q\(U v E,) is
superharmonic on Q\E ., by the glueing theorem, see [52, Theorem 2.4.5] for a planar version of
this local result. As w is bounded below, it extends to a superharmonic function on Q. Because
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UuE;cUc Q,itholds that liminf,_, ¢ w(z) = —e& for any & € Q. Thus, w > —e& in Q by the
classical minimum principle contained in the very definition of superharmonic functions. O

The hypothesis “u is bounded below” can be relaxed somewhat: it is enough to assume that
u > —g where g is a semi-bounded potential, meaning that it is the increasing pointwise limit of a
sequence of locally bounded potentials, see [20, Theorem 9.1]. Note that g(o, ; -) is semi-bounded
when it is finite o-a.e., for we may assume o has compact support (as € is a countable union of
compact sets) and then appeal to properties of the measures o in Section A.4. In fact, g(o, Q;-) is
semi-bounded if and only if it is finite o-a.e. in €, which is also if and only if o does not charge
polar sets, see [20, Section 1.2.6, Theorem].

A.6. Thinness. Fine topology can also be introduced via the notion of thinness. A set E < Q is
said to be thin at £ € Q if { is not a fine limit point of E£. Equivalently, E is thin at  if and only if
either £ ¢ E or there exists a function v, superharmonic in a neighborhood of ¢, such that

(A.8) Ealgﬁlglflzﬂgv(z) > v({);

see [29, Theorem 6.6.3] for a proof of this equivalence in the Euclidean setting, which applies to
hyperbolic Riemann surfaces as well and also shows that v in (A.8) may be taken superharmonic on
the whole of Q. Hence, the above definition of thinness (which is local) matches [8, Definition 1.2]
(whose local character is not immediate, see [8, Theorem VII.1]). Setting lim inf over the empty set
to +00 by convention, (A.8) may still be regarded as characterizing thinness at £ ¢ E, upon letting
v = 0. Note that when the limit inferior in (A.8) is taken over a full Euclidean neighborhood of ¢,
superharmonicity of v implies that the inequality gets replaced by an equality. Clearly, E is thin at {
if and only if for some (hence any) chart (V, ¢) with ¢ € V, the planar set ¢(V n E) is thin at ¢(¢),
and a countable union of thin sets at { is again thin at £.

A set V is a fine neighborhood of ¢ € V if and only if the complement of V is thin at £, see [8,
Theorem 1.3]. In particular, if V is finely open and Z is polar, then V\Z is finely open. The points of
E < Q at which E is thin form a polar set, and E is thin at each of its points if and only if it is polar [8,
Theorem VIL.7 & Corollary]. One consequence of E being thin at £ is that, locally in a chart (V, ¢)
with ¢ € V, there are arbitrary small circles centered at ¢({) which do not meet (E n V), see [29,
Theorem 6.7.9]; in the same vein, ¢(V\E) contains a segment of the form [¢(¢), ¢(¢) + re?] with
r = r(8) > 0 for quasi-every direction ¢'? in T, see [52, Theorem 5.4.3]. In particular, a connected
set cannot be thin at an accumulation point and therefore polar sets are totally disconnected.

The base b(E) of a set E is the set of points in € at which E is non-thin, and E is called a base if
b(E) = E. Ttis known that b(E) is a finely closed G s set, see [8, Proposition VIL.8]. We record the
following, elementary fact.

Lemma A.1. Let E, F < Q be disjoint finely open sets such that Q\(E U F) is a base. Then Q\E
and Q\F are bases as well.

Proof. Ifx € (Q\E) n (Q\F) = Q\(E U F), the latter set is non-thin at x by assumption and therefore
sois Q\E. If now x € (Q\E) n F = F, then the fine openness of F implies that Q\F is thin at x and
sois E < Q\F. However, if Q\E were also thin at x in this case, then Q = E U (Q\E) would be
thin at x which is impossible. Hence, Q\E is non-thin at any of its points, therefore it is a base. O

The notion of a base generates a strong form of the domination principle, see [8, Theorem VIIL.4].

Strong Domination Principle. Let v be a non-negative superharmonic function in Q such that
v = g(o,Q;) quasi everywhere on a set E such that o(Q\b(E)) = 0. Then v > g(o,Q;-)
everywhere in Q.
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The fine closure of E is equal to clos;(E) = b(E) v i(E), where i(E) is the set of finely isolated
points of E, see [8, Proposition V.10]. The finely closed sets are precisely those for which b(E) € E.
Note that b(E) n i(E) = @ and therefore, if V is finely open, we have that

(A9) BQV) = Q\V, V=V Ui(Q\V),

where we observe that V' is in turn finely open. For any set E, the fine boundary &E is finely closed
and, as shown in [20, Lemma 12.3], it holds that

(A.10) i(GE) =i(E) Ui(Q\E) and b(GE) = b(E) n b(Q\E).
The next lemma connects fine topologies in D and R (defined at the beginning of Section 2.1).

Lemma A.2. The map p : R — D is finely open and finely continuous, that is, p(V) and p~'(U)
are finely open when V. R and U < D are finely open. Moreover, i(R\p~'(U)) = p~'(i(D\U)).

