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ABSTRACT. A two-dimensional statistical model of N charged particles interacting via logarithmic repulsion
in the presence of an oppositely charged regular closed region K whose charge density is determined by its
equilibrium potential at an inverse temperatureβ is investigated. When the charge on the region, s , is greater
than N , the particles accumulate in a neighborhood of the boundary of K , and form a point process in the
complex plane. We describe the weak∗ limits of the joint intensities of this point process and show that it is
exponentially likely to find the process in a neighborhood of the equilibrium measure for K .

1. INTRODUCTION

In two-dimensional electrostatics, charged particles are identified with points in the extended complex
plane. The potential energy of a system of two like charged particles located at z, w ∈C is proportional
to − log |z −w|. More generally, if z1, z2, . . . , zN are the locations of N identically charged particles, then
{z1, . . . , zN } determines the state of the system and the potential energy of this state is given by

−
∑

m<n
log |zn − zm |.

The energy is minimized when the particles are all at ∞. In order for the system to be found in a
state where the particles are at finite positions, there needs to be a potential (or other obstructions) which
repels the particles from∞. We represent this field by V so that the interaction energy between a particle
located at z and the field is given by V (z). The total potential energy of the system comprised of the N
particles in the field is given by

E(z1, . . . , zN ) =
N
∑

n=1

V (zn)−
∑

m<n
log |zn − zm |.

The system is assumed to be in contact with a heat reservoir so that the energy of the system is vari-
able, but the temperature is fixed. In this setting, β denotes the reciprocal of the temperature, and the
Boltzmann factor for the state {z1, . . . , zN } is given by

e−βE(z1,...,zN ) =
� N
∏

n=1

e−βV (zn )
�

∏

m<n
|zn − zm |

β.

This quantity gives the relative density of states, so that the probability (density) of finding the system in
state {z1, . . . , zN } is given by

Z−1
N ,β,V

e−βE(z1,...,zN ), ZN ,β,V =
∫

CN
e−βE(z1,...,zN )dA⊗N (z1, . . . , zN ).

Let ω :=
∑N

n=1δzn
be the empirical measure associated with a state {z1, . . . , zN }. In this work we take

V to be minus the equilibrium potential for some regular closed region K and study the following two
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questions. First: what is probability to find the system (empirical measure ω) close to a given Borel
measure on the complex plane (large deviation principle); second: what is the limiting behavior of the
marginal probabilities of the probability density function for this system (linear statistics).

These questions have been obviously considered before. In [17, 18, 2], see also [10, 1], the large
deviation principle was shown for the case of the external field V being identically +∞ of the real line
(thus, all the charges are confined to the real line) and satisfying lim|x|→∞ (log |x| − εV (x)) =−∞ for any
ε > 0. This work was further extended to the case V (z) = |z |2 without confinement to the real line in
[3, 8]. In [9], the large deviation principle was shown to holds for particles restricted to the unit circle,
i.e., V is continuous on the unit circle and V ≡+∞ of it.

As to the linear statistics, the case of particles confined to the real line and V being polynomial of
even degree with positive leading coefficient was studied in [11]. The case where particles are restricted
to a compact subset of the complex plane interacting in the presence of a continuous field was treated in
[6]. No confinement case with regular fields satisfying V (z) ≥ (1+ ε) log(1+ |z |) for some ε > 0 was
considered in [7].

2. MAIN RESULTS

2.1. Potential Theoretic Setting. For any probability Borel measure on C, say ν, set

I [ν] :=
∫

log
1

|z − u|
dν⊗2(z, u)

to be its logarithmic energy (negative free entropy), where dν⊗n(z1, , . . . , zn) := dν(z1) · · ·dν(zn). For any
compact set K the logarithmic capacity of K is defined by

cp(K) := exp
�

− inf
supp(ν)⊆K

I [ν]
�

.

It is known that either cp(K) = 0 (K is polar) or there exists the unique measure ωK , the logarithmic
equilibrium distribution on K , that realizes the infimum. That is,

capacitycapacity (1) cp(K) = exp
�

− I [ωK]
�

.

The logarithmic potential ofωK , that is,

V ωK (z) :=
∫

log
1

|z − u|
dωK (u),

is equal to I [ωK] quasi everywhere (up to a polar set) on K and is at most as large everywhere in the com-
plex plane. The set K is called regular with respect to the Dirichlet problem if V ωK = I [ωK] everywhere
on K . The Green function with a pole at infinity for the unbounded component of K c , the complement
of K , is defined by

gK := I [ω]−V ωK .

It is a non-negative harmonic function in K c \ {∞} with a logarithmic singularity at infinity. Moreover,
it is zero q.e. on K and is, in fact, continuous if K is regular.

Let s and N be two parameters such that s >N . We always assume that s and N scale in such a fashion
that the limit of s−1N as N tends to infinity exists and define the following energy functional

energyenergy (2) I`[ν] := I [ν]+
2

`

∫

gK dν, ` := lim
N→∞

s−1N ,

where it is understood that I0[ν] =∞ for all ν such that supp(ν)∩K c 6=∅.
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prop:minenergy Proposition 1. Let K be a compact set with connected complement which is regular with respect to the Dirich-
let problem. For all ` ∈ [0,1], it holds that

inequalitiesinequalities (3) I [ωK]< I`[ν]

for any compactly supported probability Borel measure ν 6=ωK .

Clearly, I`[ν] = I [ν] for any measure ν supported on K as gK ≡ 0 on K . Hence, I`[ωK] = I [ωK] and
thereforeωK is the unique minimizer of the weighted energy functional I` for any ` ∈ [0,1].

2.2. A Model for Random Configurations. Let K be a compact set with connected complement which
is regular with respect to the Dirichlet problem. In this paper we investigate random configurations
whose joint density is given by

OmegaOmega (4) ΩN ,s ,β(z1, . . . , zN ) :=
1

ZN ,s ,β
exp

(

−βs
N
∑

n=1

gK (zn)

)

∏

m<n
|zn − zm |

β,

where (N , s ,β) is a triple of numbers such that

snbetasnbeta (5) β(s −N + 1)> 2+ c0

for some fixed c0 > 0, and ZN ,s ,β is a normalizing factor that turns ΩN ,s ,β into a probability density
function. Clearly,

ZNsbetaZNsbeta (6) ZN ,s ,β =
∫

CN
exp

(

−βs
N
∑

n=1

gK (zn)

)

∏

m<n
|zn − zm |

β dA⊗N (z1, . . . , zN ),

where dA stands for the Lebesgue measure on C.
Besides connections to electrostatics and random matrix theory, the results below are also motivated

by number theory. Let K be such that cp(K) = 1 and p be a polynomial. The Mahler of p with respect
to K is defined by

MK (p) := exp
�∫

log |p|dωK

�

= exp
�

ap

∑

z: p(z)=0

gK (z)
�

,

where ap is the leading coefficient of p. When K = D, it is known that dωK (z) =
1

2π |dz |, and therefore
M := MD is simply the classical Mahler measure. In [4], the bound for the number of polynomials with
integer coefficients of degree at most N such that M ( f ) ≤ const. was derived. The main term of the
asymptotics for this bound came from ZN ,N+1,2 defined by (6) with K =D. Moreover, it was shown that
ZN ,s ,2 is a rational function of s with poles at every positive integer less or equal to N . The cases where K
is an ellipse and E = [−2,2] were also investigate in [14, 15].

