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Abstract. Let 𝑓0 and 𝑓∞ be formal power series at the origin and infinity, and 𝑃𝑛/𝑄𝑛,
with deg(𝑃𝑛) , deg(𝑄𝑛) ≤ 𝑛, be a rational function that simultaneously interpolates 𝑓0 at
the origin with order 𝑛 and 𝑓∞ at infinity with order 𝑛+ 1. When germs 𝑓0, 𝑓∞ represent
multi-valued functions with finitely many branch points, it was shown by Buslaev [5] that
there exists a unique compact set 𝐹 in the complement of which the approximants converge
in capacity to the approximated functions. The set 𝐹 might or might not separate the plane.
We study uniform convergence of the approximants for the geometrically simplest sets 𝐹

that do separate the plane.

1. Introduction

Let 𝑓 (𝑧) = ∑∞
𝑘=0 𝑓𝑘 𝑧

−𝑘 be a formal power series at infinity and 𝑀𝑛/𝑁𝑛 be a rational
function such that deg(𝑀𝑛),deg(𝑁𝑛) ≤ 𝑛 and

(𝑁𝑛 𝑓 −𝑀𝑛) (𝑧) = O
(
𝑧−𝑛−1) as 𝑧→∞.

It is known that such a rational function is unique and is called the classical diagonal Padé
approximant to 𝑓 at infinity. The following theorem1 summarizes one the most fundamental
contributions of Herbert Stahl to complex approximation theory [18, 19, 20, 21].

Theorem (Stahl). Assume that the germ at infinity 𝑓 can be analytically continued along
any path in C that avoids a fixed polar set2 and there is at least one point outside of this set
with at least two distinct continuations. Then there exists a compact set 𝐹 such that

(i) 𝐹 does not separate the plane and 𝑓 has a holomorphic and single-valued extension
into the domain 𝐷 := C \𝐹;

(ii) 𝐹 consists of open non-intersecting analytic arcs 𝐽𝑖 , their endpoints, and a subset
of the singular set of 𝑓 , and3

𝜕𝑔𝐹 (𝑧,∞)
𝜕𝑛+

=
𝜕𝑔𝐹 (𝑧,∞)
𝜕𝑛−

at each point 𝑧 ∈ ∪𝑖𝐽𝑖 , where 𝑔𝐹 (·,∞) is the Green function for 𝐷 with pole at
infinity and 𝜕/𝜕𝑛± are the one-sided normal derivatives;

(iii) it holds for any compact set 𝑉 ⊂ 𝐷 that

lim
𝑛→∞

cp
{
𝑧 ∈ 𝑉 :

��( 𝑓 −𝑀𝑛/𝑁𝑛) (𝑧)
��1/2𝑛 ≥ 𝑒−𝑔𝐹 (𝑧,∞) + 𝜖

}
= 0

for any 𝜖 > 0, where cp(·) is the logarithmic capacity.
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2 M. YATTSELEV

More generally, if we select a branch of 𝑓 which is holomorphic in a neighborhood of a
certain closed set as well as a collection of 2𝑛+1 not necessarily distinct points in this set,
one can define a multipoint Padé approximant interpolating 𝑓 at these points. An analog of
Stahl’s theorem for multipoint Padé approximants was proven by Gonchar and Rakhmanov
[13]. However, the existence of the set 𝐹 satisfying (i) and an appropriate generalization of
(ii) was not shown but assumed in [13], from which the conclusion (iii) was then obtained
(see [16, 2, 23] for results on existence of such weighted symmetric contours).

Weighted symmetric contours are characterized as contours minimizing certain weighted
logarithmic capacity. One of the major obstructions in proving a general theorem on their
existence lies in the fact that a minimizer can separate the plane. In [5], Buslaev treated
this possibility not as a hindrance but as an important feature. More precisely, let 𝑓0 and
𝑓∞ be formal power series at the origin and infinity, respectively. That is,

(1) 𝑓0 (𝑧) :=
∞∑︁
𝑘=0

𝑓𝑘,0𝑧
𝑘 and 𝑓∞ (𝑧) :=

∞∑︁
𝑘=0

𝑓𝑘,∞𝑧
−𝑘 .

A rational function 𝑃𝑛/𝑄𝑛 is a two-point Padé approximant of type (𝑛1, 𝑛2), 𝑛1+𝑛2 = 2𝑛+1,
to the pair ( 𝑓0, 𝑓∞) if deg(𝑃𝑛),deg(𝑄𝑛) ≤ 𝑛 and

(2)

{
(𝑄𝑛 𝑓0 −𝑃𝑛) (𝑧) = O(𝑧𝑛1 ), 𝑧→ 0,
(𝑄𝑛 𝑓∞−𝑃𝑛) (𝑧) = O(𝑧𝑛−𝑛2 ), 𝑧→∞.

As in the case of the classical Padé approximants, the ratio 𝑃𝑛/𝑄𝑛 is always unique. In
[5, Theorem 1], see also [6] for a generalization to 𝑚-point Padé approximants, Buslaev
proved the following.

Theorem (Buslaev). Assume that the germs 𝑓0 and 𝑓∞ in (1) can be analytically continued
along any path in C that avoids finitely many fixed points one of which is a branch point of
𝑓0 and another is a branch point of 𝑓∞. Then there exists a compact set 𝐹 such that

(i) C\𝐹 = 𝐷0∪𝐷∞, where the domains 𝐷0 3 0 and 𝐷∞ 3 ∞ either do not intersect or
coincide, and 𝑓𝑒 has a holomorphic and single-valued extension into𝐷𝑒, 𝑒 ∈ {0,∞}
(if 𝐷0 = 𝐷∞ = 𝐷, then 𝑓0, 𝑓∞ are analytic continuations of each other within 𝐷);

(ii) 𝐹 consists of open analytic arcs and their endpoints and at each point of these arcs
it holds that

𝜕
(
𝑔𝐹 (𝑧,0) +𝑔𝐹 (𝑧,∞)

)
𝜕𝑛+

=
𝜕
(
𝑔𝐹 (𝑧,0) +𝑔𝐹 (𝑧,∞)

)
𝜕𝑛−

,

where 𝑔𝐹 (𝑧,0) is the Green function for 𝐷0 with pole at 0 and 𝑔𝐹 (𝑧,∞) is the
Green function for 𝐷∞ with pole at infinity;

(iii) if indices 𝑛1 + 𝑛2 = 2𝑛 + 1 in (2) are such that lim𝑛→∞ 𝑛𝑖/𝑛 = 1, 𝑖 ∈ {1,2}, and
𝜕𝐷0 ⊄ 𝜕𝐷∞ together with 𝜕𝐷∞ ⊄ 𝜕𝐷0, then it holds on any compact set𝑉 ⊂ C\𝐹
that

lim
𝑛→∞

cp
{
𝑧 ∈ 𝑉 :

��( 𝑓 −𝑃𝑛/𝑄𝑛) (𝑧)
��1/𝑛 ≥ 𝑒−𝑔𝐹 (𝑧,0)−𝑔𝐹 (𝑧,∞) + 𝜖

}
= 0

for any 𝜖 > 0, where cp(·) is the logarithmic capacity and 𝑓 = 𝑓𝑒 in 𝐷𝑒, 𝑒 ∈ {0,∞}.

Let 𝑓 be a germ at infinity that can be continued analytically along any path inC avoiding
finitely many points one of which is a branch point for some continuation. Set 𝑓∞ = 𝑓 and
𝑓0 to be one of the function elements of 𝑓 at the origin. Buslaev’s result tells us that
independently of the choice of 𝑓0, the two-point Padé approximants always converge to the
approximated pair of germs. However, the region of the convergence can consist of either
one or two components.

The conclusion (iii) of Buslaev’s theorem describes the so-called weak or 𝑛-th root
asymptotics of Padé approximants. The goal of the present work is to establish strong
asymptotic formulae along appropriate subsequences of indices. In the case where 𝐹
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does not separate the plane such results were obtained in [15, 22, 3, 4, 23] under various
assumptions on the approximated function. Below, we study the case of distinct germs in
the simplest geometrical setting, see Figure 1.

2. Main Results

Given 𝑎 ∈ D\ {0}, denote by 𝐾 the Chebotarëv compact for {−1,1, 𝔧(𝑎)}, whereD is the
open unit disk centered at the origin and 𝔧(𝑧) := (𝑧+ 𝑧−1)/2 is the Jukovski map. 𝐾 consists
of the critical trajectories of the quadratic differential

− (𝜁 − 𝔧(𝑏))d𝜁2

(𝜁2 −1) (𝜁 − 𝔧(𝑎))
,

where 𝑏 ∈ D is the uniquely determined point (𝔧(𝑏) is called Chebotarëv’s center). When
Im(𝑎) ≠ 0, the set 𝐾 consists of three analytic arcs emanating from 𝔧(𝑏) and terminating
at each of the points −1,1, 𝔧(𝑎). When 𝑎 ∈ (−1,0), it holds that 𝑏 = −1 and 𝐾 = [−𝔧(𝑎),1]
while 𝑏 = 1 and 𝐾 = [−1, 𝔧(𝑎)] for 𝑎 ∈ (0,1). Buslaev’s compact 𝐹 corresponding to 𝑎 in
this case is given by

𝐹 :=
{
𝑧 : 𝔧(𝑧) ∈ 𝐾

}
,

see Figures 1, 2, and 3. Clearly, 𝐹 separates the plane into two simply connected compo-

(a)

𝐹1𝐹−1

𝐹𝑎

𝐹𝑎−1

𝑎

𝑏

𝑏−1

𝑎−1

(b)

𝐹−1 𝐹𝑎−1𝐹𝑎

𝑎 𝑎−1

Figure 1. Buslaev’s compact 𝐹 for a point 𝑎 on (a) the imaginary axis (b) the real axis.

nents, one containing the origin and one containing the point at infinity, which we label by
𝐷0 and 𝐷∞. We shall write

𝐹 := 𝐹◦∪𝐸, 𝐸 :=
{
𝑎, 𝑎−1, 𝑏, 𝑏−1},

where 𝐹◦ consists of four (three when 𝑎 is real) open disjoint Jordan arcs, see Figure 1. We
let 𝐹±1 (resp. 𝐹◦

±1) to be closed (resp. open) Jordan arcs connecting 𝑏 to 𝑏−1 and containing
±1, and 𝐹𝑎±1 (resp. 𝐹◦

𝑎±1 ) to be closed (resp. open) Jordan arcs connecting 𝑎±1 to 𝑏±1

(we have that 𝐹−1 = ∅ when 𝑎 ∈ (−1,0) and 𝐹1 = ∅ when 𝑎 ∈ (0,1)). We choose their
orientation so that 𝐹1∪𝐹−1 is a counterclockwise oriented Jordan curve and 𝐹𝑎−1 ∪𝐹1∪𝐹𝑎
is a Jordan arc oriented from 𝑎−1 to 𝑎, see Figure 1. It is a matter of a simple substitution
to see that the set 𝐹◦ is comprised of the critical trajectories of the quadratic differential

(3) − (𝑧− 𝑏) (𝑧− 𝑏−1)
(𝑧− 𝑎) (𝑧− 𝑎−1)

d𝑧2

𝑧2
.
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From now on we fix 𝑎 ∈ D \ {0} and the corresponding Buslaev’s compact 𝐹. In this
work we shall be interested in approximating pairs (1) of the form

(4)
(
𝑓𝜌 |𝐷0 , 𝑓𝜌 |𝐷∞

)
, 𝑓𝜌 (𝑧) :=

1
2𝜋i

∫
𝐹

𝜌(𝑠)d𝑠
𝑠− 𝑧 ,

for some classes of weights 𝜌 to be specified later. Thus, depending on a situation we
shall speak about approximants (2) to either a pair of functions or a single function, in
both cases referring to (4). As one can clearly see from Figure 1, the structure of the set
𝐹 is qualitatively different for real and non-real values of 𝑎. Hence, it should come as no
surprise that the description of the asymptotics of the approximants will also depend on
whether the parameter 𝑎 is real or not.

2.1. Asymptotics of the Approximants: 𝑎 ∈ (−1,0) ∪ (0,1). Recall that in this case 𝐹
is a union of the unit circle T and the interval joining 𝑎 and 𝑎−1 that we shall denote by
[𝑎−1, 𝑎] (always oriented from 𝑎−1 to 𝑎). Let us start by describing the class of weights 𝜌
that we consider. To this end, define

(5) 𝑤(𝑧) = 𝑤(𝑧;𝑎) :=
√︁
(𝑧− 𝑎) (𝑧− 𝑎−1)

to be the branch holomorphic off [𝑎−1, 𝑎] such that 𝑤(𝑧) = 𝑧 +O(1) as 𝑧→ ∞. Given a
function 𝜌 on 𝐹 it will be convenient for us to set4

(6) ℎ(𝑠) := 𝜌(𝑠)
{
𝑤± (𝑠), 𝑠 ∈ 𝐹◦

𝑎±1 ,

𝑤(𝑠), 𝑠 ∈ 𝐹◦
−𝑏 ,

where 𝑏 := 𝑎/|𝑎 |. We shall say that 𝜌 ∈W1 if ℎ extends to a holomorphic and non-vanishing
function in some neighborhood of 𝐹 \

{
𝑎, 𝑎−1} with the zero increment of the argument

along the unit circle and there exist real constants 𝛼, 𝛽 > −1 such that

(7) ℎ | (𝑎−1 ,𝑎) (𝑠) = ℎ̃(𝑠) (𝑠− 𝑎)𝛼+1/2 (𝑠− 𝑎−1)𝛽+1/2,

where ℎ̃ is holomorphic and non-vanishing in some neighborhood of [𝑎−1, 𝑎] and the
branches of the power functions are holomorphic across (𝑎−1, 𝑎). It will also be convenient
to single out the following subclass of W1: we shall say that 𝜌 ∈W2 ⊂W1 if 𝛼 = 𝛽 = −1/2,
that is, if ℎ extends to a holomorphic and non-vanishing function in some neighborhood of
𝐹. In particular, if we define 𝜌 by (6) with ℎ(𝑠) ≡ 2, we get that the approximated pair of
functions is given by (1/𝑤,−1/𝑤).

For brevity, let us set
√
𝑥 := i

√︁
|𝑥 | when 𝑥 < 0. As we shall see below, the 𝑛-th root

behavior of the approximants is described by the following function:

(8) 𝜑(𝑧) :=
𝑧+ 𝑏 +𝑤(𝑧)
√
𝑎 +

√
𝑎−1

,

which is holomorphic off [𝑎−1, 𝑎], vanishes at the origin, and has a simple pole at infinity.
Moreover, since 𝑤 has purely imaginary traces on the interval [𝑎−1, 𝑎] and 𝑤2 (𝑒i𝑡 ) =
2𝑒i𝑡 (cos(𝑡) − 𝔧(𝑎)), it can be easily checked that

(9)

{
𝜑+ (𝑠)𝜑− (𝑠) = 𝑠, 𝑠 ∈ [𝑎−1, 𝑎],

|𝜑(𝑠) | = 1, 𝑠 ∈ 𝐹◦
−𝑏 .