Proof. LetV — R be finely open and £ € V. Denote by O a Euclidean disk centered at p(Z) of small
enough radius so that O, the connected component of p~!(0) containing £, contains no ramification
points of R except possibly ¢ itself (if m(£) > 1) and O n p~!(p(2)) = {¢}. Since E := O\V is
thin at £, there exists a superharmonic function v in O for which (A.8) takes place. We claim that

(A11) 3(2) im {wamn'(z)v(w)’ ze O\{p(0)}.
(W), = p(0)

is superharmonic on O. Indeed, by shrinking O if needed, we may assume that v is the increasing
limit of a sequence of continuous superharmonic functions v,, on O, see [52, Corollary 2.7.3] for
a proof of this fact in the planar case that carries over to R using local charts. Define 7, similarly
to (A.11), only replacing v with v,,. Clearly, #, is superharmonic on {z € O : z # p({)}. Since
it is bounded around p(¢) by the continuity of v,, the restriction V,10\p(¢) Uniquely extends to a

superharmonic function on O by the Removability Theorem. Of necessity, the value at p(£) of this
extension is given by

_Jimint 5(2) = m(Ova(€) = Palp(£)),

where the first equality comes from the continuity of v,, at £. Hence, #,(z) is superharmonic on O and
so is its increasing limit . This proves the claim. In another connection, the lower semicontinuity
of v shows that the analog of (A.8) holds for ¥ when the limit inferior is taken along p(E). As
O\p(V) € p(E), we get that D\p(V) is thin at p(¢) so that p(V) is finely open, as claimed.

To show the second claim, observe that the lift of a function from D to R preserves superhar-
monicity and that R\p~!(U) = p~!(D\U). The identity i(R\p~'(U)) = p~'(i(D\U)) is now
straightforward. O

In Lemma A.3 below, we single out for easy reference a basic geometric fact, used at several places
in the paper. We say that a continuous injective map y : T — R is a parametrized Jordan curve in
R and we simply call the image y(T) a (non-parametrized) Jordan curve. On a hyperbolic Riemann
surface R, any Jordan curve I" homotopic to a point is uniquely the boundary of a (topological) disk
O c R [63, Theorem 2.4]; we say that O is the interior of ', and we write O = intI". That I is
homotopic to a point in particular holds if it is included in a simply connected open set U which is
the domain of a chart. Recall also that E < R is called schlicht over U — C if U o p(E) and the
restriction p g : E — U is injective.

Lemma A.3. Let E < R be schlicht over D and ¢ € rp(R). There exists a neighborhood U g of é
such that no Jordan curve in Ug contains € in its interior and simultaneously is contained in E.
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Proof. Let U be a simply connected domain of a chart containing &, so thatevery Jordan curve T — U
is homotopic to a point. Let O < D be a disk centered at p(£) and O ¢ the connected component of
p~1(0) containing &, with O small enough that O¢ = U and O¢ N rp(R) = {¢}; this is possible
since Ry is compact. Then O ¢ is a neighborhood of ¢ which is (isomorphic via a biholomorphic
map fixing & to) an m(£&)-sheeted cyclic covering of O. So, if we identify the homotopy groups
11(0\{¢}) and 71 (O\{p(¢)}) with the infinite cyclic group generated by the symbol a, the induced
morphism py : m1(0\{¢}) — 71 (O\{p(&)}) is the map a > a™(¢). Now, a parametrized Jordan
curve ¥ : T — O containing & in its interior is a generator of the fundamental group of O ¢£\{¢}.
Hence, p oy is the m(&)-power of a generator of the fundamental group of O\{p (&)}, in particular it
has winding number +m (&) with respect to p(£¢). However, if y is valued in E, then poy : T — O
is a parametrized Jordan curve because p is injective on E, and therefore it has winding number
+1 with respect to p(¢). This contradicts the assumption that m(£) > 1, showing that Uz := O
satisfies our requirements. O

The next lemma, used in the proof of Lemma 3.11, depends on Lemma A.3.
Lemma A 4. IfE c R is schlicht over D and ¢ € rp(R), then R\E is non-thin at .

Proof. Let (Ug, ¢) be a chart around &, with U as in Lemma A.3 and ¢(¢) = 0. If R\E is thin at
&, then there is a circle T, := {|z| = r} < ¢(U¢) such that ¢~ '(T,) c E. As ¢! : T, > Ugisa
Jordan curve in E that contains € in its interior, this contradicts Lemma A.3. O

A.7. Regularity. Thinness is intimately connected to the notion of a regular boundary point with
respect to the Dirichlet problem. Given a Euclidean open set U with U < Q, a point £ € 0U is called
regular if for any continuous function  on dU it holds that
lim H =

plim Hy(2) = ¢(2).
where Hy (z) is the Perron-Wiener-Brelot solution of the Dirichlet problem on U with boundary
data ¢, see [8, Section VI.6, item )] for a description of the Perron-Wiener-Brelot process; other
boundary points are called irregular. When all its boundary points are regular, we say that U itself
is regular. It is known that £ € U is regular if and only if
(A.12) lim L8V (z,w) =0

Usz—

for some (and then any) w in each connected component of U. Moreover, { is irregular if and only if
the complement of U is thin at { [8, Theorem VIIL.13]. This entails that regularity is a local notion,
in particular each point of dU is regular as soon as the latter is locally connected, as follows from the
analogous property in a Euclidean space [52, Theorem 4.2.2].