2.3. Large Deviation Principle. Let η = {η1, . . . ,ηN } be a random configuration chosen according to
the law ΩN ,s ,β. That is, the probability that η j ∈ O, j ∈ {1, . . . ,N}, is equal to

∫

ON ΩN ,s ,βdA⊗N for any

open set O ⊆C. To any such configuration we associate the empirical measureωη defined as

ωη :=
1

N

N
∑

k=1

δηk
,

where δz is the classical Dirac delta distribution with the unit mass at z.
Let ν and µ be two probability Borel measures on C. Then the distance between them is defined by

dist(ν,µ) = sup
f

�

�

�

�

∫

f dν −
∫

f dµ
�

�

�

�

,
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where the supremum is taken over all functions f that are bounded by 1 in modulus and satisfy the
Lipschitz condition with constant 1 on supp(ν) ∪ sup(µ). For measures supported on a compact set it
holds that dist(ν, νn)→ 0 as n→∞ if and only if νn

∗→ ν as n→∞, where
∗→ stands for the convergence

in the weak∗ topology of measures (
∫

f dνn→
∫

f dν for any continuous function f ).

thm:partition Theorem 2. Let K be a compact set with connected complement which is regular with respect to the Dirichlet
problem and such that K =K◦. Given (5), it holds that

partitionlimitpartitionlimit (7) lim
N→∞

1

N 2
logZN ,s ,β =−

β

2
I [ωK].

Moreover, for any probability Borel measure ν , supp(ν)⊂C, it is true that

largedeviationlargedeviation (8) lim
ε→0

lim
N→∞

1

N 2
logProb

¦

dist
�

ν ,ωη
�

< ε
©

=−
β

2

�

I`[ν]− I [ωK]
�

.

Equations (3) and (8) yield that the probability to find ωη in a small enough neighborhood of ν is
subexponentially small if I`[ν] =∞ and is exponentially small if I`[ν]<∞ and dist (ν ,ωK )> 0.

The asymptotics in (7) can be improved if we restrict the attention to Jordan domains with smooth
boundary and β= 2.

prop:beta2 Proposition 3. Let K be a Jordan domain whose boundary ∂ K is a Jordan curve of class1 C 1,α, α > 1/2.
Then

beta2beta2 (9) logZN ,s ,2 =−N (N + 1)I [ωK]+θ(`)N +O (logN ),

where θ(x) = logπ+ 1+ x−1(1− x) log(1− x), which is a continuous increasing function on [0,1] with
values θ(0) = logπ and θ(1) = logπ+ 1. When s =∞, the term O (logN ) can be replaced by O (1).

2.4. Linear Statistics. The n-th marginal probability of ΩN ,s ,β, n ∈ {1, . . . ,N − 1}, is defined by

(10) Ω(n)
N ,s ,β
(z1, . . . , zn) :=

∫

CN−n
ΩN ,s ,β(z1, . . . , zN )dA⊗(N−n)(zn+1, . . . , zN ).

Let η be a random configuration chosen according to the law ΩN ,s ,β andωη be the corresponding empir-
ical measure. Thenωη can be considered as a point process on C. It is known that the joint intensities of

this point process are equal to
�

N !/(N − n)!
�

Ω(n)
N ,s ,β

. That is, if O1, . . . ,On are mutually disjoint subsets

of C, then

E





n
∏

k=1

ωη(Ok )



=
N !

(N − n)!

∫

O1×···×On

Ω(n)
N ,s ,β

dA⊗n ,

where E[·] denotes the expected value of a random variable. The following theorem describes the weak∗

behavior of the measures Ω(n)
N ,s ,β

dA⊗n as N →∞.

thm:cws Theorem 4. Under the conditions of Theorem 2, it holds that

lim
N→∞

∫

Cn
f Ω(n)

N ,s ,β
dA⊗n =

∫

f dω⊗n
K

for each f ∈Cb (Cn), n ∈N, where Cb (Cn) is the Banach space of bounded continuous functions on Cn .

1The arclength function of ∂ K is continuously differentiable as a periodic function on the real line and its derivative is α-Hölder
continuous.
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Theorem 4 in particular implies that

lim
N→∞

E

�∫

f dωηN

�

=
∫

f dωK , f ∈Cb (C),

where ηN =
¦

ηN
1 , . . . ,ηN

N

©

is a random configuration chosen according to the law ΩN ,s ,β since

E
h

f
�

ηN
j

�i

=
∫

f Ω(1)
N ,s ,β

dA

for any j ∈ {1, . . . ,N}. More generally, let { j1, . . . , jn} ⊆ {1, . . . ,N} be a set of distinct indices and
f1, . . . , fn ∈Cb (C). Set f (z1, . . . , zn) :=

∏n
k=1 fk (zk ). Then f ∈Cb (Cn) and it holds that

E
h

f
�

ηN
j1

, . . . ,ηN
jn

�i

=
∫

f Ω(n)
N ,s ,β

dA⊗n +
n−1
∑

k=1

�

∑

∫

f Ω(k)
N ,s ,β

dA⊗k
�

,

where the inner sum is taken over all possible combinations of n−k+1 coordinates being equal. Observe
that the first integral on the right-hand side of the equality above converges to

∏n
k=1

∫

fkdωK as N →∞
by Theorem 4. This observation yields the following corollary to Theorem 4.

Corollary 5. Let f ∈Cb (C) and k , m ∈N. Under conditions of Theorem 2, it holds that

lim
N→∞

E





�∫

f dωηN

�k �∫

f̄ dωηN

�m


=
�∫

f dωK

�k �∫

f̄ dωK

�m

.

