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B̄-RIEMANN-HILBERT METHOD
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Abstract. B̄-extension of the matrix Riemann-Hilbert method is used to study asymptotics
of the polynomials 𝑃𝑛p𝑧q satisfying orthogonality relations

ż 1

´1
𝑥𝑙𝑃𝑛p𝑥q

𝜌p𝑥q𝑑𝑥
a

1 ´ 𝑥2
“ 0, 𝑙 P t0, . . . , 𝑛 ´ 1u,

where 𝜌p𝑥q is a positive 𝑚 times continuously differentiable function on r´1, 1s, 𝑚 ě 3.

1. Main Results

In this note we are interested in the asymptotic behavior of monic polynomials 𝑃𝑛,𝑖p𝑥q,
degp𝑃𝑛,𝑖q “ 𝑛, dependent on a parameter 𝑖 P t1, 2, 3, 4u, satisfying orthogonality relations

(1)
ż 1

´1
𝑥𝑙𝑃𝑛,𝑖p𝑥q

𝜌p𝑥q|𝑣𝑖p𝑥q|𝑑𝑥
?

1 ´ 𝑥2
“ 0, 𝑙 P t0, . . . , 𝑛 ´ 1u,

where 𝜌p𝑥q is a positive and smooth function on r´1, 1s and

𝑣1p𝑧q ” 1, 𝑣2p𝑧q “ 𝑧2 ´ 1, 𝑣3p𝑧q “ 𝑧 ` 1, and 𝑣4p𝑧q “ 𝑧 ´ 1.

That is, 𝑃𝑛,𝑖p𝑧q are smooth perturbations of the Chebyshëv polynomials of the 𝑖-th kind.
Besides polynomials themselves, we are also interested in the asymptotic behavior of their
recurrence coefficients. That is, numbers 𝑎𝑛,𝑖 P r0,8q and 𝑏𝑛,𝑖 P p´8,8q such that

𝑥𝑃𝑛,𝑖p𝑥q “ 𝑃𝑛`1,𝑖p𝑥q ` 𝑏𝑛,𝑖𝑃𝑛,𝑖p𝑥q ` 𝑎2
𝑛,𝑖𝑃𝑛´1,𝑖p𝑥q.

To describe the results, let 𝑤p𝑧q :“
?
𝑧2 ´ 1 be the branch analytic in Czr´1, 1s such

that 𝑤p𝑧q{𝑧 Ñ 1 as 𝑧 Ñ 8. The Szegő function of the weight 𝜌p𝑥q is defined by

(2) 𝑆p𝑧q :“ exp
"

𝑤p𝑧q

2𝜋i

ż 1

´1

log 𝜌p𝑥q

𝑧 ´ 𝑥

𝑑𝑥

𝑤`p𝑥q

*

, 𝑧 P Czr´1, 1s,

which is an analytic and non-vanishing function in the domain of its definition satisfying

(3) 𝑆`p𝑥q𝑆´p𝑥q “ 𝜌´1p𝑥q, 𝑥 P r´1, 1s.

Since 𝜌p𝑥q is positive, it holds that 𝑆`p𝑥q “ 𝑆´p𝑥q for 𝑥 P r´1, 1s, and, utilizing the full
power of Plemelj-Sokhotski formulae, (3) can be strengthen to
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(4)
b

𝜌p𝑥q𝑆˘p𝑥q “ 𝑒˘i𝜃p𝑥q, 𝜃p𝑥q :“
?

1 ´ 𝑥2

2𝜋

⨏ 1

´1

log 𝜌p𝑡q

𝑡 ´ 𝑥

𝑑𝑡
?

1 ´ 𝑡2
,

where
⨏

is the integral in the sense of the principal value. Further, let

(5) 𝜑p𝑧q :“ 𝑧 ` 𝑤p𝑧q

be the conformal map of Czr´1, 1s onto Czt𝑧 : |𝑧| ě 1u such that 𝜑p𝑧q{𝑧 Ñ 2 as 𝑧 Ñ 8.
One can readily verify that

(6) 𝜑˘p𝑥q “ 𝑥 ˘ i
a

1 ´ 𝑥2 “ 𝑒˘i arccosp𝑥q, 𝑥 P r´1, 1s.

Finally, we explicitly define the Szegő functions of the weights |𝑣𝑖p𝑥q|. Namely, set

(7)

$

&

%

𝑆1p𝑧q :” 1, 𝑆3p𝑧q :“
`

𝜑p𝑧q{p𝑧 ` 1q
˘1{2

,

𝑆2p𝑧q :“ 𝜑p𝑧q{𝑤p𝑧q, 𝑆4p𝑧q :“
`

𝜑p𝑧q{p𝑧 ´ 1q
˘1{2

,

where the square roots are principal and one needs to notice that the images of Czr´1, 1s

under p𝑧 ` 1q{𝜑p𝑧q and p𝑧 ´ 1q{𝜑p𝑧q are domains symmetric with respect to conjugation
whose intersections with the real line are equal to p0, 2q (so the square roots are indeed well
defined). These functions satisfy

(8) 𝑆𝑖`p𝑥q𝑆𝑖´p𝑥q “ |𝑆𝑖˘p𝑥q|2 “ 1{|𝑣𝑖p𝑥q|, 𝑥 P p´1, 1q.

Observe also that 𝑆1p8q “ 1, 𝑆2p8q “ 2, and 𝑆3p8q “ 𝑆4p8q “
?

2. Moreover, one can
readily deduce from (6) and (8) that

(9) 𝑆𝑖˘p𝑥q “
𝑒˘i𝜃𝑖p𝑥q

a

|𝑣𝑖p𝑥q|
,

#

𝜃1p𝑥q :” 0, 𝜃2p𝑥q :“ arccosp𝑥q ´ 𝜋
2 ,

𝜃3p𝑥q :“ 1
2 arccosp𝑥q, 𝜃4p𝑥q :“ 1

2 arccosp𝑥q ´ 𝜋
2 .

Recall that the modulus of continuity of a continuous function 𝑓 p𝑥q on r´1, 1s is given
by

𝜔p 𝑓 ; ℎq :“ max
|𝑥´𝑦|ďℎ, 𝑥,𝑦Pr´1,1s

| 𝑓 p𝑥q ´ 𝑓 p𝑦q|.

Theorem 1

Assume that 𝜌p𝑥q is a strictly positive 𝑚 times continuously differentiable function
on r´1, 1s for some 𝑚 ě 3. Set

𝜀𝑛 :“
log 𝑛
𝑛𝑚

𝜔

´

p1{𝜌qp𝑚q; 1{𝑛

¯

.

