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ABSTRACT. Let f be a germ of an analytic function at infinity that can be analytically continued along any
path in the complex plane deprived of a finite set of points, f ∈ A (C \A), ]A < ∞. J. Nuttall has put
forward the important relation between the maximal domain of f where the function has a single-valued
branch and the domain of convergence of the diagonal Padé approximants for f . The Padé approximants,
which are rational functions and thus single-valued, approximate a holomorphic branch of f in the domain of
their convergence. At the same time most of their poles tend to the boundary of the domain of convergence
and the support of their limiting distribution models the system of cuts that makes the function f single-
valued. Nuttall has conjectured (and proved for many important special cases) that this system of cuts has
minimal logarithmic capacity among all other systems converting the function f to a single-valued branch.
Thus the domain of convergence corresponds to the maximal (in the sense of minimal boundary) domain of
single-valued holomorphy for the analytic function f ∈A (C\A). The complete proof of Nuttall’s conjecture
(even in a more general setting where the set A has logarithmic capacity 0) was obtained by H. Stahl. In this
work, we derive strong asymptotics for the denominators of the diagonal Padé approximants for this problem
in a rather general setting. We assume that A is a finite set of branch points of f which have the algebro-
logarithmic character and which are placed in a generic position. The last restriction means that we exclude
from our consideration some degenerated “constellations” of the branch points.

1. INTRODUCTION

Let f be a function holomorphic at infinity. Then f can be represented as a power series

(1.1) f (z) =
∞
∑

k=0

fk

zk
.

A diagonal Padé approximant to f is a rational function [n/n] f = pn/qn of type (n, n) (i.e., deg(pn), deg(qn)≤
n) that has maximal order of contact with f at infinity [42, 8]. It is obtained from the solutions of the
linear system

(1.2) Rn(z) := qn(z) f (z)− pn(z) = O
�

1/zn+1
�

as z→∞

whose coefficients are the moments fk in (1.1). System (1.2) is always solvable and no solution of it can
be such that qn ≡ 0 (we may thus assume that qn is monic). In general, a solution is not unique, but yields
exactly the same rational function [n/n] f . Thus, each solution of (1.2) is of the form (l pn , l qn), where
(pn , qn) is the unique solution of minimal degree. Hereafter, (pn , qn) will always stand for this unique
pair of polynomials.

Padé approximant [n/n] f as well as the index n are called normal if deg(qn) = n [34, Sec. 2.3]. The
occurrence of non-normal indices is a consequence of overinterpolation. That is, if n is normal index
and1

f (z)− [n/n] f (z)∼ z−(2n+l+1) as z→∞
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1We say that a(z)∼ b (z) if 0< liminfz→∞ |a(z)/b (z)| ≤ limsupz→∞ |a(z)/b (z)|<∞.
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for some l ≥ 0, then [n/n] f = [n+ j/n+ j ] f for j ∈ {0, . . . , l}, and n+ l + 1 is normal.
Assume now that the germ (1.1) is analytically continuable along any path in C \A for some fixed set

A. Suppose further that this continuation is multi-valued in C \A, i.e., f has branch-type singularities at
some points in A. For brevity, we denote this by

(1.3) f ∈A (C \A) .

The theory of Padé approximants to functions with branch points has been initiated by J. Nuttall. In
the pioneering paper [35] he considered a class of functions (1.3) with an even number of branch points
(forming the set A) and principal singularities of the square root type. Convergence in logarithmic capacity
[45, 46] of Padé approximants, i.e.,

(1.4) ∀ ε > 0 , lim
n→∞

cp
�

{z ∈K : | f (z)− [n/n] f (z)|> ε}
�

= 0 ,

was proven uniformly on compact subsets of C \∆, where ∆ is a system of arcs which is completely
determined by the location of the branch points. Nuttall characterized this system of arcs as a system
that has minimal logarithmic capacity among all other systems of cuts making the function f single-
valued in their complement. That is,

(1.5) cp(∆) = min
∂ D :D∈D f

cp(∂ D) ,

where we denoted byD f the collection of all connected domains containing the point at infinity in which
f is holomorphic and single-valued.

In that paper he has conjectured that for any function f inA (C \A) with any finite number of branch
points that are arbitrarily positioned in the complex plane, i.e.,

(1.6) ]A<∞ and A⊂C,

and with an arbitrary type of branching singularities at those points, the diagonal Padé approximants con-
verge to f in logarithmic capacity away from the system of cuts ∆ characterized by the property of minimal
logarithmic capacity.

Thus, Nuttall in his conjecture has put forward the important relation between the maximal domain
where the multi-valued function f has single-valued branch and the domain of convergence of the diagonal
Padé approximants to f constructed solely based on the series representation (1.1). The Padé approxi-
mants, which are rational functions and thus single-valued, approximate a single-valued holomorphic
branch of f in the domain of their convergence. At the same time most of their poles tend to the bound-
ary of the domain of convergence and the support of their limiting distribution models the system of
cuts that makes the function f single-valued (see also [36]).

