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Abstract. Given a function f holomorphic at infinity, the n-th diagonal Padé approximant
to f, denoted by [n/n]f, is a rational function of type (n,n) that has the highest order of
contact with f at infinity. Nuttall’s theorem provides an asymptotic formula for the error of
approximation f− [n/n]f in the case where f is the Cauchy integral of a smooth density
with respect to the arcsine distribution on [−1,1]. In this note, Nuttall’s theorem is extended
to Cauchy integrals of analytic densities on the so-called algebraic S-contours (in the sense
of Nuttall and Stahl).

1 introduction

Let

(1) f(z) =
∑
k>0

fkz
−k

be a convergent power series. A diagonal Padé approximant to f at infinity is a rational
function that has the highest order of contact with f at infinity [18, 5]. More precisely, let
(Pn,Qn) be a pair of polynomials, each of degree at most n, satisfying

(2) Rn(z) :=
(
Qnf− Pn

)
(z) = O

(
1/zn+1

)
as z→∞.

It is not hard to verify that the above relation can be equivalently written as a linear
system in terms of the Laurent coefficients of f, Pn, and Qn with one more unknown than
equations. Therefore the system is always solvable and no solution of it can be such that
Qn ≡ 0 (we may thus assume that Qn is monic). In general, a solution of (2) is not unique.
However, if (Pn,Qn) and (P̃n, Q̃n) are two distinct solutions, then PnQ̃n − P̃nQn ≡ 0

since this difference must behave like O(1/z) near the point at infinity as easily follows
from (2). Thus, each solution of (2) is of the form (LPn,LQn), where (Pn,Qn) is the
unique solution of minimal degree. Hereafter, (Pn,Qn) will always stand for this unique
pair of polynomials. A diagonal Padé approximant to f of type (n,n), denoted by [n/n]f, is
defined as [n/n]f := Pn/Qn.

We say that a function f of the form (1) belongs to the class S if it has a meromorphic
continuation along any arc originating at infinity that belongs to C \ Ef, cp(Ef) = 0, and
there are points in C \ Ef to which f possesses distinct continuations.1 Given f ∈ S, a
compact set K is called admissible if C \ K is connected and f has a meromorphic and
single-valued extension there. The following theorems summarize one of the fundamental
contributions of Herbert Stahl to complex approximation theory [21, 22, 23, 24].

Theorem (Stahl). Given f ∈ S, there exists the unique admissible compact ∆f such that cp(∆f) 6
cp(K) for any admissible compact K and ∆f ⊆ K for any admissible K satisfying cp(∆f) = cp(K).
Furthermore, Padé approximants [n/n]f converge to f in logarithmic capacity in Df := C \ ∆f.
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1 cp(·) stands for logarithmic capacity [20].
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2 introduction

The domain Df is optimal in the sense that the convergence does not hold in any other domain D
such that D \Df 6= ∅.

The minimal capacity set ∆f, the boundary of the extremal domain Df, has a rather
special structure.

Theorem (Stahl). It holds that
∆f = E0 ∪ E1 ∪

⋃
∆j,

where E0 ⊆ Ef, E1 consists of isolated points to which f has unrestricted continuations from the
point at infinity leading to at least two distinct function elements, and ∆j are open analytic arcs.

Moreover, the set ∆f possesses Stahl’s symmetry property.

Theorem (Stahl). Let ∂/∂n± be the one-sided normal derivatives on
⋃
∆j. It holds that

∂g∆f
∂n+

=
∂g∆f
∂n−

on
⋃
∆j,

where g∆f is Green’s function with pole at infinity for Df.

Finally, the arcs ∆j can be described as trajectories of a certain quadratic differential.

Theorem (Stahl). Let h∆f(z) = 2∂zg∆f(z), where 2∂z := ∂x − i∂y. The function h2∆f is
holomorphic inDf, has a zero of order 2 at infinity, and the arcs ∆j are negative critical trajectories
of the quadratic differential h2∆f(z)dz

2. That is, for any smooth parametrization z(t) : (0, 1)→ ∆j

it holds that h2∆f(z(t))
(
z′(t)

)2
< 0 for all t ∈ (0, 1).

If f ∈ S is an algebraic function, then the set Ef is finite and so is the collection
⋃
∆j.

This motivated the following definition.

Definition 1. A compact set ∆ is called an algebraic S-contour if the complement of ∆, say D, is
connected,

∆ = E0 ∪ E1 ∪
⋃
∆j,

where
⋃
∆j is a finite union of open analytic arcs, E0 ∪ E1 is a finite set of points such that each

element of E0 is an endpoint of exactly one arc ∆j while each element of E1 is an endpoint of at
least three arcs, and

∂g∆
∂n+

=
∂g∆
∂n−

on
⋃
∆j,

where g∆ is Green’s function for D with pole at infinity.

Any algebraic S-contour is a minimal capacity contour for some algebraic function f.
Given ∆, an eligible function f∆ ∈ S can be constructed in the following way. Denote
by m the number of connected components of ∆, by E0j the intersection of E0 with the
j-th connected component, and by mj the cardinality of E0j. Then one can take f∆(z) =∑m
j=1

(∏
e∈E0j(z− e)

)−1/mj .
Algebraic S-contours admit a description via critical trajectories of rational quadratic

differentials. For such a contour ∆, set

(3) h∆(z) := 2∂zg∆(z).

For each point e ∈ E0 ∪ E1 denote by i(e) the bifurcation index of e, that is, the number
of different arcs ∆j incident with e. It follows immediately from the definition of an
algebraic S-contour that i(e) = 1 for e ∈ E0 and i(e) > 3 for e ∈ E1. Denote also by E2 the
set of critical points of g∆ with j(e) standing for the order of e ∈ E2, i.e., ∂jzg∆(e) = 0 for
j ∈ {1, . . . , j(e)} and ∂j(e)+1z g∆(e) 6= 0. The set E2 is necessarily finite.