Let o be a finite measure, compactly supported in U. As gy (z, w) is bounded for w € supp o
and z outside of a neighborhood of the latter, see Section A.2, we get from (A.12) and the dominated
convergence theorem that g(o-, U; -) extends continuously by zero to the set of regular points of OU.
When o is not compactly supported, a weaker result is stated in Section A.8 (Lemma A.5).

Regular points of finely open sets are defined analogously: when U is finely open, £ € ¢;U is said
to be regular if Q\U is non-thin at £. By (A.10), the set of regular points is then b(0;U), and if U
is its own base one says that U is regular, see [20, Section IV.12].

The following results are the natural analogs, for Green potentials on regular open sets of hyperbolic
surfaces, of their logarithmic counterparts in the plane, see [54, Theorems 1.6.8 & 1.6.9].

Principle of Descent and Lower Envelope Theorem. Ler U be a regular open set with compact
closure U < Q. If o, are positive measures on U with uniformly bounded masses that converge
weak™® to some measure o as n — oo, then
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(1) [Principle of Descent]
(A.13) liminf g(0y, U; 2n) = g(0,U;2), zy — z€U.
n—aoo

(2) [Lower Envelope Theorem]
(A.14) liminf g(0y, U;2) = g(o,U;z)  for quasi every ze€U.
n—aoo

Proof. The arguments are a minor variation of those used in [54]. For M > Oand z € U, observe from
(A.12) that ¢y . (w) := min{M, gy (z,w)} is continuous on U and zero on AU, locally uniformly
with respect to z. Thus, ¢/, lies in the closure of the space C.(U) of continuous functions on U
with compact support endowed with the sup norm. Moreover, |¢pr.,, — ¢ ;| is arbitrary small
on U for n large enough, by the minimum principle and the continuity of Green functions off the
diagonal. Hence, as o, Yo, we get that lim, § @ ., don = §¢um .do and consequently, by
monotone convergence, we deduce (A.13) from the relations

g(o,U;z) = lim ngM’ZdO'I lim lim | ¢z, don < liminf g(oy, U; zp).
M —x0 M- n n

Next, assume to the contrary that g(o-, U; z) < liminf, g(o, U, z) for z € K, where K U is such
that capy; (K) > 0. Clearly, we may suppose that K is compact and so we can find a nonzero measure
oy, supported on K, such that g(o, U;-) is continuous on U, see Section A.4. Then by Fatou’s
lemma it holds that

(A.15) Jg(o-, U;z)doy(z) < Jlim inf (0, U; 2)doy(z) < lim inffg(o-n, U;z)doy(z).

Moreover, as g(o, U; -) extends continuously by zero on dU, see discussion after (A.12), it lies in
the closure of C..(U). Therefore, by Fubini’s theorem,

lirran‘g(O'n, U;z)doy(z) = lir?lfg(d*, U;z)doy(z) = Jg(a*, U;z)do(z) = Jg((r, U;z)doy(z2),
thereby contradicting (A.15). O

A.8. Superlevel Sets of Green Potentials. In this section we restrict attention to a planar simply
connected domain D, which is the interior of a Jordan curve 7. In this case, any conformal map
¢ : D — D extends to a homeomorphism from D onto D [49, Theorem 2.6], that we continue to
denote with ¢. Clearly, such a domain D is regular. As mentioned in the previous subsection, if o
is a finite Borel measure compactly supported in D, then g(o, D; ) continuously extends by zero to
T. If o is not compactly supported this may not hold, but when F is a relatively closed subset of D
with a limit point ¢ € T, it was shown in [39] that
(A.16) lim capp(F n{|z —¢| <€}) >0 = liminf g(o,D;z) =0,

e—0 Faz—&
and if the rightmost limit holds for every finite measure o, then the implication can be reversed.
This result is in fact stated in [39] with g(o-, D; z) replaced by (1 — |z|)g(v,D;z) where v is any
measure whose Green potential is not identically +co, but the latter condition is equivalent to saying
that the measure do(z) := (1 — |z|)dv(z) is finite and then convergence to zero along F' of the limit
inferior of (1 — |z|)g(v,D; z) and of g(o, D; z) are equivalent, see [39, Section 3, Lemma]. It is also
pointed out in [39, Equation (2.5)] that the leftmost limit in (A.16) can be equivalently replaced by
capp (F n {|z — €| < €}) = oo for every € > 0 (note that instead of the Greenian capacity capp (E)
that we use, [39] employs the hyperbolic capacity exp{—1/capp(E)}). In Lemma A.5 below, we
derive a useful consequence of (A.16). With the notation of this lemma, we stress that a stronger
conclusion in fact holds quasi everywhere, namely U, is thin at quasi every point of T (this can be
deduced from general properties of balayage covered in Section A.9). The interest of Lemma A.5
lies with the fact that its conclusion holds at every point of 7.
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Lemma A.5. Let o be a finite measure in D, and for € > 0 set Ue := {z € D : g(o,D;z) > €}.
Leté€Us nTand ¢ : D — D be a conformal map such that &(1) = &. Then there exists a closed
set Re < [0,1] such that R n (1 — 6, 1) is non-polar for any § € (0, 1), and for each r € R, one
hasUe n¢({zeD: |l —z|=1—r}) = 2.