The complete proof of Nuttall’s conjecture (even in a more general setting) was taken up by H. Stahl.
In a series of fundamental papers [47, 48, 49, 50, 52] for a multi-valued function f ∈ A (C \ A) with
cp(A) = 0 (no more restrictions!) he proved: the existence of a domain D∗ ∈ D f such that the boundary
∆= ∂ D∗satisfies (1.5); weak (n-th root) asymptotics for the denominators of the Padé approximants (1.2)

(1.7) lim
n→∞

1

n
log |qn(z)|=−V ω∆(z), z ∈D∗,

where V ω∆ := −
∫

log |z − t |dω∆(t ) is the logarithmic potential of the equilibrium measure ω∆, min-
imizing the energy functional I (µ) :=

∫

V µ(z)dµ(z) among all probability measures µ on ∆, i.e.,
I (ω∆) :=minµ(∆)=1 I (µ); convergence theorem (1.4).
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The aim of the present paper is to established the strong (or Szegő type, see [55, Ch. XII]) asymptotics
of the Nuttall-Stahl polynomials qn . In other words, to identify the limit

lim
n→∞

qn

Φn = ? in D∗,

where the polynomials qn are the denominators of the diagonal Padé approximants (1.2) to functions (1.3)
satisfying (1.6) and Φ is a properly chosen normalizing function.

Interest in the strong asymptotics comes, for example, from the problem of uniform convergence
of the diagonal Padé approximants. Indeed, the weak type of convergence such as the convergence in
capacity in Nuttall’s conjecture and Stahl theorem is not a mere technical shortcoming. Indeed, even
though most of the poles (full measure) of the approximants approach the system of the extremal cuts∆,
a small number of them (measure zero) may cluster away from ∆ and impede the uniform convergence.
Such poles are called spurious or wandering. Clearly, controlling these poles is the key for understanding
the uniform convergence.

There are many special cases of the Nuttall-Stahl polynomials that have been studied in detail including
their strong asymptotics. Perhaps the most famous examples are the Padé approximants to functions
1/
p

z2− 1 and
p

z2− 1− z (the simplest meromorphic functions on a two sheeted Riemann surface of
genus zero) where the Nuttall-Stahl polynomials qn turn out to be the classical Chebyshëv polynomials
of the first and second kind, respectively. The study of the diagonal Padé approximants for functions
meromorphic on certain Riemann surfaces of genus one by means of elliptic functions was initiated in the
works of S. Duma [19] and N.I. Akhiezer [2], see also [33] by E.M. Nikishin. Supporting his conjecture,
Nuttall considered two important classes of functions with branch points for which he obtained strong
asymptotics of the diagonal Padé approximants. In a joint paper with S.R. Singh [41], a generalization
of the class of functions considered in [35] (even number of quadratic type branch points) was studied.
Peculiarity of this class as well as its prototype from [35] is that ∆, the system of extremal cuts (1.5),
consists of non-intersecting analytic arcs, see Figure 1A.

a1

a2

a3

a4

(A)
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a2

a3
b1

(B)

FIGURE 1. The left-hand figure depicts the case where ∆ is comprised of non-intersecting ana-
lytic arcs, and the right-hand figure illustrates the case where three arcs share a common endpoint.

In the paper [39] (see also [37]) Nuttall investigated the behavior of the Padé approximants for functions
with three non-collinear branch points. Namely, functions of the form

(1.8) f (z) :=
3
∏

j=1

(z − e j )
α j , α j ∈C :

3
∑

j=1

α j = 0 .

Analytic arcs of the system of extremal cuts for these functions (contrary to the functions from the
previous class) share a common endpoint, see Figure 1B. In order to shed some light on the behavior of
the spurious poles, Stahl studied strong asymptotics of the diagonal Padé approximants for hyperelliptic
functions [51], see also [52].
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An important feature of the diagonal Padé approximants, which plays a key role in the study of their
asymptotics, is the orthogonality of their denominators. It is quite simple to see that (1.2) and the Cauchy
theorem (taking into account the definition of D f in (1.5)) lead to

∫

∂ D :D∈D f

qn(z) z
j f (z)d z = 0 , j ∈ {0, . . . , n− 1},

where the integral is taken along the orientated boundary ∂ D of a domain D from D f . For the extremal
domain D∗ ∈ D f of f satisfying (1.3) and (1.6), the boundary ∆ = ∂ D∗ consists of a finite union of
analytic Jordan arcs. Hence, choosing an orientation of ∆ (as a set of Jordan arcs), we can introduce in
general complex-valued weight function

(1.9) ρ(t ) = ( f +− f −)(t ), t ∈∆,

which turns qn into non-Hermitian orthogonal polynomials. That is,

(1.10)
∫

∆

qn(t ) t
j ρ(t )d t = 0, j ∈ {0, . . . , n− 1}.

Asymptotic analysis of the non-Hermitian orthogonal polynomials is a difficult problem substantially
different from the study of the asymptotics of the polynomials orthogonal with respect to a Hermitian
inner product, i.e., the case where ρ is real-valued and∆⊂R.

In [49], Stahl developed a new method of study of the weak (n-th root) asymptotics (1.7) of the poly-
nomials orthogonal with respect to complex-valued weights. As discussed above, this resulted in the proof
of Nuttall’s conjecture. The method of Stahl was later extended by A.A. Gonchar and E.A. Rakhmanov
in [28] to include the weak (n-th root) asymptotics of the polynomials orthogonal with respect to varying
complex-valued weights, i.e., to include the case where the weight function ρ := ρn in (1.10) depends on n,
the degree of the polynomial qn . Orthogonal polynomials with varying weights play an important role
in analysis of multipoint Padé approximants, best (Chebyshëv) rational approximants, see [27, 26], and
in many other applications (for example in description of the eigenvalue distribution of random matrices
[14]).