3. PROOFS

Proof of Proposition 1. Let ν be such that dist(ν ,ωK )> 0. Without loss of generality we may assume that
ν has finite energy. Recall that gK ≡ 0 on K . Thus, if supp(ν)⊆K , then I`[ν] = I [ν]> I [ωK] by the very
definition ofωK . Otherwise, consider

bν := ν|K +bν|K c ,

where bν|K c is the balayage of ν|K c onto K relative to K c , [13, Sec. II.4]. Then it follows from [13,
Thm. II.4.7] that bν has finite energy as well and V bν < V ν +

∫

gK dν in K c . Integrating both sides of
this inequality against ν and using Fubini-Tonelli’s theorem for the left-hand side, we get that

∫

V νdbν < I [ν]+
∫

gK dν .

In fact, it also true that V bν =V ν +
∫

gK dν everywhere on K as K is regular with respect to the Dirichlet
problem, [13, Sec. II.4]. Therefore,

I [bν]< I [ν]+ 2
∫

gK dν = I1[ν]≤ I`[ν].

The desired conclusion now follows from the fact that supp(bν)⊆K and therefore I [ωK]≤ I [bν]. �

Put, for brevity, wK := e−gK and define

deltaNKdeltaNK (11) δN (wK ) := sup

(

∏

m<n
|zn − zm |

∏

n
wN−1

K (zn) : (z1, . . . , zN ) ∈C
N

)

.

lem:fekete Lemma 6. Let {λ1, . . . ,λN } be any configuration satisfying

δN (wK ) =
∏

m<n
|λn −λm |

∏

n
wN−1

K (λn),

then {λ1, . . . ,λN } ⊂K.
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Proof. Set
Pk ,N (z) := wN−1

K (z)
∏

n 6=k

(z −λn).

Then ‖Pk ,N‖C = |Pk ,N (λk )| for each k ∈ {1, . . . ,N} since

δN (wK ) = ‖Pk ,N‖C
∏

m<n, n,m 6=k

|λn −λm |
∏

n 6=k

wN
K (λn).

As deg(Pk ,N ) = N − 1, wK ≡ 1 on K , and wK (z) < 1 for z ∈ K c , Bernstein-Walsh inequality [13,
Thm. III.2.1] yields that

|Pk ,N (z)|< ‖Pk ,N‖K ≤ ‖Pk ,N‖C, z ∈K c .
Hence, Pk ,N attains its maximum on K and therefore λk ∈K for all k ∈ {1, . . . ,N}. �

Let E be a compact set satisfying all the conditions of Theorem 2. Define

EmEm (12) Em :=
�

z ∈ E
�

� dist(z,∂ E)>
1

m

�

, m ∈N.

lem:Em Lemma 7. Let E be as described and ν be a probability Borel measure supported on E with finite energy.
Then there exists a sequence of probability Borel measures {νm} such that supp(νm)⊆ Em , dist

�

νm , ν
�

→ 0 and
I [νm]→ I [ν] as m→∞. Moreover, if ν =ωE , then νm can be taken ωEm

.

Proof. For each m the measure ν can be written as

ν = ν|Em
+ ν|E◦\Em

+ ν|∂ E .

By the very definition of the sets Em it holds that Em−1 ⊂ Em and E◦ = ∪m Em . Hence ∩m(E
◦ \ Em) =∅

and therefore |ν|E◦\Em
| → 0 as m → ∞. If ν is supported only on the boundary of E , ν = ν|∂ E , we set

νm := bνm , where bνm is the balayage of ν|∂ E onto Em relative to E c
m . Otherwise, ν|Em

is not a zero measure
for all m large enough and therefore we can define for such m

νm := αmν|Em
+bνm ,

where αm := 1+ |ν|E◦\Em
|/|ν|Em

| is chosen so |νm |= 1, αm→ 1 as m→∞. Clearly, supp(νm)⊆ Em .
The sequence {νm} has a weak∗ limit point, say ν∗. Since ν∗(B) = ν(B) for any compact set B ⊂ E◦, it

holds that ν∗|E◦ = ν|E◦ by the interior regularity of Borel measures. Therefore,

ν∗ = ν|E◦ + ν
∗
|∂ E ,

where |ν∗|∂ E |= |ν|∂ E |= |bνm | and ν∗|∂ E is a weak∗ limit point of {bνm}. Let us show that ν∗|∂ E = ν|∂ E . This will

imply that ν∗ = ν and therefore νm
∗→ ν as ν∗ is an arbitrary weak∗ limit point of {νm}.

Let Λ ⊆ N be a subsequence such that bνm
∗→ ν∗|∂ E as m→∞, m ∈ Λ. Since supp(ν∗|∂ E ) ⊆ ∂ E , it holds

that
V ν∗|∂ E (z) = lim

m→∞, m∈Λ
V bνm (z), z ∈ E◦.

On the other hand, by the very properties of balayage [13, Thm. II.4.7], it holds that

V bνm (z) =V ν|∂ E (z)+ cm , z ∈ E◦m ,

where cm =
∫

gEm
dν|∂ E and gEm

is the Green function for E c
m with pole at infinity. Since E c

m+1 ⊂ E c
m , the

maximum principle for harmonic functions applied to gEm
− gEm+1

yields that the functions gEm
form a

decreasing sequence on ∂ E . Thus, c := limm→∞ cm is well-defined. Hence, we have that

V ν∗|∂ E =V ν|∂ E + c on E◦.
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Since logarithmic potentials are continuous in the fine topology by the very definition of the latter [13,
Sec. I.5], the equality above can be extended to every fine limit point of E◦. As E is regular with respect
to the Dirichlet problem in E c , the fine closure of E◦ coincides with E [13, Thm. A.2.1]. Thus,

V ν∗|∂ E =V ν|∂ E + c on E ⊇
�

supp(ν|∂ E )∪ supp(ν∗|∂ E )
�

.

As both measures have finite energy and therefore are C -absolutely continuous, it holds that ν∗|∂ E = ν|∂ E

and c = 0 by [13, Thm. II.4.6].
To show that I [νm] → I [ν] as m → ∞, it is enough to prove that limsupm→∞ I [νm] ≤ I [ν] as the

opposite inequality follows from the principle of descent [13, Thm. I.6.8]. It is a straightforward compu-
tation to get

ν = νm − (αm − 1)ν|E◦ +αmν|E◦\Em
+ ν|∂ E −bνm ,

where, again, the two middle terms containing αm are not present when ν = ν|∂ E . Thus, since V ν|∂ E −
V bνm ≥−cm in C [13, Thm. II.4.7], it holds that

V ν ≥ V νm − (αm − 1)V ν|E◦ +αmV ν|E◦\Em − cm

≥ V νm − (αm − 1)V ν|E◦ −αm |ν|E◦\Em
| logdiam(E)− cm

on E , where we also used an observation that V σ + |σ | logdiam(E) ≥ 0 on E for any positive measure
σ supported on E . Recall that cm , |ν|E◦\Em

| → 0 and αm → 1 (whenever present) as m → ∞. Hence,
integrating both sides of the last inequality against ν and taking the limit superior of the right-hand side
yields

I [ν]≥ limsup
m→∞

∫

V νm dν = limsup
m→∞

∫

V νdνm .