Proof. Suppose initially that D = D. Without loss of generality, we can assume that & = 1. First,
we shall show that

(A.17) %irrbcapD(UE N Dgs) =0,

where Ds :={z€D:|z— 1] < 6}. For{ € D, let S(¢) := {z € D : gp(z,¢) = log2}. It was
shown in [39, Section 3, Lemma] that there exists 5o = §(€) > 0 for which

J gn(z,)do(z) <€/2, L] >1-— .
D\S(¢)

In particular, this inequality holds for { € D s,. Hence, for any compact subset FF < Ue N D, it
holds when ¢ € F that

A1 WO [ p0dr) - s Di0) - [ goladdo()=e/2

S(£) D\S(£)
Assume to the contrary that the limit in (A.17) is larger that 2 > O (the limit must exist as
capp(Ue N D) decreases with §). Since U is an open set, we get from (A.5) that for any 6 > 0
there exists a compact set Fs < U n D s for which capp(Fs) = n. This entails that there exist a
sequence 6, — 0 and disjoint compact sets F,, = Ue n D, with capp(F,) = n. Let v, be the
Green equilibrium distribution on F,, and F* := {z € S(¢) : for some ¢ € F,,}. In view of (A.18),

e/2 < f h(Z)dva(Z) <

1
) T—IU(F:)—’O,

where the second inequality and the fact that lim,, o (F;*) — 0 can be established as in the proof of
[39, Theorem 1] (compare to p. 486 of that reference). This contradiction proves (A.17).
LetT: Dy — (0,1) be defined by z — Tz :=1— |1 — z] and put V¢ := U n D;. Denoting by

TV, the set {T{ : £ € V}, we claim that
(A.19) éirr%) capp(TVe n Ds) = 0.

Before proving (A.19), let us show why it implies the lemma. For this, consider R := [0, I|\TV,,
which is a closed set. If the conclusion of the lemma were not true, there would exist 5o > 0
such that R, n (1 — 8o, 1) is polar. By definition of T this would imply that capp(TVe n D) =
capp((1 — 6,1)) = oo for any 6 < & (the last equality follows at once from the definition of the
Greenian capacity), which contradicts (A.19).

We are now left to demonstrate (A.19). Assume to the contrary that it does not hold, i.e., there
exists > 0 such that for any § > 0 there is a compact set Fs TV, n D s for which capp (Fs) = 1.
The previous inequality means that there exists a probability measure us supported on Fs such that

Jfgm(x,y)dua(X)dﬂa(y) < %

Since U is open, so is V¢ and one easily sees that each z € V. n D s has a neighborhood, say O,
whose closure is contained in Ve n D s and whose circular projection TO, is an open subinterval
of (0, 1). These subintervals form an open cover of Fs, which necessarily has a finite subcover, say
TOy,,...,TOz,. The closure K5 of O, U --- U Oy, is a compact subset of V. N D, and clearly
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Fs < TKs. In particular, there exists a probability measure vs on K5 such that ysT~ 1 = Us, see for
example [52, Theorem A.4.4]. Then, by Fubini’s theorem, it holds that

Tl] > ffgn(x,y)dua(x)ua(y) = JJgD(TZ’ Tw)dvs(z)dvs(w),

and if we can show that gp(Tz, Tw) > gp(z, w) then we will deduce from the above estimate that
capp(Ue N D) = capp(Ve " Ds) = capp(Ks) =n >0 foranyé > 0,

which of course contradicts (A.17). Hence, the proof has been reduced to the verification of
¢p(Tz,Tw) = gp(z, w) forz, w € D, that we now carry out. Since gp(z, w) = log |(1—zw)/(z—w)|
and T is real-valued, we need to show that

(A.20) E:=[1-TzTw]*z —w|* — |1 — z2w[*[Tz — Tw|* = 0.

Setaé :=1—zand bn := 1 —w, where a,b € (0,1) and |£] = || = 1 with Re&,Ren € (0, 1).
Then

E

la + b — ab|*|aé — bn|* — |a& + bij — abé&i|*|a — b|*
(S +2abU)(T — 2abV) — (S + 2abW)(T — 2ab)

where S := a’+b*+(ab)?, T := a®>+b*,U := 1 —a—b,V := Re(£77), and W := Re(én—an—bé).
Therefore,

E 2ab(S(1=V) +T(U — W) + 2ab(W — UV))
2ab((S + 2abU)(1 = V) + (T — 2ab)(U — W))

2ab((a + b —ab)*(1 = V) + (a — b)*(U — W)).

Because V < 1, the above expression can be estimated from below as
E > 2abla—b)*(1-V+U-W)
2ab(a — b)*(2 — Re(£7 + €n) — a(1 — Ren) — b(1 — Re¢)),
and since 1 — Ren, 1 — Reé, 1 — a as well as 1 — b are all positive, it therefore holds that
E > 2ab(a—b)*(Ren + Re¢ — Re(&7f + &n))
= 2ab(a — b)*(Ren + Re& — 2RenReé)
2ab(a — b)*(Ren(1 — Re&) + Re&(1 — Ren)).