The methods of obtaining strong asymptotics of the polynomials orthogonal with respect to a com-
plex weight are based on a certain boundary-value problem for analytic functions (Riemann–Hilbert
problem). Namely,

(1.11) R+n −R−n = qnρ on ∆,

where Rn , defined in (1.2), are the reminder functions for Padé approximants (or functions of the second
kind for polynomials (1.10)), which also can be expressed as

(1.12) Rn(z) =
∫

∆

qn(t )ρ(t )

t − z

d t

2πi
, Rn(z) = O

� 1

zn+1

�

as n→∞.

The boundary-value problem (1.11) naturally follows from (1.2) and the Sokhotskĭı–Plemelj formulae.
This approach appeared in the works of Nuttall in connection with the study of the strong asymptotics
of the Hermite–Padé polynomials, see the review [38]. In [40]Nuttall transformed the boundary condi-
tion (1.11) into a singular integral equation and on this basis obtained the formulae of strong asymptotics
for polynomials (1.10) orthogonal on the interval ∆ := [−1,1] with respect to a holomorphic complex-
valued weight

ρ(x) :=
eρ(x)

p

1− x2
, eρ ∈H (∆), eρ 6= 0 on ∆ := [−1,1],
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where H (∆) is a class of functions holomorphic in some neighborhood of ∆. Here eρ can also be a
complex-valued non-vanishing Dini-continuous function on [−1,1] [11]. The most general known ex-
tension of this class of orthogonal polynomials is due to S.P. Suetin [53, 54] who considered the conver-
gence domain D∗ ∈D f for the function 1/

Æ

(t − e1) · · · (t − e2g+2), e j ∈C, when the boundary∆= ∂ D∗

consists of g + 1 disjoint Jordan arcs (like in [41], see Figure 1A). Elaborating on the singular integral
method of Nuttall, he derived strong asymptotics for polynomials (1.10) orthogonal on ∆ with respect
to the complex weight

ρ(x) :=
eρ(x)

Æ

(t − e1) · · · (t − e2g+2)
,

where eρ is a Hölder continuous and non-vanishing function on∆. In [10], L. Baratchart and the second
author have studied strong asymptotics for polynomials (1.10) via the singular integral method in the
elliptic case g = 1, but under the assumptions that ρ is Dini-continuous and non-vanishing on ∆, while
the latter is connected and consists of three arcs that meet at one of the branch points (exactly the same
set up as in [39], see Figure 1B). The strong asymptotics of Nuttall-Stahl polynomials arising from the
function (1.8) was derived in the recent work [21] in three different ways, including singular integral
equation method of Nuttall and the matrix Riemann-Hilbert method.

The latter approach facilitated substantial progress in proving new results for the strong asymptotics
of orthogonal polynomials and is based on a matrix-valued Riemann-Hilbert boundary value problem.
The core of the method lies in formulating a Riemann-Hilbert problem for 2× 2 matrices (due to Fokas,
Its, and Kitaev [22, 23]) whose entries are orthogonal polynomials (1.10) and functions of the second
kind (1.12) to which the steepest descent analysis (due to Deift and Zhou [17]) is applied as n→∞. This
method was initially designed to study the asymptotics of the integrable PDEs and was later applied to
prove asymptotic results for polynomials orthogonal on the real axis with respect to real-valued analytic
weights, including varying weights (depending on n) [16, 15, 31, 32] and related questions from random
matrix theory. It also has been noticed [7, 3, 29, 12] (see also recent paper [13]) that the method works
for the non-Hermitian orthogonality in the complex plane with respect to complex-valued weights.

In the present paper we apply the matrix Riemann-Hilbert method to obtain strong asymptotics of
Padé approximants for functions with branch points (i.e., we obtain strong asymptotics of Nuttall-Stahl
polynomials). To capture the geometry of multi-connected domains we use the Riemann theta functions
as it was done in [16], but keep our presentation in the spirit of [4, 6].

This paper is structured as follows. In the next section we introduce necessary notation and state our
main result. In Sections 3 and 4 we describe in greater detail the geometry of the problem. Namely,
Section 3 is devoted to the existence and properties of the extremal domain D∗ for the functions of the
form (1.3) and (1.6). Here, for completeness of the presentation, we present some results and their proofs
from the unpublished manuscript [43]. Section 4 is designed to highlight main properties of the Rie-
mann surface of the derivative of the complex Green function of the extremal domain D∗. Sections 5
and 6 are devoted to a solution of a certain boundary value problem on R and are auxiliary to our main
results. In the last three sections we carry out the matrix Riemann-Hilbert analysis. In Section 7 we state
the corresponding matrix Riemann-Hilbert problem, renormalize it, and perform some identical trans-
formations that simplify the forthcoming analysis. In Section 8 we deduce the asymptotic (as n →∞)
solution of the initial Riemann-Hilbert problem and finally in Section 9 we derive the strong asymptotics
of Nuttall-Stahl polynomials.