Theorem (Perevoznikova-Rakhmanov) [19]. Let ∆ be an algebraic S-contour. Then the arcs
∆j are negative critical trajectories of the quadratic differential h2∆(z)dz

2. Moreover,

h2∆(z) =
∏

e∈E0∪E1

(z− e)i(e)−2
∏
e∈E2

(z− e)2j(e)

and h2∆(z) = z
−2 +O

(
z−3

)
as z→∞.
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The reason to restrict our attention from all possible S-contours to the algebraic ones is
that one might hope for a stronger convergence than convergence in capacity. Indeed, it
was suggested by Nuttall [15] that if

(4) fρ(z) :=
1

2πi

∫
∆

(ρ/w+
∆)(t)

t− z
dt, z ∈ C \∆,

where ρ is a Hölder continuous and non-vanishing function on an algebraic S-contour ∆
and

(5) w2∆(z) :=
∏
e∈E∆

(z− e)

with E∆ being the subset of E0 ∪ E1 consisting of points having odd bifurcation index,
then the diagonal Padé approximants [n/n]fρ converge to fρ “nearly” uniformly in D (uni-
formly if ∆ is an interval). The absence of the uniform convergence is due to the presence
of a finite number of “wandering” or “spurious” poles [13, 25], see the discussion after
Theorem 5 further below. The presence of these poles was already observed by Akhiezer
[2, Section 53] and [1], who considered the case of ∆ being a union of several real inter-
vals and ρ being a positive polynomial on ∆ (the so-called Bernstein-Szegő case). Nuttall
himself, in the joint work with Singh [17], extended Akhiezer’s method to an arbitrary
algebraic S-contour and an arbitrary non-vanishing polynomial (getting rid of positivity).
Later, Nuttall showed the validity of his claim on an interval [16] using the method of the
singular integral equations. With the help of this method, Nuttall’s claim has been verified
by Suetin [26, 27] when ∆ is a disjoint union of analytic arcs and by Baratchart and the
author [7] when ∆ is a union of three arcs meeting at one point. Martı́nez Finkelshtein,
Rakhmanov, and Suetin also considered the case of connected algebraic S-contours and
semi-classical weights using WKB analysis [9]. In this note we prove Nuttall’s theorem on
an arbitrary algebraic S-contour but only when ρ in (4) is holomorphic and non-vanishing
in a neighborhood of ∆. The proof of the full Nuttall’s theorem will appear elsewhere
[29].

This note is complimentary to [4] by Aptekarev and the author, where the same problem
is considered but it is only required that ρ is holomorphic across each ∆j and can vanish
or blow up at the points of E0 ∪ E1. However, [4] places the restriction on the algebraic
S-contours requiring the bifurcation index i(e) to be either 1 or 3 (no such restriction is
present here). This note as well as [4] uses the matrix Riemann-Hilbert approach that
requires local analysis around the points in E0 ∪ E1 unless the weight is precisely as in
(4) with ρ non-vanishing and holomorphic (this was first observed by Aptekarev and
Van Assche for the case of an interval [3]). This is the sole reason for the difference in
assumptions between [4] and this note.

This paper is organized as follows. In the next section we construct the Riemann surface
of h∆, which turns out to be the “correct” domain of definition for the functions describ-
ing the asymptotics of Padé approximants. The latter functions are then introduced as
solutions to a certain family of boundary value problems on the constructed surface. With
these preliminaries out of the way, we prove the main result in the last section.

2 boundary value problem

Fix an algebraic S-contour ∆ with complement D and let h∆ be given by (3).

2.1 Riemann Surface

Denote by R the Riemann surface defined by h∆ or equivalently by w∆. We represent
R as a two-sheeted ramified cover of C constructed in the following manner. Two copies
of C are cut along each arc ∆j. These copies are clipped together at the elements of
E∆ ⊆ E0 ∪ E1 (branch points of h∆). They are further glued together along the cuts in
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such a manner that the right (resp. left) side of the arc ∆j belonging to the first copy,
say R(0), is joined with the left (resp. right) side of the same arc ∆j only belonging to
the second copy, R(1). The genus of R, which we denote by g, satisfies the equality
2(g+ 1) = |E∆|.

According to the above construction, each arc ∆j together with its endpoints corre-
sponds to a cycle, say ∆j, on R. We set ∆ :=

⋃
j∆j, denote by π the canonical projection

π : R→ C, and define

D(k) := R(k) ∩ π−1(D) and z(k) := D(k) ∩ π−1(z)

for k ∈ {0, 1} and z ∈ D. We further set E∆ := π−1(E∆), which is comprised exactly of
the ramification points of R. The cycles ∆j are oriented so that D(0) remains on the left
when ∆j is traversed in the positive direction. We designate the symbol ·∗ to stand for the
conformal involution acting on the points of R that fixes the ramification points E∆ and
sends z(k) into z(1−k), k ∈ {0, 1}. We use bold lower case letters such as z, t to indicate
points on R with canonical projections z, t.

Since h∆ has only square root branching, each connected component of ∆ contains even
number of branch points. This allows us to number these points, E∆ = {e0, e1, . . . , e2g+1},
in the following fashion. If we consider ∂D as a positively oriented Jordan curve (this way
it contains two copies of each ∆j) and traverse it in the positive direction starting at e2k,
the next encountered branch point should be e2k+1, k ∈ {1, . . . ,g}.

Denote by αk, k ∈ {1, . . . ,g}, a smooth involution-symmetric, i.e., αk = {z∗|z ∈ αk},
Jordan curve that passes through e1 and e2k, and no other point of ∆ (until the end of
the subsection we assume that g > 1), which is oriented so that the positive direction in
D(0) goes from e1 to e2k. We require that αk ∩αj = {e1} for each pair k 6= j. We further
denote by βk a smooth involution-symmetric Jordan curve that passes through e2k and
e2k+1 and is oriented so that at the point of intersection the tangent vectors to αk,βk
form the right pair. Again, we suppose that ∆ ∩βk = {e2k,e2k+1} and also assume that
βj has empty intersection with any cycle γ ∈

{
αk,βk

}g
k=1

except for itself and αj with
which it has only one point in common, necessarily e2j. Set

R̃ := R \

g⋃
k=1

(αk ∪βk) and R̂ := R \

g⋃
k=1

αk.