To describe the finer behavior of the approximants let us define the following functions.
Let logℎ be any smooth continuous branch of the logarithm on the unit circle (recall that ℎ
is continuous on T with the argument that has zero increment). Set

(10) 𝐷 (𝑧) := exp
{

1
2𝜋i

∫
T

logℎ(𝑠)d𝑠
𝑠− 𝑧

}
,

4Given a function 𝑔 holomorphic off an oriented Jordan arc or curve 𝐽 , we denote by 𝑔+ (resp. 𝑔−) the traces of
𝑔 on the positive (resp. negative) side of 𝐽 with respect to the orientation of 𝐽 .
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which is a holomorphic and non-vanishing function off T that smoothly extends to both
sides of the unit circle and satisfies there𝐷+ (𝑠) = 𝐷− (𝑠)ℎ(𝑠), see [12, Chapter I]. Therefore,
the function

ℎ̂(𝑠) := 𝐷2 (𝑠)ℎ∓1 (𝑠), 𝑠 ∈ 𝐹𝑎±1 ,

is non-vanishing and smooth on the interval (𝑎−1, 𝑎) and admits a continuous determination
of its logarithm. Thus, the function

(11) 𝑆(𝑧) := exp

{
𝑤(𝑧)
2𝜋i

∫
[𝑎−1 ,𝑎]

log ℎ̂(𝑠)
𝑠− 𝑧

d𝑠
𝑤+ (𝑠)

}
is a holomorphic and non-vanishing function off the interval [𝑎−1, 𝑎] with traces satisfying
𝑆+ (𝑠)𝑆− (𝑠) = ℎ̂(𝑠). Given (8), (10), and (11), let us put

(12) Q𝑛 (𝑧) :=

{
(𝑧/𝜑(𝑧))𝑛𝑆(𝑧)/𝐷 (𝑧), 𝑧 ∈ 𝐷0,

𝜑(𝑧)𝑛𝐷 (𝑧)/𝑆(𝑧), 𝑧 ∈ 𝐷∞,

which is a holomorphic and non-vanishing function inC\𝐹 with a pole of order 𝑛 at infinity
and

(13) R𝑛 (𝑧) :=

{
(𝜑(𝑧)/𝑧)𝑛𝐷 (𝑧)/𝑆(𝑧), 𝑧 ∈ 𝐷0,

−(1/𝜑(𝑧))𝑛𝑆(𝑧)/𝐷 (𝑧), 𝑧 ∈ 𝐷∞,

which is a holomorphic and non-vanishing function in C \ 𝐹 with a zero of multiplicity
𝑛 at infinity (one can clearly see that R𝑛 is essentially a reciprocal of Q𝑛 and therefore
this definition might appear superfluous, however, for not real 𝑎 the relation between these
two functions will not be as straightforward and we prefer to present the cases of real and
non-real parameters in a uniform fashion).

Theorem 1. Denote by 𝑃𝑛/𝑄𝑛 the two-point Padé approximant of type (𝑛,𝑛+1) to (4) with
𝜌 ∈W1. Set

(14) 𝑅𝑛 (𝑧) := 𝑧−𝑛 (𝑄𝑛 𝑓𝜌 −𝑃𝑛) (𝑧), 𝑧 ∈ C \𝐹.

Then for all 𝑛 large enough the polynomial 𝑄𝑛 has degree 𝑛 and can be normalized to be
monic. In this case, it holds that

(15)

{
𝑄𝑛 = 𝛾𝑛 (1+𝜐Q𝑛

)
Q𝑛,

𝑤𝑅𝑛 = 𝛾𝑛
(
1+𝜐R𝑛

)
R𝑛,

locally uniformly in C \𝐹, where the error rate functions 𝜐 = 𝜐Q𝑛
, 𝜐R𝑛

satisfy

(16) |𝜐(𝑧) | ≤ 𝐶
{

1/𝑛, 𝜌 ∈W1,

𝑐𝑛, 𝜌 ∈W2,

for some constants𝐶 > 0 and 𝑐 < 1, and 𝛾𝑛 is a constant such that the limit lim𝑧→∞ 𝛾𝑛Q𝑛 (𝑧)𝑧−𝑛 =
1 holds.

We can immediately see from (12), (13), and (15) that

(17) ( 𝑓𝜌 −𝑃𝑛/𝑄𝑛) (𝑧) =
1+ 𝑜(1)
𝑤(𝑧)

{
(𝜑2 (𝑧)/𝑧)𝑛 (𝑆𝐷)2 (𝑧), 𝑧 ∈ 𝐷0,

−(𝑧/𝜑2 (𝑧))𝑛/(𝑆𝐷)2 (𝑧), 𝑧 ∈ 𝐷∞.

It further can be deduced from (9) that the right hand side of the above equality is geomet-
rically small in C \𝐹.
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Figure 2. Zeros of the denominator polynomial 𝑄60 when the approximated
pair is given by 𝑓0 (𝑧) = log

( 𝑧−1
𝑧−1/𝑎

)
and 𝑓∞ (𝑧) = log

( 𝑧−𝑎
𝑧−1

)
for 𝑎 = 2.

2.2. Asymptotics of the Approximants: 𝑎 ∈ D \ (−1,1). As in the previous subsection,
we start by defining the classes of weights 𝜌 we shall consider. We shall say that 𝜌 ∈W1 if
the restriction of 𝜌 to the arcs 𝐹◦

1 , 𝐹
◦
−1 extends to a holomorphic and non-vanishing function

around 𝐹1, 𝐹−1; there exist constants 𝛼, 𝛽 > −1 such that the restriction of 𝜌 to 𝐹◦
𝑎 , 𝐹

◦
𝑎−1 is

of the form

(18) 𝜌̃(𝑠) (𝑠− 𝑎)𝛼 (𝑠− 𝑎−1)𝛽

where 𝜌̃ is holomorphic and non-vanishing around 𝐹𝑎, 𝐹𝑎−1 and the branches of the power
functions are holomorphic across 𝐹◦

𝑎 , 𝐹
◦
𝑎−1 ; and

(19)

{
𝜌 |𝐹𝑎

(𝑧) + 𝜌 |𝐹−1 (𝑧) − 𝜌 |𝐹1 (𝑧) ≡ 0,
𝜌 |𝐹

𝑎−1 (𝑧) + 𝜌 |𝐹−1 (𝑧) − 𝜌 |𝐹1 (𝑧) ≡ 0,

in some neighborhood of 𝑏 (upper relation) and in some neighborhood of 𝑏−1 (lower
relation), where, with a slight abuse of notation, we denote by 𝜌 |𝐹𝑒

(𝑧) not only the restriction
of 𝜌 to 𝐹𝑒, but also its analytic continuation. Unlike the case of the real parameter, the class
W2 will be disjoint from W1. Let now

(20) 𝑤(𝑧) = 𝑤(𝑧;𝑎) :=
√︁
(𝑧− 𝑎) (𝑧− 𝑎−1) (𝑧− 𝑏) (𝑧− 𝑏−1)

be the branch holomorphic in C \ (𝐹𝑎−1 ∪ 𝐹𝑎) such that 𝑤(𝑧) = 𝑧2 +O(𝑧) as 𝑧→∞. We
shall say that a function 𝜌 belongs to the class W2 if

(21) ℎ(𝑠) := 𝜌(𝑠)
{
𝑤± (𝑠), 𝑠 ∈ 𝐹𝑎±1 ,

𝑤(𝑠), 𝑠 ∈ 𝐹◦
−1 ∪𝐹

◦
1 ,

extends to a holomorphic and non-vanishing function in some neighborhood of 𝐹. It is
easy to check that when ℎ(𝑠) ≡ 2, we again obtain the pair (1/𝑤,−1/𝑤).

The advantage of class W2 is that the error estimates in the analog of (15) shall be
again geometric. However, this class is not very natural as one needs to know the point 𝑏
explicitly to define functions in this class, however, finding 𝑏 is in general a transcendental
problem. The class W1 is more natural as it for example contains pairs (𝑐0/𝑤𝑎, 𝑐∞/𝑤𝑎)
for some constants 𝑐0 ≠ ±𝑐∞, where 𝑤𝑎 (𝑧) :=

√︁
(𝑧− 𝑎) (𝑧− 𝑎−1) is a branch holomorphic

off 𝐹𝑎−1 ∪𝐹1 ∪𝐹𝑎.
The analogues of the functions 𝜑, 𝐷, and 𝑆 from (8), (10), and (11) are more complicated

now as they need to be defined with the help of various differentials on the Riemann surface

(22) 𝕾 :=
{
𝒛 := (𝑧,𝑤) : 𝑤2 = (𝑧− 𝑎) (𝑧− 𝑎−1) (𝑧− 𝑏) (𝑧− 𝑏−1)

}
,

which has genus 1. Moreover, these functions by themselves are not sufficient to define
analogs of Q𝑛,R𝑛. Hence, we opt for a different approach.
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The surface 𝕾 can be realized as two copies of C cut along 𝐹𝑎−1 ∪ 𝐹𝑎 and then glued
crosswise along the corresponding arcs. We shall denote these copies by 𝕾 (0) and 𝕾 (1) .
Denote by 𝜋 :𝕾 → C the natural projection 𝜋(𝒛) = 𝑧. For a point 𝑧 ∉ 𝐹𝑎−1 ∪𝐹𝑎 we also let
𝑧 (𝑖) stand for the pull back of 𝑧 to 𝕾 (𝑖) . We put

𝚫 := 𝜋−1 (𝐹) = 𝜶∪ 𝜷∪𝜸∪ 𝜹,

where 𝜷 := 𝜋−1 (𝐹𝑎−1 ) is oriented so that 𝕾 (0) \𝚫 remains on the right when it is traversed
in the positive direction, 𝜹 := 𝜋−1 (𝐹𝑎) is oriented so that 𝕾 (0) \𝚫 remains on the left when
it is traversed in the positive direction, and 𝜶 := 𝜋−1 (𝐹1), 𝜸 := 𝜋−1 (𝐹−1) are oriented so that
their positive directions in 𝕾 (0) coincide with the positive directions of 𝐹1, 𝐹−1.
Theorem 2. Let ℎ(𝑠) be a function on 𝐹 for which there exist real constants 𝛼(𝑒), 𝑒 ∈ 𝐸 =

𝐹 \𝐹◦, and the branches of (𝑧− 𝑒)𝛼(𝑒) such that the product

ℎ(𝑠)
∏
𝑒∈𝐸

(𝑠− 𝑒)−𝛼(𝑒)

extends to a non-vanishing Hölder continuous function on 𝐹. Then for each 𝑛 ∈ N there
exist a meromorphic in 𝕾 \𝚫 function Ψ𝑛 and a point 𝒛𝑛 ∈𝕾 such that

(i) Ψ𝑛 has continuous traces on 𝜋−1 (𝐹◦) that satisfy
(23) Ψ𝑛− (𝒔) = Ψ𝑛+ (𝒔)ℎ(𝑠), 𝒔 ∈ 𝚫;

(ii) it has a pole of order 𝑛 at ∞(1) (of order 𝑛− 1 if 𝒛𝑛 = ∞(1) ), a simple pole at
∞(0) (a regular point if 𝒛𝑛 =∞(0) ), a zero of multiplicity 𝑛 at 0(1) (of multiplicity
𝑛+1 if 𝒛𝑛 = 0(1) ), a simple zero at 𝒛𝑛 ∉ 𝚫∪{∞(0) ,∞(1) ,0(1) } (when 𝒛𝑛 ∈ 𝚫 we use
explicit representation (48) for Ψ𝑛 to treat 𝒛𝑛 as a zero for both Ψ𝑛+ and Ψ𝑛−), and
otherwise is non-vanishing and finite;

(iii) it holds that

(24)
��Ψ𝑛

(
𝑧 (𝑘)

) ��2 ∼ 
|𝑧− 𝑒 | (−1)1−𝑘 𝛼(𝑒)+𝑚𝑛 (𝑒) as 𝑧→ 𝑒 ∈ {𝑎, 𝑎−1},

|𝑧− 𝑒 | (−1)1−𝑘 𝛼(𝑒)+𝑚𝑛 (𝑒) as 𝐷0 3 𝑧→ 𝑒 ∈ {𝑏, 𝑏−1},

|𝑧− 𝑒 | (−1)𝑘 𝛼(𝑒)+𝑚𝑛 (𝑒) as 𝐷∞ 3 𝑧→ 𝑒 ∈ {𝑏, 𝑏−1},
for 𝑘 ∈ {0,1}, where 𝑚𝑛 (𝑒) := 1 when 𝜋(𝒛𝑛) = 𝑒 and 𝑚𝑛 (𝑒) := 0 otherwise5.

Conversely, if Ψ is a function with a zero of multiplicity at least 𝑛 at 0(1) , a pole of order
at most 𝑛 at ∞(1) , at most a simple pole at ∞(0) , and no other poles, and if it satisfies (23)
and ��Ψ𝑛

(
𝑧 (𝑘)

) ��2 = 
O

(
|𝑧− 𝑒 | (−1)1−𝑘 𝛼(𝑒) ) as 𝑧→ 𝑒 ∈ {𝑎, 𝑎−1},

O
(
|𝑧− 𝑒 | (−1)1−𝑘 𝛼(𝑒) ) as 𝐷0 3 𝑧→ 𝑒 ∈ {𝑏, 𝑏−1},

O
(
|𝑧− 𝑒 | (−1)𝑘 𝛼(𝑒) ) as 𝐷∞ 3 𝑧→ 𝑒 ∈ {𝑏, 𝑏−1},

then Ψ a constant multiple of Ψ𝑛.
As mentioned before, the functionsΨ𝑛 can be explicitly expressed via various differential

on 𝕾 as well as Riemann’s theta functions, see (48) further below.
In our asymptotic analysis we shall be interested only in the indices 𝑛 for which points

𝒛𝑛 stay away from ∞(1) . As stated in the following proposition, there are infinitely many
such indices.
Proposition 3. Given 𝜀 > 0, let 𝐷 𝜀 (𝑧) be a disk of radius 𝜀 in the spherical metric around
𝑧 ∈ C and 𝐷 𝜀 (𝒛) be the connected component of 𝜋−1 (𝐷 𝜀 (𝑧)) containing 𝒛. Define

(25) N𝜀 :=
{
𝑛 ∈ N : 𝒛𝑛 ∉ 𝐷 𝜀

(
∞(1) )} .