2. MAIN RESULTS

The main objective of this work is to describe the asymptotics of the diagonal Padé approximants to
algebraic functions. We restrict our attention to those functions that have finitely many branch points,
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all of which are of an integrable order, with no poles and whose contour of minimal capacity satisfies
some generic conditions, Section 2.1. Such functions can be written as Cauchy integrals of their jumps
across the corresponding minimal capacity contours and therefore we enlarge the considered class of
functions to Cauchy integrals of densities that behave like the non-vanishing jumps of algebraic functions,
Section 2.2. It turns out that the asymptotics of Padé approximants is described by solutions of a specific
boundary value problem on a Riemann surface corresponding to the minimal capacity contour. This
surface and its connection to the contour are described in Section 2.3, while the boundary value problem
as well as its solution are stated in Section 2.4. The main results of this paper are presented in Section 2.5.

2.1. Functions with Branch Points. Let f be a function holomorphic at infinity that extends analyti-
cally, but in a multi-valued fashion, along any path in the extended complex plan that omits finite number
of points. That is,

(2.1) f ∈A (C \A) , A := {ak}, 2≤ ]A<∞.

Without loss of generality we may assume that f (∞) = 0 since subtracting a constant from f changes the
Padé approximant in a trivial manner.

We impose two general restrictions on the functions (2.1). The first restriction is related to the charac-
ter of singularities at the branch points. Namely, we assume that the branch points are algebro-logarithmic.
It means that in a small enough neighborhood of each ak the function f has a representation

(2.2) f (z) = h1(z)ψ(z)+ h2(z), ψ(z) =
�

(z − ak )
α(ak )

log(z − ak )
,

where −1 < α(ak ) < 0 and h1, h2 are holomorphic around ak . The second restriction is related to the
disposition of the branch points. Denote by D∗ the extremal domain for f in the sense of Stahl. It is
known, Proposition 8, that

(2.3) ∆=C \D∗ = E ∪
⋃

∆k ,

where
⋃

∆k is a finite union of open analytic Jordan arcs and E is a finite set of points such that each
element of E is an endpoint for at least one arc∆k , Figure 2. In what follows, we suppose that the points

a1

a2

a3a4

a5 a6

b1b2
∆1

∆2∆4

∆3∆5 ∆6

FIGURE 2. Schematic example of ∆, depicting the set E = {a1, . . . ,a6} ∪ {b1, b2}, the arcs ∆k ,
and their orientation.

forming A are in a Generic Position (GP).

Condition GP. We assume that
(i) each point in E

⋂

A is incident with exactly one arc from
⋃

∆k ;
(ii) each point in E \A is incident with exactly three arcs from

⋃

∆k .

The above condition describes a generic case for the set A. Meaning that if the set A does not satisfy
this condition, then there is a small perturbation of the position of these points such that new set A obeys
Condition GP.
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Denote by g∆ the Green function for D∗ with a pole at infinity, Section 3. That is, g∆ is the unique
function harmonic in D∗ \ {∞} having zero boundary values on∆ that diverges to infinity like log |z | as
|z | →∞. It is known [45, Thm. 5.2.1] that the logarithm of the logarithmic capacity of∆ is equal to

logcp(∆) = lim
z→∞

�

log |z | − g∆(z)
�

.

As shown in [43], see also (3.9) further below, it holds that

(2.4) h(z) := (2∂z g∆)(z) =
1

z
+ · · ·=

s

B(z)

A(z)
,

where 2∂z := ∂x − i∂y , B is a monic polynomial of degree deg(A)− 2, and

A(z) :=
p
∏

k=1

(z − ak ), {a1, . . . ,ap} :=A∩ E .

Since g∆ ≡ 0 on ∆, so is its tangential derivative at each smooth point of ∆+ ∪∆−. Hence, h(t )τt ,
t ∈∆±, is purely imaginary, where τt is the complex number corresponding to the tangent vector at t to
∆. In particular, the integral of h(t )d t along∆± is purely imaginary.

Condition GP has the following implications on B [44, Section 8]. Let m be the number of the
connected components of ∆. Then B has p − 2m simple zeros that we denote by b1, . . . , bp−2m and all
the other zeros are of even multiplicities. In particular,

(2.5) E := {a1, . . . ,ap} ∪ {b1, . . . , bp−2m}.

If we set g := p −m− 1, then |E |= 2g + 2. Moreover, we can write

(2.6) B(z) =
p−2m
∏

j=1

(z − b j )
g
∏

j=p−2m+1

(z − b j )
2

where the elements of {bp−2m+1, . . . , bg } are the zeros of B of even multiplicities mb j
, each listed mb j

/2
times.