The constructed collection
{
αk,βk

}g
k=1

forms a homology basis on R and so defined R̃

is simply connected. In the case g = 0 these definitions are void and the whole surface is
conformally equivalent to the Riemann sphere C.

2.2 Differentials on R

Denote by d~Ω := (dΩ1, . . . , dΩg)
T the column vector of g linearly independent holo-

morphic differentials normalized so that
∮
αk

d~Ω = ~ek, k ∈ {1, . . . ,g}, where {~ek}
g
k=1 is

the standard basis for Rg and ~eT is the transpose of ~e. Since the genus of R is g, the
differentials dΩk form a basis for the space of holomorphic differentials on R. Set

(6) B :=

[∮
βj

dΩk

]g
j,k=1

.

It is known that the matrix B is symmetric and has a positive definite imaginary part. Put

(7) w
(
z(k)

)
:= (−1)kw∆(z), z ∈ D,

which is continuous across ∆ and therefore is rational on R. It can be argued that

(8) dΩj(z) = (Lj/w)(z)dz,

for some Lj, which is a polynomial in z lifted to R of degree at most g− 1.
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Analogously to (7), the function

(9) h
(
z(k)

)
:= (−1)kh∆(z), z ∈ D,

extends to ∆ by continuity and is rational on R. By setting dG(z) = h(z)dz, we obtain the
so-called Green’s differential on R. That is, all the periods (integrals over cycles on R) of dG
are purely imaginary and dG is meromorphic having two simple poles at∞(1) and∞(0)

with respective residues 1 and −1 (it holds that dG(z(k)) = ((−1)k+1/ζ+holomorphic)dζ
in local coordinates ζ = 1/z(k)). Thus, we can define two vectors of real constants ~ω =

(ω1, . . . ,ωg)T and ~τ = (τ1, . . . , τg)T by

(10) ωk := −
1

2πi

∮
βk

dG and τk :=
1

2πi

∮
αk

dG.

2.3 Mapping Function

Define

(11) Φ(z) := exp
{∫z
e0

dG
}

, z ∈ R̃.

The function Φ is holomorphic and non-vanishing on R̃ except for a simple pole at ∞(0)

and a simple zero at ∞(1). Furthermore, it possesses continuous traces on both sides of
each cycle of the canonical basis that satisfy

(12) Φ+ = Φ−

{
exp
{
2πiωk

}
on αk,

exp
{
2πiτk

}
on βk.

In the case g = 0, Φ is a rational function well-defined on the whole Riemann surface.
Observe that the path of integration in (9) always can be chosen so that it completely

belongs to either R(0) or R(1). Thus, it readily follows from (9) and (3) that

(13) Φ(z(k)) = exp
{
(−1)k

∫z
e0

h∆(t)dt
}

and
∣∣Φ(z(k))

∣∣ = exp
{
(−1)kgD(z)

}
for z ∈ D. This computation has a trivial but remarkably important consequence, namely,

(14) Φ(z(0))Φ(z(1)) ≡ 1 and |Φ(z(0))| > |Φ(z(1))|, z ∈ D.

When g = 0, the pull back of Φ from D(0) to D is nothing else but the conformal map of
D onto {|z| > 1} fixing the point at infinity and sending e0 to 1.

2.4 Cauchy Kernel

Let γ be an involution-symmetric, piecewise-smooth oriented chain on R that has only
finitely many points in common with the α-cycles. Further, let λ be a Hölder continuous
function on γ. That is, for each z ∈ γ, λ ◦φz is Hölder continuous on φ−1

z (γ) where φz
is a holomorphic local parametrization around z.

Denote by dΩz,z∗ the normalized abelian differential of the third kind (i.e., it is a
meromorphic differential with two simple poles at z and z∗ with respective residues 1

and −1 normalized to have zero periods on the α-cycles). Set

Λ(z) :=
1

4πi

∮
γ
λdΩz,z∗ , z 6∈ γ.

It is known [30, Eq. (2.7)–(2.9)] that Λ is a holomorphic function in R̂ \γ, Λ(z)+Λ(z∗) ≡ 0
there, the traces Λ± are continuous and satisfy

Λ+(z) −Λ−(z) =
1

2

 λ(z) + λ(z∗), z ∈ γ,

−2

∮
γ
λdΩk, z ∈ αk \ γ.
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That is, the differential dΩz,z∗ is a discontinuous Cauchy kernel on R (it is discontinuous
as Λ has additional jumps across the α-cycles).

2.5 Auxiliary Functions, I

To remove the jumps of Φ across the β-cycles, define λ~τ to be the function on γ = ∪βk
such that λ~τ ≡ −2πiτk on βk and set

(15) S~τ(z) := exp
{
Λ~τ(z)

}
, z ∈ R̃.

Then S~τ is a holomorphic function in R̃ with continuous traces that satisfy

(16) S+~τ = S−~τ

{
exp
{
2πi
(
B~τ
)
k

}
on αk,

exp
{
− 2πiτk

}
on βk,

where the upper equality follows straight from (6) and we adopt the convention (~c)k = ck
for ~c = (c1, . . . , cg).

Let now ρ be a non-vanishing holomorphic function on ∆. Select a smooth branch of
log ρ and lift it to ∆, λρ := − log ρ ◦ π. Define

(17) Sρ(z) := exp
{
Λρ(z)

}
, ~cρ := −

1

2πi

∮
∆
λρd~Ω.

Then Sρ is a holomorphic and non-vanishing function in R̂ \∆ with continuous traces
that satisfy

(18) S+ρ = S−ρ

{
exp
{
2πi
(
~cρ
)
k

}
on αk,

1/ρ ◦ π on ∆.