As Reé, Rer € [0, 1], this establishes (A.20) and completes the proof of the lemma when D = D.
Finally, it remains to reduce the case of a general domain D to the one of the unit disk. Using [52,
Theorem A.4.4] once more, let v be a finite measure in D such that v¢_1 = o. Then

¢(0. D: 6(2)) = j $0(8(2). O)dor(¢) = f ¢n(6(2). 6(w))dv(w)
= JgD(z,w)dv(w) =g(v,D;z), zeD,

by conformal equivalence of Green functions. Since ¢ : D — D is a bijection, the superlevel set
{zeD:g(v,D;z) > €} is equal to ¢~ ! (U, ), from which the desired result follows. mi
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A.9. Balayage. Let v be a non-negative superharmonic function on Q and E be a subset of Q.
The balayage function (or regularized reduction) of v relative to E, denoted by BE, is the lower
semi-continuous regularization of

(A.21) inf {u| u is superharmonic and positive in Q, u > v on E},

see [29, Section 5.3] for an account on R” that carries over to Q without change; in fact, Bf coincides
with the infimum in (A.21) except perhaps on a polar set where lower semi-continuous regularization
may modify the value. The balayage function B is superharmonic in Q, harmonic in Q\E, and
equal to v on b(E) [8, Section VIIL.1]. Clearly, BF < v everywhere, since v qualifies as one of the
functions u in (A.21). The balayage function BE does not change if E gets replaced by b(E) or by
clos¢(E); in fact, it remains invariant if E is altered by a polar set.

When E is compact, the Strong Domination Principle and properties of the Green equilibrium
potential g(uq £, Q;-) imply that BE = capg(E)g(ue,g.€;-). Thus, it follows from the left
continuity of 8 f with respect to E, see [8, Section VI.10 e)], and the monotone convergence theorem
that the outer Greenian capacity of an arbitrary set E — € is the mass of ABF (in fact, this is the way
the outer capacity is defined in [8, Section VIIL.4]). From this and [8, Theorem VIII.12], we deduce
in particular that E is polar if and only if capg (E) = 0, justifying a claim made in Section A.5.

If v is the Green potential of a positive Borel measure o, then BE is a Green potential as well [8,
Section VI.11] and the measure ¥ such that BF = g(aF,Q; ) is called the balayage of o relative
to E. The measure o® is characterized as the unique measure satisfying

(A.22) cf(Q\B(E)) =0 and g(o,Q;z) =g(c".Qiz), zeb(E),
see [8, Theorem VIIL.3]. From (A.22), one deduces at once that

(A.23) (B = oF, FcEcQ.

Moreover, it holds by [8, Section VI.12, Equation (13)] that

(A.24) ok (B) = f 6£(B)do(x), B Borel,
while it follows from [8, Section VI.12, Equation (9)] and Fubini’s theorem that
(A.25) g(cf,Qz) = Jg(a', Q; x)doE (x).

Since g(oF,Q; ) < g(o, Q; ) for any Radon measure o by the just discussed properties of balayage,
it follows from Fubini’s theorem that Svda'E < {vdo for any Green potential v. Since any non-
negative superharmonic function v is an increasing limit of potentials, see [ 10, Lemma 1.1], monotone
convergence yields that Sde'E < Svda’ remains valid for such functions as well, see also [20,
Section 1.3]. In particular, the mass of oE cannot exceed the mass of o.

The fine support of a Radon measure o, denoted by supp; o when it exists, is the smallest finely
closed carrier of o. A sufficient condition for its existence is that o does not charge polar sets,
in which case supp; o is its own base, see [8, Theorem VII.12]. If o is admissible, meaning that
g(0,Q; ) # +oo, see Section A.3, and if o(F) = 0 for some polar set F, then o (F) = 0 for any
E < Q[19, Theorem 1] (as usual, o(F) means the outer o-measure of F when the latter is not
Borel). In particular, if o is admissible and o (b(E)) = 0, then oF does not charge polar sets since
itis carried by b(E). Thus, supp; o-F exists in this case. An important special case is handled by the
following lemma, the first item of which follows from the preceding discussion.

Lemma A.6. [19, Corollary 1 to Theorem 4] [20, Corollaries 2 & 3 to Theorem 12.7]
(i) If W is finely open and either z € W or z € i(Q\W), then 6?\W does not charge polar sets.
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(i) LetV be a regular finely open set, z € V, and V, the fine component of V containing z. Then
V, is regular, and Q\V, is largest among all the bases B such that 65 = (5?\‘/. Moreover,

the fine support of 5?\‘/ exists and

(A.26) supp; (5?\‘/ = 0V, C V.
(iii) Let U be a fine domain and z € U or 7 € i(Q\U). Then the fine support of 6?\[] exists and
(A27) supp 62V = b(AU) = b(Q\U) N U.

Let now O < Q be (Euclidean) open, z € O, and O, the connected component of O containing
z. If we let V be the regular finely open set obtained by adjoining to O the polar set i(Q\O) and
V. the fine component containing z, then we get from [19, Theorem 6] (see discussion there) that
0, = V,\i(Q\O). Thus, since the balayage function remains the same if the set relative to which it
is defined is altered by a polar set, Lemma A.6 (ii) implies that

5RO _ g2V _ S0 _ 50100

and the latter is carried by the regular points of 0O ,. Moreover, if O has compact closure in Q, then
5?\0 is a probability measure, and for 4 a harmonic function in O with continuous extension to O:

(A28) h(z) = fh ds?\°,  zeo.