Then for all 𝜀 small enough either 𝑛 or 𝑛−1 belongs to N𝜀 .

5The notation |𝑔1 (𝑧) | ∼ |𝑔2 (𝑧) | as 𝑧 → 𝑧0 means that there exists a constant 𝐶 > 1 such that 𝐶−1 ≤
| (𝑔1/𝑔2) (𝑧) | ≤ 𝐶 in some neighborhood of 𝑧0.
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In accordance with our notation, let us put 𝐵 (𝑖) := 𝜋−1 (𝐵) ∩𝕾 (𝑖) for any set 𝐵. Now we
are ready to define the analogues of (12) and (13) for non-real 𝑎. Set

(26) Q𝑛 (𝑧) :=


Ψ
𝑛 |𝐷 (0)

0
(𝒛), 𝑧 ∈ 𝐷0,

Ψ
𝑛 |𝐷 (1)

∞
(𝒛), 𝑧 ∈ 𝐷∞,

which is a sectionally holomorphic function in C \𝐹 with a pole of order 𝑛 at infinity, and
put

(27) R𝑛 (𝑧) :=
1
𝑧𝑛


Ψ

𝑛 |𝐷 (1)
0
(𝒛), 𝑧 ∈ 𝐷0,

−Ψ
𝑛 |𝐷 (0)

∞
(𝒛), 𝑧 ∈ 𝐷∞,

which is also a sectionally holomorphic function in C \𝐹 with a zero of multiplicity 𝑛−1
at infinity6. Due to the specifics of the Riemann-Hilbert analysis, which is used to study
the behavior of the Padé approximants, we shall also need the following functions. Let Υ𝑛

be a rational function on𝕾 that is finite except for two simple poles at ∞(0) and 𝒛𝑛, and has
a simple zero at 0(1) (such a function is unique up to a scalar factor). Set

Ψ★
𝑛 := Ψ𝑛Υ𝑛

and define Q★
𝑛 and R★

𝑛 via (26) and (27), respectively, with Ψ𝑛 replaced by Ψ★
𝑛 and 𝑧𝑛

replaced by 𝑧𝑛+1 in (27). These functions are holomorphic in C\𝐹, Q★
𝑛 has a pole of order

𝑛 at infinity while R★
𝑛 has a zero of multiplicity 𝑛−1 there.

Theorem 4. Denote by 𝑃𝑛/𝑄𝑛 the two-point Padé approximant of type (𝑛,𝑛 + 1) to (4)
with 𝜌 ∈ W1 ∪W2 and let 𝑅𝑛 be given by (14). Further, let Q𝑛 and R𝑛 be given by (26)
and (27) for Ψ𝑛 defined as in Theorem 2 with ℎ given by (21). Then for any 𝜀 > 0 and all
𝑛 ∈ N𝜀 large enough the polynomial 𝑄𝑛 has degree 𝑛 and can be normalized to be monic.
In this case, it holds that

(28)

{
𝑄𝑛 = 𝛾𝑛

[ (
1+𝜐𝑛1

)
Q𝑛 +𝜐𝑛2Q★

𝑛−1
]
,

𝑤𝑅𝑛 = 𝛾𝑛
[ (

1+𝜐𝑛1
)
R𝑛 +𝜐𝑛2R★

𝑛−1
]
,

locally uniformly in C \𝐹, where 𝛾𝑛 is a constant such that lim𝑧→∞ 𝛾𝑛Q𝑛 (𝑧)𝑧−𝑛 = 1 and
the functions 𝜐 = 𝜐𝑛 𝑗 satisfy (16).

Similarly to (17) we have that

𝑓𝜌 −
𝑃𝑛

𝑄𝑛

=
𝑧𝑛R𝑛

𝑤Q𝑛

1+𝜐𝑛,1 +𝜐𝑛,2 (R★
𝑛−1/R𝑛)

1+𝜐𝑛,1 +𝜐𝑛,2 (Q★
𝑛−1/Q𝑛)

.

Due to the presence of a floating zero 𝒛𝑛, the above formula does not immediately imply
the locally uniform convergence of the approximants to 𝑓𝜌. Indeed, when

𝒛𝑛 ∈ 𝐷R := 𝐷 (1)
0 ∪𝐷 (0)

∞ ,

it holds that R𝑛 (𝑧𝑛) = 0, which yields that the approximant has an additional interpolation
point near 𝑧𝑛. However, when

𝒛𝑛 ∈ 𝐷Q := 𝐷 (0)
0 ∪𝐷 (1)

∞ ,

it holds that Q𝑛 (𝑧𝑛) = 0 and therefore the approximant has pole in a vicinity of 𝑧𝑛. The
following results help us further elucidate the situation.

Theorem 5. The functions Ψ𝑛 can be normalized so that for any closed set 𝐵 ⊂ C \𝐹 and
any 𝛿 > 0 there exist positive constants 𝐶 (𝐵) and 𝐶𝛿 (𝐵) such that

(29) |Q𝑛 (𝑧) |𝑒−𝑛𝑔 (𝑧)
{

≤ 𝐶 (𝐵), 𝑧 ∈ 𝐵,
≥ 𝐶𝛿 (𝐵), 𝑧 ∈ 𝐵 \ 𝜋

(
𝐷Q ∩𝐷 𝛿 (𝒛𝑛)

)
,

6Again, these orders might change depending on the location of 𝒛𝑛.
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where 𝑔(𝑧) is a continuous function in C that is harmonic in C \𝐹 and satisfies
(30) 𝑔(𝑧) = log |𝑧 | + O(1), 𝑧→∞, and 2𝑔(𝑠) = log |𝑠 |, 𝑠 ∈ 𝐹
(it follows from the minimum principle for superharmonic functions that 2𝑔(𝑧) − log |𝑧 | > 0
in C \𝐹). Moreover, the constants 𝐶 (𝐵) and 𝐶𝛿 (𝐵) can be adjusted so that

(31) |R𝑛 (𝑧) |𝑒 (𝑛−1)𝑔 (𝑧)

{
≤ 𝐶 (𝐵), 𝑧 ∈ 𝐵,
≥ 𝐶𝛿 (𝐵), 𝑧 ∈ 𝐵 \ 𝜋

(
𝐷R ∩𝐷 𝛿 (𝒛𝑛)

)
.

The functions Υ𝑛 can be normalized so that inequalities (29) and (31) hold for Q★
𝑛 and R★

𝑛

as well. Moreover, for any 𝛿 > 0 there exists a constant 𝐶𝛿 such that

(32) 𝐶𝛿 ≥


|Q★
𝑛−1/Q𝑛 | in C \ 𝜋

(
𝐷Q ∩𝐷 𝛿 (𝒛𝑛)

)
,

|R★
𝑛−1/R𝑛 | in C \

(
𝐷 𝛿 (∞) ∪ 𝜋

(
𝐷R ∩𝐷 𝛿 (𝒛𝑛)

) )
.

In view of Buslaev’s theorem, it should be clear that 2𝑔(𝑧) − log |𝑧 | = 𝑔𝐹 (𝑧,0) +𝑔𝐹 (𝑧,∞).

(a) (b)

Figure 3. Zeros of the denominator polynomial (a) 𝑄40 and (b) 𝑄60 when
the approximated pair is given by 𝑓0 (𝑧) = log

( 𝑧−1
𝑧−1/𝑎

)
and 𝑓∞ (𝑧) = log

( 𝑧−𝑎
𝑧−1

)
for 𝑎 = 1.2+ 1.3i. One can clearly see one zero of 𝑄40 not being aligned along
Buslaev’s compact 𝐹.

The author would like to thank Andrei Martínez Finkelshtein for many valuable discus-
sions.

3. Proof of Theorems 2, 5 and Proposition 3

Let 𝕾 be the Riemann surface defined in (22). We consider each 𝕾 (𝑖) to be closed
subsets of 𝕾, i.e., it does contain cycles 𝜷,𝜹. We define the conformal involution on 𝕾 by
𝒛 = (𝑧,𝑤) ↦→ 𝒛∗ = (𝑧,−𝑤). It is easy to see that the pair (𝜶, 𝜷) forms a homology basis on
𝕾. In particular, 𝕾𝜶,𝜷 :=𝕾 \ (𝜶∪ 𝜷) is simply connected.

3.1. Nuttall’s Differential. Let 𝑤(𝒛) := (−1)𝑖𝑤(𝑧), 𝒛 ∈ 𝕾 (𝑖) , where 𝑤(𝑧) is the branch
defined in (20). For convenience, set

𝑣(𝒛) :=
(𝑧− 𝑏) (𝑧− 𝑏−1)

𝑤(𝒛)
and 𝑣(𝑧) := 𝑣(𝒛) for 𝒛 ∈𝕾 (0) \ {𝜷∪𝜸∪ 𝜹}. Notice that 𝑣(0) = 𝑣(∞) = 1. The differential

(33) N(𝒔) = 1− 𝑣(𝒔)
2𝑠

d𝑠
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is holomorphic except for two simple poles at 0(1) and ∞(1) with respective residues 1
and −1. Moreover, one can readily check using (3) that all the periods of N(𝒔) are purely
imaginary and therefore we can define

(34) 𝜔 := − 1
2𝜋i

∮
𝜷
N and 𝜏 :=

1
2𝜋i

∮
𝜶
N ,

which are clearly real constants.

Lemma 6. Let
√
𝑎 be the principal value of the square root. Define

(35) Φ(𝒛) :=
√
𝑎 exp

{∫ 𝒛

𝒂
N

}
, 𝒛 ∈𝕾𝜶,𝜷 ,

where the path of integration belongs entirely to 𝕾𝜶,𝜷 . The function Φ(𝒛) is holomorphic
and non-vanishing in 𝕾𝜶,𝜷 \

{
∞(1) ,0(1)} with a simple pole at ∞(1) and a simple zero at

0(1) ∈𝕾 (1) . It holds that Φ(𝒛)Φ(𝒛∗) = 𝑧 and the traces of Φ(𝒛) satisfy

(36) Φ+ = Φ−

{
exp {2𝜋i𝜏} on 𝜷,

exp {2𝜋i𝜔} on 𝜶.

Moreover, |Φ(𝒛) |2 < |𝑧 | for 𝑧 ∈ 𝐷R and |Φ(𝒛) |2 > |𝑧 | for 𝑧 ∈ 𝐷Q .

Proof. The holomorphy properties of Φ follow immediately from the corresponding prop-
erties of N . Since 𝑣(𝒛) = −𝑣(𝑧) for 𝒛 ∈𝕾 (1) \ {𝜷∪𝜸}, it holds that

(37) Φ(𝒛)Φ(𝒛∗) = 𝑎 exp
{∫ 𝑧

𝑎

(1− 𝑣(𝑡))d𝑡
2𝑡

+
∫ 𝑧

𝑎

(1+ 𝑣(𝑡))d𝑡
2𝑡

}
= 𝑎 exp

{∫ 𝑧

𝑎

d𝑡
𝑡

}
= 𝑧.

Furthermore, we get on 𝜶 and 𝜷 that

Φ+ = Φ− exp
{
−
∮
𝜷
N

}
and Φ+ = Φ− exp

{∮
𝜶
N

}
,

respectively, which yields (36), see (34). Finally, recall that 𝐹 consists of the critical
trajectories of the quadratic differential −(𝑣(𝑧)d𝑧/𝑧)2, see (3). Hence, the integral of
𝑣(𝑡)d𝑡/𝑡 on any subarc of 𝐹 is purely imaginary and therefore��Φ2 (𝒔)

�� = |𝑠 | exp
{
±Re

(∫ 𝑠

𝑎

𝑣(𝑡)
𝑡

d𝑡
)}

= |𝑠 |, 𝒔 ∈ 𝚫,

where the sign − is used if 𝒔 ∈𝕾 (0) and the sign + is used if 𝒔 ∈𝕾 (1) . The last conclusion
of the lemma now follows from the maximum modulus principle. �

3.2. Holomorphic Differentials. It can be readily checked that

H(𝒔) :=
𝐶d𝑠
𝑤(𝒔) , 𝐶 :=

(∮
𝜶

d𝑠
𝑤(𝒔)

)−1
, B :=

∮
𝜷
H ,

is a holomorphic differential on𝕾 (unique up to a multiplicative constant). It is also known
that Im(B) > 0. The proof of the following lemma is absolutely analogous to the proof of
Lemma 6.

Lemma 7. Given a constant 𝜎 ∈ C, define

(38) 𝐴𝜎 (𝑧) := exp
{
−2𝜋i𝜎

∫ 𝒛

𝒂
H

}
, 𝒛 ∈𝕾𝜶,𝜷 ,

where the path of integration belongs entirely to𝕾𝜶,𝜷 . The function 𝐴𝜎 (𝒛) is holomorphic
and non-vanishing in𝕾𝜶,𝜷 . It holds that 𝐴𝜎 (𝒛)𝐴𝜎 (𝒛∗) ≡ 1 and the traces of 𝐴𝜎 (𝒛) on 𝜶, 𝜷
satisfy

(39) 𝐴𝜎+ = 𝐴𝜎−

{
exp {−2𝜋i𝜎} on 𝜷,

exp {2𝜋iB𝜎} on 𝜶.
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3.3. Cauchy’s Differential. Denote by C𝒛 the unique meromorphic differential that has
two simple poles at 𝒛 and 𝒛∗ with residues 1 and −1, respectively, and whose 𝜶-period is
zero. When 𝜋(𝒛) ∈ C, one can readily check that

(40) C𝒛 (𝒔) =
𝑤(𝒛)
𝑠− 𝑧

d𝑠
𝑤(𝒔) −

(∮
𝜶

𝑤(𝒛)
𝑠− 𝑧

d𝑠
𝑤(𝒔)

)
H(𝒔).

Lemma 8. Let ℎ(𝑧) be as in Theorem 2. Fix a smooth determination of

logℎ(𝑠) −
∑︁
𝑒∈𝐸

𝛼(𝑒) log(𝑧− 𝑒)

on each of the arcs 𝐹𝑎, 𝐹𝑎−1 , 𝐹1, 𝐹−1. Define 𝜆ℎ (𝒔) := − logℎ(𝑠), 𝑠 ∈ 𝐹◦, and

(41) 𝑆ℎ (𝒛) := exp
{

1
4𝜋i

∮
𝚫
𝜆ℎC𝒛

}
, 𝒛 ∈𝕾 \𝚫.