By gathering together (12), (16), (18) and setting Sn~τ := Sn~τ , we deduce that

(19) (ΦnSρSn~τ)
+ = (ΦnSρSn~τ)

−

{
exp
{
2πi
(
~cρ +n

(
~ω+ B~τ

))
k

}
on αk,

1/ρ ◦ π on ∆.

2.6 Jacobi Inversion Problem

To remove the jump of ΦnSρSn~τ from the α-cycles, let us digress into explaining what a
Jacobi inversion problem is.

An integral divisor is a formal symbol of the form D =
∑
njzj, where {zj} is an arbitrary

finite collection of distinct points on R and {nj} is a collection of positive integers. The
sum

∑
nj is called the degree of the divisor D. Let D1 =

∑
njzj and D2 =

∑
mjwj be

integral divisors. A divisor D1 −D2 is called principal if there exists a rational function
on R that has a zero at every zj of multiplicity nj, a pole at every wj of order mj, and
otherwise is non-vanishing and finite. By Abel’s theorem, D1−D2 is principal if and only
if the divisors D1 and D2 have the same degree and

~Ω(D1) − ~Ω(D2) ≡ ~0
(
mod periods d~Ω

)
,

where ~Ω(D1) :=
∑
nj
∫zj
e0

d~Ω and the equivalence of two vectors ~c,~e ∈ Cg is defined by

~c ≡ ~e
(
mod periods d~Ω

)
if and only if ~c−~e =~j+ B~m for some~j, ~m ∈ Zg.

Set D∗ = g∞(1). We are seeking a solution of the following Jacobi inversion problem:
find an integral divisor D of degree g such that

(20) ~Ω(D) − ~Ω(D∗) ≡ ~cρ +n
(
~ω+ B~τ

) (
mod periods d~Ω

)
,

where the vectors ~ω and ~τ were defined in (10). This problem is always solvable and
the solution is unique up to a principal divisor. That is, if D −

{
principal divisor

}
is

an integral divisor, then it also solves (20). Immediately one can see that the subtracted
principal divisor should have an integral part of degree at most g. As R is hyperelliptic,
such divisors come solely from rational functions on C lifted to R. In particular, such
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principal divisors are involution-symmetric. Hence, if a solution of (20) contains at least
one pair of involution-symmetric points, then replacing this pair by another such pair
produces a different solution of (20). However, if a solution does not contain such a pair,
then it solves (20) uniquely.

2.7 Solutions of the JIP

In what follows, we denote by Dn either the unique solution of (20) or the solution where
each conjugate-symmetric pair is replaced by ∞(0) +∞(1). We further set N∗ to be the
subsequence of all indices for which (20) is uniquely solvable. Non-unique solutions are
related to unique solutions in the following manner:

(21) Dn =

g−l∑
i=1

ti + k∞(0) + (l− k)∞(1) ⇔ Dn+j = Dn + j
(∞(0) −∞(1)

)
,

for j ∈ {−k, . . . , l−k}, where l > 0, k ∈ {0, . . . , l}, and |ti| <∞. Indeed, Riemann’s relations
state that ∮

βk

dΩ∞(1),∞(0) = 2πi
∫∞(1)

∞(0)
dΩk

for each k ∈ {1, . . . ,g}, where the path of integration lies entirely in R̃. Since the differ-
entials dΩ∞(1),∞(0) and dG have the same poles with the same residues, they differ by a
holomorphic differential. Their normalizations imply that

dG = dΩ∞(1),∞(0) + 2πi
g∑
k=1

τkdΩk.

Combining the last two equations with (6) and (10) we get that

(22) ~Ω
(∞(0)

)
− ~Ω

(∞(1)
)
= ~ω+ B~τ,

which immediately implies that

~Ω(Dn) − ~Ω(D∗) + j
(
~Ω
(∞(0)

)
− ~Ω

(∞(1)
))
≡ ~cρ + (n+ j)

(
~ω+ B~τ

)
from which (21) easily follows. In particular, (21) implies the unique solvability of (20) for
the indices n− k and n+ l− k.

In another connection, if Dn is a unique solution of (20) that does not contain ∞(k),
k ∈ {0, 1}, then Dn−(−1)k is also a unique solution of (20) as otherwise it would contain at
least one pair∞(1) +∞(0), which would imply that Dn contains∞(k) by (21). Moreover,
the divisors Dn and Dn−(−1)k have no points in common. Indeed, denote by D the
common part. Then

(23) ~Ω(Dn) − ~Ω
(
Dn−(−1)k

)
− (−1)k

(
~Ω
(∞(0)

)
− ~Ω

(∞(1)
))
≡ ~0 (mod periods d~Ω)

and therefore the divisor Dn−Dn−(−1)k −(−1)k∞(0)+(−1)k∞(1) is principal. However,
if the degree of D were strictly positive, the integral part of the constructed divisor would
be at most g. Such divisors come solely from rational functions on C lifted to R and are
involution-symmetric. Hence, the divisor Dn−D would contain an involution-symmetric
pair or∞(k). As both conclusions are impossible, the claim indeed takes place.

2.8 Limit Points

One can consider integral divisors of degree g as elements of Rg/Σg, the quotient of Rg

by the symmetric group Σg, which is a compact topological space. Thus, it make sense to
talk about the limit points of {Dn}. The considerations of the previous section extend to
them in the following manner.
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Let N′ ⊆ N be such that Dn → D′, n ∈ N′, for some divisor D′. In the most general
form the divisor D′ can be written as

D′ = D+

k∑
i=1

(
z
(0)
i + z

(1)
i

)
+ l0∞(0) + l1∞(1),

where the integral divisor D has degree g − 2k − l0 − l1, is non-special, and contains
neither ∞(0) nor ∞(1). Let further N′′ ⊆ N′ be another subsequence such that the
divisors Dn+l1+k, n ∈ N′′, converge to some divisor, say D′′. Then the continuity of ~Ω

implies that

lim
N′′3n→∞ ~Ω

(
Dn
)
= ~Ω

(
D′
)

and lim
N′′3n→∞ ~Ω

(
Dn+l1+k

)
= ~Ω

(
D′′
)

with all the paths of integration belonging to R̃. That is,
lim

N′′3n→∞
(
~cρ +n

(
~ω+ B~τ

))
≡ ~Ω

(
D′
)
− ~Ω

(
D∗
)
,

lim
N′′3n→∞

(
~cρ + (n+ l1 + k)

(
~ω+ B~τ

))
≡ ~Ω

(
D′′
)
− ~Ω

(
D∗
)
,

since Dn solves (20). Hence, it holds by (22) that

~Ω
(
D′′
)
≡ ~Ω

(
D′
)
+ (l1 + k)

(
~Ω
(∞(0)

)
− ~Ω

(∞(1)
))

.