2.2. Cauchy-type Integrals. Let f be a function of the form (2.1)–(2.2) with contour∆ in (2.3) satisfying
Condition GP. We orient the arcs ∆k comprising ∆ so that the arcs sharing a common endpoint either
are all oriented towards this endpoint or away from it, see Figure 2. As the complement of∆ is connected,
i.e., ∆ forms no loop, such an orientation is always feasible and, in fact, there are only two such choices
which are inverse to each other. According to the chosen orientation we distinguish the left (+) and the
right (−) sides of each arc. Then

(2.7) f (z) =
∫

∆

( f +− f −)(t )

t − z

d t

2πi
, z ∈D∗,

where the integration on∆ is taking place according to the chosen orientation.
Let e ∈ E \A. Then e is incident with exactly three arcs, which we denote for convenience by ∆e , j ,

j ∈ {1,2,3}. Since e is not a point of branching for f , the jumps ( f +− f −)|∆e ,k
are holomorphic around

e and enjoy the property

(2.8) ( f +− f −)|∆e ,1
+( f +− f −)|∆e ,2

+( f +− f −)|∆e ,3
≡ 0,

where we also used the fact that the arcs∆e , j have similar orientation as viewed from e .
Set α(e) := 0 for each e ∈ E \A and fix a, b ∈ E that are adjacent to each other by an arc∆k ⊂∆. Then

the jump of f across∆k can be written as

(2.9) ( f +− f −)(z) = wk ( f ; z)(z − a)α(a)(z − b )α(b ), z ∈∆k ,
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where we fix branches of (z − a)α(a) and (z − b )α(b ) that are holomorphic across ∆k and wk ( f ; ·) is a
holomorphic and non-vanishing function in some neighborhood of∆k .

Keeping in mind (2.8) and (2.9), we introduce the following class of weights on∆.

Definition 1. A weight function ρ on∆ belongs to the classW∆ if

(2.10) ρ|∆e ,1
+ρ|∆e ,2

+ρ|∆e ,3
≡ 0

in a neighborhood of each e ∈ E \A, where∆e , j , j ∈ {1,2,3}, are the arcs incident with e; and

(2.11) ρ|∆k
(z) = wk (z)(z − a)αa (z − b )αb

on ∆k , incident with a, b , where wk is holomorphic and non-vanishing in some neighborhood of ∆k and
{(z − e)αe }e∈E is a collection of functions holomorphic in some neighborhood of∆ \ {e}, αe >−1 and αe = 0
for e ∈ E \A.

For a weight ρ ∈W∆, we set

(2.12) bρ(z) :=
∫

∆

ρ(t )

t − z

d t

2πi
, z ∈D∗.

It follows from (2.7)–(2.9) that a function f satisfying (2.1)–(2.2) and Condition GP, and whose jump
f +− f − is non-vanishing on∆ \ {a1, . . . ,ap} can be written in the form (2.12) for aW∆-weight.

2.3. Riemann Surface. Denote by R the Riemann surface of h defined in (2.4). We represent R as a
two-sheeted ramified cover of C constructed in the following manner. Two copies of C are cut along
every arc ∆k . These copies are joined at each point of E and along the cuts in such a manner that the
right (resp. left) side of the arc∆k belonging to the first copy, say R(0), is joined with the left (resp. right)
side of the same arc ∆k only belonging to the second copy, R(1). It can be readily verified that R is a
hyperelliptic Riemann surface of genus g .

According to our construction, each arc∆k together with its endpoints corresponds to a cycle, say Lk ,
on R. We set L :=

⋃

k Lk , denote by π the canonical projection π : R→C, and define

D (k) :=R(k) ∩π−1(D∗) and z (k) :=D (k) ∩π−1(z)

for k ∈ {0,1} and z ∈ D∗. We orient each Lk in such a manner that D (0) remains on the left when the
cycle is traversed in the positive direction. For future use, we set {b (1)j }

g
j=1 to be such point on R that

(2.13) π
�

b (1)j

�

= b j and b (1)j ∈D (1) ∪ L, j ∈ {1, . . . , g}.

For any (sectionally) meromorphic function r on R we keep denoting by r the pull-back function
from R(0) onto C and we denote by r ∗ the pull-back function from R(1) onto C. We also consider any
function on C naturally defined on R(0). In particular, h is a rational function over R such that h∗ =−h
(as usual, a function is rational over R if the only singularities of this function on R are polar).

Denote by {ak}
g
k=1

and {bk}
g
k=1

the following homology basis for R. Let C j (∆), j ∈ {1, . . . , m},
be the connected components of ∆. Set p j := |{a1, . . . ,ap} ∩ C j (∆)|. Clearly, p =

∑m
j=1 p j . Relabel,

if necessary, the points {a1, . . . ,ap} in such a manner that {ap0+···+p j−1+1, . . . ,ap0+···+p j
} ⊂ C j (∆), where

p0 := 0. Then for each j ∈ {2, . . . , m} we choose p j − 1 b-cycles as those cycles Lk that contain the
points ap0+···+p j−1+2, . . . ,ap0+···+p j

, and we choose p1− 2 b-cycle as those cycles Lk that contain a3, . . . ,ap1
.

We assume that the orientation of the b-cycles is induced by the orientation of the corresponding cycles
Lk . The a-cycles are chosen to be mutually disjoint except at a2, which belongs to all of them. It is
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D(0)

a1

a2

a3a4

a5 a6

b1b2

b1

b2
b3

a1

a2

a3

FIGURE 3. The choice of the b-cycles and the parts of the a-cycles belonging to D (0) (thicker
lines necessarily oriented towards the corresponding b-cycles).

assumed that each cycle ak intersect the corresponding cycle bk only at one point, the one that belongs
to {a3, . . . ,ap}, and that

∆a
k :=π(ak ∩D (0)) =π(ak ∩D (1)).