The function 𝑆ℎ (𝒛) is holomorphic and non-vanishing in𝕾\𝚫. It holds that 𝑆ℎ (𝒛)𝑆ℎ (𝒛∗) ≡ 1
and the traces of 𝑆ℎ (𝒛) satisfy

(42) 𝑆ℎ+ (𝒔) =
𝑆ℎ− (𝒔)
ℎ(𝑠)

{
1, on 𝚫 \𝜶,

exp
{
−

∮
𝚫
𝜆ℎH

}
, on 𝜶,

where the points of self-intersection need to be excluded. Moreover, it holds that

(43)
��𝑆ℎ (𝑧 (𝑘) ) ��2 ∼


|𝑧− 𝑒 | (−1)1−𝑘 𝛼(𝑒) as 𝑧→ 𝑒 ∈ {𝑎, 𝑎−1},

|𝑧− 𝑒 | (−1)1−𝑘 𝛼(𝑒) as 𝐷0 3 𝑧→ 𝑒 ∈ {𝑏, 𝑏−1},

|𝑧− 𝑒 | (−1)𝑘 𝛼(𝑒) as 𝐷∞ 3 𝑧→ 𝑒 ∈ {𝑏, 𝑏−1},

𝑘 ∈ {0,1}.

Proof. Let 𝝂 be an involution-symmetric cycle on 𝕾 passing through ramification points
𝒑1, 𝒑2 and 𝜆𝝂 be an involution-symmetric function on 𝝂 such that

𝜆𝝂 (𝒛) +𝛼1 log(𝑧− 𝑝1) +𝛼2 log(𝑧− 𝑝2)
is Hölder smooth on 𝝂 for some real constants 𝛼1, 𝛼2, where the determinations of the
logarithms are holomorphic across 𝜋(𝝂) \ {𝑝1, 𝑝2}. Set

Λ𝝂 (𝒛) :=
1

4𝜋i

∮
𝝂
𝜆𝝂C𝒛 .

Since C𝒛∗ = −C𝒛 , it holds that Λ𝝂 (𝒛) +Λ𝝂 (𝒛∗) ≡ 0. Moreover, it is known [24, Eq. (2.7)–
(2.9)] that Λ𝝂 (𝒛) is a holomorphic function in 𝕾 \ (𝝂∪𝜶) with continuous traces on (𝝂 \
𝜶) \ { 𝒑1, 𝒑2} and (𝜶 \ 𝝂) \ { 𝒑1, 𝒑2} that satisfy

Λ𝝂+ (𝒔) −Λ𝝂− (𝒔) =
{

𝜆𝝂 (𝒔), 𝒔 ∈ 𝝂 \𝜶,
−
∮
𝝂
𝜆𝝂H , 𝒔 ∈ 𝜶 \ 𝝂,

where we used the fact that 𝜆𝝂 (𝒔) = 𝜆𝝂 (𝒔∗) and the jumps need to be added up on subarcs
of 𝝂∩𝜶. In the absence of logarithmic singularities, i.e., when all 𝛼(𝑒) = 0, the claims of
the lemma now follow by summing up Λ𝝂 over all 𝝂 ∈ {𝜶, 𝜷,𝜸,𝜹} while taking 𝜆𝝂 := 𝜆ℎ |𝝂 .

Let Λ :=
∑

𝝂=𝜶,𝜷,𝜸,𝜹Λ𝝂 . When a branch point 𝒑 is such that 𝜋( 𝒑) ∈ {𝑎, 𝑎−1}, there is
exactly one cycle from the chain 𝚫 passing through 𝒑 (either 𝜷 or 𝜹). Moreover, since 𝜷 and
𝜹 separate𝕾 into the sheets𝕾 (0) \ {𝜷∪𝜹} and𝕾 (1) \ {𝜷∪𝜹}, the analysis of [1, Section 5.2]
applies and yields that

Λ
(
𝑧 (𝑘)

)
= (−1)1−𝑘 𝛼(𝑝)

2
log(𝑝− 𝑧) +O(1) as 𝑧→ 𝑝 ∈

{
𝑎, 𝑎−1},

for 𝑘 ∈ {0,1}, where log(𝑝− ·) is holomorphic in some neighborhood of 𝑝 cut along 𝐹𝑝 .
The situation when 𝑝 ∈ {𝑏, 𝑏−1} is again very similar to the one discussed in [1, Section 5.2].
Clearly, the singular behavior around 𝑝 comes from the first term in (40). As explained
in [12, Section I.8.5], to understand this behavior it is enough to find a function that has
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logarithmic singularity at 𝑝 and the same jumps across the cycles comprising 𝚫. Thus, it
can be checked that

Λ
(
𝑧 (𝑘)

)
= ±(−1)1−𝑘 𝛼(𝑝)

2
log(𝑧− 𝑝) +O(1) as 𝑧→ 𝑝 ∈

{
𝑏, 𝑏−1},

where the sign + is used if 𝑧 ∈ 𝐷0 and the sign − is used if 𝑧 ∈ 𝐷∞, and log(· − 𝑝) has a
jump along 𝐹𝑎 when 𝑝 = 𝑏 and 𝐹𝑎−1 when 𝑝 = 𝑏−1. �

3.4. Jacobi Inversion Problem. We define Abel’s map on 𝕾 by

𝔞(𝒛) :=
∫ 𝒛

𝒂
H , 𝒛 ∈𝕾𝜶,𝜷 ,

where the path of integration lies entirely in 𝕾𝜶,𝜷 , and set 𝔞(𝒛) := 𝔞+ (𝒛) when 𝒛 ∈ 𝜶∪ 𝜷.
Since𝕾 has genus 1, any Jacobi inversion problem is uniquely solvable on𝕾. In particular,
given a function ℎ and an integer 𝑛 ∈ N, there exist unique 𝒛𝑛 = 𝒛𝑛 (ℎ) ∈ 𝕾 and 𝑗𝑛,𝑚𝑛 ∈ Z
such that

(44) 𝔞(𝒛𝑛) = 𝔞
(
∞(0) ) − 1

2𝜋i

∮
𝚫
𝜆ℎH +𝑛(𝜔+B𝜏) + 𝑗𝑛 +B𝑚𝑛.

Lemma 9. For 𝜀 > 0, letN𝜀 be defined by (25). Then the conclusions of Proposition 3 hold
true. Further, let 𝒛★𝑛 = 𝒛★𝑛 (ℎ) be the solution of the following Jacobi inversion problem:

𝔞
(
𝒛★𝑛 +0(1) − 𝒛𝑛 −∞(0) ) ∈ Z+BZ.

Then there exists a domain𝑈𝜀 3 ∞(0) such that 𝒛★
𝑛−1 ∉𝑈𝜀 for all 𝑛 ∈ N𝜀 .

Proof. According to Riemann’s relations, it holds that

𝔞
(
∞(1) ) −𝔞

(
0(1) ) = ∫ ∞(1)

0(1)
H =

1
2𝜋i

∮
𝜷
M∞(1) ,0(1) ,

where M𝒛1 ,𝒛2 is a meromorphic differential having two simple poles at 𝒛1 and 𝒛2 with
residues 1 and −1, respectively, and zero period on 𝜶. In fact,

M∞(1) ,0(1) = −N +2𝜋i𝜏H
as one can see from (34). That is, it holds that

𝔞
(
∞(1) ) −𝔞

(
0(1) ) = − 1

2𝜋i

∮
𝜷
N + 𝜏

∮
𝜷
H = 𝜔+B𝜏.

It also follows from (44) that
𝔞(𝒛𝑛) −𝔞(𝒛𝑛−1) − (𝜔+B𝜏) ∈ Z+BZ.

The continuity of 𝔞(𝒛) and the unique solvability of the Jacobi inversion problem now yield
that if 𝒛𝑛 → ∞(1) along some subsequence N′, then 𝒛𝑛−1 → 0(1) as N′ 3 𝑛→ ∞, which
proves unboundedness of N𝜀 as well as the fact that either 𝑛 or 𝑛−1 is in N𝜀 for all 𝜀 small
enough. The same argument proves the last claim of the lemma since 𝒛★

𝑛−1 →∞(0) along
some subsequence implies that 𝒛𝑛−1 → 0(1) and respectively 𝒛𝑛 → ∞(1) along the same
subsequence. �

3.5. Riemann’s Theta Function. Recall that the theta function associated with B is an
entire transcendental function defined by

𝜃 (𝑢) :=
∑︁
𝑛∈Z

exp
{
𝜋iB𝑛2 +2𝜋i𝑢𝑛

}
, 𝑢 ∈ C.

Lemma 10. Let ℎ and 𝒛𝑛 be as above. Define

(45) Θ𝑛 (𝒛) :=
𝜃

(
𝔞(𝒛) −𝔞(𝒛𝑛) − 1+B

2

)
𝜃

(
𝔞(𝒛) −𝔞

(
∞(0) ) − 1+B

2

) .



TWO-POINT PADÉ APPROXIMANTS TO PIECEWISE HOLOMORPHIC FUNCTIONS 13

The function Θ𝑛 is meromorphic in 𝕾𝜶,𝜷 with a simple zero at 𝒛𝑛, a simple pole at ∞(0) ,
and otherwise non-vanishing and finite. In fact, it is holomorphic across 𝜷 and

(46) Θ𝑛+ = Θ𝑛− exp
{∮

𝚫
𝜆ℎH −2𝜋i𝑛(𝜏 +B𝜔) −2𝜋iB𝑚𝑛

}
on 𝜶.

Proof. It can be directly checked that

(47) 𝜃 (𝑢 + 𝑗 +B𝑚) = exp
{
− 𝜋iB𝑚2 −2𝜋i𝑢𝑚

}
𝜃 (𝑢), 𝑗 ,𝑚 ∈ Z.

Moreover, it is known that 𝜃 (𝑢) = 0 if and only if 𝑢 = (1+B)/2+ 𝑗 +B𝑚, 𝑗 ,𝑚 ∈ Z. Further,
recall that

𝔞+−𝔞− =

{
−
∮
𝜷
H on 𝜶,∮

𝜶
H on 𝜷,

=

{
−B on 𝜶,

1 on 𝜷.

Therefore, it holds for 𝒔 ∈ 𝜷 that

Θ𝑛+ (𝒔) =
𝜃

(
𝔞+ (𝒛) −𝔞(𝒛𝑛) − 1+B

2

)
𝜃

(
𝔞+ (𝒛) −𝔞

(
∞(0) ) − 1+B

2

) =

𝜃

(
1+𝔞− (𝒛) −𝔞(𝒛𝑛) − 1+B

2

)
𝜃

(
1+𝔞− (𝒛) −𝔞

(
∞(0) ) − 1+B

2

) = Θ𝑛− (𝒔).

That is, Θ𝑛 is holomorphic across 𝜷 as claimed. Similarly, we get on 𝜶 that

Θ𝑛+ = Θ𝑛− exp
{
2𝜋i

(
𝔞
(
∞(0) ) −𝔞(𝒛𝑛)

)}
,

which gives (46) by (44). �

3.6. Proof of Theorem 2 and Proposition 3. Proposition 3 has been proven as a part of
Lemma 9. To prove Theorem 2, define

(48) Ψ𝑛 := Φ𝑛𝐴𝑛𝜏+𝑚𝑛
𝑆ℎΘ𝑛

using (35), (38), (41), and (45). The meromorphy properties follow straight from Lemmas 6,
7, 8, and 10 with (23) specifically being the combination of (36), (39), (42) and (46). The
behavior (24) around the ramification points of𝕾 is a direct consequence of (43). Now, if Ψ
is a function as described in the statement of the theorem, then Ψ/Ψ𝑛 is a rational function
on𝕾 with a single possible pole at 𝒛𝑛. As𝕾 has genus 1, there are no rational functions on
𝕾 with a single pole. Hence, the ratio Ψ/Ψ𝑛 must be a constant.

3.7. Proof of Theorem 5. It follows from Lemma 6 that the described function 𝑔(𝑧) is
given by

𝑔(𝑧) := log |Φ(𝒛) | = log |𝑧 | − log |Φ(𝒛∗) |, 𝒛 ∈ 𝐷Q ,

where the second equality is a direct consequence of (37). Hence, (26), (27), and (48) yield
that {

|Q𝑛 (𝑧) | =
�� (𝐴𝑛𝜏+𝑚𝑛

𝑆ℎΘ𝑛

)
(𝒛)

��𝑒𝑛𝑔 (𝑧) , 𝒛 ∈ 𝐷Q ,

|R𝑛 (𝑧) | =
�� (𝐴𝑛𝜏+𝑚𝑛

𝑆ℎΘ𝑛

)
(𝒛)

��𝑒−𝑛𝑔 (𝑧) , 𝒛 ∈ 𝐷R .

Notice that the range of Abel’s map 𝔞(𝒛) is bounded. Recall also that Im(B) > 0. Therefore,
it follows from (44) that the sequence of numbers {𝑛𝜏 +𝑚𝑛} is bounded. Hence, for any
𝛿 > 0, there exists a constant 𝐶𝛿 > 1 such that

(49) 𝐶−1
𝛿 ≤

�� (𝐴𝑛𝜏+𝑚𝑛
𝑆ℎ

)
(𝒛)

�� ≤ 𝐶𝛿

for 𝒛 outside of circular neighborhoods of “radius” 𝛿 around each ramification point.
Further, compactness of 𝕾 and continuity of the Abel’s map imply that the family of
functions {Θ(·; 𝒑)}, where

Θ(𝒛; 𝒑) :=
𝜃

(
𝔞(𝒛) −𝔞( 𝒑) − 1+B

2

)
𝜃

(
𝔞(𝒛) −𝔞

(
∞(0) ) − 1+B

2

) ,
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is also compact and therefore necessarily has uniformly bounded above moduli for 𝒛 away
from ∞(0) . Analogously, one can see that the family {Θ(·; 𝒑)/Φ} has uniformly bounded
moduli away from 0(1) . The last two observations finish the proof of the upper bounds
in (29) and (31). Clearly, the lower bounds amount to estimating the moduli of Θ(𝒛; 𝒑)
and Θ(𝒛; 𝒑)/Φ from below outside of 𝐷 𝛿 ( 𝒑). The existence of a such a bound for each
function is obvious, the fact the infimum of these bounds is positive follows again from
compactness.

Further, observe that the other zero of Υ𝑛 is 𝒛★𝑛 by Lemma 9. Therefore, we get from
(44) that

𝔞(𝒛★𝑛) = 2𝔞
(
∞(0) ) −𝔞

(
0(1) ) − 1

2𝜋i

∮
𝚫
𝜆ℎH +𝑛(𝜔+B𝜏) + 𝑗★𝑛 +B𝑚★

𝑛

for some 𝑗★𝑛 ,𝑚★
𝑛 ∈ Z. Hence, the function Ψ★

𝑛 can be equivalently defined as

(50) Ψ★
𝑛 = Φ𝑛𝐴𝑛𝜏+𝑚★

𝑛
𝑆ℎΘ

(
·;0(1) )Θ(

·; 𝒛★𝑛
)
.