Observe also that ~Ω
(
z(0)

)
= −~Ω

(
z(1)

)
as follows from (7) and (8). Thus, the above

congruence can be rewritten as

~Ω
(
D′′
)
≡ ~Ω

(
D
)
+ (l0 + l1 + 2k)~Ω

(∞(0)
)

.

Therefore, it follows from Abel’s theorem that the divisor D+ (l0 + l1 + 2k)∞(0) −D′′ is
principal. However, it is also special and does not contain any involution-symmetric pair,
which is possible only if it is identically zero. That is,

D′′ = D+ (l0 + l1 + 2k)∞(0).

In fact, exactly as in the preceding subsection, we could take the second sequence to be
Dn+j for any j ∈ {−l0 − k, . . . , l1 + k} and arrive at similar conclusions, see [4, Proposi-
tion 2].

Moreover, let now N′′′ ⊆ N′′ be such that Dn+l1+k+1 → D′′′ for some divisor D′′′. It
follows from the considerations as above and the argument used in (23) applied to D′′′

and D′′ that D′′′ is non-special and disjoined from D′′.

2.9 Riemann’s Theta Function

The solution of the Jacobi inversion problem (20) helps us to remove the jump from the
α-cycles in (19) via Riemann’s theta function. The theta function associated with B is an
entire transcendental function of g complex variables defined by

θ (~u) :=
∑

~n∈Zg

exp
{
πi~nTB~n+ 2πi~nT~u

}
, ~u ∈ Cg.

As shown by Riemann, the symmetry of B and positive definiteness of its imaginary part
ensure the convergence of the series for any ~u. It can be directly checked that θ enjoys the
following periodicity properties:

(24) θ
(
~u+~j+ B~m

)
= exp

{
− πi~mTB~m− 2πi~mT~u

}
θ
(
~u
)
, ~j, ~m ∈ Zg.

Specializing integral divisors to one point z, we reduce ~Ω(z) to a vector of holomorphic
functions in R̃ with continuous traces on the cycles of the homology basis that satisfy

(25) ~Ω+ − ~Ω− =

{
−B~ek on αk,

~ek on βk,
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k ∈ {1, . . . ,g}. It readily follows from the relations above that each Ωk is, in fact, holomor-
phic in R̂ \βk. It is known that

θ (~u) = 0 ⇔ ~u ≡ ~Ω (D~u) + ~K
(

mod periods d~Ω
)

for some integral divisor D~u of degree g− 1, where ~K is the vector of Riemann constants
defined by (~K)j := ([B]jj − 1)/2−

∑
k6=j
∮
αk
Ω−
j dΩk, j ∈ {1, . . . ,g}.

For n ∈N∗ (Dn is unique, and hence does not contain involution-symmetric pairs), set

(26) Θn(z) :=
θ
(
~Ω(z) − ~Ω(Dn) − ~K

)
θ
(
~Ω(z) − ~Ω(D∗) − ~K

) .

Since the divisors Dn and D∗ do not contain involution-symmetric pairs, ~Ω(z) + ~Ω(z∗) ≡
0, and θ(−~u) = θ(~u), Θn is a multiplicatively multi-valued meromorphic function on R

with zeros at the points of the divisor Dn of respective multiplicities, a pole of order g at∞(1), and otherwise non-vanishing and finite (there will be a reduction of the order of
the pole at∞(1) when the divisor Dn contains this point). In fact, it is meromorphic and
single-valued in R̂ and

Θ+
n = Θ−

n exp
{
2πi
(
Ωk(D∗) −Ωk(Dn)

)}
= Θ−

n exp
{
−2πi

(
~cρ +n

(
~ω+ B~τ

)
+ B~mn

)
k

}
(27)

on αk by (24) and (25), where ~mn,~jn ∈ Zg are such that

(28) ~Ω(Dn) − ~Ω(D∗) = ~cρ +n
(
~ω+ B~τ

)
+~jn + B~mn.

2.10 Auxiliary Functions, II

Let λ ~mn be the function on γ = ∪βk such that λ ~mn ≡ −2πi(~mn)k on βk. Set

(29) S ~mn(z) := exp
{
Λ ~mn(z)

}
, z ∈ R̃.

Since ~mn ∈ Z, S ~mn is holomorphic across the β-cycles by the analytic continuation prin-
ciple and therefore is holomorphic in R̂. It has continuous traces on the α-cycles that
satisfy

(30) S+~mn = S−~mn exp
{
2πi
(
B~mn

)
k

}
on αk.

As B has positive definite imaginary part, any vector in ~u ∈ Cg can be uniquely written
as ~x+ B~y for some ~x,~y ∈ Rg. Write

~cρ =: ~xρ + B~yρ and ~Ω(Dn) − ~Ω(D∗) =: ~xn + B~yn, n ∈N,

Then, of course,

(31) ~xn = ~xρ +n~ω+~jn and ~yn = ~yρ +n~τ+ ~mn

by (28). Since the image of the closure of R̃ under ~Ω is bounded in Cg, so are the vectors
~xn,~yn. Clearly, in this case (31) implies that the vectors n~ω+~jn and n~τ+ ~mn are bounded
with n. Therefore,

(32) C−1 6
∣∣SρSn~τ+ ~mn

∣∣ 6 C
uniformly with n in R̃ for some absolute constant C > 1.