The a-cycles are orientated in such a manner that the tangent vectors to ak ,bk form the right pair at the
point of their intersection. We also assume that each arc∆a

k
naturally inherits the orientation of ak∩D (0).

In particular, the+ side of ak∩D (0) and the− side of ak∩D (1) project onto the+ side of∆a
k
, see Figure 3.

We set

eR :=R \
g
⋃

k=1

(ak ∪bk ) and bR :=R \
g
⋃

k=1

ak

(observe that eR is a simply connected subdomain of R).
Define (see also Section 4.2)

(2.14) Φ(z) := exp

(

∫ z

a1

h(t )d t

)

for z ∈ eR.

Then Φ is a holomorphic and non-vanishing function on eR except for a simple pole at∞(0) and a simple
zero at∞(1) whose pull-back functions are reciprocals of each other, i.e.,

(2.15) ΦΦ∗ ≡ 1 in Da :=D∗ \
g
⋃

k=1

∆a
k .

Furthermore, Φ possesses continuous traces on both sides of each a- and b-cycle that satisfy

(2.16)
Φ+

Φ−
=
¨

exp
�

2πiωk
	

on ak ,
exp
�

2πiτk
	

on bk ,

where the constantsωk and τk are real and can be expressed as

(2.17) ωk :=−
1

2πi

∮

bk

h(t )d t and τk :=
1

2πi

∮

ak

h(t )d t ,
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k ∈ {1, . . . , g}. In fact, it holds that ωk = ω∆(π(Lk )), where ω∆ is the equilibrium measure of ∆ [45].
Moreover, it is true that

(2.18) Φ(z) =
z

ξ cp(∆)
+O (1) as z→∞, |ξ |= 1.

In what follows, we shall assume without loss of generality that ξ = 1. Indeed, if ξ 6= 1, set ∆ξ :=
{ξ̄ z : z ∈∆} and ρξ (z) := ρ(ξ z), z ∈∆ξ , where ρ is a function defined in (2.11). Then

bρξ (z) := bρ(ξ z) and [n/n]
bρξ
(z) = [n/n]

bρ(ξ z), z ∈C \∆ξ .

Thus, the asymptotic behavior of [n/n]
bρ is entirely determined by the asymptotic behavior of [n/n]

bρξ
.

Moreover, it holds that Φ∆ξ (z) = Φ∆(ξ z) and therefore Φ∆ξ (z) = z/cp(∆)+O (1). That is, we always can
rotate the initial set up of the problem so that (2.18) holds with ξ = 1 without altering the asymptotic
behavior.

Recall that a Riemann surface of genus g has exactly g linearly independent holomorphic differentials
(see Section 4.1). We denote by

d~Ω :=
�

dΩ1, . . . , dΩg

�T

the column vector of g linearly independent holomorphic differentials normalized so that

(2.19)
∮

ak

d~Ω=~ek for each k ∈ {1, . . . , g},

where
�

~ek
	g

k=1
is the standard basis for Rg and ~eT is the transpose of ~e . Further, we set

(2.20) BΩ :=





∮

b j

dΩk





g

j ,k=1

.

It is known thatBΩ is symmetric and has positive definite imaginary part.

2.4. Auxiliary Boundary Value Problem. Let ρ ∈W∆. Define

(2.21)











~ω :=
�

ω1, . . . ,ωg
�T ,

~τ :=
�

τ1, . . . ,τg
�T ,

~cρ := 1
2πi

∮

L log(ρ/h+)d~Ω

for some fixed determination of log(ρ/h+) continuous on ∆ \ E , where the constants ω j and τ j were
defined in (2.17) and we understand that log(ρ/h+) on L is the lift log(ρ/h+) ◦π.

Further, let {t j } be an arbitrary finite collection of points on R. An integral divisor corresponding
to this collection is defined as a formal symbol

∑

t j . We call a divisor
∑

t j special if it contains at least
one pair of involution-symmetric points; that is, if there exist t j 6= tk such that π(t j ) =π(tk ) or multiple
copies of points from E (with a slight abuse of notation, we keep using E for π−1(E)).

Given constants (2.21) and points (2.13), there exist divisors
∑g

j=1 tn, j , see Sections 4.3 and 6.1 further
below, such that

(2.22)
g
∑

j=1

∫ tn, j

b (1)j

d~Ω ≡ ~cρ+ n
�

~ω+BΩ~τ
�
�

mod periods d~Ω
�

,

where the path of integration belongs eR (for definiteness, we shall consider each endpoint of integration
belonging to the boundary of eR as a point on the positive side of the corresponding a- or b-cycle) and the
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equivalence of two vectors ~c ,~e ∈Cg is defined by~c ≡~e
�

mod periods d~Ω
�

if and only if ~c−~e = ~j+BΩ ~m
for some ~j , ~m ∈Zg .