Using the estimate from below for V ν once more with the same caveat concerning αm , we get that

I [ν]≥ limsup
m→∞

�

I [νm]− (αm − 1)
∫

V ν|E◦dνm

�

.

The desired inequality follows now from the fact that the integrals
∫

V ν|E◦dνm are uniformly bounded
above. Indeed, notice that

V ν|E◦ ≤V ν +
�

|ν | − |ν|E◦ |
�

logdiam(E)

and therefore we get by what precedes that

limsup
m→∞

∫

V ν|E◦dνm ≤ limsup
m→∞

∫

V νdνm +
�

|ν | − |ν|E◦ |
�

logdiam(E)

≤ I [ν]+
�

|ν | − |ν|E◦ |
�

logdiam(E).

Finally assume that ν =ωE . Since supp(ωE )⊆ ∂ E , it holds that νm is simply the balayage ofωE onto
Em relative to E c

m . Then V νm = V ωE + cm = I [ωE] + cm q.e. on Em [13, Thm. II.4.7]. However, the
latter property uniquely characterizes equilibrium measures [13, Thm. I.3.3]. �

Let ν be a compactly supported probability Borel measure. Define

omega-epsilonomega-epsilon (13) dνε := aεdA, aε(z) :=
1

πε2

∫

1ε(u − z)dν(u),

where 1ε is the indicator function of the disk {|u|< ε}. So defined, νε is also a probability measure with
compact support.

lem:energies1 Lemma 8. It holds that dist (ν, νε)≤ ε and I [νε]→ I [ν] as ε→ 0.
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Proof. Let f be a Lipschitz continuous function on supp(νε) with Lipschitz constant 1 for some ε > 0.
Observe that supp(ν)⊂ supp(νε). Then

∫

f dνε−
∫

f dν =
∫

�

f (z)− f (u)
�1ε(u − z)

πε2
dν(u)dA(z)≤

∫

|z − u|
1ε(u − z)

πε2
dν(u)dA(z)≤ ε

by the Fubini-Tonelli theorem and since | f (z)− f (u)| ≤ |z − u| ≤ ε for z, u ∈ supp(νε), |z − u| ≤ ε.
Hence, dist (ν , νε)≤ ε and therefore νε

∗→ ν as ε→ 0.
If I [ν] =∞, then

IM [ν] :=
∫

min

¨

M , log
1

|z − u|

«

dν⊗2(z, u)

diverges to infinity as M →∞ by the monotone convergence theorem. Since the functional IM is defined
with respect to a continuous kernel, it follows from the weak∗ convergence of measures that

liminf
ε→0

I [νε]≥ lim
ε→0

IM [νε] = IM [ν].

Because the inequality above is true for any M , the limit of I [νε] as ε→ 0 diverges to infinity as well. The
rest of the lemma is the content of [7, Sec. 3.2]. �

For further use, let us state the following trivial modification of the principle of descent [13, Thm. I.6.8]
for empirical measures.

lem:descent Lemma 9. Let {ωηN
} be a sequence of empirical measures that converges weak∗ to some probability Borel

measure ν . Then

I [ν]≤ liminf
N→∞

I∗[ωηN
], I∗[ωηN

] =
∫

z 6=u
log

1

|z − u|
dω⊗2
ηN
(z, u).

Proof. Since ωηN

∗→ ω, it holds that ω⊗2
ηN

∗→ ν⊗2. Hence, it follows from the monotone convergence

theorem and the continuity of min
n

M , log 1
|z−u|

o

on C2 that

I [ν] = lim
M→∞

∫

min

¨

M , log
1

|z − u|

«

dν⊗2(z, u)

= lim
M→∞

lim
N→∞

∫

min

¨

M , log
1

|z − u|

«

dω⊗2
ηN
(z, u)

≤ lim
M→∞

liminf
N→∞

�

I∗[ωηN
]+

M

N

�

= liminf
N→∞

I∗[ωηN
].

�

lem:points Lemma 10. Let νε be as in (13). Then there exist configurations ηN ,ε such that min j 6=k |η
N ,ε
j −η

N ,ε
k
| ≥ c ′/

p
N,

dist
�

νε,ωηN ,ε

�

= O
�

N−1/4
�

, and I∗[ωηN ,ε]→ I [νε] as N →∞, for some constant c ′ that depends on νε but
does not depend on N.

Proof. For convenience, set M :=
 

N 1/2
£

. Since νε is absolutely continuous with respect to dA, there
exist real numbers x1 < x2 < · · ·< xM and a positive constant bM such that the vertical strips

S j :=
¨

z : x j ≤Re(z)< x j +
bM

M

«

, j ∈ {1, . . . , M},
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are mutually disjoint and supp(νε)⊂ ∪M
j=1S j . Clearly, bM is bounded above by diam(supp(νε)) and below

by the 1-dimensional Lebesgue measure of the projection of supp(νε) on the x-axis. Moreover, it holds by
(13) that

νε
�

S j

�

=
∫

S j

dνε ≤
cM

πε2

diam(supp(νε))

M
.

In particular, the inequality above implies that

M j :=
�

νε
�

S j

�

N
�

≤ c1N 1/2

(all the constants ci appearing from now on depend only νε). Furthermore, as νε is a unit measure, it
holds that

N −M <
M
∑

j=1

M j ≤N .

Let now y j ,1 be the greatest ordinate such that νε
�

S j ∩
¦

z : y j ,1 > Im(z)
©�

= 0. Then for each k ∈
¦

1, . . . , M j

©

there exists y j ,k+1 such that

νε
�

R j ,k

�

=N−1, R j ,k := S j ∩
¦

z : y j ,k ≤ Im(z)< y j ,k+1

©

.

Observe that by (13) it holds that

y j ,k+1− y j ,k ≥
πε2

bM

M

N
≥
πε2

bM

1

N 1/2
≥

c2

N 1/2
.

Set
η j ,k := x j + iy j ,k , k ∈ {1, . . . , M j + 1} and j ∈ {1, . . . , M}.