2.11 A Family of BVPs

By combining all the materials above, we obtain the following theorem.
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Theorem 2. For n ∈ N, let ñ be the greatest integer in N∗ smaller or equal to n (ñ = n− k

using the notation from (21)). Then the function

(33) Ψn := ΦñSρSñ~τ+ ~mñΘñ

is sectionally meromorphic in R \∆ and its zeros and poles there2 are described by the divisor

(n− g)∞(1) +Dn −n∞(0).

Moreover, it has continuous traces on ∆ \ E∆ that are bounded near the points in E∆ and satisfy

Ψ+
n =

(
1/ρ ◦ π

)
Ψ−
n .

Indeed, meromorphy in R \∆ follows from (11), (15), (17), (26), and (29); the form of
the divisor from the fact Dn = Dñ + k

(∞(0) −∞(1)
)
; and the jump relations from (19),

(27), and (30).
To describe the asymptotic properties of Ψn we need to further restrict N∗.

Definition 3. Given ε > 0, we say that an index n belongs to Nε if and only if

π
(
R(1) ∩Dn−1

)
,π
(
R(0) ∩Dn

)
⊂
{
z : |z| 6 ε−1

}
,

where we consider a divisor as a subset of points on R.

The indices excluded from N∗ are exactly the ones corresponding to the non-unique
solutions of (20), that is, the solutions for which Dn contains at least one pair of ∞(0) +∞(1). Hence, if n ∈ Nε, then n,n − 1 ∈ N∗. Furthermore, the subsequences Nε are
infinite for all ε small enough as follows from the considerations in Section 2.8 (this is the
precise reason why this subsection is included).

It follows immediately from the definition of Nε that the following constants are well
defined:

(34) 1/γn := lim
z→∞(0)

Ψn
(
z
)
z−n and 1/γ∗n := lim

z→∞(1)
Ψn−1(z)z

n−1−g, n ∈Nε.

Lemma 4. For each bounded K ⊂ D(1), there exists constant C(K) > 1 such that

(35) max
K

|Ψn| 6 C(K)
−n.

Moreover, for a given ε > 0 there exists a constant C(ε) > 1 such that

(36) C(ε)−1 6
∣∣γnγ∗n∣∣ 6 C(ε), n ∈Nε.

Proof. To show (35), write

|Ψn| =
∣∣Φñ−g∣∣ · ∣∣SρSn~τ+ ~mn

∣∣ · ∣∣ΦgΘn∣∣.
The first multiple in the decomposition above is locally uniformly geometrically small in
D(1) by (14) and the second one is uniformly bounded by (32). Thus, it is enough to
show that the functions

∣∣ΦgΘn∣∣ are uniformly bounded in D(1). It is, in fact, a family
of continuous functions in D(1) \

⋃
αk with uniformly bounded jumps on the α-cycles

(boundedness of the jumps follows from (27) and the uniform boundedness of the vectors
n~τ+ ~mn concluded after (31)). Hence, each function is bounded in D(1). As the family
is indexed by the divisors Dn that belong to Rg/Σg and the latter space is compact, the
uniform boundedness follows.

It follows again from (27) and (32) that to show (36) it is sufficient to establish the
uniform boundedness with n ∈Nε of the absolute values of

(37) Θn
(∞(0)

)
lim

z→∞(1)
Θn−1(z)z

−g.

To this end, denote by C0ε and C1ε the closures of
{
Dn
}
n∈Nε

and
{
Dn−1

}
n∈Nε

in the
Rg/Σg-topology. Neither of these sets contains special divisors. Indeed, both sequences

2Ψn is non-vanishing and finite in D(0) ∪D(1) except at the elements of its divisor that stand for zeros (resp.
poles) if preceded by the plus (resp. minus) sign and the integer coefficients in front of them indicate multiplicity.
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consist of non-special divisors and therefore we need to consider only the limiting ones.
The limit points belonging to C0ε are necessarily of the form

D+

k∑
i=1

(
z
(0)
i + z

(1)
i

)
+ l∞(1),

where the integral divisor D has degree g− 2k− l, is non-special, and does contain∞(0),∞(1). If k were strictly positive, the considerations of Section 2.8 would imply that C1ε
should contain divisors of the form

D+

k′∑
i=1

(
w

(0)
i +w

(1)
i

)
+ (k− k′ − 1)∞(0) + (l+ 1+ k− k′)∞(1)

0 6 k′ 6 k− 1. In particular, it would be true that l+ 1+ k− k′ > 2, which is impossible
by the very definition of Nε. Since the set C1ε can be examined similarly, the claim follows.
Thus, using (26), we can establish a quantity similar to (37), for the pairs of limit points
in C0ε × C1ε. Moreover, all these quantities are finite and non-zero as all the divisors are
non-special. The claim now follows from the compactness argument. �

3 main results

Fix an algebraic S-contour ∆ = E0 ∪ E1 ∪
⋃
∆j, see Definition 1, and let w∆ be defined by

(5), z−g−1w∆(z) → 1 as z → ∞. Let ρ be a function holomorphic and non-vanishing in a
neighborhood of each connected component of ∆ (in general, ρ is piecewise holomorphic).
Recall (4) that we set

fρ(z) =
1

2πi

∫
∆

(ρ/w+
∆)(t)

t− z
dt, z ∈ C \∆.

Further, let Ψn, which depends on ρ, be defined by (33). With a slight abuse of notation,
put

(38) Ψn(z) := Ψn
(
z(0)

)
and Ψ∗n(z) := Ψn

(
z(1)

)
, z ∈ D.