Proposition 1. Solutions of (2.22) are either unique or special. If (2.22) is not uniquely solvable for some
index n, then all the solutions for this index assume the form

g−2k
∑

j=1

t j +
k
∑

j=1

�

z (0)j + z (1)j

�

,

where the divisor
∑g−2k

j=1 t j is fixed and non-special and {z j }kj=1 are arbitrary points in C.
If for some index n a divisor solving (2.22) has the form

g−l
∑

i=1

ti + k∞(0)+(l − k)∞(1)

with l > 0, k ∈ {0, . . . , l}, and non-special
∑g−l

i=1 ti such that
�

�π(ti )
�

�<∞, then

g−l
∑

i=1

ti +(k + j )∞(0)+(l − k − j )∞(1)

solves (2.22) for the index n+ j for each j ∈ {−k , . . . , l − k}. In particular, (2.22) is uniquely solvable for the
indices n− k and n+ l − k.

If
∑g

j=1 tn, j uniquely solves (2.22) and does not contain∞(k), k ∈ {0,1}, then (2.22) is uniquely solvable

for the index n− (−1)k and
¦

tn, j

©g

j=1
∩
¦

tn−(−1)k , j

©g

j=1
=∅.

Remark 1.1. Propositions 1 says that the non-unique solutions of (2.22) occur in blocks. The last unique
solution before such a block consists of a non-special finite divisor and multiple copies of ∞(1). Trad-
ing one point ∞(1) for ∞(0) and leaving the rest of the points unchanged produces a solution of (2.22)
(necessarily non-unique as it contains an involution-symmetric pair ∞(1) +∞(0)) for the subsequent in-
dex. Proceeding in this manner, a solution with the same non-special finite divisor and all the remaining
points being ∞(0) is produced, which starts a block of unique solutions. In particular, there cannot be
more than g − 1 non-unique solutions in a row.

Definition 2. In what follows, we always understand under
∑g

j=1 tn, j either the unique solution of (2.22)

or the solution where all the involution-symmetric pairs are taken to be∞(1)+∞(0). Under this convention,
given ε > 0, we say that an index n belongs to Nε ⊆N if and only if

(i) the divisor
∑g

j=1 tn, j satisfies
�

�π(tn, j )
�

�≤ 1/ε for all tn, j ∈R(0);
(ii) the divisor

∑g
j=1 tn−1, j satisfies

�

�π(tn−1, j )
�

�≤ 1/ε for all tn−1, j ∈R(1).

To show that Definition 2 is meaningful we need to discuss limit points of {
∑g

j=1 tn, j }n∈N′ , N′ ⊂
N, where convergence is understood in the topology of Rg/Σg , Rg quotient by the symmetric group
Σg . The following proposition shows that these limiting divisors posses the same block structure as the
divisors themselves.

Proposition 2. Let N′ be such that all the limit points of
�∑g

i=1 tn,i
	

n∈N′ assume the form

(2.23)
g−2k−l0−l1
∑

i=1

ti +
k
∑

i=1

�

z (0)i + z (1)i

�

+ l0∞
(0)+ l1∞

(1)
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for a fixed non-special divisor
∑g−2k−l0−l1

i=1 ti ,
�

�π(ti )
�

� < ∞, and arbitrary {zi}ki=1 ⊂ C. Then all the limit
points of the sequence

�∑g
i=1 tn+ j ,i

	

n∈N′ , j ∈ {−l0− k , . . . , l1+ k}, assume the form

(2.24)
g−2k−l0−l1
∑

i=1

ti +
k ′
∑

i=1

�

w (0)i +w (1)i

�

+
�

l0+ j + k − k ′
�

∞(0)+
�

l1− j + k − k ′
�

∞(1),

where 0≤ k ′ ≤min{l0+ k + j , l1+ k − j } and {wi}k
′

i=1 ⊂C.
If
�∑g

i=1 tn,i
	

n∈N′ converges to a non-special divisor
∑g

j=1 t j that does not contain ∞(k), k ∈ {0,1},
then the sequence

�∑g
i=1 tn−(−1)k ,i

	

n∈N′ also converges, say to
∑g

j=1 w j , which is non-special, and
¦

t j

©g

j=1
∩

¦

w j

©g

j=1
=∅.

Remark 2.1. Proposition 2 shows that the sets Nε are well-defined for all ε small enough. Indeed, let
�∑g

i=1 tn,i
	

n∈N′ be a subsequence that converges in Rg/Σg (it exists by compactness of R). Natu-
rally, the limiting divisor can be written in the form (2.23). Then it follows (2.24) that the sequence
�∑g

i=1 tn−l0−k ,i
	

n∈N′ converges to
∑g−2k−l0−l1

i=1 ti +(l1+ l0+ 2k)∞(1). Further, by the second part of the
proposition, the sequence

�∑g
i=1 tn−l0−k−1,i

	

n∈N′ also converges and the limit, say
∑g

j=1 w j , does not con-

tain∞(1). Thus, {n− l0− k : n ∈N′} ⊂Nε for any ε satisfying ε|π(ti )| ≤ 1 if ti ∈R(0) and ε|π(wi )| ≤ 1
if wi ∈R(1).

Equipped with the solutions of (2.22), we can construct the Szegő functions of ρ on R, which are the
solutions of a sequence of boundary value problems on L.

Proposition 3. For each n ∈ N there exists a function, say Sn , with continuous traces on both sides of
�

L∪
⋃g

k=1
ak

�

\ E such that SnΦ
n is meromorphic in R \ L and

(2.25) (SnΦ
n)− = (ρ/h+)(SnΦ

n)+ on L \ E .