From this representation we can obtain bounds (29) and (31) exactly as before. Lastly,
notice that the ratio Ψ★

𝑛−1/Ψ𝑛 is equal to Q★
𝑛−1/Q𝑛 in 𝐷Q and to R★

𝑛−1/R𝑛 in 𝐷R . Hence,
we just need to estimate |Ψ★

𝑛−1/Ψ𝑛 | on 𝕾. It clearly follows from (48) and (50) that

|Ψ★
𝑛−1/Ψ𝑛 | = |𝐴𝑚★

𝑛−1−𝑚𝑛−𝜏 | · |Θ
(
·;0(1) )/Φ| · |Θ

(
·; 𝒛★𝑛−1

)
/Θ𝑛 |.

Similarly to (49), we can argue that the first term in the above product is uniformly bounded
above with 𝑛 on the whole surface 𝕾. The middle term is a single function with a simple
pole at∞(0) . Finally, the last ratio has a single pole at 𝒛𝑛 and therefore is uniformly bounded
above in 𝕾 \𝐷 𝛿 (𝒛𝑛) for any 𝛿 > 0 by the previous compactness argument.

4. Proof of Theorem 1 when 𝜌 ∈W2

To analyze the asymptotic behavior of the polynomials𝑄𝑛 and linearized error functions
𝑅𝑛, we use the matrix Riemann-Hilbert approach pioneered by Fokas, Its, and Kitaev
[10, 11] and the non-linear steepest descent method developed by Deift and Zhou [9]. In
what follows, it will be convenient to set

𝜎3 :=
(
1 0
0 −1

)
and 𝑰 :=

(
1 0
0 1

)
.

4.1. Orthogonality. We shall also need the two-point Padé approximant to 𝑓𝜌 of type
(𝑛,𝑛−1), which we denote by 𝑃★

𝑛−1/𝑄
★
𝑛−1. Set

(51) 𝑅★𝑛−1 (𝑧) := 𝑧−𝑛 (𝑄★
𝑛−1 𝑓𝜌 −𝑃

★
𝑛−1) (𝑧), 𝑧 ∈ C \𝐹.

According to (2) and (14), the functions 𝑅𝑛, 𝑅
★
𝑛−1 are holomorphic around the origin and it

holds that

(52) 𝑅𝑛 (𝑧) = O(𝑧−𝑛−1), 𝑅★𝑛−1 (𝑧) = O(𝑧−𝑛) as 𝑧→∞.

Let Ω be a bounded annular domain containing 𝐹 and not containing 0, whose boundary
consists of two smooth Jordan curves. Assuming 𝜕Ω to be positively oriented, we get that

(53) 0 =

∫
𝜕Ω

𝑅𝑛 (𝑧)𝑧𝑘d𝑧 =
∫
𝜕Ω

𝑄𝑛 (𝑧) 𝑓𝜌 (𝑧)𝑧𝑘−𝑛d𝑧 = −
∫
𝐹

𝑄𝑛 (𝑠)𝑠𝑘−𝑛𝜌(𝑠)d𝑠

for any 𝑘 ∈ {0, . . . , 𝑛−1}, where the first equality follows from (52) and the Cauchy theorem
applied outside of Ω, the second is obtained by applying Cauchy theorem inside of Ω, and
the last is a consequence of (4), Fubini-Tonelli’s theorem, and the Cauchy integral formula.
Analogously to (53) we get that

(54) 0 =

∫
𝐹

𝑄★
𝑛−1 (𝑠)𝑠

𝑘−𝑛𝜌(𝑠)d𝑠, 𝑘 ∈ {0, . . . , 𝑛−2}.
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Moreover, similar computation also yields that

𝑅★𝑛−1 (𝑧) = −𝑧−𝑛
∫
𝐹

𝑄★
𝑛−1 (𝑠)𝑠

−1𝜌(𝑠) d𝑠
2𝜋i

+O
(
𝑧−𝑛−1) =:

1
𝑎𝑛𝑧

𝑛
+O

(
𝑧−𝑛−1) .

Hence, 𝑎𝑛 is infinite if and only if𝑄★
𝑛−1 satisfies (54) with 𝑘 = 𝑛−1 as well. However, if the

latter is true, then 𝑄★
𝑛−1 satisfies (53). Conversely, if there exists a polynomial of degree at

most 𝑛−1 satisfying (53), it automatically satisfies (54) and therefore the coefficient next
to 𝑧−𝑛 in the expansion of 𝑅★

𝑛−1 at infinity must be zero. Altogether, 𝑎𝑛 is finite if and only
if deg(𝑄𝑛) = 𝑛, where 𝑄𝑛 is the smallest degree polynomials satisfying (53).

4.2. Initial RH Problem. Under the assumption deg(𝑄𝑛) = 𝑛, define

(55) 𝒀 :=
(
𝑄𝑛 𝑅𝑛

𝑎𝑛𝑄
★
𝑛−1 𝑎𝑛𝑅

★
𝑛−1

)
.

Then this matrix solves the following Riemann-Hilbert problem (RHP-𝒀): find a 2× 2
matrix-valued function 𝒀 such that

(a) 𝒀 is analytic in C \𝐹 and lim
𝑧→∞

𝒀 (𝑧)𝑧−𝑛𝜎3 = 𝑰;

(b) 𝒀 has continuous traces on 𝐹◦ that satisfy 𝒀+ (𝑠) = 𝒀− (𝑠)
(
1 𝜌(𝑠)/𝑠𝑛
0 1

)
;

(c) it holds that 𝒀 (𝑧) = O
(
1 1
1 1

)
as 𝑧→ 𝑏 and 𝒀 (𝑧) = O

(
1 |𝑧− 𝑒 |−1/2

1 |𝑧− 𝑒 |−1/2

)
as 𝑧→ 𝑒 ∈{

𝑎, 𝑎−1}, where O(·) is understood entrywise.
Indeed, it is straightforward that 𝒀 fulfills RHP-𝒀(a) given that deg(𝑄𝑛) = 𝑛, which also
implies that 𝑎𝑛 is finite. Let 𝑄 be either 𝑄𝑛 or 𝑄★

𝑛−1 and 𝑅 be either 𝑅𝑛 or 𝑅★
𝑛−1. Then we

deduce from (14), (51), and the Sokhotski-Plemelj formulae [12, Section I.4.2] that(
𝑅+−𝑅−

)
(𝑥) = (𝑄𝜌) (𝑥)/𝑥𝑛, 𝑥 ∈ 𝐹◦,

and therefore 𝒀 fulfills RHP-𝒀(b). Finally, it follows from (6) that
(56)
𝜌 |𝐹𝑎

(𝑏) − 𝜌 |𝐹
𝑎−1 (𝑏) + 𝜌 |𝐹−𝑏 (𝑏+) − 𝜌 |𝐹−𝑏 (𝑏−) =

ℎ(𝑏)
𝑤+ (𝑏)

− ℎ(𝑏)
𝑤− (𝑏)

+ ℎ(𝑏)
𝑤− (𝑏)

− ℎ(𝑏)
𝑤+ (𝑏)

= 0,

where the limits 𝜌 |𝐹−𝑏 (𝑏±) are evaluated in accordance with the orientation of 𝐹−𝑏 (also
keep in mind that the segment [𝑎−1, 𝑎] is always oriented from 𝑎−1 to 𝑎). Thus, RHP-
𝒀(c) follows from the known behavior of Cauchy integrals near points of discontinuity of
the weight [12, Sections I.8.1–4], where the fact that the second column does not have a
logarithmic singularity around 𝑏 is a direct consequence of (56). To show that a solution of
RHP-𝒀 , if exists, must be of the form (55) is by now a standard exercise, see for instance,
[14, Lemma 2.3] or [1, Lemma 1]. Thus, we proved the following lemma.

Lemma 11. If a solution of RHP-𝒀 exists, then it is unique and is given by (55) where
deg(𝑄𝑛) = 𝑛. Conversely, if deg(𝑄𝑛) = 𝑛, then (55) solves RHP-𝒀 .

4.3. Opening of Lenses. Let Γ0 and Γ∞ be two positively oriented Jordan curves that lie
in 𝐷0 and 𝐷∞, respectively. Assume further that these curves are close enough to 𝐹 so that
ℎ(𝑧) is holomorphic and non-vanishing on the annular domain bounded by them. Denote
byΩ0 andΩ∞ the intersection of this annular domain with 𝐷0 and 𝐷∞, respectively. Define

(57) 𝑿 (𝑧) := 𝒀 (𝑧)



(
1 0

−𝑧𝑛/𝜌(𝑧) 1

)
, 𝑧 ∈ Ω0,(

1 0
𝑧𝑛/𝜌(𝑧) 1

)
, 𝑧 ∈ Ω∞,

𝑰, 𝑧 ∈ C \
(
Ω0 ∪Ω∞

)
,
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where we set 𝜌(𝑧) := ℎ(𝑧)/𝑤(𝑧) in Ω0 ∪Ω∞ for 𝑤(𝑧) given by (5). Then the matrix 𝑿
solves the following Riemann-Hilbert problem (RHP-𝑿):

(a) 𝑿 is analytic in C \ (Γ0 ∪𝐹 ∪Γ∞) and lim
𝑧→∞

𝑿 (𝑧)𝑧−𝑛𝜎3 = 𝑰;
(b) 𝑿 has continuous traces on Γ0 ∪𝐹◦∪Γ∞ that satisfy

𝑿+ (𝑠) = 𝑿− (𝑠)


(

1 0
𝑠𝑛/𝜌(𝑠) 1

)
, 𝑠 ∈ Γ0 ∪Γ∞,(

0 𝜌(𝑠)/𝑠𝑛
−𝑠𝑛/𝜌(𝑠) 0

)
, 𝑠 ∈ 𝐹◦;

(c) 𝑿 satisfies RHP-𝒀(c).
The following lemma trivially holds.

Lemma 12. RHP-𝑿 is solvable if and only if RHP-𝒀 is solvable. When solutions of RHP-𝑿
and RHP-𝒀 exist, they are unique and connected by (57).

4.4. Model RH Problem. Consider the following Riemann-Hilbert problem (RHP-𝑵):
(a) 𝑵 is analytic in C \𝐹 and lim

𝑧→∞
𝑵(𝑧)𝑧−𝑛𝜎3 = 𝑰;

(b) 𝑵 has continuous traces on 𝐹◦ that satisfy

𝑵+ (𝑠) = 𝑵− (𝑠)
(

0 𝜌(𝑠)/𝑠𝑛
−𝑠𝑛/𝜌(𝑠) 0

)
.

To solve RHP-𝑵, recall the definition of Q𝑛,R𝑛 in (12) and (13). Since 𝐷+ = 𝐷−ℎ on
T, 𝑆+𝑆− = 𝐷2/ℎ on 𝐹𝑎, and 𝑆+𝑆− = 𝐷2ℎ on 𝐹𝑎−1 , it can be easily checked that

(58) Q𝑛± (𝑠) =
[
𝑠𝑛/ℎ(𝑠)

]
R𝑛∓ (𝑠)


1, 𝑠 ∈ 𝐹◦

𝑎 ,

−1, 𝑠 ∈ 𝐹◦
𝑎−1 ,

∓1, 𝑠 ∈ 𝐹◦
−𝑏 ,

where we also used (9). Further, set

(59) 𝜙(𝑧) :=
𝑧− 𝑏−𝑤(𝑧)
√
𝑎−

√
𝑎−1

,

where the convention concerning the roots of negative numbers is the same as in (8).
Similarly to 𝜑(𝑧), one can see that 𝜙(𝑧) is holomorphic off [𝑎−1, 𝑎], has a simple zero at the
origin, and satisfies 𝜙− (𝑠)𝜙+ (𝑠) = 𝑠 for 𝑠 ∈ [𝑎−1, 𝑎]. Further, with (12) and (13) at hand, let
us put

(60) Q★
𝑛−1 (𝑧) := Q𝑛−1 (𝑧)

{
𝑧/𝜙(𝑧), 𝑧 ∈ 𝐷0,

𝜙(𝑧), 𝑧 ∈ 𝐷∞,

which is a holomorphic and non-vanishing function in C \𝐹 with a pole of order 𝑛− 1 at
infinity and

(61) R★
𝑛−1 (𝑧) := R𝑛−1 (𝑧)

{
𝜙(𝑧)/𝑧, 𝑧 ∈ 𝐷0,

1/𝜙(𝑧), 𝑧 ∈ 𝐷∞,

which is a holomorphic and non-vanishing function in C \ 𝐹 with a zero of multiplicity
𝑛−1 at infinity. Clearly, Q★

𝑛−1 and R★
𝑛−1 also satisfy (58). Then it can be readily checked

that

(62) 𝑵 := 𝑪𝑴, 𝑪 :=

(
𝛾𝑛 0
0 𝛾★

𝑛−1

)
, 𝑴 :=

(
Q𝑛 R𝑛/𝑤
Q★

𝑛−1 R★
𝑛−1/𝑤

)
,

solves RHP-𝑵, where 𝛾★
𝑛−1 is a constant such that lim𝑧→∞ 𝛾★𝑛−1𝑧

𝑛−1R★
𝑛−1 (𝑧) = 1. Observe

that 𝑴 satisfies RHP-𝒀(c) and det(𝑵) ≡ 1 because det(𝑵) (𝑧) is a holomorphic function
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outside
{
𝑎, 𝑎−1}, where it has at most square root singularities, and that has value 1 at

infinity. It also holds that

(63) det(𝑴) =
(
𝛾𝑛𝛾

★
𝑛−1

)−1
= − 4

2𝑏 + 𝑎 + 𝑎−1 .

4.5. RH Problem with Small Jumps. Consider the following Riemann-Hilbert problem
(RHP-𝒁):

(a) 𝒁 is a holomorphic matrix function in C \ (Γ0 ∪Γ∞) and 𝒁(∞) = 𝑰;
(b) 𝒁 has continuous traces on Γ0 ∪Γ∞ that satisfy

𝒁+ (𝑠) = 𝒁− (𝑠)𝑴 (𝑠)
(

1 0
𝑠𝑛/𝜌(𝑠) 1

)
𝑴−1 (𝑠).

Then the following lemma takes place.

Lemma 13. For 𝑛 large enough, a solution of RHP-𝒁 exists and satisfies

(64) 𝒁 = 𝑰 +O
(
𝑐𝑛

)
for some constant 𝑐 < 1 independent of Γ0,Γ∞, where O(·) holds uniformly in C.