Then it holds for any 𝑖 P t1, 2, 3, 4u that

𝑃𝑛,𝑖p𝑧q “ p1 ` 𝑂p𝜀𝑛qq
p𝑆𝑖𝑆qp𝑧q

p𝑆𝑖𝑆qp8q

ˆ

𝜑p𝑧q

2

˙𝑛

uniformly on closed subsets of Czr´1, 1s and

𝑃𝑛,𝑖p𝑥q “
cos

`

𝑛 arccosp𝑥q ` 𝜃p𝑥q ` 𝜃𝑖p𝑥q
˘

` 𝑂p𝜀𝑛q

2𝑛´1p𝑆𝑖𝑆qp8q
a

𝜌p𝑥q|𝑣𝑖p𝑥q|
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uniformly on r´1, 1s. Moreover, it also holds for any 𝑖 P t1, 2, 3, 4u that
𝑎𝑛,𝑖 “ 1{2 ` 𝑂p𝜀𝑛q and 𝑏𝑛,𝑖 “ 𝑂p𝜀𝑛q.

The above results are not entirely new. It is well known [18, Theorem 11.5] that
perturbed first and second kind Chebyshëv polynomials can be expressed via orthogonal
polynomials on the unit circle with respect to the weight 𝜌p 1

2 p𝜏 ` 1{𝜏qq. Then using [17,
Corollary 5.2.3], that in itself is an extension of ideas from [5], and Geronimus relations,
see [17, Theorem 13.1.7], one can show that

ÿ

p𝑛 ` 1q𝛾
`

|𝑎𝑛,1 ´ 1{2| ` |𝑏𝑛,1|
˘

ă 8

for any 𝛾 P p0, 𝑚 ´ 1q and 𝑚 ě 2, which is consistent with Theorem 1. What is novel
in this note is the method of proof. While the Baxter-Simon argument relies on the
machinery of Banach algebras, we follow the approach of Fokas, Its, and Kitaev [11, 12]
connecting orthogonal polynomials to matrix Riemann-Hilbert problems and then utilizing
the non-linear steepest descent method of Deift and Zhou [9]. The main advantages of
this approach are the ability to get full asymptotic expansions for analytic weights of
orthogonality [8, 15] and its indifference to positivity of such weights [1, 6, 2]. However,
here we deal with non-analytic densities by elaborating on the idea of extensions with
controlled B̄-derivative introduced by Miller and McLaughlin [16] and adapted to the
setting of Jacobi-type polynomials by Baratchart and the author [4].

2. Weight Extension

Given 𝑟 ą 1, let 𝐸𝑟 :“ t𝑧 : |𝜑p𝑧q| ă 𝑟u. The boundary B𝐸𝑟 is an ellipse with foci ˘1.

Proposition 1

Let 𝜌p𝑥q and 𝜀𝑛 be as in Theorem 1. For each 𝑟 ą 1 and 𝑛 ą 2𝑚 there exists a
continuous function ℓ𝑛,𝑟 p𝑧q “ 𝑙𝑛p𝑧q ` 𝐿𝑛,𝑟 p𝑧q, 𝑧 P C, such that

ℓ𝑛,𝑟 p𝑥q “ 𝜌´1p𝑥q, 𝑥 P r´1, 1s,

where 𝑙𝑛p𝑧q is a polynomial of degree at most 𝑛 satisfying
supp𝑥Pr´1,1s|𝑙𝑛p𝑥q| ď 𝐶1

𝜌

for some constant 𝐶1
𝜌 independent of 𝑛, while 𝐿𝑛,𝑟 p𝑧q and B̄𝐿𝑛,𝑟 p𝑧q are continuous

functions in C supported by 𝐸𝑟 (in particular, 𝐿𝑛,𝑟 p𝑧q “ 0 for 𝑧 R 𝐸𝑟 ) and

|B̄𝐿𝑛,𝑟 p𝑧q|
a

|1 ´ 𝑧2|
ď 𝐶2

𝜌

𝑛𝜀𝑛

log 𝑛
, 𝑧 P 𝐸𝑟 ,

for some constant 𝐶2
𝜌 independent of 𝑛 and 𝑟 , where B̄ :“ pB𝑥 ` iB𝑦q{2, 𝑧 “ 𝑥 ` i𝑦.

Proof. It follows from [14, Theorem 9] that for each 𝑛 ą 2𝑚 there exists a polynomial
𝑙𝑛p𝑧q of degree at most 𝑛 such that

ˇ

ˇ

ˇ

`

𝜌´1p𝑥q
˘p𝑘q

´ 𝑙
p𝑘q
𝑛 p𝑥q

ˇ

ˇ

ˇ
ď 𝐶𝑚,𝑘p1 ´ 𝑥2q

𝑚´𝑘
2 𝑛𝑘´𝑚𝐸𝑛´𝑚

´

`

𝜌´1˘p𝑚q
¯

for all 𝑥 P r´1, 1s and each 𝑘 P t0, . . . , 𝑚u, where 𝐶𝑚,𝑘 is a constant that depends only
𝑚 and 𝑘 and 𝐸 𝑗p 𝑓 q is the error of best uniform approximation on the interval r´1, 1s of
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a continuous function 𝑓 p𝑥q by algebraic polynomials of degree at most 𝑗 . Furthermore, it
was shown by Timan, see [14, Equation (3)], that

𝐸𝑛´𝑚p 𝑓 q ď 𝐶1𝜔

˜

𝑓 ;
?

1 ´ 𝑥2

𝑛 ´ 𝑚
`

1
p𝑛 ´ 𝑚q2

¸

ď 𝐶1𝜔

ˆ

𝑓 ;
2

𝑛 ´ 𝑚

˙

ď 𝐶1𝜔

ˆ

𝑓 ;
4
𝑛

˙

ď 4𝐶1𝜔

ˆ

𝑓 ;
1
𝑛

˙

for some absolute constant 𝐶1, where we used that 𝑛 ą 2𝑚 and 𝜔p 𝑓 ; 2ℎq ď 2𝜔p 𝑓 ; ℎq (in
what follows, we understand that all constants𝐶 𝑗 might depend on 𝜌p𝑥q, but are independent
of 𝑛). Set

𝜆𝑛p𝑥q :“
𝜌´1p𝑥q ´ 𝑙𝑛p𝑥q

?
1 ´ 𝑥2

, 𝑥 P r´1, 1s.