Then the collection η :=
¦

η j ,k

©

contains at least N and at most N+M points and by the very construction

min
( j ,k)6=(i ,l )

�

�

�η j ,k −ηi ,l

�

�

�≥
min{bM , c2}

N 1/2
≥

c ′

N 1/2

for some c ′ > 0 that depends only on νε as the constants bM are uniformly bounded above and below.
Let R := ∪M

j=1 ∪
M j

k=1
R j ,k . Then

I [νε|R] =







∑

j

∑

k ,l

∫

R j ,k×R j ,l

+2
∑

j<i

∑

k ,l

∫

R j ,k×Ri ,l






log

1

|z − u|
dν⊗2
ε
(z, u) =:

∑

j

I j + 2
∑

j<i

I j ,i .

To estimate the first sum notice that the monotonicity of the logarithm and the choice of the rectangles
R j ,k yield

I j ≥
1

N 2

M j
∑

k=1

M j
∑

l=1

log
1

diam(R j ,k ∪R j ,l )
.

Moreover, by the very choice of the points η j ,k , we have that
�

�η j ,k − η j ,l

�

�≥ c2|k − l |N−1/2. Thus, as the
width of each R j ,k is bM/M , we deduce that

diam
�

R j ,k ∪R j ,l

�

≤







�

�

�η j ,k −η j ,l+1

�

�

�

q

1+ c3

(l+1−k)2
, l ≥ k ,

�

�

�η j ,k+1−η j ,l

�

�

�

q

1+ c3

(k+1−l )2
, l < k .
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Hence, using the fact that

−
1

2N 2

M j
∑

k=1

M j
∑

l=k

log

�

1+
c3

(l + 1− k)2

�

≥−
1

2N 2

M j
∑

k=1

M j
∑

l=k

c3

(l + 1− k)2
≥−

c4

2

M j

N 2

and that exactly the same estimate holds for l ∈ {1, . . . , k − 1}, we get that

I j ≥
1

N 2

M j+1
∑

k=1

M j+1
∑

l 6=k ,l=1

log
1

|η j ,k −η j ,l |
−

1

N 2

M j
∑

k=1

log
1

|η j ,k −η j ,k+1|
− c4

M j

N 2

and respectively that
M
∑

j=1

I j ≥
1

N 2

M
∑

j=1

M j+1
∑

k 6=l , k ,l=1

log
1

|η j ,k −η j ,l |
− c5

logN

N
.

To estimate the second sum, fix j , i ∈ {1, . . . , M} such that j < i . It can be readily observed that for each
k ∈

¦

1, . . . , M j

©

there exists lk ∈ {1, . . . , Mi} such that

diam
�

R j ,k ∪Ri ,l

�

=
¨

|η j ,k+1−ηi ,l + bM/M |, l < lk ,
|η j ,k −ηi ,l+1+ bM/M |, l ≥ lk .

Therefore, it holds that

diam
�

R j ,k ∪Ri ,l

�

≤
�

1+
1

i − j

�¨

|η j ,k+1−ηi ,l |, l < lk ,
|η j ,k −ηi ,l+1|, l ≥ lk .

By the above inequality and since M j ≤ c1N 1/2, we deduce that

I j ,i ≥
1

N 2

M j
∑

k=1







lk−1
∑

l=1

log
1

|η j ,k+1−ηi ,l |
+

Mi
∑

l=lk

log
1

|η j ,k −ηi ,l+1|






−

1

i − j

c2
1

N
.

It can be readily verified that the sequence {lk}
M j

k=1
is non-decreasing and therefore the pairs of indices in

the double sums above never repeat themselves. Thus,

I j ,i ≥
1

N 2

M j+1
∑

k=1

Mi+1
∑

l=1

log
1

|η j ,k −ηi ,l |
−

1

N 2

M j+Mi+1
∑

m=1

log
1

|η j ,km
−ηi ,lm

|
−

1

i − j

c2
1

N

for some sequence
�

(km , lm)
	

. So, using the fact that |η j ,km
−ηi ,lm

| ≥ c ′N−1/2, we get that

2
∑

j<i

I j ,i ≥ 2
∑

j<i







∑

k ,l

log
1

|η j ,k −ηi ,l |
− c6

logN

N 3/2
−

1

i − j

c2
1

N







≥ 2
∑

j<i

∑

k ,l

log
1

|η j ,k −ηi ,l |
− c7

logN

N 1/2
.

Combing the estimates for
∑

I j and
∑

I j ,i , we derive that

I [νε] = I [νε|R]+
∫

V νε+νε|R dνε|Rc ≥ limsup
N→∞

�

I∗[ωη]− c7

logN

N 1/2
+
∫

V νε+νε|R dνε|Rc

�

= limsup
N→∞

I∗[ωη],
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where the last equality follows from the fact that νε|Rc ≤ N−1/2 and since the potentials V νε+νε|R are uni-
formly bounded on supp(νε) as the measures νε+ νε|R are absolutely continuous with respect to dA with
uniformly bounded densities.

To show that
I [νε]≤ liminf

N→∞
I∗[ωη],

we appeal to Lemma 9, which asserts the above inequality granted we show that ωη
∗→ νε as N → ∞.

To this end, observe that the differences y j ,k+1− y j ,k cannot be too large to often. Indeed, let BN be the
number of the differences y j ,k+1 − y j ,k that are large than N−1/4. Since the sum of the heights of the
rectangle R j ,k for a fixed index j is bounded by diam(supp(νε)) independently of j , it holds that

BN

N 1/4
+ c2

N −BN

N 1/2
≤ diam(supp(νε))M ,

which immediately implies that BN = O
�

N 3/4
�

. Hence, if f is a function that is bounded by 1 in modulus
and satisfies the Lipschitz condition with constant 1 on supp(νε), then we can write

∫

f d
�

νε−ωηN ,ε

�

=
M
∑

j=1

M j
∑

k=1

∫

�

f − f
�

η j ,k

��

dνε+
∫

Rc
f dνε+

1

N

M
∑

j=1

f
�

η j ,M j+1

�

.