Proof. It follows from an explicit computation and (63) that the jump matrix for 𝒁 is equal
to

(65) 𝑰 +𝛾𝑛𝛾★𝑛−1
𝑠𝑛

(ℎ𝑤) (𝑠)

(
(R𝑛R★

𝑛−1) (𝑠) −R2
𝑛 (𝑠)

R★2
𝑛−1 (𝑠) −(R𝑛R★

𝑛−1) (𝑠)

)
= 𝑰 +O

(
𝑐𝑛 (Γ0,Γ∞)

)
,

where 𝑐(Γ0,Γ∞) ∈ (0,1) and the last equality is a consequence of (9) and the maximum
modulus principle for holomorphic functions.The conclusion of the lemma now follows
from the same argument as in [7, Corollary 7.108]. �

4.6. Asymptotics. Let 𝒁 be a solution of RHP-𝒁 granted by Lemma 13 and 𝑪,𝑴 be
defined by (62). Then it can be easily checked that 𝑿 := 𝑪𝒁𝑴 solves RHP-𝑿 and therefore
the solution of RHP-𝒀 is obtained from (57).

Given any closed set 𝐵 ⊂ C \ 𝐹, choose Ω0,Ω∞ so that 𝐵 ⊂ C \ (Ω0 ∪Ω∞). Then
𝒀 = 𝑪𝒁𝑴 on 𝐵. Hence, if the first row of 𝒁 is denoted by

(
1+𝜐𝑛1 𝜐𝑛2

)
, we have that{

𝑄𝑛 = 𝛾𝑛
[ (

1+𝜐𝑛1
)
Q𝑛 +𝜐𝑛2Q★

𝑛−1
]
,

𝑤𝑅𝑛 = 𝛾𝑛
[ (

1+𝜐𝑛1
)
R𝑛 +𝜐𝑛2R★

𝑛−1
]
,

by (55) and (62). Equations (15) now follow from (12) and (60) together with (13) and (61)
since we know from Lemma 13 that |𝜐𝑛𝑘 | ≤ 𝑐𝑛 uniformly in C (𝜐𝑛𝑘 (∞) = 0 as 𝒁(∞) = 𝑰).

5. Proof of Theorem 4 when 𝜌 ∈W2

It is straightforward to check that everything written in Sections 4.1-4.3 remains valid
except for RHP-𝒀(c) which now simply reads

𝒀 (𝑧) = O
(
1 |𝑧− 𝑒 |−1/2

1 |𝑧− 𝑒 |−1/2

)
as 𝑧→ 𝑒 ∈ 𝐸 =

{
𝑎, 𝑏, 𝑎−1, 𝑏−1}.

Furthermore, the formulation of RHP-𝑵 remains the same as well. To solve it, observe that
(58) still holds (one needs to replace 𝐹◦

−𝑏 with 𝐹◦
−1 ∪𝐹

◦
1 ), where the functions Q𝑛,R𝑛 are

now defined by (26) and (27). Indeed, for 𝑠 ∈ 𝐹◦
𝑎 , it holds that

Q𝑛± (𝑠) = Ψ𝑛+ (𝒔) = ℎ−1 (𝑠)Ψ𝑛− (𝒔) =
[
𝑠𝑛/ℎ(𝑠)

]
R𝑛∓ (𝑠)

as claimed. The proof of (58) on the rest of the arcs is absolutely analogous (one just needs
to pay attention to the chosen orientations of the cycles 𝜶, 𝜷,𝜸,𝜹). Moreover, the functions
Q★

𝑛−1 and R★
𝑛−1, defined just before Theorem 4, satisfy (58) as well, which can be shown in

a similar fashion since Ψ★
𝑛−1 obviously satisfies (23). Hence, it is easy to check using (58)
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that RHP-𝑵 is solved for each 𝑛 such that 𝒛𝑛 ≠∞(1) by (62), where the constants 𝛾𝑛 and
𝛾★
𝑛−1 are again defined by

lim
𝑧→∞

𝛾𝑛Q𝑛 (𝑧)𝑧−𝑛 = 1 and lim
𝑧→∞

𝛾★𝑛−1R
★
𝑛−1 (𝑧)𝑧

𝑛−2 = 1.

These constants are well defined by the very definition of N𝜀 and Lemma 9. Notice again
that 𝑴 has the same behavior near 𝐸 as 𝒀 . Moreover, det(𝑵) ≡ 1 due to the same reasons
as before, and therefore det(𝑴) = (𝛾𝑛𝛾★𝑛−1)

−1. Given the solution of RHP-𝑵, we again can
formulate RHP-𝒁. Obviously, the jump of 𝒁 is equal to the left-hand side of (65). Since

𝛾𝑛𝛾
★
𝑛−1 = lim

𝑧→∞
𝑧2

Q𝑛 (𝑧)R★
𝑛−1 (𝑧)

= lim
𝒛→∞(1)

𝑧3𝐴𝑚★
𝑛−1−𝑚𝑛−𝜏 (𝒛∗)

Φ(𝒛)Θ𝑛 (𝒛)Θ
(
𝒛∗;0(1) )Θ(

𝒛∗; 𝒛★
𝑛−1

) ,
it follows from the very definition of N𝜀 , Lemma 9, and the compactness argument from
the proof of Theorem 5 that the sequence {|𝛾𝑛𝛾★𝑛−1 |}𝑛∈N𝜀

is bounded above (the constant
does depend on 𝜀). Therefore, the conclusion of Lemma 13 still holds, but only for all
𝑛 ∈ N𝜀 large enough and with constant 𝑐 = 𝑐𝜀 , where we need to use (31) and (30) coupled
with the maximum principle for harmonic functions to show the equality in (65). Finally,
the proof of (28) is now absolutely the same as in the case of Theorem 1.

6. Proof of Theorem 1 when 𝜌 ∈W1

6.1. Initial RH Problem. The material of Section 4.1 remains valid. The only change in
Section 4.2 needs to be made in RHP-𝒀(c) that is replaced by

(66) 𝒀 (𝑧) =



O
(
1 1
1 1

)
as 𝑧→

{
𝑏, 𝑏−1},

O
(
1 𝜓𝛼 (𝑧− 𝑎)
1 𝜓𝛼 (𝑧− 𝑎)

)
as 𝑧→ 𝑎,

O
(
1 𝜓𝛽 (𝑧− 𝑎−1)
1 𝜓𝛽 (𝑧− 𝑎−1)

)
as 𝑧→ 𝑎−1,

where

𝜓𝛼 (𝑧) :=


|𝑧 |𝛼, if 𝛼 < 0,
log |𝑧 |, if 𝛼 = 0,
1, if 𝛼 > 0.

6.2. Opening of Lenses. Here, we choose Γ0,Γ∞ as in Section 4.3 with the exception of
requiring Γ0 to touch 𝐹 at 𝑎 and Γ∞ to touch 𝐹 at 𝑎−1. We define Ω0,Ω∞ again as in
Section 4.3, however, now they are no longer annular domains. Further, we still define
𝑿 by (57) with 𝜌(𝑠) extended to Ω0 ∪Ω∞ by ℎ(𝑧)/𝑤(𝑧) (we assume that the branch cuts
of (𝑧− 𝑎)𝛼+1/2 and (𝑧− 𝑎−1)𝛽+1/2 in (7) lie outside of some neighborhoods of 𝑎 and 𝑎−1

intersected with Ω0∪Ω∞). The Riemann-Hilbert problem RHP-𝑿 remains the same except
for RHP-𝑿(c), which needs to be modified within Ω0 ∪Ω∞ as follows:

(67) 𝑿 (𝑧) =



O
(
1 |𝑧− 𝑎 |𝛼
1 |𝑧− 𝑎 |𝛼

)
, 𝛼 < 0,

O
(
log |𝑧− 𝑎 | log |𝑧− 𝑎 |
log |𝑧− 𝑎 | log |𝑧− 𝑎 |

)
, 𝛼 = 0,

O
(
|𝑧− 𝑎 |−𝛼 1
|𝑧− 𝑎 |−𝛼 1

)
, 𝛼 > 0,

as Ω0∪Ω∞ 3 𝑧→ 𝑎, and an analogous change should be made around 𝑎−1. With the above
changes, Lemma 12 still holds.
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6.3. Model and Local RH Problems. Model Riemann-Hilbert problem RHP-𝑵 is for-
mulated and solved exactly as in the case 𝜌 ∈W2. Moreover, it is still true that det(𝑵) ≡ 1
(the singular behavior of the entries of 𝑵 around 𝑎, 𝑎−1 gets canceled when determinant is
evaluated). Let now𝑈𝑎,𝑈𝑎−1 be open sets around 𝑎, 𝑎−1. Define

(68) 𝑫 (𝑧) :=

{
(𝑧/𝜑(𝑧))𝑛𝜎3 , 𝑧 ∈ 𝐷0,

𝜑(𝑧)𝑛𝜎3 , 𝑧 ∈ 𝐷∞,

where 𝜑 is given by (8) and 𝑔𝜎3 = diag
(
𝑔 1/𝑔

)
. We shall need to solve the following local

Riemann-Hilbert problems (RHP-𝑷𝑒, 𝑒 ∈
{
𝑎, 𝑎−1}):

(a,b,c) 𝑷𝑒 satisfies RHP-𝑿(a,b,c) within𝑈𝑒;
(d) 𝑷𝑒 = 𝑴𝑫−1 (𝑰 +O(1/𝑛)

)
𝑫 uniformly on 𝜕𝑈𝑒.

Since the construction of 𝑷𝑒 is lengthy, we postpone it until the end of the section.

6.4. RH Problem with Small Jumps. Let

Σ =
(
𝜕𝑈𝑎 ∪ 𝜕𝑈𝑎−1

)
∪

[ (
Γ0 ∪Γ∞) \

(
𝑈𝑎 ∪𝑈𝑎−1

) ]
.

The Riemann-Hilbert problem RHP-𝒁 now needs to be formulated as follows:

(a) 𝒁 is a holomorphic matrix function in C \Σ and 𝒁(∞) = 𝑰;
(b) 𝒁 has continuous traces at the smooth points of Σ that satisfy

𝒁+ (𝑠) = 𝒁− (𝑠)


𝑴 (𝑠)

(
1 0

𝑠𝑛/𝜌(𝑠) 1

)
𝑴−1 (𝑠),(

𝑷𝑒𝑴
−1) (𝑠),

where the first relation holds for 𝑠 ∈
(
Γ0 ∪Γ∞

)
\
(
𝑈𝑎 ∪𝑈𝑎−1

)
and the second one

for 𝑠 ∈ 𝜕𝑈𝑒 \
(
Γ0 ∪𝐹 ∪Γ∞

)
, 𝑒 ∈

{
𝑎, 𝑎−1}.

Then the following lemma takes place.

Lemma 14. For all 𝑛 large enough, a solution of RHP-𝒁 exists and satisfies 𝒁 = 𝑰+O
(
1/𝑛

)
uniformly in C.

Proof. The proof of the fact that the jump of 𝒁 is geometrically small on
(
Γ0∪Γ∞

)
\
(
𝑈𝑎∪

𝑈𝑎−1
)

is the same as in the case 𝜌 ∈W2. Furthermore, we have that

𝑷𝑒𝑴
−1 = 𝑰 +𝑴𝑫−1O(1/𝑛)𝑫𝑴−1

on 𝜕𝑈𝑒. It follows from (12), (13), (60), (61), and (62) that

𝑴𝑫−1 =

(
1 1
𝜑/𝜙 𝜙/𝜑

) (
𝑆

𝐷

)𝜎3

on 𝜕𝑈𝑎 and a similar formula holds on 𝜕𝑈𝑎−1 . In any case it is a fixed matrix independent
of 𝑛. Hence, the jump of 𝒁 is of order 𝑰 +O(1/𝑛) on 𝜕𝑈𝑎 ∪ 𝜕𝑈𝑎−1 . The conclusion of the
lemma now follows as in the case 𝜌 ∈W2. �

6.5. Asymptotics. Formulae (15) follow now exactly as in the case 𝜌 ∈W2.

6.6. Solution of RHP-𝑷𝑒, 𝑒 ∈
{
𝑎, 𝑎−1}. We shall construct the matrix 𝑷𝑎 only as the

construction of 𝑷𝑎−1 is completely similar.
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6.6.1. Model Problem. Below, we always assume that the real line as well as its subintervals
are oriented from left to right. Further, we set

(69) 𝐼± :=
{
𝑧 : arg(𝑧) = ±2𝜋/3

}
,

where the rays 𝐼± are oriented towards the origin. Given 𝛼 > −1, let 𝚿𝛼 be a matrix-valued
function such that

(a) 𝚿𝛼 is holomorphic in C \
(
𝐼+∪ 𝐼−∪ (−∞,0]

)
;

(b) 𝚿𝛼 has continuous traces on 𝐼+∪ 𝐼−∪ (−∞,0) that satisfy

𝚿𝛼+ = 𝚿𝛼−


(

0 1
−1 0

)
on (−∞,0),(

1 0
𝑒±𝜋i𝛼 1

)
on 𝐼±;

(c) as 𝜁 → 0 it holds that

𝚿𝛼 (𝜁) = O
(
|𝜁 |𝛼/2 |𝜁 |𝛼/2
|𝜁 |𝛼/2 |𝜁 |𝛼/2

)
and 𝚿𝛼 (𝜁) = O

(
log |𝜁 | log |𝜁 |
log |𝜁 | log |𝜁 |

)
when 𝛼 < 0 and 𝛼 = 0, respectively, and

𝚿𝛼 (𝜁) = O
(
|𝜁 |𝛼/2 |𝜁 |−𝛼/2
|𝜁 |𝛼/2 |𝜁 |−𝛼/2

)
and 𝚿𝛼 (𝜁) = O

(
|𝜁 |−𝛼/2 |𝜁 |−𝛼/2
|𝜁 |−𝛼/2 |𝜁 |−𝛼/2

)
when 𝛼 > 0, for | arg(𝜁) | < 2𝜋/3 and 2𝜋/3 < | arg(𝜁) | < 𝜋, respectively;

(d) it holds uniformly in C \
(
𝐼+∪ 𝐼−∪ (−∞,0]

)
that

𝚿𝛼 (𝜁) = 𝑺(𝜁)
(
𝑰 +O

(
𝜁−1/2

))
exp

{
2𝜁1/2𝜎3

}
where 𝑺(𝜁) :=

𝜁−𝜎3/4
√

2

(
1 i
i 1

)
and we take the principal branch of 𝜁1/4.