It then holds that𝜆𝑛p𝑥q is a continuous function on r´1, 1s that satisfies }𝜆𝑛} ď 𝐶3𝜀𝑛{ log 𝑛,
where } ¨ } is the uniform norm on r´1, 1s. Since 𝑚 ě 3, it also holds that

𝜆1
𝑛p𝑥q “

`

𝜌´1p𝑥q
˘1

´ 𝑙1𝑛p𝑥q
?

1 ´ 𝑥2
` 𝑥

𝜌´1p𝑥q ´ 𝑙𝑛p𝑥q
a

p1 ´ 𝑥2q3

is a continuous function on r´1, 1s that satisfies }𝜆1
𝑛} ď 𝐶4𝑛𝜀𝑛{ log 𝑛 (this is exactly the

place where condition 𝑚 ě 3 is used). Extend 𝜆𝑛p𝑥q by zero to the whole real line. As the
numerator of 𝜆𝑛p𝑥q together with its first and second derivatives vanishes at ˘1, 𝜆1

𝑛p𝑥q also
extends continuously by zero to the whole real line. The following construction is standard,
see [10, Proof of Theorem 3.67]. Define

Λ𝑛p𝑧q :“
1

|𝑦|

ż |𝑦|

0
𝜆𝑛p𝑥 ` 𝑡q𝑑𝑡, 𝑧 “ 𝑥 ` i𝑦,

which, due to continuity of 𝜆𝑛p𝑥q, is a continuous function in C satisfying Λ𝑛p𝑥q “ 𝜆𝑛p𝑥q

on the real line and |Λ𝑛p𝑧q| ď }𝜆𝑛} in the complex plane. Similarly,

ˇ

ˇB𝑥Λ𝑛p𝑧q
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

1
|𝑦|

ż |𝑦|

0
𝜆1
𝑛p𝑥 ` 𝑡q𝑑𝑡

ˇ

ˇ

ˇ

ˇ

ˇ

ď }𝜆1
𝑛}

and the function B𝑥Λ𝑛p𝑧q, which is given by the integral within the absolute value in the
above equation, is also continuous in C. Furthermore, we have that

ˇ

ˇB𝑦Λ𝑛p𝑧q
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

1
𝑦2

ż |𝑦|

0

`

𝜆𝑛p𝑥 ` 𝑡q ´ 𝜆𝑛p𝑥 ` |𝑦|q
˘

𝑑𝑡

ˇ

ˇ

ˇ

ˇ

ˇ

ď }𝜆1
𝑛}

ż |𝑦|

0

|𝑦| ´ 𝑡

𝑦2 𝑑𝑡 “
}𝜆1

𝑛}

2

and is also a continuous function in C. Altogether, since B̄ “ pB𝑥 ` iB𝑦q{2, it holds that
B̄Λ𝑛p𝑧q is a continuous function in C that satisfies |B̄Λ𝑛p𝑧q| ď }𝜆1

𝑛} in the complex plane.
Let 𝜓𝑟 p𝑧q be any real-valued continuous function with continuous partial derivatives that
is equal to one on r´1, 1s and is equal to zero in the complement of 𝐸𝑟 . Define

𝐿𝑛,𝑟 p𝑧q :“ i𝑤p𝑧qΛ𝑛p𝑧q𝜓𝑟 p𝑧q

#

´1, Imp𝑧q ě 0,
1, Imp𝑧q ă 0.

Since 𝑤˘p𝑥q “ ˘i
?

1 ´ 𝑥2 for 𝑥 P r´1, 1s and Λ𝑛p𝑥q “ 0 for 𝑥 R p´1, 1q, it holds that
𝐿𝑛,𝑟 p𝑧q is a continuous function in C that is supported by 𝐸𝑟 and is equal to 𝜌´1p𝑥q ´ 𝑙𝑛p𝑥q
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for 𝑥 P r´1, 1s. Furthermore, since B̄pΛ𝑛p𝑧q𝜓𝑛p𝑧qq is continuous in C and vanishes for
𝑧 “ 𝑥 R p´1, 1q while 𝑤`p𝑥q “ ´𝑤´p𝑥q for 𝑥 P p´1, 1q, B̄𝐿𝑛,𝑟 p𝑧q is also continuous in
C. Moreover, it holds that

|B̄𝐿𝑛,𝑟 p𝑧q| “

b

|1 ´ 𝑧2|
ˇ

ˇB̄pΛ𝑛p𝑧q𝜓𝑟 p𝑧qq
ˇ

ˇ

ď 𝐶5

b

|1 ´ 𝑧2|
`

|Λ𝑛p𝑧q| ` |B̄Λ𝑛p𝑧q|
˘

ď 𝐶6

b

|1 ´ 𝑧2|
𝑛𝜀𝑛

log 𝑛
, 𝑧 P 𝐸𝑟 .

Finally, observe that polynomials 𝑙𝑛p𝑥q approximate 𝜌´1p𝑥q on r´1, 1s and therefore have
uniformly bounded above uniform norms. The claim of the proposition now follows by
setting ℓ𝑛,𝑟 p𝑧q :“ 𝑙𝑛p𝑧q ` 𝐿𝑛,𝑟 p𝑧q for 𝑙𝑛p𝑧q and 𝐿𝑛,𝑟 p𝑧q as above. �

3. Proof of Theorem 1

3.1. Initial Riemann-Hilbert Problem. Notice that the functions 𝑣𝑖p𝑥q and |𝑣𝑖p𝑥q| are
either equal to each other or differ by a sign when 𝑥 P r´1, 1s. So, we can equally use 𝑣𝑖p𝑥q

in (1) without changing the polynomials 𝑃𝑛,𝑖p𝑥q.
Denote by 𝑅𝑛,𝑖p𝑧q the function of the second kind associated with 𝑃𝑛,𝑖p𝑧q. That is,

(10) 𝑅𝑛,𝑖p𝑧q :“
1

2𝜋i

ż 1

´1

𝑃𝑛,𝑖p𝑥q

𝑥 ´ 𝑧

𝜌p𝑥q𝑣𝑖p𝑥q𝑑𝑥

𝑤`p𝑥q
,

which is a holomorphic function inCzr´1, 1s. It follows from Plemelj-Sokhotski formulae,
[13, Chapter I.4.2], that

𝑅𝑛,𝑖`p𝑥q ´ 𝑅𝑛,𝑖´p𝑥q “ 𝑃𝑛,𝑖p𝑥q
𝜌p𝑥q𝑣𝑖p𝑥q

𝑤`p𝑥q
, 𝑥 P p´1, 1q,

and, see [13, Chapter I.8.4], that

𝑅𝑛,𝑖p𝑧q “ 𝑂 p|𝑧 ´ 𝑎|𝛼𝑎,𝑖 q as Czr´1, 1s Q 𝑧 Ñ 𝑎 P t´1, 1u,

where 𝛼𝑎,𝑖 “ 0 if 𝑣𝑖p𝑎q “ 0 and 𝛼𝑎,𝑖 “ ´1{2 otherwise. Moreover, we get from (1) that