Then it follows from Theorem 2 that these functions are holomorphic in C \∆. Moreover,
when n ∈ Nε, see Definition 3, it holds that Ψn has a pole of exact order n at infinity,
Ψn−1 has a pole of order at most n− 1 there, Ψ∗n vanishes at infinity, and Ψ∗n−1 has a zero
of exact order n− 1− g there. Furthermore, it holds that

(39)
(
Ψ∗n
)±

= ρΨ∓n on
⋃
∆j,

where all the traces are continuous on
⋃
∆j and are bounded near e ∈ E0 ∪ E1. Finally, let

γn be defined by (34). Then the following theorem holds.

Theorem 5. Let [n/n]fρ = Pn/Qn be the n-th diagonal Padé approximant to fρ defined by (4)
with ρ holomorphic and non-vanishing on ∆ and Rn be the linearized error of approximation given
by (2). Then for all n ∈Nε large enough it holds that

(40)

 Qn = (1+ υn1)γnΨn + υn2γnΨn−1,

w∆Rn = (1+ υn1)γnΨ
∗
n + υn2γnΨ

∗
n−1,

locally uniformly in C \∆, where υnj(∞) = 0 and |υnj| 6 C−n
ε in C for some constant Cε > 1.

In the case where g > 0, formulae (40) clearly indicate the absence of uniform conver-
gence of Padé approximants. Indeed, the error of approximation is equal to

fρ − [n/n]fρ =
Rn

Qn
=

1

w∆

Ψ∗n
Ψn

1+ υn1 + υn2
(
Ψ∗n−1/Ψ

∗
n

)
1+ υn1 + υn2

(
Ψn−1/Ψn

) .

We do know from Lemma 4 that the functions Ψ∗n are geometrically small on closed sub-
sets of D. Similar argument can be used to show that the functions Ψn are geometrically
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large in D except for possible zeros described by those elements of the divisor Dn that
belong to D(0) (Rouché’s theorem clearly implies that Qn has a zero close to the canonical
projection of each such element) and those zeros are the sole reason why the uniform
convergence does not hold. In the “generic case”, i.e., when 1 and the periods (10) of
the Green differential dG are rationally independent, it is known [28, pages 190–191] that
the divisors Dn are dense in Rg/Σg and hence one will definitely observe the presence
of wandering poles. However, in this generic case, there always exists a subsequence
of indices such that the elements of the divisors Dn belong only to D(1) [26, Sec. 4.1]
and therefore there always exists a subsequence along which Padé approximants [n/n]fρ
converge to fρ locally uniformly in D.

The remaining part of this section is devoted to the proof of Theorem 5.

3.1 Initial R-H Problem

Below, we follow by now classical approach of Fokas, Its, and Kitaev [10, 11] connecting
orthogonal polynomials to matrix Riemann-Hilbert problems. To this end, assume that
the index n is such that

(41) deg(Qn) = n and Rn−1(z) ∼ z
−n as z→∞.

Define

(42) Y =

(
Qn Rn

mn−1Qn−1 mn−1Rn−1

)
,

where mn−1 is a constant such that mn−1Rn−1(z) = z−n[1+ o(1)] near infinity. Then Y
solves the following matrix Riemann-Hilbert problem (RHP-Y) :

(a) Y is analytic in C \ ∆ and lim
z→∞Y(z)z−nσ3 = I, where I =

(
1 0

0 1

)
and σ3 =(

1 0

0 −1

)
;

(b) Y has continuous traces on
⋃
∆j that satisfy Y+ = Y−

(
1 ρ/w+

∆

0 1

)
;

(c) Y is bounded near each e ∈ (E0 ∪ E1) \ E∆ and the behavior of Y near each e ∈ E∆

is described by O
(
1 |z− e|−1/2

1 |z− e|−1/2

)
as D 3 z→ e.

The property RHP-Y(a) follows immediately from (2) and (41). The property RHP-Y(b)
is due to the equality

R+n − R−n = Qn
(
f+ρ − f−ρ

)
= Qnρ/w

+
∆ on

⋃
∆j,

which in itself is a consequence of (2), (4), and the Sokhotski-Plemelj formulae [12, Sec-
tion 4.2]. Finally, to show RHP-Y(c), write, Rn =

∑
k Rnk, where

Rnk(z) :=
1

2πi

∫
∆k

(Qnρ/w
+
∆)(t)

t− z
dt

and therefore the behavior of Rn near e ∈ E0 ∪E1 is deduced from the behavior Rnk there.
If the endpoint e of ∆k has an odd bifurcation index (e ∈ E∆), then w2∆ has a simple zero
there and therefore |Rnk(z)| ∼ |z− e|−1/2 as z→ e, see [7, Section 3]. On the other hand, if
e has an even bifurcation index (e ∈ (E0 ∪ E1) \ E∆), the respective function Rnk behaves
as

ρ(e)

2πi

w+
∆|∆k

(e)

w2∆(e)
log(z− e) + R∗e,k(z)

according to [12, Section 8.1], where the function R∗e,k has a definite limit at e and the
logarithm is holomorphic outside of ∆k. Since w∆ does not have a branch point at e, it
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holds that
∑
kw

+
∆|∆k

(e) = 0, where the sum is taken over all arcs ∆k incident with e.
Thus, we get that

R(z) =
1

2π

ρ(e)

w2∆(e)

∑
k

arge,k(z− e) + R
∗
e(z),

where R∗e has a definite limit at e, arge,k(z− e) has the branch cut along ∆k, and the sum
is again taken over all arcs incident with e. Thus, Y is bounded in the vicinity of each e
with even bifurcation index.

To show that a solution of RHP-Y , if exists, must be of the form (42) is by now a
standard exercise, see for instance, [14, Lemma 2.3], [6], [4, Lemma 1]. Thus, we proved
the following lemma.

Lemma 6. If a solution of RHP-Y exists then it is unique. Moreover, in this case it is given by
(42) where Qn and Rn−1 satisfy (41). Conversely, if (41) is fulfilled, then (42) solves RHP-Y .

3.2 Transformed R-H Problem

It can be directly verified that(
1 0

−w−
∆/ρ 1

)(
0 ρ/w+

∆

−w+
∆/ρ 0

)(
1 0

w+
∆/ρ 1

)
=

(
1 ρ/w+

∆

0 1

)
.