Observe that each of the last two terms on the right-hand side of the equality above is of order N−1/2

as | f | ≤ 1, νε(R
c ) < N−1/2, and M =

�

N 1/2�. Further, split the double sum into two: one over those
rectangles that have heights at most N−1/4 and the rest of them. Since the number of the “large” rectangles
is BN = O

�

N 3/4
�

and | f | ≤ 1, we get that this part of the sum is of order O
�

N−1/4
�

. On another
hand, using the Lipschitz continuity of f on the first group of the rectangles and since the width of each
rectangle is bM/M , we deduce that

∫

R j ,k

�

�

� f − f
�

ηN ,ε
j ,k

��

�

�dνε = O
�

N−5/4
�

and therefore the first part of the sum is also of order O
�

N−1/4
�

. Hence, dist
�

νε,ωηN ,ε

�

= O
�

N−1/4
�

and the claim follows.
Finally, we define ηN ,ε :=

n

ηN ,ε
j

oN

j=1
by selecting any N point from the collection η. As we are discard-

ing at most N 1/2 points, ωηN ,ε still converges to νε in the weak∗ topology. Moreover, the behavior of the
discrete energies also remains unaltered as the absolute value of the contribution of the removed points is
of order O

�

N−1/2 logN
�

. �

lem:nearpoints Lemma 11. Let νε be defined by (13), ηN ,ε be as in Lemma 10, and

ON ,ε :=
¨

z1 |
�

�z1−η
N ,ε
1

�

�<
c ′

3
p

N

«

× · · ·×
¨

zN |
�

�zN −η
N ,ε
N

�

�<
c ′

3
p

N

«

.

Then for all2 η ∈ON ,ε, it holds that

dist
�

νε,ωη
�

≤O
�

N−1/4
�

and
�

�

�I∗[ωη]− I∗[ωηN ,ε]
�

�

�≤ c ′′N−1/2 logN

for some constant c ′′ that depends only on νε.

2For brevity, we slightly abuse the notation and assume that η ∈ON ,ε stands for η= {z1, . . . , zN }, where (z1, . . . , zN ) ∈ON ,ε.
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Proof. It holds for every η ∈ON ,ε that

dist
�

ωη,ωηN ,ε

�

= sup
f

�

�

�

�

∫

f dωη−
∫

f dωηN ,ε

�

�

�

�

≤
1

N

N
∑

j=1

|η j −η
N ,ε
j |<

c ′

3
p

N

by Lipschitz continuity of f . Thus, the first claim follows from the triangle inequality. Furthermore, it
holds that

�

�

�I∗[ωη]− I∗[ωηN ,ε]
�

�

�≤
1

N 2

∑

n 6=m

�

� log

�

�

�

�

�

1+
(ηn −ηN ,ε

n )− (ηm −ηN ,ε
m )

ηN ,ε
n −ηN ,ε

m

�

�

�

�

�

�

�≤
c ′

N 5/2

∑

n 6=m

1

|ηN ,ε
n −ηN ,ε

m |
.

Replacing the collection
n

ηN ,ε
j

o

by
¦

η j ,k

©

constructed in Lemma 10, we shall only increase the sum on

the right-hand side of the above chain of inequalities. As

M j
∑

l 6=k ,l=1

1

|η j ,k −η j ,l |
+

M
∑

i 6= j ,i=1

Mi
∑

l=1

1

|η j ,k −ηi ,l |
≤ c1

M
∑

i=1

N 1/2 logN ≤ c2N logN

for a fixed point η j ,k , the desired result follows. �

Proof of Theorem 2. We start by proving the upper bound in (7). By Lemma 6, each extremal configura-
tion {λ1, . . . ,λN } realizing the supremum in (11) is, in fact, a configuration of Fekete points for K since
wK ≡ 1 on K . That is,

δN (wK ) = δN (K) := sup

(

∏

m<n
|zn − zm | : (z1, . . . , zN ) ∈KN

)

.

Hence, we get from (6) that

ZN ,s ,β ≤ δ
β
N (K)

�∫

C
w (s+1−N )β

K dA
�N

.

By (5) and since wK (z)∼ |z |−1 as |z | →∞, it holds that

limsup
N→∞

N−1 log
�∫

C
w (s+1−N )β

K dA
�

≤ lim
N→∞

N−1 log
�∫

C
w2+c0

K dA
�

= 0.

In other words,

limsup
N→∞

N−2 logZN ,s ,β ≤β lim
N→∞

N−2 logδN (K) =−
β

2
I [ωK],

where the last equality is a well known Fekete-Szegő theorem [12, Thm. 5.5.2].
To prove the lower bound in (7), let Km be defined by (12). Further, let ωm,ε be the measure defined

by (13) for ν =ωKm
and any ε ∈ (0, 1

m ). Clearly, supp(ωm,ε)⊂K . Then we get from (6) that

ZN ,s ,β ≥
∫

supp(ωm,ε)
N

∏

m<n
|zn − zm |

βdA⊗N (z1, . . . , zN )

=
∫

∏

m<n
|zn − zm |

β exp

(

−
N
∑

n=1

logam,ε(zn)

)

dω⊗N
m,ε(z1, . . . , zN ).
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Hence, it follows from Jensen’s inequality that

logZN ,s ,β ≥ −
∫

 

β
∑

m<n
log

1

|zn − zm |
+

N
∑

n=1

logam,ε(zn)

!

dω⊗N
m,ε(z1, . . . , zN )

= −β
N (N − 1)

2
I [ωm,ε]−N

∫

logam,εdωm,ε.

As am,ε ≤ 1/πε2, the integral
∫

logam,εdωm,ε is finite and therefore

liminf
N→∞

1

N 2
logZN ,s ,β ≥−

β

2
lim
ε→0

I [ωm,ε] =−
β

2
I [ωKm

],

where we used Lemma 8. Thus, the lower bound in (7) follows from Lemma 7.
For brevity, put

PN (ν,ε) := Prob
¦

dist
�

ν ,ωη
�

< ε
©

, η= {η1, . . . ,ηN }.
Further, define

Oν,ε :=
�

(η1, . . . ,ηN ) ∈C
N | dist

�

ν ,ωη
�

< ε, η= {η1, . . . ,ηN }
�

.

Observe that Oν ,ε is an open subset of CN for any ν and ε > 0.
To prove the upper bound in (8), let αN ,ε be a configuration that maximizes

exp

(

−(βs − 2− c0)
N
∑

n=1

gK (zn)

)

∏

m<n
|zn − zm |

β

among all N -point configurations α satisfying dist (ν ,ωα) ≤ ε. Such a configuration always exists since
the function above decays as z−(β(s−N+1)−2−c0) by (5) in each coordinate. Therefore we are simply looking
for a place where a continuous function reaches its maximum on some sufficiently large ball inCN . Then

log PN (ν ,ε) = log

 

∫

Oν,ε

ΩN ,s ,β(z1, . . . , zN )dA⊗N (z1, . . . , zN )

!

≤ − logZN ,s ,β− (βs − 2− c0)N
∫

gK dωαN ,ε −
β

2
N 2I∗[ωαN ,ε]+N log

∫

C
e−(2+c0)gK dA.