𝑅𝑛,𝑖p𝑧q “
1

𝑚𝑛,𝑖𝑧
𝑛

` 𝑂

ˆ

1
𝑧𝑛`1

˙

as 𝑧 Ñ 8

for some finite constant 𝑚𝑛,𝑖 . Consider the following Riemann-Hilbert problem for 2 ˆ 2
matrix functions (RHP-𝒀):

(a) 𝒀p𝑧q is analytic in Czr´1, 1s and lim
𝑧Ñ8

𝒀p𝑧q𝑧´𝑛𝜎3 “ 𝑰;
(b) 𝒀p𝑧q has continuous traces on p´1, 1q that satisfy

𝒀`p𝑥q “ 𝒀´p𝑥q

˜

1 𝜌p𝑥q𝑣𝑖p𝑥q

𝑤`p𝑥q

0 1

¸

;

(c) 𝒀p𝑧q behaves like

𝒀p𝑧q “ 𝑂

ˆ

1 |𝑧 ´ 𝑎|𝛼𝑎,𝑖

1 |𝑧 ´ 𝑎|𝛼𝑎,𝑖

˙

as Czr´1, 1s Q 𝑧 Ñ 𝑎 P t´1, 1u.

The following lemma is well known [15, Theorem 2.4].
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Lemma 1

RHP-𝒀 is uniquely solvable by

(11) 𝒀p𝑧q “

ˆ

𝑃𝑛,𝑖p𝑧q 𝑅𝑛,𝑖p𝑧q

𝑚𝑛´1,𝑖𝑃𝑛´1,𝑖p𝑧q 𝑚𝑛´1,𝑖𝑅𝑛´1,𝑖p𝑧q

˙

.

3.2. Opening of the Lens. Fix 1 ă 𝑟 ă 𝑅 and orient B𝐸𝑅 clockwise. Set

(12) 𝑿p𝑧q :“

$

’

’

&

’

’

%

𝒀p𝑧q

˜

1 0

´
𝑤p𝑧qℓ𝑛,𝑟 p𝑧q

𝑣𝑖p𝑧q
1

¸

, in 𝐸𝑅zr´1, 1s,

𝒀p𝑧q, in Cz𝐸𝑅,

where ℓ𝑛,𝑟 p𝑧q is the extension of 𝜌´1p𝑥q constructed in Proposition 1. Observe that

ℓ𝑛,𝑟 p𝑠q “ 𝑙𝑛p𝑠q, 𝑠 P B𝐸𝑅, and B̄ℓ𝑛,𝑟 p𝑧q “ B̄𝐿𝑛,𝑟 p𝑧q, 𝑧 P 𝐸𝑟 ,

since 𝐿𝑛,𝑟 p𝑧q is supported by 𝐸𝑟 and 𝑙𝑛p𝑧q is analytic (in fact, is a polynomial). It is trivial
to verify that 𝑿p𝑧q solves the following B̄-Riemann-Hilbert problem (B̄RHP-𝑿):

(a) 𝑿p𝑧q is continuous in Czpr´1, 1s Y B𝐸𝑅q and lim𝑧Ñ8 𝑿p𝑧q𝑧´𝑛𝜎3 “ 𝑰;
(b) 𝑿p𝑧q has continuous traces on p´1, 1q Y B𝐸𝑅 that satisfy

𝑿`p𝑠q “ 𝑿´p𝑠q

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˝

0 𝜌p𝑠q𝑣𝑖p𝑠q

𝑤`p𝑠q

´
𝑤`p𝑠q

𝜌p𝑠q𝑣𝑖p𝑠q
0

˛

‚ on 𝑠 P p´1, 1q,

˜

1 0
𝑤p𝑠q𝑙𝑛p𝑠q

𝑣𝑖p𝑠q
1

¸

on 𝑠 P B𝐸𝑅;

(c) 𝑿p𝑧q has the same behavior near ˘1 as 𝒀p𝑧q, see RHP-𝒀(c);
(d) 𝑿p𝑧q deviates from an analytic matrix function according to

B̄𝑿p𝑧q “ 𝑿p𝑧q

˜

0 0
´

𝑤p𝑧qB̄𝐿𝑛,𝑟 p𝑧q

𝑣𝑖p𝑧q
0

¸

.

One can readily verified that the following lemma holds, see [4, Lemma 6.4].

Lemma 2

B̄RHP-𝑿 and RHP-𝒀 are simultaneously solvable and the solutions are connected
by (12).

3.3. Model Riemann-Hilbert Problem. In this subsection we present the solution of the
following Riemann-Hilbert problem (RHP-𝑵):

(a) 𝑵p𝑧q is analytic in Czr´1, 1s and lim𝑧Ñ8 𝑵p𝑧q𝑧´𝑛𝜎3 “ 𝑰;
(b) 𝑵p𝑧q has continuous traces on p´1, 1q that satisfy

𝑵`p𝑥q “ 𝑵´p𝑠q

¨

˝

0 𝜌p𝑥q𝑣𝑖p𝑥q

𝑤`p𝑥q

´
𝑤`p𝑥q

𝜌p𝑥q𝑣𝑖p𝑥q
0

˛

‚;

(c) 𝑵p𝑧q has the same behavior near ˘1 as 𝒀p𝑧q, see RHP-𝒀(c).
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Recall the definition of the functions 𝑆𝑖p𝑧q in (7). Define 𝑆˚p𝑧q :“ 𝑆𝑖p𝑧q when 𝑖 P t1, 3u

and 𝑆˚p𝑧q :“ i𝑆𝑖p𝑧q when 𝑖 P t2, 4u. Then it follows from (8) that

𝑆˚`p𝑥q𝑆˚´p𝑥q “ 1{𝑣𝑖p𝑥q, 𝑥 P p´1, 1q.