Explicit construction of this matrix can be found in [14] (it uses modified Bessel and Hankel
functions). Observe that

(70) 𝑺+ (𝜁) = 𝑺− (𝜁)
(

0 1
−1 0

)
,

since the principal branch of 𝜁1/4 satisfies 𝜁1/4
+ = i𝜁1/4

− .

6.6.2. Conformal Map. In this section we define a conformal map that will carry 𝑈𝑎 into
𝜁-plane. Set

(71) 𝜁𝑎 (𝑧) :=
(
1
4

log
(
𝑧/𝜑2 (𝑧)

) )2
, 𝑧 ∈𝑈𝑎,

where the function 𝜑 is given by (8). It follows from (9) that 𝜁𝑎 is holomorphic across 𝐹𝑎.
It also follows from the explicit representation of 𝜑 that 𝜁𝑎 vanishes at 𝑎. Moreover, since

𝑧

𝜑2 (𝑧)
= 1− 2𝑤(𝑧)

𝑧+ 𝑏 +𝑤(𝑧) ,

the zero of 𝜁𝑎 at 𝑎 is necessarily simple. Notice also that |𝜑+ | = |𝜑− | on [𝑎−1, 𝑎] and
therefore |𝑠/𝜑2

± (𝑠) | ≡ 1 there according to (9). Hence, 𝜁𝑎 maps 𝐹𝑎 into the negative reals.
It is also simple to check that the rest of the reals in 𝑈𝑎 are mapped into the positive reals
by 𝜁𝑎. Set

𝑈±
𝑎 :=𝑈𝑎 ∩

{ {
± Im(𝑧) > 0

}
, 𝑎 < 0,{

∓ Im(𝑧) > 0
}
, 𝑎 > 0.

It should be clear from the previous discussion that 𝜁𝑎 (𝑈±
𝑎 ) ⊂

{
± Im(𝑧) > 0

}
. Let Γ±

0 :=
Γ0 ∩𝑈±

𝑎 . Notice that according to the chosen orientation of Γ0, Γ+
0 is oriented towards 𝑎
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and Γ−
0 is oriented away from 𝑎. As we have had some freedom in choosing the curve Γ0,

we shall choose it so that 𝜁𝑎 (Γ±
0 ) ⊂ 𝐼±.

Finally, in what follows we understand under 𝜁1/2
𝑎 the branch given by the expression in

parenthesis in (71) with the branch cut along 𝐹𝑎. In particular, it holds that

(72) exp
{
2𝑛𝜁1/2

𝑎 (𝑧)𝜎3

}
= 𝑧−𝑛𝜎3/2𝑫 (𝑧),

where the matrix 𝑫 was defined in (68). Similarly, we let 𝜁1/4
𝑎 to be the branch that maps

𝑈𝑎 into the sector | arg(𝑧) | < 𝜋/4. For instance, it holds that 𝜁1/4
𝑎+ = i𝜁1/4

𝑎− on 𝐹𝑎.

6.6.3. Matrix 𝑷𝑎. Under the conditions placed on the class W1, it holds that

𝜌(𝑧) = ℎ∗ (𝑧)
𝑤(𝑧)

{
(𝑎− 𝑧)𝛼+1/2, 𝑎 < 0,
(𝑧− 𝑎)𝛼+1/2, 𝑎 > 0,

𝑧 ∈𝑈𝑎 \ [−1,1],

where ℎ∗ is non-vanishing and holomorphic in 𝑈𝑎, 𝛼 > −1, and the 𝛼-roots are principal.
Recall also that 𝜌 on 𝐹𝑎 is defined as the trace of 𝜌 |𝑈+

𝑎
on 𝐹𝑎. This can be equivalently

stated as

𝜌(𝑧) = ±𝜌∗ (𝑧)
{

(𝑎− 𝑧)𝛼/2, 𝑎 < 0,
(𝑧− 𝑎)𝛼/2, 𝑎 > 0,

𝑧 ∈𝑈±
𝑎 ,

where 𝜌∗ is non-vanishing and holomorphic in𝑈𝑎. Set

𝑟𝑎 (𝑧) :=
√︁
𝜌∗ (𝑧)

{
(𝑧− 𝑎)𝛼/2, 𝑎 < 0,
(𝑎− 𝑧)𝛼/2, 𝑎 > 0,

where the branches are again principal. Then 𝑟𝑎 is a holomorphic and non-vanishing
function in𝑈𝑎 \𝐹𝑎 that satisfies

𝑟𝑎+ (𝑠)𝑟𝑎− (𝑠) = 𝜌(𝑠), 𝑠 ∈ 𝐹◦
𝑎 ∩𝑈𝑎,

𝑟2
𝑎 (𝑧) = 𝜌(𝑧)𝑒𝜋i𝛼, 𝑧 ∈ Γ+

0 ,

𝑟2
𝑎 (𝑧) = −𝜌(𝑧)𝑒−𝜋i𝛼, 𝑧 ∈ Γ−

0 .

The above relations and RHP-𝚿𝛼(a,b,c) imply that

(73) 𝑷𝑎 (𝑧) := 𝑬𝑎 (𝑧)𝚿𝛼

(
𝑛2𝜁𝑎 (𝑧)

)
𝑧𝑛𝜎3/2𝑟−𝜎3

𝑎 (𝑧)

satisfies RHP-𝑷𝑒(a,b,c), where 𝑬𝑎 is a holomorphic matrix function (notice that the orien-
tation of 𝜁𝑎 (Γ−

0 ) is opposite from the orientation of 𝐼−). It further follows from RHP-𝑵(b),
(9), and (70) that

(74) 𝑬𝑎 (𝑧) :=
(
𝑴𝑫−1) (𝑧)𝑟𝜎3

𝑎 (𝑧)𝑺−1 (𝑛2𝜁𝑎 (𝑧)
)

is holomorphic in𝑈𝑎 \ {𝑎}. Since |𝑟𝑎 (𝑧) | ∼ |𝑧− 𝑎 |𝛼/2, 𝑺−1 (𝑛2𝜁𝑎 (𝑧)
)
∼ |𝑧− 𝑎 |𝜎3/4, and

𝑴 (𝑧) =
(
|𝑧− 𝑎 |−𝛼/2−1/4 |𝑧− 𝑎 |𝛼/2−1/4

|𝑧− 𝑎 |−𝛼/2−1/4 |𝑧− 𝑎 |𝛼/2−1/4

)
,

𝑬𝑎 is in fact holomorphic in 𝑈𝑎. Finally, RHP-𝑷𝑒(d) follows now from (72) and RHP-
𝚿𝛼(d).

7. Proof of Theorem 4 when 𝜌 ∈W1

As usual, Sections 4.1–4.2 translate identically to the present case after RHP-𝒀(c) is
replaced by (66).
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(a) 𝑣 = 𝑏

𝑣

𝐹1𝐹−1

𝐹𝑎

Γ∞

Γ0

Γ𝑣,−1

Γ𝑣

Ω𝑣,1

Ω∞,1

Ω0,1

⊕ ⊕

	 	

⊕ 	

(b) 𝑣 = 𝑏−1

𝑣

𝐹1𝐹−1

𝐹𝑎−1

Γ0

Γ∞

Γ𝑣,−1

Γ𝑣

Ω𝑣,1

Ω0,1

Ω∞,1

	 	

⊕ ⊕

	 ⊕

Figure 4. Schematic representation of the set 𝐹 (thiner arcs), arcs Γ𝑣 , Γ𝑣,−1
(labeled), and Γ𝑣,1 (not labeled, placed symmetrically across Γ𝑣,−1), and the
domains Ω∞,1, Ω0,1, Ω𝑣,1 (labeled) and Ω∞,−1, Ω0,−1, Ω𝑣,−1 (not labeled,
placed symmetrically across the labeled ones) locally around 𝑣 ∈ {𝑏, 𝑏−1}. The
symbols ⊕ and 	 indicated whether the corresponding domain is a part of Ω+ or
Ω−.

7.1. Opening of Lenses. We choose Γ0,Γ∞ as in Section 4.3 except for requiring Γ0 to
touch 𝐹 at 𝑎 and Γ∞ to touch 𝐹 at 𝑎−1, see Figure 4. Moreover, we also introduce open
oriented arcs Γ𝑣,1,Γ𝑣,−1,Γ𝑣 connecting 𝑣 to Γ0 ∪Γ∞, 𝑣 ∈

{
𝑏, 𝑏−1}, as shown on Figure 4.

Besides the interior domain of Γ0 and the exterior domain of Γ∞, the union of the introduced
arcs, say Γ, together with 𝐹 delimits eight domains that we label as on Figure 4. Observe
that 𝜌 has holomorphic and non-vanishing extension to each of these eight domains (we
can bring arcs Γ0,Γ∞ closer to 𝐹 if necessary). We assume that all the introduced arcs are
smooth. Define

(75) 𝑿 (𝑧) := 𝒀 (𝑧)


(

1 0
±𝑧𝑛/𝜌(𝑧) 1

)
, 𝑧 ∈ Ω±,

𝑰, otherwise.

where Ω+ := Ω∞,1 ∪Ω∞,−1 ∪Ω𝑏,−1 ∪Ω𝑏−1 ,1 and Ω− := Ω0,1 ∪Ω0,−1 ∪Ω𝑏,1 ∪Ω𝑏−1 ,−1. Then
the Riemann-Hilbert problem for 𝑿 can be formulated as follows:

(a) 𝑿 is analytic in C \ (𝐹 ∪Γ) and lim
𝑧→∞

𝑿 (𝑧)𝑧−𝑛𝜎3 = 𝑰;
(b) 𝑿 has continuous traces at the smooth points of 𝐹 ∪Γ that satisfy

𝑿+ (𝑠) = 𝑿− (𝑠)
(

0 𝜌(𝑠)/𝑠𝑛
−𝑠𝑛/𝜌(𝑠) 0

)
,

for 𝑠 ∈ 𝐹◦, as well as

𝑿+ (𝑠) = 𝑿− (𝑠)
(

1 0
±𝑠𝑛/𝜌(𝑠) 1

)
,

for 𝑠 ∈
(
Γ0 ∪Γ∞

)
\
{
𝑎, 𝑎−1}, where we need to use the sign − for the portion of Γ0

bordering Ω𝑏,−1 and the part of Γ∞ bordering Ω𝑏−1 ,−1, and

𝑿+ (𝑠) = 𝑿− (𝑠)
(

1 0
𝑠𝑛𝑅(𝑠) 1

)
,
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for 𝑠 ∈ ∪𝑣∈{𝑏,𝑏−1 }
(
Γ𝑣∪Γ𝑣,1∪Γ𝑣,−1

)
, where we put 𝜌𝑒 := 𝜌 |𝐹𝑒

for 𝑒 ∈
{
𝑎, 𝑎−1,1,−1

}
and set

𝑅(𝑠) :=


−𝜌𝑎±1 (𝑠)/(𝜌1𝜌−1) (𝑠), 𝑠 ∈ Γ𝑏±1 ,

𝜌1 (𝑠)/(𝜌−1𝜌𝑎±1 ) (𝑠), 𝑠 ∈ Γ𝑏±1 ,−1,

𝜌−1 (𝑠)/(𝜌𝑎±1𝜌1) (𝑠), 𝑠 ∈ Γ𝑏±1 ,1;
(c) 𝑿 satisfies RHP-𝒀(c) except around 𝑎 within Ω𝑏,1 ∪Ω𝑏,−1 where it behaves like

(67).
With the above changes, Lemma 12 holds with (57) replaced by (75).

7.2. Model and Local RH Problems. Model Riemann-Hilbert problem RHP-𝑵 is for-
mulated and solved exactly as in the case 𝜌 ∈W2 for 𝑛 ∈ N𝜀 .

Let now 𝑈𝑒 be an open set around 𝑒 ∈ 𝐸 . In the case of 𝑈𝑏±1 we shall further assume
that these sets do not intersect Γ0 ∪Γ∞ and completely contain Γ𝑏±1 ,Γ𝑏±1 ,1,Γ𝑏±1 ,−1, see
Figure 5. Define 𝑫 (𝑧) := Φ(𝒛)𝑛𝜎3 , 𝒛 ∈ 𝐷Q , where Φ is given by (35) and the open set 𝐷Q

𝑈𝑏±1

𝑈𝑎±1

𝑏±1

Figure 5. Schematic representation of the open sets𝑈𝑒 for 𝑒 ∈ 𝐸 .

was defined just before Theorem 5. As in Section 6.3 we shall need to solve RHP-𝑷𝑒 for
all 𝑒 ∈ 𝐸 . As in the previous proof, we postpone the construction of these matrix-functions
until the end of the section.

7.3. RH Problem with Small Jumps. Let

Σ =
⋃
𝑒∈𝐸

𝜕𝑈𝑒 ∪
[ (
Γ0 ∪Γ∞) \

⋃
𝑒∈𝐸

𝑈𝑒

]
.

The Riemann-Hilbert problem RHP-𝒁 now needs to be formulated as follows:
(a) 𝒁 is a holomorphic matrix function in C \Σ and 𝒁(∞) = 𝑰;
(b) 𝒁 has continuous traces on

(
Γ0 ∪Γ∞

)
\⋃𝑒∈𝐸𝑈𝑒 that satisfy

𝒁+ (𝑠) = 𝒁− (𝑠)𝑴 (𝑠)
(

1 0
±𝑠𝑛/𝜌(𝑠) 1

)
𝑴−1 (𝑠),

where the choice of the sign ± is the same as in the second relation in RHP-𝑿(b);
and

𝒁+ (𝑠) = 𝒁− (𝑠)
(
𝑷𝑒𝑴

−1) (𝑠)
on 𝜕𝑈𝑒 for each 𝑒 ∈ 𝐸 .

Then the following lemma takes place.

Lemma 15. For 𝑛 ∈ N𝜀 large enough, a solution of RHP-𝒁 exists and satisfies 𝒁 =

𝑰 +O
(
1/𝑛

)
where O(·) holds uniformly in C and depends on 𝜀.
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Proof. The proof of the fact that the jump of 𝒁 is geometrically small on
(
Γ0 ∪ Γ∞

)
\⋃

𝑒∈𝐸𝑈𝑒 is the same as in the case 𝜌 ∈W2. Furthermore, we have that

𝑷𝑒𝑴
−1 = 𝑰 +𝑴𝑫−1O(1/𝑛)𝑫𝑴−1

on 𝜕𝑈𝑒. It follows from (26), (27), (48), and the equality Φ(𝒛)Φ(𝒛∗) = 𝑧, see Lemma 6,
that the first row of 𝑴𝑫−1 is equal to(

(𝐴𝑛𝜏+𝑚𝑛
𝑆ℎΘ𝑛) (𝒛) ±(𝐴𝑛𝜏+𝑚𝑛

𝑆ℎΘ𝑛) (𝒛∗)
)
, 𝒛 ∈ 𝐷Q .