Let νε be a weak∗ limit point of {ωαN ,ε} (again, as all the configurations αN ,ε belong to a ball of fixed radius
in CN , the measuresωαN ,ε are compactly supported). Then, along the subsequence for whichωαN ,ε

∗→ νε,
it holds that

limsup
N→∞

N−2 log PN (ν ,ε)≤
β

2

�

I [ωK]− I`[ν
ε]
�

by Lemma 9, limit (7), and since
∫

gK dωαN ,ε →
∫

gK dνε. Let now {νεM }∞M=1, εM → 0 as M →∞, be an

arbitrary sequence of weak∗ limit points constructed above. Since dist (νεM , ν)≤ εM , it holds that νεM
∗→ ν

as M →∞. Thus, the principle of descent and continuity of gK yield that liminfM→∞ I`[ν
εM ] ≥ I`[ν].

This includes the case supp(ν)∩K c 6= ∅ and ` = 0. In this situation supp(νεM )∩K c 6= ∅ for all large M
and I0[ν] = I0[ν

εM ] =∞. Therefore,

limsup
ε→0

limsup
N→∞

N−2 log PN (ν ,ε)≤
β

2

�

I [ωK]− I`[ν]
�

.

Observe also that the above considerations imply the existence of the full limit in (8) when I [ν] =∞
or when ` = 0 and supp(ν)∩K c 6= ∅ (clearly, the limit is −∞). Thus, for the lower bound in (8), it is
enough to consider measures with finite energy and, when `= 0, only those that are supported on K .
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Assume first that ` > 0. Let ν be a Borel probability measure with finite energy and νε be the mea-
sure defined by (13) for some ε > 0. Let further {ηN ,ε} be a sequence of configurations constructed in
Lemma 10 and ON ,ε be neighborhood constructed in Lemma 11. It follows immediately from Lemma 11,
the triangle inequality, and Lemma 8 that ON ,ε ⊂Oνε,ε

⊂Oν ,2ε. Hence,

PN (ν, 2ε)≥
1

ZN ,s ,β

∫

ON ,ε

exp

(

−βs
N
∑

n=1

gK (zn)

)

∏

m<n
|zn − zm |

βdA⊗N (z1, . . . , zN ).

Then we deduce from Jensen’s inequality that

log PN (ν, 2ε) ≥ − logZN ,s ,β+ log |ON ,ε|

−
β

2

∫

ON ,ε

�

N 2I∗[ωη]+ 2sN
∫

gK dωη

� dA⊗N (η1, . . . ,ηN )

|ON ,ε|

≥ − logZN ,s ,β−
β

2

�

N 2I∗[ωηN ,ε]+ 2sN
∫

gK dνε

�

+N log
�

4(c ′)2π
�

−9N logN −
β

2

�

c ′′N logN + 2sN
�

max
ON ,ε

∫

gK dωη−
∫

gK dνε

�
�

by Lemma 11 and since dA⊗N/|ON ,ε| is a probability measure on ON ,ε, where |ON ,ε|=
�

4(c ′)2π/9N
�N is

the volume of ON ,ε. By compactness of ON ,ε it holds that

max
ON ,ε

∫

gK dωη =
∫

gK dωηN

for some ηN =
¦

ηN
1 , . . . ,ηN

N

©

such that
�

ηN
1 , . . . ,ηN

N

�

∈ ON ,ε. By Lemma 11, it holds that ωηN

∗→ νε as
N →∞ and therefore

max
ON ,ε

∫

gK dωη−
∫

gK dνε→ 0 as N →∞.

Hence,

liminf
N→∞

N−2 log PN (ν , 2ε)≥
β

2

�

I [ωK]− I`[νε]
�

by (7) and Lemma 10. The lower bound in (8) follows now from Lemma 8.
Finally, assume that `= 0. Let ν be a probability Borel measure with finite energy supported on K and

{νm} be a sequence of measures granted by Lemma 7. Then (νm)ε is supported in K◦ for every ε < 1/2m
and so are the measuresωηN ,ε andωη constructed in Lemmas 10 and 11 for (νm)ε. Thus, the argument we
used for the case ` > 0 yields now that

liminf
ε→0

liminf
N→∞

N−2PN (νm ,ε)≥
β

2

�

I [ωK]− I`[νm]
�

.

To show the lower bound in (8) it remains only to observe that PN (ν ,ε+ εm) ≥ PN (νm ,ε), where εm =
dist

�

ν , νm
�

, and I [νm]→ I [ν] as m→∞ by Lemma 7. �

Proof of Proposition 3. Let {πn,s}N−1
n=0 be the sequence of orthonormal polynomials with respect to the

inner product

〈 f , g 〉=
∫

f g exp{−2s gK}dA.
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Denote by cn,s the leading coefficient of πn,s . Then it holds [5, Sec. 5.4] that

logZN ,s ,2 = logN !− 2
N−1
∑

n=0

logcn,s .

It was shown in [16, Thm. 1] that K as described

cn,s =
1

cpn+1(K)

È

n+ 1

π

�

1−
n+ 1

s

��

1+O
� 1

n2α

��

.

Hence, it follows from (1) that

logZN ,∞,2 =−N (N + 1)I [ωK]+N logπ+O (1)

and more generally

logZN ,s ,2 = logZN ,∞,2−
N−1
∑

k=0

log(s − k)+N log s +O (1).

It follows from the Stirling’s formula log n!=
�

n+ 1/2
�

log n− n+O (1) that

−
N−1
∑

k=0

log(s − k)+N log s =N +(s −N ) log
�

1− s−1N
�

+O (logN )

which yields (9). �

For ε > 0, set

UNepsilonUNepsilon (14) UN ,ε :=

(

(z1, . . . , zN ) |
∏

m<n
|zn − zm |

∏

n
wN−1

K (zn)≥ exp

¨

−
�

I [ωK]+ ε
�N (N − 1)

2

«
)

.

lem:lowenergy Lemma 12. For each N ∈N and ε > 0, it holds that
∫

CN \UN ,ε

ΩN ,s ,βdA⊗N ≤ exp

¨

−β
�

ε+ o(1)
�N (N − 1)

2

«

.

Proof. For (z1, . . . , zN ) ∈CN \UN ,ε it holds that

ΩN ,s ,β(z1, . . . , zN ) ≤
1

ZN ,sβ
exp

¨

−β
�

I [ωK]+ ε
�N (N − 1)

2

« N
∏

n=1

wβ(s−N+1)
K (zn)

≤ exp

¨

−β
�

ε+ o(1)
�N (N − 1)

2

« N
∏

n=1

w2+c0
K (zn),

where we used (7) and (5) for the second inequality. Now, the conclusion of the lemma follows from the
fact that

∫

CN \UN ,ε

N
∏

n=1

w2+c0
K (zn)dA⊗N ≤

�∫

C
w2+c0

K dA
�N

= exp
�

O (N )
	

.