Let 𝑆p𝑧q and 𝜑p𝑧q be given by (2) and (5), respectively. It follows from (3) and (6) that

p𝑆˚𝑆𝜑
𝑛q

𝜎3
´ p𝑥q

¨

˝

0 𝜌p𝑥q𝑣𝑖p𝑥q

𝑤`p𝑥q

´
𝑤`p𝑥q

𝜌p𝑥q𝑣𝑖p𝑥q
0

˛

‚p𝑆˚𝑆𝜑
𝑛q

´𝜎3
` p𝑥q “

ˆ

0 1{𝑤`p𝑥q

´𝑤`p𝑥q 0

˙

for 𝑥 P p´1, 1q. It also can be readily verified with the help of (6) that
¨

˝

1 1
𝑤`p𝑥q

1
2𝜑`p𝑥q

𝜑`p𝑥q

2𝑤`p𝑥q

˛

‚“

¨

˝

1 1
𝑤´p𝑥q

1
2𝜑´p𝑥q

𝜑´p𝑥q

2𝑤´p𝑥q

˛

‚

ˆ

0 1{𝑤`p𝑥q

´𝑤`p𝑥q 0

˙

for 𝑥 P p´1, 1q. Therefore, RHP-𝑵 is solved by 𝑵p𝑧q “ 𝑪𝑴p𝑧q, where

(13) 𝑪 :“ p2𝑛𝑆˚𝑆q´𝜎3p8q and 𝑴p𝑧q :“

¨

˝

1 1
𝑤p𝑧q

1
2𝜑p𝑧q

𝜑p𝑧q

2𝑤p𝑧q

˛

‚p𝑆˚𝑆𝜑
𝑛q𝜎3p𝑧q.

3.4. Analytic Approximation. To solve B̄RHP-𝑿, we first solve its analytic version. That
is, consider the following Riemann-Hilbert problem (RHP-𝑨):

(a) 𝑨p𝑧q is analytic in Czpr´1, 1s Y B𝐸𝑅q and lim𝑧Ñ8 𝑨p𝑧q𝑧´𝑛𝜎3 “ 𝑰;
(b,c) 𝑨p𝑧q satisfies B̄RHP-𝑿(b,c).

Lemma 3

For all 𝑛 large enough there exists a matrix 𝒁p𝑧q, analytic in CzB𝐸𝑅 and satisfying
𝒁p𝑧q “ 𝑰 ` 𝑶

`

𝑅´𝑛
˚

˘

uniformly in C for any 𝑟 ă 𝑅˚ ă 𝑅, such that 𝑨p𝑧q “ 𝑪𝒁p𝑧q𝑴p𝑧q solves RHP-𝑨.

Proof. Assume that there exists a matrix 𝒁p𝑧q that is analytic in CzB𝐸𝑅, is equal to 𝑰 at
infinity, and satisfies

𝒁`p𝑠q “ 𝒁´p𝑠q𝑴p𝑠q

˜

1 0
𝑤p𝑠q𝑙𝑛p𝑠q

𝑣𝑖p𝑠q
1

¸

𝑴´1p𝑠q, 𝑠 P B𝐸𝑅 .

It can be readily verified that 𝑨p𝑧q “ 𝑪𝒁p𝑧q𝑴p𝑧q solves RHP-𝑨. To show that such 𝒁p𝑧q

does indeed exist, observe that

det𝑴p𝑧q “
𝜑p𝑧q

2𝑤p𝑧q
´

1
2𝜑p𝑧q𝑤p𝑧q

” 1

in the entire complex plane and that

𝑣𝑖p𝑧q𝑆
2
˚p𝑧q “ p´1q𝑖´1𝜑𝑘𝑖 p𝑧q, 𝑧 R r´1, 1s,

straight by the definition of 𝑆𝑖p𝑧q in (7), where 𝑘1 “ 0, 𝑘2 “ 2, and 𝑘3 “ 𝑘4 “ 1. Thus,

(14) 𝑴p𝑠q

˜

1 0
𝑤p𝑠q𝑙𝑛p𝑠q

𝑣𝑖p𝑠q
1

¸

𝑴´1p𝑠q “ 𝑰 `
p´1q𝑖´1𝑙𝑛p𝑠q

𝑤p𝑠q𝑆2p𝑠q𝜑2𝑛`𝑘𝑖 p𝑠q

˜

1
2𝜑p𝑠q ´1

1
4𝜑

2p𝑠q ´ 1
2𝜑p𝑠q

¸
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for 𝑠 P B𝐸𝑅. It follows from the very definition of 𝐸𝑅 that |𝜑p𝑠q| “ 𝑅 for 𝑠 P B𝐸𝑅.
Moreover, since degp𝑙𝑛q ď 𝑛 and the uniform norms on r´1, 1s of these polynomials are
bounded by 𝐶1

𝜌, see Proposition 1, it holds that

|𝑙𝑛p𝑠q| ď 𝐶1
𝜌|𝜑p𝑠q|𝑛 “ 𝐶1

𝜌𝑅
𝑛, 𝑠 P B𝐸𝑅,

by the Bernstein-Walsh inequality. Hence, we can conclude that the jump of 𝒁p𝑧q on B𝐸𝑅

can be estimated as 𝑰`𝑶p𝑅´𝑛q. It now follows from [7, Theorem 7.18 and Corollary 7.108]
that such 𝒁p𝑧q does exist, is unique, and has continuous traces on B𝐸𝑅 whose 𝐿2-norms
with respect to the arclength measure are of size𝑂p𝑅´𝑛q. This yields the desired pointwise
estimate of 𝒁p𝑧q locally uniformly inCzB𝐸𝑅. Next, observe that the jump of 𝒁p𝑠q is analytic
around B𝐸𝑅 and therefore we can vary the value of 𝑅. Since the solutions corresponding to
different values of 𝑅 are necessarily analytic continuations of each other, the desired uniform
estimate follows from the locally uniform ones for any fixed 𝑅˚ ă 𝑅 and 𝑅1 ą 𝑅. �

3.5. An Auxiliary Estimate. Denote by 𝑑𝐴 the area measure and by K the Cauchy area
operator acting on integrable functions on C, i.e.,

(15) K 𝑓 p𝑧q “
1
𝜋

ĳ

𝑓 p𝑠q

𝑧 ´ 𝑠
𝑑𝐴.

Lemma 4

Let 𝑢p𝑧q be a bounded function supported on 𝐸𝑟 . Then
›

›K
`

𝑢|𝜑|´2𝑛˘›
› ď 𝐶𝑟

log 𝑛
𝑛

}𝑢},

where } ¨ } is the essential supremum norm and the constant 𝐶𝑟 is independent of 𝑛.