Indeed, (A.28) follows from [8, Section VI.12, application 1] since 4 is the Perron-Wiener-Brelot
solution of the Dirichlet problem* in O with boundary data & |50; see [8, Section V1.6, item )]
Equality in (A.28) shows that the measure 6?\0 does not depend on €, provided that the latter is
hyperbolic and compactly contains O. It is called the harmonic measure for O (at z). More general
versions of (A.28), involving the fine Dirichlet problem and cases where O is non-compact, are stated
in Theorem A.8 and Lemma A.9 further below.

When Q < C and O is compact in £, it follows from [54, Chapter II, Theorem 5.1] that

(A.29) ¢(0.0,2) =Vo(2) =V %),  zeQ,

where V7 is the logarithmic potential of o~ and the left-hand side is interpreted as 0 for z € b(Q\O).
More general versions when o0 € Q may be found in [54]. If moreover O is a domain with K < O a
non-polar compact set such that Q\K regular and O\K is non-thin at every point of K, then

(A.30) supps o,k = K.

Indeed, K is its own base and K = 0;(O\K) by assumption, while po g is the balayage onto K of
the equilibrium measure on the plate 0O of the condenser (00, K) [54, Chapter VIII, Theorem 2.6].
Thus, (A.30) follows from (A.24) and (A.27).

A.10. Green Potentials in D and on R. In this subsection, we connect Green functions and
potentials on the domain D and surface R defined in Section 2.1. First, let us show that

(A31) gn(ny) = D, m(2)gr(zw),

zep~!(x)
where m(z) is the ramification order of R at z and w is an arbitrary element of the fiber p~!(y). To
check (A.31), note that for fixed y ¢ p(rp(R)) and w € R with p(w) = y, the right-hand side is well
defined and harmonic as a function of x € D\(p(rp(R)) u {y}). Thus, it is harmonic for x € D\{y}
by the Removability Theorem and the continuity of Green functions off the diagonal. Moreover, the
right-hand side clearly has a logarithmic singularity at y, and since lim,_, 5% gr(z, w) = 0 by the

4In fact, the right-hand side of (A.28) is the Perron-Wiener-Brelot solution of the Dirichlet problem on O with boundary data
h as soon as the latter is summable against 6?\0 for one (and then any) z in each component of O.
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regularity of R in Ry, its largest harmonic minorant is zero. This proves (A.31) when y ¢ p(rp(R)),
and the general case follows by continuity of Green functions off the diagonal. Consequently, if v
is a Radon measure on R and p.(v) denotes its pushforward under p (the measure on D such that
p«(v)(B) = v(p~!(B)) for a Borel set B), integrating (A.31) against p,(v) with respect to y and
changing variables yields

(A.32) g(px(v),D;x) = Z m(z)g(v,R; 2).
zep~1(x)

In the other direction, for a Radon measure o~ on D, let us define & by

(A.33) &(B) = > m(z)do(x), BcR, BBorel.
p(B) zep~ ' (x)nB

As p(B) is Borel when B is Borel, one easily checks that (A.33) defines a Radon measure on R. In
fact, one can verify that 0 = o + >} gy m(2)o ({p(2)})d;, where o* is the pullback measure
resulting from Carathéodory’s construction as applied to the map B — o (p(B)\p(rp(R))) defined
on Borel subsets of R, see [16, Theorem 2.10.10].

Partitioning D\p(rp(R)) into countably many Borel sets By such that p : p~!(By) — Bi
induces a homeomorphism on each connected component of p~! (B ), and invoking the Removability
Theorem to proceed by superharmonicity from the case where ¢ ¢ rp(R), one deduces from (A.33)
and (A.31) that

(A.34) g(0,R;¢) =¢g(o,D;p(L)), CeR.

As a consequence of definition (A.33), we claim that if a sequence {u,, } of finite positive measures
supported on a fixed compact set K — D converges weak® to u on D, then the sequence {/i,}
converges weak™ to f on R. Indeed, the total mass of y, is necessarily bounded independently of n
by some C > 0 (this follows from the Banach-Steinhaus principle) and therefore, in view of (A.33),
the total mass of [, is bounded by M C, where M is the number of sheets of R. Hence, an arbitrary
subsequence of {/i,} has a subsequence, say {fi,,}, that converges weak® on R to some finite
measure, say s. It follows from the Lower Envelope Theorem that liminfy g (i, , R; z) = g(s,R; z)
for quasi every z € R. Similarly, (A.34) and the Lower Envelope Theorem, applied this time to
{un, }, yield that liminfy g(f,,,R;z) = g(u, D; p(z)) = g(&, R; z) for quasi every z € R. Thus,
g(s,R;-) = g(i1, R;-) quasi everywhere on R, and the claim follows by taking Laplacians on both
sides of this equality.

In the previous construction, R may of course be replaced by another saturated connected bordered
surface S < R, with bounded projection such that R — 8. Therefore,

(unvﬁ‘u in 5) = (ﬁnvﬁfﬁ in %)
because {u,} also converges weak* in p(S) > D whence the measures fi,, converge weak™ on S,

while having their supports contained in R. The “hat measure” constructed in (A.33) is instrumental
both in the proof of Lemma 3.9 and of the following technical result, needed in the paper.