�

For f ∈Cb (Cn), set

fNfN (15) fN (z1, . . . , zN ) :=
(N − n)!

N !

∑

σ

f
�

zσ(1), . . . , zσ(n)
�

,

where the sum is taken over all distinct permutations σ of size n for {1, . . . ,N}.
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lem:fN Lemma 13. Let f ∈Cb (Cn) and z = {z1, . . . , zN }. Then there exists a finite constant c(n) such that
�

�

�

�

fN (z1, . . . , zN )−
∫

f dω⊗n
z

�

�

�

�

≤max
Cn
| f |

c(n)

N
.

Proof. For n = 1 it simply holds that fN (z1, . . . , zN ) =
∫

f dωz . When n = 2, it is true that
�

�

�

�

fN (z1, . . . , zN )−
∫

f dω⊗2
z

�

�

�

�

=
�

�

�

�

1

N − 1

∫

f dω⊗2
z −

1

N − 1

∫

f (u, u)dωz (u)
�

�

�

�

≤
2maxCn | f |

N − 1
.

More generally, it holds that fN (z1, . . . , zN ) is equal to

(N − n)!

N !

�

N n
∫

f dω⊗n
z −N n−1

∑

∫

f dω⊗n−1
z + · · ·+(−1)n−1N

∫

f (u, . . . , u)dωz (u)
�

,

where the first sum is taken over all possible combinations of two coordinates being equal, the next sum
is taken over over all possible combinations of three coordinates being equal, etc. Since the number of
terms in each sum depends on n but is independent of N , the conclusion of the lemma follows. �

Denote by Cc (Cn) the collection of continuous functions on Cn with compact support.

lem:cws Lemma 14. For any f ∈Cc (Cn), it holds that

lim
ε→0

lim
N→∞

sup
(z1,...,zN )∈UN ,ε

�

�

�

�

fN (z1, . . . , zN )−
∫

f dω⊗n
K

�

�

�

�

= 0.

Proof. For fixed ε, let
¦�

λN ,ε
1 , . . . ,λN ,ε

N

�©

n∈Λ
, Λ ⊆ N, be a maximizing sequence for the first limit in

question. Since f has compact support, we can assume that |λN ,ε
k
|< R for some R= R( f ) large enough.

Set
λN ,ε :=

¦

λN ,ε
1 , . . . ,λN ,ε

N

©

.

Let νε be a weak∗ limit point of
�

ωλN ,ε

	

. Clearly, νε is also supported in the disk of radius R. Then it
follows from Lemma 13, the choice of

¦

λN ,ε
©

that

limsup
N→∞

sup
(z1,...,zN )∈UN ,ε

�

�

�

�

fN (z1, . . . , zN )−
∫

f dω⊗n
K

�

�

�

�

=
�

�

�

�

∫

f dν⊗n
ε
−
∫

f dω⊗n
K

�

�

�

�

(observe thatω⊗n
λN ,ε

∗→ ν⊗n
ε

sinceωλN ,ε
∗→ νε). Further, let ν be a weak∗ limit point of {νε} such that

limsup
ε→0

lim
N→∞

sup
(z1,...,zN )∈UN ,ε

�

�

�

�

fN (z1, . . . , zN )−
∫

f dω⊗n
K

�

�

�

�

=
�

�

�

�

∫

f dν⊗n −
∫

f dω⊗n
K

�

�

�

�

.

The proof of the lemma will be completed if we show that ν =ωK . To this end, recall that
�

λN ,ε
1 , . . . ,λN ,ε

N

�

∈
UN ,ε and therefore

I∗[ωλN ,ε]+ 2
∫

gK dωλN ,ε ≤ I [ωK]+ ε.

Then it follows from Proposition 1, Lemma 9, and the inequality above that

I [ωK]≤ I1[νε]≤ I [ωK]+ ε.

Applying principle of descent once more, we get that

I [ωK]≤ I1[ν]≤ liminf I1[νε]≤ I [ωK].

The desired conclusion now follows from Proposition 1. �
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Proof of Theorem 4. Fix f ∈Cc (Cn). That is, we assume that f has compact support. Define fN by (15).
Then

∫

CN
fNΩN ,s ,βdA⊗N =

(N − n)!

N !

∑

σ

∫

CN
f
�

zσ(1), . . . , zσ(n)
�

ΩN ,s ,β(z1, . . . , zN )dA⊗N (z1, . . . , zN )

=
∫

Cn
f Ω(n)

N ,s ,β
dA⊗n

as ΩN ,s ,β is symmetric with respect to the permutations of z1, . . . , zN . Moreover, since ΩN ,s ,β is a proba-
bility density function by its very definition, it holds that

∫

Cn
f Ω(n)

N ,s ,β
dA⊗n −

∫

Cn
f dω⊗n

K =
∫

CN

�

fN −
∫

Cn
f dω⊗n

K

�

ΩN ,s ,βdA⊗N .

Hence, by Lemma 12 we only need to show that

lim
N→∞

∫

UN ,ε

�

fN −
∫

Cn
f dω⊗n

K

�

ΩN ,s ,βdA⊗N = 0

for any ε > 0 as supCN | fN |= supCn | f |. The desired conclusion now follows from Lemma 14 since
∫

UN ,ε

�

�

�

�

fN −
∫

Cn
f dω⊗n

K

�

�

�

�

ΩN ,s ,βdA⊗N ≤ sup
(z1,...,zN )∈UN ,ε

�

�

�

�

fN (z1, . . . , zN )−
∫

f dω⊗n
K

�

�

�

�

,

where we once more used the fact that ΩN ,s ,β is positive and has unit integral over CN .
Now, let D be a large enough ball in Cn to contain K n and f be a function supported in D satisfying

0≤ f ≤ 1 and such that f ≡ 1 on K n . Then

limsup
N→∞

∫

D c
Ω(n)

N ,s ,β
dA⊗n ≤ 1− lim

N→∞

∫

D
f Ω(n)

N ,s ,β
dA⊗n = 1−

∫

f dω⊗n
K = 0.

Since any f ∈ Cb (Cn) can be written as a sum fc + ( f − fc ), where fc ∈ Cc (Cn) and f ≡ fc in D , the
general claim follows. �
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