Proof. Observe that the integrand is a bounded compactly supported function and therefore
its Cauchy area integral is Hölder continuous in C with any index 𝛼 ă 1, see [3, Theo-
rem 4.3.13]. Moreover, since the integral is analytic in Cz𝐸𝑟 , the maximum of its modulus
is achieved on 𝐸𝑟 . Notice also that it is enough to prove the claim of the lemma only for
𝑢p𝑧q “ 𝜒𝐸𝑟

p𝑧q, the indicator function of 𝐸𝑟 .
Let 𝑧 P 𝐸𝑟 . Observe that 𝜑p𝑠q “ 𝜏 when 𝑠 “ 1

2 p𝜏 ` 1{𝜏q. Write 𝑧 “ 1
2 p𝜉 ` 1{𝜉q. Then

ˇ

ˇ

ˇ

ˇ

K
ˆ

𝜒𝐸𝑟

|𝜑|2𝑛

˙

p𝑧q

ˇ

ˇ

ˇ

ˇ

ď
1
𝜋

ĳ

𝐸𝑟

1
|𝑧 ´ 𝑠|

𝑑𝐴

|𝜑p𝑠q|2𝑛

“
1
𝜋

ĳ

1ă|𝜏|ă𝑟

|𝜏2 ´ 1|2

|p𝜉 ´ 𝜏qp1 ´ 1{p𝜏𝜉qq|

𝑑𝐴

|𝜏|2𝑛`4 .

Partial fraction decomposition now yields
ˇ

ˇ

ˇ

ˇ

K
ˆ

𝜒𝐸𝑟

|𝜑|2𝑛

˙

p𝑧q

ˇ

ˇ

ˇ

ˇ

ď
1
𝜋

ĳ

1ă|𝜏|ă𝑟

ˇ

ˇ

ˇ

ˇ

𝜉

𝜏 ´ 𝜉
`

𝜏

𝜏 ´ 1{𝜉

ˇ

ˇ

ˇ

ˇ

|𝜏2 ´ 1|

|𝜏|2𝑛`4 𝑑𝐴

ď
2𝑟3

𝜋

ĳ

1ă|𝜏|ă𝑟

ˆ

1
|𝜏 ´ 𝜉|

`
1

|𝜏 ´ 1{𝜉|

˙

𝑑𝐴

|𝜏|2𝑛`4 .
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Write 𝜏 “ 𝜚𝑒i𝜃 and 𝜉 “ 𝜚˚𝑒
i𝜃˚ . Then

|𝜏 ´ 𝜉| “

d

p𝜚 ´ 𝜚˚q2 ` 4𝜚𝜚˚ sin2
ˆ

𝜃 ´ 𝜃˚

2

˙

ě
1

?
2

ˆ

|𝜚 ´ 𝜚˚| `
?
𝜚𝜚˚

ˇ

ˇ

ˇ

ˇ

2 sin
ˆ

𝜃 ´ 𝜃˚

2

˙
ˇ

ˇ

ˇ

ˇ

˙

ě 𝐶
`

|𝜚 ´ 𝜚˚| ` |𝜃 ´ 𝜃˚|
˘

for some constant 𝐶 ă 1{
?

2, where on the last step we used inequalities 𝜚𝜚˚ ě 1 and
minr´𝜋{2, 𝜋{2s | sin 𝑥{𝑥| ą 0. Since 𝜚{𝜚˚ ě 1{𝑟 , the constant 𝐶 can be adjusted so that

|𝜏 ´ 1{𝜉| ě 𝐶
`

|𝜚 ´ 1{𝜚˚| ` |𝜃 ` 𝜃˚|
˘

ě 𝐶
`

|𝜚 ´ 𝜚˚| ` |𝜃 ` 𝜃˚|
˘

is true as well. By going to polar coordinates and applying the above estimates we get that
ˇ

ˇ

ˇ

ˇ

K
ˆ

𝜒𝐸𝑟

|𝜑|2𝑛

˙

p𝑧q

ˇ

ˇ

ˇ

ˇ

ď
4𝑟3

𝜋𝐶

ż 𝑟

1

ˆ
ż 𝜋

0

𝑑𝜃

|𝜚 ´ 𝜚˚| ` 𝜃

˙

𝑑𝜚

𝜚2𝑛`3

“
4𝑟3

𝜋𝐶

ˆ
ż

𝐼1

`

ż

𝐼2

˙

log
ˆ

1 `
𝜋

|𝜚 ´ 𝜚˚|

˙

𝑑𝜚

𝜚2𝑛`3 “: 𝑆1 ` 𝑆2,

where 𝐼1 “ p1, 𝑟q X
 

𝜚 : |𝜚 ´ 𝜚˚| ă 𝜋{𝑛
(

and 𝐼2 “ p1, 𝑟qz𝐼1. Then

𝑆1 ď
8𝑟3

𝜋𝐶

ż 𝜋{𝑛

0
log

ˆ

1 `
𝜋

𝜚

˙

𝑑𝜚 “
8𝑟3

𝐶

ż 8

𝑛`1

log 𝑡𝑑𝑡
p𝑡 ´ 1q2

“
8𝑟3

𝐶

ˆ

logp𝑛 ` 1q

𝑛
`

ż 8

𝑛`1

𝑑𝑡

𝑡p𝑡 ´ 1q

˙

ď
8𝑟3

𝐶

logp𝑛 ` 1q ` 1
𝑛

.

Finally, it holds that

𝑆2 ď
8𝑟3 logp𝑛 ` 1q

𝜋𝐶

ż 8

1

𝑑𝜚

𝜚2𝑛`3 “
4𝑟3

𝜋𝐶

logp𝑛 ` 1q

𝑛 ` 1
,

which finishes the proof of the lemma. �

3.6. B̄-Problem. Consider the following B̄-problem (B̄P-𝑫):

(a) 𝑫p𝑧q is a continuous matrix function on C and 𝑫p8q “ 𝑰;
(b) 𝑫p𝑧q satisfies B̄𝑫p𝑧q “ 𝑫p𝑧q𝑾p𝑧q, where

𝑾p𝑧q :“ 𝒁p𝑧q𝑴p𝑧q

ˆ

0 0
´𝑤p𝑧qB̄𝐿𝑛,𝑟 p𝑧q{𝑣𝑖p𝑧q 0

˙

𝑴´1p𝑧q𝒁´1p𝑧q.

Notice that 𝑾p𝑧q is supported by 𝐸𝑟 and therefore 𝑫p𝑧q is necessarily analytic in the
complement of 𝐸𝑟 .

Lemma 5

The solution of B̄P-𝑫 exists for all 𝑛 large enough and it holds uniformly in C that
𝑫p𝑧q “ 𝑰 ` 𝑶p𝜀𝑛q.