Lemma A.7. Let o be a measure in D. Given E < D, set E = p~YE). Then it holds that

g(ef.Dip(2) = fg(m D; p(x))d5? (x).
Proof. If u is superharmonic on D, it is obvious from (A.34) that
(M(Z) >g(0,D;z), ze E) - (u(p(f)) > g(0,R:€), ¢¢ If)
As u o p is superharmonic on R, this and the definition of balayage imply that

(A35) g(cF,D;p(0)) = g(65,R:¢), ¢eR.
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Conversely, averaging over £ € p~!({z}), equation (A.34) yields that

(A.36) glo,D;z) = % > m()g(@.R:{). zeD,
cep~'({z})
with M being the total number of sheets of R, entailing when v is superharmonic on R that
(@ zs@R0, c<E) = (5 X mw@) g2, zeD).
cep~l(2)
Now, the function z — 3¢ ,—1(,y m({)v({) is well-defined and superharmonic on D'\p(rp(R)) and
therefore on the whole domain D by the Removability Theorem. Thus, by the definition of balayage,
we obtain when v is superharmonic on R that

(@) z5@R0). ceE) = (5 X m@w@) =g Diz), zeD),
cep~l(2)
and taking the infimum over v before taking the lower semi-continuous regularization gives us, by
virtue of the Strong Domination Principle, that

% > m(0)g(GE. R:0) = g(cE.Diz), zeD.

Zep~l(z)
Combining the above estimate with (A.35), we deduce that

g(c®.D;p(z)) =g(6".R:z), zeR,
and the conclusion now follows from (A.25) and (A.34). O

A.11. Dirichlet problem. The Dirichlet problem on a domain consists in finding a harmonic func-
tion in that domain with given boundary data. In the fine Dirichlet problem, one looks for a finely
harmonic function on a fine domain to meet prescribed boundary data. A real-valued function 4 on
a fine domain V is finely harmonic if it is finely continuous, and if the fine topology on V has a basis
comprised of finely open sets E with clos¢(E) < V such that

h(z) = Jhdé?\E forevery z€E

(in particular 2 must be integrable with respect to 6?\E for all z € E and each E); one may even
assume that FE is regular and has compact closure (with respect to the Euclidean topology) in V, see
[20, Sections 8 & 14]. Note that a function harmonic in a domain is finely harmonic on any fine
subdomain, see [20, Theorem 8.7].

If V is a regular finely open set (recall that it means Q\V is its own base), then b(0;V) = &V by
(A.10) whence the result below is a special case of [20, Theorem 14.1] and its proof.

Theorem A.8. Let V < Q be a finely open set such that Q\V is non-thin at every point of itself, i.e.,
such that V is regular. If ¥ is a finely continuous function on 0;V, majorized in absolute value there
by a finite semi-bounded potential on Q, say g, then

(A37) hy(z) = J.,z/d(s?\v = deéffv, zeV,

is the unique finely continuous extension of r to closy(V) that is finely harmonic in' V and is majorized
in absolute value there by a semi-bounded potential. In fact, it holds that |hy| < g on closi(V).

The lemma below addresses the question as to when constant functions solve the fine Dirichlet
problem on V < Q or, equivalently by (A.37), as to when the balayage of §, out of V, z € V, has unit
mass. We recall that an overline, as in V, or a & sign, as in 0Q, refer respectively to the closure and
boundary with respect to the Euclidean topology induced by the ambient Riemanian manifold (R, or



OPTIMAL RATIONAL APPROXIMANTS 57

C). In contrast, fine closures and fine boundaries as in &V and clos¢(V) refer to the fine topology on
Q; thus, 0Q is “invisible” from the point of view of fine topology in Q, and if V < Q then dV n 0Q
is disjoint from ¢V as the latter is included in Q.

Lemma A.9. Let V be a proper nonempty regular fine domain in Q, which itself is regular within
the ambient Riemann surface (Ry or C). Then it holds for z € V that

=1 fVnoQ=o0,
(A.38) Jd6?\v L _
<1l fIVndQ=gandV noQ # 2.

Moreover, if either condition on the right-hand side of (A.38) holds, then for any harmonic function
h on Q one has

(A.39) h(z) = J hdsd\,  zev,

provided that |h| is majorized on V by a semi-bounded potential in Q when VnoQ+o.

Proof. Let K < Q be non-polar and compact. Set, for brevity, gx := capg(K)g(uo.x,Q;-),
where (o g indicates, as in Section A.4, the Green equilibrium distribution on K. Since ugq g has
finite energy, gx is semi-bounded. As 0Q is regular in the ambient Riemann surface, gx extends
continuously by zero to 0Q, see Section A.7. Since capg(K) > 0, it holds that gx < 1in €, see the
paragraph after (A.5), and gx = 1 on b(K) because gx = BIK, see Section A.9. Moreover, gx < 1
in each connected component U of Q\K such that 0U n 0Q # @ by the maximum principle for
harmonic functions.