This factorization of the jump matrix in RHP-Y(b) suggests the following transformation
of Y :

(43) X :=

 Y

(
1 0

−w∆/ρ 1

)
, in Ω,

Y , in C \Ω,

where Ω is an open set bounded by ∆ and Γ and Γ is a union of simple Jordan curves each
encompassing one connected component of ∆ and chosen so that ρ is holomorphic across
Γ . It is trivial to verify that X solves the following Riemann-Hilbert problem (RHP-X):

(a) X is analytic in C \ (∆∪ Γ) and lim
z→∞X(z)z−nσ3 = I;

(b) X has continuous traces on
⋃
∆j ∪ Γ that satisfy

X+ = X−


(

0 ρ/w+
∆

−w+
∆/ρ 0

)
on

⋃
∆j(

1 0

w∆/ρ 1

)
on Γ ;

(c) X has the behavior near e ∈ E0 ∪ E1 described by RHP-Y(c).

Then the following lemma can be easily checked.

Lemma 7. RHP-X is solvable if and only if RHP-Y is solvable. When solutions of RHP-X and
RHP-Y exist, they are unique and connected by (43).

3.3 Asymptotics in the Bulk

Let Ψn,Ψ∗n be defined by (38) and γn,γ∗n be as in (34). Set

(44) N :=

(
γn 0

0 γ∗n

)
Ñ, Ñ :=

(
Ψn Ψ∗n/w∆

Ψn−1 Ψ∗n−1/w∆

)
.

Then N solves the following Riemann-Hilbert problem (RHP-N):

(a) N is analytic in C \∆ and lim
z→∞N(z)z−nσ3 = I;

(b) N has continuous traces on
⋃
∆j that satisfy N+ = N−

(
0 ρ/w+

∆

−w+
∆/ρ 0

)
;

(c) N has the behavior near e ∈ E0 ∪ E1 described by RHP-Y(c).
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Indeed, RHP-N(a) follows immediately from the analyticity properties of Ψn,Ψ∗n and
(34). RHP-N(b) can be easily checked by using (39). Finally, RHP-N(c) is the consequence
of the boundedness of Ψ±n and (Ψ∗n)

± on
⋃
∆j and the definition of w∆.

Moreover, it can be readily checked that det(N) is a holomorphic function in C \ (E0 ∪
E1) and det(N)(∞) = 1. Since it is either bounded or behaves like O

(
|z− e|−1/2

)
near

e ∈ E0 ∪ E1, those points are in fact removable singularities and therefore det(N) is a
bounded entire function. That is, det(N) ≡ 1 as follows from the normalization at infinity.

3.4 Final R-H Problem

Consider the following Riemann-Hilbert Problem (RHP-Z):
(a) Z is a holomorphic matrix function in C \ Γ and Z(∞) = I;

(b) Z has continuous traces on Γ that satisfy Z+ = Z−Ñ

(
1 0

w∆/ρ 1

)
Ñ

−1
.

Then the following lemma takes place.

Lemma 8. The solution of RHP-Z exists for all n ∈Nε large enough and satisfies

(45) Z = I+O
(
C−n
ε

)
for some constant Cε > 1 independent of Γ , where O(·) holds uniformly in C.

Proof. Since det(N) ≡ 1 and therefore det(Ñ) ≡ 1/(γnγ∗n), the jump matrix for Z is equal
to

I+
γnγ

∗
n

ρw∆

(
Ψ∗nΨ

∗
n−1 −

(
Ψ∗n
)2(

Ψ∗n−1
)2

−Ψ∗nΨ
∗
n−1

)
= I+O

(
C−2n
ε,Γ

)
,

where the last equality follows from Lemma 4. The conclusion of the lemma follows now
from the same argument as in [8, Corollary 7.108]. �

3.5 Asymptotics

Let Z be a solution of RHP-Z granted by Lemma 8 and Ñ be the matrix function con-
structed in (44). Then it can be easily checked that

X =

(
γn 0

0 γ∗n

)
ZÑ

solves RHP-X and therefore

Y :=

(
γn 0

0 γ∗n

)
ZÑ


(

1 0

w∆/ρ 1

)
, in Ω,

I, in C \Ω,

solves RHP-Y by Lemma 7. Given any closed set K ⊂ C \∆, choose Ω so that K ⊂ C \Ω.
Write

Z =

(
1+ υn1 υn2
υn3 1+ υn4

)
,

where we know from Lemma 8 that |υnk| 6 C−n
ε uniformly in C (υnk(∞) = 0 as Z(∞) =

I). Then
[Y ]1i =

(
1+ υn1

)
γn
[
Ñ
]
1i

+ υn2γn
[
Ñ
]
2i

, i ∈ {1, 2}.
The claim of Theorem 5 now follows from (42) and (44).
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Orthogonal Polynomials, Special Functions, and Their Applications, volume 578, pages 165—193, 2012. http:
//arxiv.org/abs/1111.6139. 3

[10] A.S. Fokas, A.R. Its, and A.V. Kitaev. Discrete Panlevé equations and their appearance in quantum gravity.
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surfaces. Russian Math. Surveys, 26(1):117–192, 1971. 5

Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 North

Blackford Street, Indianapolis, IN 46202

E-mail address: maxyatts@math.iupui.edu

http://arxiv.org/abs/1109.0332
http://arxiv.org/abs/1111.6139
http://arxiv.org/abs/1111.6139
mailto:maxyatts@math.iupui.edu

	Introduction
	Boundary Value Problem
	Riemann Surface
	Differentials on R
	Mapping Function
	Cauchy Kernel
	Auxiliary Functions, I
	Jacobi Inversion Problem
	Solutions of the JIP
	Limit Points
	Riemann's Theta Function
	Auxiliary Functions, II
	A Family of BVPs

	Main Results
	Initial R-H Problem
	Transformed R-H Problem
	Asymptotics in the Bulk
	Final R-H Problem
	Asymptotics