Proof. As explained in [4, Lemma 8.1], solving B̄P-𝑫 is equivalent to solving an integral
equation

𝑰 “ pI ´ K𝑾 q𝑫p𝑧q
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in the space of bounded matrix functions on C, where I is the identity operator and K𝑾

is the Cauchy area operator (15) acting component-wise on the product 𝒎p𝑠q𝑾p𝑠q for a
bounded matrix function 𝒎p𝑧q. If |||K𝑾 |||, the operator norm of K𝑾 , is less than 1 ´ 𝜖 ,
𝜖 P p0, 1q, then pI ´ K𝑾 q´1 exists as a Neumann series and

𝑫p𝑧q “ pI ´ K𝑾 q´1𝑰 “ 𝑰 ` 𝑶 𝜖 p|||K𝑾 |||q

uniformly inC (it also holds that 𝑫p𝑧q is Hölder continuous inC). It follows from Lemma 4
that to estimate |||K𝑾 |||, we need to estimate 𝐿8-norms of the entries of 𝑾p𝑧q. To this end,
similarly to (14), we get that

𝑾p𝑧q “
p´1q𝑖 B̄𝐿𝑛,𝑟 p𝑧q

𝑤p𝑧q𝑆2p𝑧q𝜑2𝑛`𝑘𝑖 p𝑧q
𝒁p𝑧q

˜

1
2𝜑p𝑧q ´1

1
4𝜑

2p𝑧q ´ 1
2𝜑p𝑧q

¸

𝒁´1p𝑧q, 𝑧 P 𝐸𝑟 .

Using Proposition 1 and Lemma 3 we can conclude that entries of𝑾p𝑧q are continuous func-
tions on C supported by 𝐸𝑟 with absolute values bounded above by 𝐶𝜌|𝜑p𝑧q|´2𝑛𝑛𝜀𝑛{ log 𝑛
for some constant 𝐶𝜌 independent of 𝑛. Hence, |||K𝑾 ||| “ 𝑂p𝜀𝑛q as claimed. �

3.7. Asymptotic Formulae. It readily follows from RHP-𝑨 and B̄P-𝑫 as well as Lemmas 3
and 5 that B̄RHP-𝑿 is solved by

𝑿p𝑧q “ 𝑪𝑫p𝑧q𝒁p𝑧q𝑴p𝑧q.

Given a closed set 𝐵 Ă Czr´1, 1s, we can choose 𝑟 amd 𝑅 so that 𝐸𝑅 X 𝐵 “ ∅. Then it
holds that 𝒀p𝑧q “ 𝑿p𝑧q for 𝑧 P 𝐵 by (12). Write

𝑫p𝑧q𝒁p𝑧q “ 𝑰 `

˜

𝜐𝑛1p𝑧q 𝜐𝑛2p𝑧q

𝜐𝑛3p𝑧q 𝜐𝑛4p𝑧q

¸

.

It follows from Lemmas 3 and 5 that |𝜐𝑛 𝑗p𝑧q| “ 𝑂p𝜀𝑛q uniformly inC and that 𝜐𝑛 𝑗p8q “ 0.
Then we get from (11) and (13) that

𝑃𝑛p𝑧q “

ˆ

1 ` 𝜐𝑛1p𝑧q `
𝜐𝑛2p𝑧q

2𝜑p𝑧q

˙

p𝑆˚𝑆qp𝑧q

p𝑆˚𝑆qp8q

ˆ

𝜑p𝑧q

2

˙𝑛

, 𝑧 P 𝐵.

Since 𝑆˚p𝑧q{𝑆˚p8q “ 𝑆𝑖p𝑧q{𝑆𝑖p8q, the first claim of the theorem follows. Next, notice
that the first column of 𝒀p𝑧q is entire and is equal to the first column of

𝑿`p𝑥q

ˆ

1 0
𝑤`p𝑥q{p𝜌p𝑥q𝑣𝑖p𝑥qq 1

˙

for 𝑥 P r´1, 1s by (12) and Proposition 1. Since the functions 𝜐𝑛𝑖p𝑧q are continuous across
r´1, 1s and 𝑆˚˘p𝑥q{𝑆˚p8q “ 𝑆𝑖˘p𝑥q{𝑆𝑖p8q, we deuce from (3), (6), (8), and (13) that

𝑃𝑛p𝑥q “ p1 ` 𝜐𝑛1p𝑥qq
p𝑆𝑖𝑆𝜑

𝑛q`p𝑥q ` p𝑆𝑖𝑆𝜑
𝑛q´p𝑥q

2𝑛p𝑆𝑖𝑆qp8q
`

𝜐𝑛2p𝑥q
p𝑆𝑖𝑆𝜑

𝑛´1q`p𝑥q ` p𝑆𝑖𝑆𝜑
𝑛´1q´p𝑥q

2𝑛`1p𝑆𝑖𝑆qp8q

for any 𝑥 P r´1, 1s. It now follows from (4), (6), and (8) that

p𝑆𝑖𝑆𝜑
𝑘q`p𝑥q ` p𝑆𝑖𝑆𝜑

𝑘q´p𝑥q “
2 cos

`

𝑘 arccosp𝑥q ` 𝜃p𝑥q ` 𝜃𝑖p𝑥q
˘

a

𝜌p𝑥q|𝑣𝑖p𝑥q|
, 𝑥 P r´1, 1s.
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The last two formulae now yield the second claim of the theorem. Finally, it is known, see
[15, Equations (9.6) and (9.7)], that

$

&

%

𝑎2
𝑛,𝑖

“ lim
𝑧Ñ8

𝑧2r𝒀p𝑧qs12r𝒀p𝑧qs21,

𝑏𝑛,𝑖 “ lim
𝑧Ñ8

`

𝑧 ´ 𝑃𝑛`1,𝑖p𝑧qr𝒀p𝑧qs22
˘

,

where 𝒀p𝑧q corresponds to the index 𝑛. As in the first part of the proof, we get that

r𝒀p𝑧qs12 “ r𝑿p𝑧qs12 “
1

𝑤p𝑧q

1 ` 𝜐𝑛1p𝑧q ` 𝜐𝑛2p𝑧q𝜑p𝑧q{2
2𝑛p𝑆˚𝑆qp8qp𝑆˚𝑆qp𝑧q𝜑𝑛p𝑧q

and

r𝒀p𝑧qs21 “ r𝑿p𝑧qs21 “

ˆ

𝜐𝑛3p𝑧q `
1 ` 𝜐𝑛4p𝑧q

2𝜑p𝑧q

˙

2𝑛p𝑆˚𝑆qp8qp𝑆˚𝑆qp𝑧q𝜑𝑛p𝑧q

for all 𝑧 large. Since 𝜐𝑛 𝑗p8q “ 0, it holds that

𝑎2
𝑛,𝑖 “

1
4

` lim
𝑧Ñ8

𝑧𝜐𝑛3p𝑧qp1 ` 𝑧𝜐𝑛2p𝑧qq “
1
4

` 𝑂p𝜀𝑛q

by the maximum modulus principle for holomorphic functions. Similarly, we have that