When V is compactly included in , we may put K := V in what precedes, and then capg (K) > 0
as otherwise V itself would be polar and therefore empty, since it is finely open. The infimum of gx
on K is attained by lower semi-continuity, and it is strictly positive because nonzero Green potentials
are never zero. Therefore, if / is harmonic on Q, the potential cgx majorizes |A| on K for sufficiently
large ¢ > 0. The uniqueness part of Theorem A.8 now implies that /|y is the solution of the fine
Dirichlet problem with boundary data &5y . Hence, (A.39) is just (A.37) while the upper equality
in (A.38) follows by taking 7 = 1.

Assume next that V n 0Q # @ and (3f_V N 0Q = @. Then K := &_V is a compact subset of Q
which is non-polar, for if JV were polar, then either V or Q\V would be polar [19, Theorem 2] and
V would be either empty or irregular, a contradiction. Note that a subdomain of Q\K is also a fine
domain [19, Theorem 2] and thus, if it contains both a point in V and a point in Q\V, then it must
contain a point in ¢;V which is impossible by the definition of K. Hence, V\K is Euclidean open.

Let U be a connected component of V\K such that 0U n 0Q2 # @; it exists because VnoQ + .
Since &V = b(0;V) < b(K) by assumption, gx = 1 on &V (see the beginning of the proof). Hence,
as gk is a semi-bounded potential on Q, it follows from Theorem A.8 that h; < gk in V, where
h1(z) is the solution of the fine Dirichlet problem on V with boundary data identically 1 on sV, see
(A.37). In particular, 1 < gx < 1 in U by the maximum principle for harmonic functions.

Let F < U be a closed disk. Observe that V\F is a fine domain as otherwise F would finely

disconnect U whereas U\F is a domain and therefore also a fine domain. Put 6} := 6§Q\V)UF,

z € V\F, and observe that 6;1 aF 18 @ non-trivial measure by (A.27) and since A((Q\V) U F) =

0tV U O+F , where the union is disjoint and b(JF) = oiF = 0F. We now get from (A.23) and (A.27),
applied to the fine domain V\ F, that

(A.40) L s A

Q\V
ZL@{V) \ + (6*

QAV o«
ZLOfF) - 6

*
ZLG{V + (62 LafF
where we observe that the balayage out of V does not change measures supported on b(0;V) = &V
by (A.22). Since h; < 1 on ¢;F as 6¢+F < U, we get from (A.24) and (A.26) that

Q\V Q
0= (62,0)™" (@) = [ 02 ()40 (6) = [ m(3)8%(0) < 6 (@)

)Q\V

>
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which implies, in view of (A.40), that hy(z) = 6?\‘/ (V) < 6X((R\V) U F) < 1 as claimed.
Finally, let & be a harmonic function on Q which is majorized on V in absolute value by a semi-
bounded potential. Because 4 is also finely harmonic on V and finely continuous on clos¢(V), we
deduce from Theorem A.8 that it is the solution of the fine Dirichlet problem on V with boundary
data h| v and that (A.39) holds. O

Lemma A.10. Let V < R be a proper regular fine domain such that &V A 0R = @ and V n 0R + @
(the lower assumption on the right-hand side of (A.38) when Q = R). Let further h be a harmonic
function in R such that lim,_, ¢ h(z) = 0 for every ¢ € V. n OR. Then identity (A.39) holds.

Proof. In view of Lemma A.9, it is enough to show that % is majorized on V by a semi-bounded
potential. Note, as in the proof of Lemma A.9, that &V is non-polar. Let us show that R NV
consists of a union of connected components of 0R. Indeed, any such component I"is a 1-dimensional
compact topological submanifold of R, and as such it has a tubular neighborhood N that may be
chosen so thin thatNm(?f_V = @. Then,if {;,{p e T"and {; € V while 0Hé V, wecanfindz; e NNV
close to ¢] and z; € N n Q\V close to {>. The points z;, z» can be joined by a smooth arc contained
in N. However, such an arc is finely connected [19, Theorem 7], but cannot meet c?f_V by construction,
a contradiction that proves our claim.

Assume first that D = D is the unit disk. Any function ¥ harmonic in an annular region
{r < |z| < 1} that extends continuously to T by zero can be harmonically extended to {r < |z| < 1/r}
by reflection, i.e., by setting u(z) := —u(1/Z) for z € {1 < |z| < 1/r}. Due to the smoothness of
this extension it necessarily holds that |u(z)| < C,(1 — |z|) for r < p < |z| < 1. As h is harmonic
on R, this principle used around each of the finitely many connected components of V n 0R yields
that |h(z)| < C(1 — |p(z)|) for z € V and some constant C > 0. On the other hand, the function
gr(z) := —logmax{r, |z|} is a continuous (thus bounded and therefore semi-bounded) potential in
D for any r € (0, 1) (this is the Green equilibrium potential of {|z| < r}). It can be readily verified
that g,(z) = (1 — |z|) in D when r < e~!. Thus, |A(z)| < Cg,(p(z)), z € V, for any such r. As
gr(p(2)) is a (bounded) potential on R by (A.34), the claim of the corollary follows.

In the general case, let ¢ : D — D be a conformal map. Recall that ¢ extends to a homeomorphism
from D onto D. Clearly, ¢ is also a homeomorphism for the fine topology since v is superharmonic
(resp. harmonic) on D if and only if so is v o ¢ on D. Moreover, g is a bounded potential on D if and
only if g o ¢ is such a potential on D. Hence, the result just proven on the disk carries over to D by
conformal mapping. O
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