It was shown in the course of the proof of Theorem 5 that these functions have uniformly
bounded above moduli on compact subsets of C. Similarly, one can show that the same is
true for the second row of 𝑴𝑫−1 as well. Since

det
(
𝑴𝑫−1) = det(𝑴) =

(
𝛾𝑛𝛾

★
𝑛−1

)−1
,

and the constants |𝛾𝑛𝛾★𝑛−1 | are uniformly bounded above for all 𝑛 ∈ N𝜀 , we get that the
jump of 𝒁 is of order 𝑰+O(1/𝑛) on 𝜕𝑈𝑒 for each 𝑒 ∈ 𝐸 . The conclusion of the lemma now
follows as in the case 𝜌 ∈W2. �

7.4. Asymptotics. Formulae (28) follow now exactly as in the case 𝜌 ∈W2.

7.5. Solution of RHP-𝑷𝑒 for 𝑒 ∈
{
𝑎, 𝑎−1}. As in Section 6.6, we shall only construct the

matrix 𝑷𝑎. The construction is still based on the matrix function 𝚿𝛼 solving RHP-𝚿𝛼.
Again, we start by defining a special conformal map around 𝑎.

7.5.1. Conformal Map. With the notation used in Section 3.1, define

(76) 𝜁𝑎 (𝑧) :=
(
−
∫ 𝑧

𝑎

𝑣(𝑠)
4𝑠

d𝑠
)2
, 𝑧 ∈𝑈𝑎 .

Since 𝑣+ = −𝑣− on 𝐹◦
𝑎 , 𝜁𝑎 is holomorphic in 𝑈𝑎. Moreover, since 𝑣 has a square-root

singularity at 𝑎, 𝜁𝑎 has a simple zero at 𝑎. Thus, we can choose 𝑈𝑎 small enough so that
𝜁𝑎 is conformal in 𝑈𝑎. Recall that 𝑣(𝑠)d𝑠/𝑠 is purely imaginary on 𝐹◦

𝑎 , see the last part
of the proof of Lemma 6. Therefore, 𝜁𝑎 maps 𝐹𝑎 into the negative reals. As we have had
some freedom in choosing the curve Γ0, we shall choose it within𝑈𝑎 so that the part of Γ0
bordering Ω𝑏,1, say Γ+

0 , is mapped into 𝐼+ and the part bordering Ω𝑏,−1, say Γ−
0 , is mapped

into 𝐼−. Notice that the orientation of 𝜁𝑎 (Γ−
0 ) is the opposite from the one of 𝐼−.

In what follows, we understand under 𝜁1/2
𝑎 the branch given by the expression in paren-

thesis in (76). Equations (33) and (35) yield that

𝜁𝑎 (𝑧) =
(
1
4

log
(
Φ

(
𝑧 (0)

)
/Φ

(
𝑧 (1)

) ))2
, 𝑧 ∈𝑈𝑎 .

AsΦ(𝒛)Φ(𝒛∗) ≡ 𝑧, relation (72) remains valid for 𝜁𝑎 as above and 𝑫 (𝑧) =Φ(𝒛)𝑛𝜎3 , 𝒛 ∈ 𝐷Q .
Finally, as in the case of real 𝑎, it still holds that 𝜁1/4

𝑎+ = i𝜁1/4
𝑎− on 𝐹𝑎.

7.5.2. Matrix 𝑷𝑎. Let 𝐽𝑎 be the arc in 𝑈𝑎 emanating from 𝑎 such that 𝜁𝑎 (𝐽𝑎) ⊂ [0,∞).
According to the conditions placed on the class W1, it holds that

𝜌(𝑧) = 𝜌∗ (𝑧) (𝑧− 𝑎)𝛼,

where 𝜌∗ is non-vanishing and holomorphic in𝑈𝑎 and (𝑧−𝑎)𝛼 is the branch holomorphic
in𝑈𝑎 \ 𝐽𝑎. Set𝑈±

𝑎 to be connected components of𝑈𝑎 \ (𝐹𝑎 ∪ 𝐽𝑎) containing Γ±
0 . Define

𝑟𝑎 (𝑧) :=
√︁
𝜌∗ (𝑧) (𝑎− 𝑧)𝛼/2,

where the branch (𝑎− 𝑧)𝛼/2 is holomorphic in𝑈𝑎 \𝐹𝑎 and chosen so

(𝑎− 𝑧)𝛼 = 𝑒±𝜋i𝛼 (𝑧− 𝑎)𝛼, 𝑧 ∈𝑈±
𝑎 .
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Then 𝑟𝑎 is a holomorphic and non-vanishing function in𝑈𝑎 \𝐹𝑎 and satisfies{
𝑟𝑎+ (𝑠)𝑟𝑎− (𝑠) = 𝜌(𝑠), 𝑠 ∈ 𝐹𝑎 ∩𝑈𝑎,

𝑟2
𝑎 (𝑧) = 𝜌(𝑧)𝑒±𝜋i𝛼, 𝑧 ∈ Γ±

0 .

It can be readily verified now that a solution of RHP-𝑷𝑒 for 𝑒 = 𝑎 is given by (73), (74).

7.6. Solution of RHP-𝑷𝑒 for 𝑒 ∈
{
𝑏, 𝑏−1}. We shall construct 𝑷𝑏−1 only as the construction

of 𝑷𝑏 is almost identical.

7.6.1. Model Problem. Recall (69). Let 𝚿 be a matrix-valued function such that
(a) 𝚿 is holomorphic in C \

(
𝐼+∪ 𝐼−∪ (−∞,∞)

)
;

(b) 𝚿 has continuous traces on 𝐼+∪ 𝐼−∪ (−∞,0) ∪ (0,∞) that satisfy

𝚿+ = 𝚿−



(
0 1
−1 0

)
on (−∞,0),(

1 0
1 1

)
on 𝐼±,(

1 1
0 1

)
on (0,∞);

(c) 𝚿(𝜁) = O(1) as 𝜁 → 0;
(d) 𝚿 has the following behavior near ∞:

𝚿(𝜁) = 𝑺(𝜁)
(
𝑰 +O

(
𝜁−3/2

))
exp

{
−2

3
𝜁3/2𝜎3

}
uniformly in C \

(
𝐼+∪ 𝐼−∪ (−∞,∞)

)
, where 𝑺(𝜁) was defined in RHP-𝚿𝛼(d).

Such a matrix function was constructed in [8] with the help of Airy functions.

7.6.2. Conformal Map. With the notation used in Section 3.1, define

(77) 𝜁𝑏−1 (𝑧) :=
(
−3

4

∫ 𝑧

𝑏−1

𝑣(𝑠)
𝑠

d𝑠
)2/3

, 𝑧 ∈𝑈𝑏−1 .

Because 𝑣+ = −𝑣− on 𝐹◦
𝑎−1 , 𝜁3

𝑏−1 is holomorphic in 𝑈𝑏−1 . Moreover, since 𝑣 vanishes as a
square root when 𝑧→ 𝑏−1, 𝜁3

𝑏−1 has a cubic zero at 𝑏−1 and therefore 𝜁𝑏−1 is holomorphic
in𝑈𝑏−1 . The size of𝑈𝑏−1 can be adjusted so that 𝜁𝑏−1 is conformal in𝑈𝑏−1 . Recall that the
integral of 𝑣(𝑠)d𝑠/𝑠 is purely imaginary on 𝐹. Hence, we can select such a branch in (77)
that

𝜁𝑏−1 (𝐹𝑎−1 ∩𝑈𝑏−1 ) ⊂ (−∞,0] .
Moreover, we always can adjust the system of arcs Γ so that

𝜁𝑏−1 (Γ𝑏−1 ,−1) ⊂ 𝐼+, 𝜁𝑏−1 (Γ𝑏−1 ,1) ⊂ 𝐼−, and 𝜁𝑏−1 (Γ𝑏−1 ) ⊂ (0,∞).

In what follows, we understand under 𝜁3/2
𝑏−1 the branch given by the expression in parenthesis

in (77) and select the branch of 𝜁1/4
𝑏−1 with the cut along 𝐹𝑎−1 satisfying 𝜁1/4

𝑏−1+ = i𝜁1/4
𝑏−1−.

Let 𝑧 ∈𝑈𝑏−1 \ (𝐹𝑎−1 ∪𝐹1) belong to the component containing𝐹−1, say𝑈1
𝑏−1 , see Figures 4

and 5. Let 𝛾 be a path from 𝑎 to 𝑏−1 and 𝛾𝑧 be a path from 𝑏−1 to 𝑧 that lie entirely in𝑈1
𝑏−1 .

As usual denote by 𝐵 (𝑖) the lift of the set 𝐵 to 𝕾 (𝑖) . Then

(78) 𝛾 (0) ∪𝛾 (0)𝑧 and 𝛾 (0) ∪𝜶∪ 𝜷∪𝛾 (1)𝑧

are paths from 𝒂 to 𝑧 (0) and 𝑧 (1) , respectively, that belong to𝕾𝜶,𝜷 (technically, 𝜶, 𝜷 in (78)
need to be deformed into homologous cycles that belong to 𝕾𝜶,𝜷). Then by using (78) in
(35) and recalling (34), we get that

Φ
(
𝑧 (0)

)
/Φ

(
𝑧 (1)

)
= exp

{
2𝜋i(𝜔− 𝜏) + 4

3
𝜁

3/2
𝑏−1 (𝑧)

}
.
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Let now 𝑧 ∈ 𝑈𝑏−1 \ (𝐹𝑎−1 ∪ 𝐹1) be in the component that does not contain 𝐹−1, say 𝑈2
𝑏−1 .

Choose 𝛾𝑧 to be a part of this component. Then

(79) 𝛾 (0) ∪𝛾 (0)𝑧 and 𝛾 (0) ∪𝜶∪−𝜷∪𝛾 (1)𝑧

are paths from 𝒂 to 𝑧 (0) and 𝑧 (1) , respectively, that belong to𝕾𝜶,𝜷 (with the same caveat as
before). Thus, we get from (79), (35), and (34) that

Φ
(
𝑧 (0)

)
/Φ

(
𝑧 (1)

)
= exp

{
−2𝜋i(𝜔+ 𝜏) + 4

3
𝜁

3/2
𝑏−1 (𝑧)

}
.

Altogether, we get that

(80) exp
{
−2

3
𝑛𝜁

3/2
𝑏−1 (𝑧)

}
=

(
𝑲𝑱𝑫

)
(𝑧)𝑧−𝑛𝜎3/2𝑱−1 (𝑧),

where

𝑱(𝑧) =


(

0 1
−1 0

)
, 𝑧 ∈ 𝐷0 ∩𝑈𝑏−1 ,

𝑰, otherwise,

and

𝑲 (𝑧) :=

{
𝑒𝜋i(𝜔−𝜏)𝑛𝜎3 , 𝑧 ∈𝑈1

𝑏−1 ,

𝑒−𝜋i(𝜔+𝜏)𝑛𝜎3 , 𝑧 ∈𝑈2
𝑏−1 .

7.6.3. Matrix 𝑷𝑏−1 . Set

𝑟𝑏−1 (𝑧) :=


√︁
(𝜌1𝜌𝑎−1 ) (𝑧)/𝜌−1 (𝑧), 𝑧 ∈𝑈2

𝑏−1 ,√︁
(𝜌1𝜌−1) (𝑧)/𝜌𝑎−1 (𝑧), 𝑧 ∈ 𝐷0 ∩𝑈1

𝑏−1 ,√︁
(𝜌𝑎−1𝜌−1) (𝑧)/𝜌1 (𝑧), 𝑧 ∈ 𝐷∞∩𝑈1

𝑏−1 .

Then it follows from RHP-𝚿(a,b,c) that

𝑷𝑏−1 (𝑧) := 𝑬𝑏−1 (𝑧)𝚿
(
𝑛2/3𝜁𝑏−1 (𝑧)

)
𝑱(𝑧)𝑧𝑛𝜎3/2𝑟−𝜎3

𝑏−1 (𝑧)

satisfies RHP-𝑷𝑒(a,b,c) for 𝑒 = 𝑏−1, where 𝑬𝑏−1 is a holomorphic matrix in 𝑈𝑏−1 . Thus, it
only remains to choose 𝑬𝑏−1 so that RHP-𝑷𝑒(d) is fulfilled. Set

𝑬𝑏−1 (𝑧) := 𝑴 (𝑧)𝑫−1 (𝑧)𝑟𝜎3
𝑏−1 (𝑧)𝑱−1 (𝑧)𝑲−1 (𝑧)𝑺−1 (𝑛2/3𝜁𝑏−1 (𝑧)

)
.

Recall that 𝑫 (𝑧) = Φ𝑛𝜎3 (𝒛) for 𝒛 ∈ 𝐷Q . Denote the (1,1)-entry of 𝑫 (𝑧) by 𝑑 (𝑧). Then

(81) (𝑑−𝑑+) (𝑠) =


Φ𝑛

(
𝑠 (1)

)
Φ𝑛

(
𝑠 (0)

)
, 𝑠 ∈ 𝐹−1,

Φ𝑛
+
(
𝑠 (1)

)
Φ𝑛

+
(
𝑠 (0)

)
, 𝑠 ∈ 𝐹1,

Φ𝑛
+
(
𝒔
)
Φ𝑛

+
(
𝒔∗

)
, 𝑠 ∈ 𝐹𝑎−1 ,

= 𝑠𝑛


1, 𝑠 ∈ 𝐹−1,

𝑒2𝜋i𝜔𝑛, 𝑠 ∈ 𝐹1,

𝑒2𝜋i𝜏𝑛, 𝑠 ∈ 𝐹𝑎−1 ,

by the property Φ(𝒛)Φ(𝒛∗) = 𝑧 and (36), where the traces of 𝑑 (𝑧) are taken on the arcs in
the complex plane and the traces of Φ(𝒛) are taken on the cycles on 𝕾. Using RHP-𝑵(b),
(70), (81), and the explicit definitions of 𝑟𝑏−1 , 𝑱, and 𝑲, it is tedious but straightforward to
check that 𝑬𝑏−1 is holomorphic in𝑈𝑏−1 \

{
𝑏−1}. It also follows from (24) and the behavior

of 𝑺 at zero that

𝑬𝑏−1 (𝑧) =
(
1 |𝑧− 𝑏−1 |−1/2

1 |𝑧− 𝑏−1 |−1/2

)
which yields that it is, in fact, holomorphic on the whole set𝑈𝑏−1 . The relation RHP-𝑷𝑒(d)
now follows from RHP-𝚿(d) and (80).
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