r𝒀p𝑧qs22 “ r𝑿p𝑧qs22 “

ˆ

𝜐𝑛3p𝑧q `
1
2

p1 ` 𝜐𝑛4p𝑧qq𝜑p𝑧q

˙

1
𝑤p𝑧q

2𝑛p𝑆˚𝑆qp8q

p𝑆˚𝑆qp𝑧q𝜑𝑛p𝑧q

for all 𝑧 large. Hence,

𝑃𝑛`1,𝑖p𝑧qr𝒀p𝑧qs22 “
𝜑2p𝑧q

4𝑤p𝑧q

ˆ

1 ` 𝜐𝑛`11p𝑧q `
𝜐𝑛`12p𝑧q

2𝜑p𝑧q

˙ˆ

1 ` 𝜐𝑛4p𝑧q ` 2
𝜐𝑛3p𝑧q

𝜑p𝑧q

˙

in this case. It can be readily verified that

𝜑2p𝑧q

4𝑤p𝑧q
“ 𝑧 `

𝑧

2𝑤p𝑧qp𝑧 ` 𝑤p𝑧qq
´

1
4𝑤p𝑧q

“ 𝑧 ` 𝑂

ˆ

1
𝑧

˙

as 𝑧 Ñ 8. Therefore,

𝑏𝑛,𝑖 “ ´ lim
𝑧Ñ8

𝑧
`

𝜐𝑛`11p𝑧q ` 𝜐𝑛4p𝑧q
˘

“ 𝑂p𝜀𝑛q

again, by the maximum modulus principle for holomorphic functions. This finishes the
proof of the theorem.

References
[1] A.I. Aptekarev. Sharp constant for rational approximation of analytic functions. Mat. Sb., 193(1):1–72, 2002.

English transl. in Math. Sb. 193(1-2):1–72, 2002. 3
[2] A.I. Aptekarev and M. Yattselev. Padé approximants for functions with branch points — strong asymp-

totics of Nuttall-Stahl polynomials. Acta Math., 215(2):217–280, 2015. http://dx.doi.org/10.1007/
s11511-016-0133-5. 3

[3] K. Astala, T. Iwaniec, and G. Martin. Elliptic Partial Differential Equations and Quasiconformal Mappings
in the Plane, volume 48 of Princeton Mathematical Series. Princeton Univ. Press, 2009. 8

[4] L. Baratchart and M. Yattselev. Convergent interpolation to Cauchy integrals over analytic arcs with
Jacobi-type weights. Int. Math. Res. Not., 2010(22):4211–4275, 2010. https://doi.org/10.1093/imrn/
rnq026. 3, 6, 9

[5] G. Baxter. A convergence equivalence related to polynomials orthogonal on the unit circle. Trans, Amer.
Math. Soc., 79:471–487, 1961. 3

[6] M. Bertola and M.Y. Mo. Commuting difference operators, spinor bundles and the asymptotics of orthogonal
polynomials with respect to varying complex weights. Adv. Math., 220:154–218, 2009. 3

[7] P. Deift. Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert Approach, volume 3 of Courant
Lectures in Mathematics. Amer. Math. Soc., Providence, RI, 2000. 8

http://dx.doi.org/10.1007/s11511-016-0133-5
http://dx.doi.org/10.1007/s11511-016-0133-5
https://doi.org/10.1093/imrn/rnq026
https://doi.org/10.1093/imrn/rnq026


12 MAXIM L. YATTSELEV

[8] P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, and X. Zhou. Strong asymptotics of polyno-
mials orthogonal with respect to exponential weights. Comm. Pure Appl. Math., 52(12):1491–1552, 1999.
3

[9] P. Deift and X. Zhou. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for
the mKdV equation. Ann. of Math., 137:295–370, 1993. 3

[10] F. Demengel and G. Demengel. Functional spaces for the theory of elliptic partial differential equations.
Universitext. Springer, 2012. 4

[11] A.S. Fokas, A.R. Its, and A.V. Kitaev. Discrete Panlevé equations and their appearance in quantum gravity.
Comm. Math. Phys., 142(2):313–344, 1991. 3

[12] A.S. Fokas, A.R. Its, and A.V. Kitaev. The isomonodromy approach to matrix models in 2D quantum
gravitation. Comm. Math. Phys., 147(2):395–430, 1992. 3

[13] F.D. Gakhov. Boundary Value Problems. Dover Publications, Inc., New York, 1990. 5
[14] T. Kilgore. On the simultaneous approximation of functions and their derivatives. In Applied mathematics

reviews, volume 1, pages 69–118, River Edge, NJ, 2000. World Sci. Publ. 3, 4
[15] A.B. Kuijlaars, K.T.-R. McLaughlin, W. Van Assche, and M. Vanlessen. The Riemann-Hilbert approach to

strong asymptotics for orthogonal polynomials on r´1, 1s. Adv. Math., 188(2):337–398, 2004. 3, 5, 11
[16] K.T.-R. McLaughlin and P.D. Miller. The B̄ steepest descent method for orthogonal polynomials on the real

line with varying weights. Int. Math. Res. Not. IMRN, 2008, 2008. 3
[17] B. Simon. Orthogonal Polynomials on the Unit Circle, Vol. I, II, volume 54 of Colloquium Publications.

Amer. Math. Soc., Providence, RI, 2005. 3
[18] G. Szegő. Orthogonal Polynomials, volume 23 of Colloquium Publications. Amer. Math. Soc., Providence,

RI, 1999. 3

Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 North
Blackford Street, Indianapolis, IN 46202

Keldysh Institute of Applied Mathematics, Russian Academy of Science, Miusskaya Pl. 4, Moscow,
125047 Russian Federation

Email address: maxyatts@iupui.edu

mailto:maxyatts@iupui.edu

	1. Main Results
	2. Weight Extension
	3. Proof of Theorem 1
	3.1. Initial Riemann-Hilbert Problem
	3.2. Opening of the Lens
	3.3. Model Riemann-Hilbert Problem
	3.4. Analytic Approximation
	3.5. An Auxiliary Estimate
	3.6. -Problem
	3.7. Asymptotic Formulae

	References