If we let m(t ) to be the number of times, possibly zero, t appears in
¦

tn, j

©g

j=1
, then Sn is non-vanishing and

finite except for

(2.26)











|Sn(z
(k))| ∼ |z − a|m(a)/2−(−1)k (1+2αa )/4 as z (k)→ a ∈

�

a j
	p

j=1,

|Sn(z
(k))| ∼ |z − b |m(b )/2−1/2+(−1)k/4 as z (k)→ b ∈

�

b j
	p−2m

j=1 ,

|Sn(z
(1))| ∼ |z − b |m(b )−mb /2 as z (1)→ b ∈

�

b (1)j

	g
j=p−2m+1,

and has a zero of multiplicity m(t ) at each t ∈
¦

tn, j

©g

j=1
\
�
¦

a j

©p

j=1
∪
�

b (1)j

	g
j=1

�

and mb/2 is the multiplicity

of b in
�

b (1)j

	g
j=p−2m+1.

Conversely, if for given n ∈N there exists a function S with continuous traces on
�

L∪
⋃g

k=1
ak

�

\ E such
that SΦn is meromorphic in R \ L and S satisfies (2.25) and (2.26) with

∑g
j=1 tn, j replaced by some divisor

∑

t j , then
∑

t j solves (2.22) for the index n and S = pSn for a polynomial p such that (p◦π) =
∑

t j−
∑

tn, j .
Finally, given ε > 0 and ε > 0, there exists constant Cε,ε <∞ such that

(2.27)

�

�

�

�

�

Sn−1(z)

Sn(z)

Sn(∞(0))
Sn−1(∞(1))

�

�

�

�

�

≤Cε,ε

for n ∈ Nε and z ∈ Rn,ε := R \ ∪n
j=1Nε(tn, j ), where Nε(tn, j ) is a connected neighborhood of tn, j such that

π(Nε(tn, j )) is the ε-ball centered at tn, j in the spherical metric2.

2That is, dist(z1, z2) = 2|z1− z2|(1+ |z1|2)−1/2(1+ |z2|2)−1/2 if |z1|, |z2|<∞ and dist(z,∞) = 2(1+ |z |2)−1/2.
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Remark 3.1. The integers m(e), e ∈ E , in the first two lines of (2.26) are either 0 or 1 as otherwise
∑g

j=1 tn, j would be special.

Remark 3.2. The estimate in (2.27) cannot be improved in a sense that if for some subsequence of indices
εn→ 0, 1/εn :=max

�

maxtn−1, j∈R(1)
�

�π(tn−1, j )
�

�,maxtn, j∈R(0)
�

�π(tn, j )
�

�

	

, then Cε,εn
→∞.

Remark 3.3. We would like to stress that Sn is unique for n ∈Nε, ε > 0, as (2.22) is uniquely solvable for
all such indices.

Propositions 1–3 are proved in Section 6.

2.5. Main Theorem. Let {[n/n]
bρ}n∈N be the sequence of diagonal Padé approximants to the function

bρ. As before, denote by qn the denominator polynomial of [n/n]
bρ (Nuttall-Stahl orthogonal polyno-

mial (1.10)) and by Rn the reminder function of [n/n]
bρ (1.2) (the function of the second kind (1.12) for

qn). Recall that by Sn and S∗n we denote the pull-back functions of Sn on R from D (0) and D (1) to D∗,
respectively. Then the following theorem holds.

Theorem 4. Let∆ be a minimal capacity contour as constructed in Section 2.1 subject to Condition GP and
assumption ξ = 1 in (2.18). Further, let bρ be given by (2.12) with ρ ∈W∆, Nε be as in Definition 2 for fixed
ε > 0, and Sn be given by Proposition 3. Then for all n ∈Nε it holds that

(2.28)







qn =
�

1+ υn1
�

γn SnΦ
n + υn2γ

∗
n Sn−1Φ

n−1,

Rn =
�

1+ υn1
�

γn

hS∗n
Φn + υn2γ

∗
n

hS∗n−1

Φn−1
,

locally uniformly in D∗, where |υn j | ≤ c(ε)/n in C while υn j (∞) = 0 and

γn :=
cp(∆)n

Sn(∞)
and γ ∗n :=

cp(∆)n+1

S∗n−1(∞)
.

Moreover, it holds locally uniformly in∆ \ E that

(2.29)















qn =
�

1+ υn1
�

γn

�
�

SnΦ
n�++

�

SnΦ
n�−
�

+ υn2γ
∗
n

�
�

Sn−1Φ
n−1
�+
+
�

Sn−1Φ
n−1
�−�

,

R±n =
�

1+ υn1
�

γn

�

hS∗n
Φn

�±

+ υn2γ
∗
n

 

hS∗n−1

Φn−1

!±

.

Before proceeding, we would like to make several remarks regarding the statement of Theorem 4.

Remark 4.1. If the set A consists of two points, then ∆ is an interval joining them. In this case the
conclusion of Theorem 4 is contained in [38, 5, 32, 12]. Moreover, the Riemann surface R has genus
zero and therefore Φ is simply the conformal map of D∗ onto {|z |> 1}mapping infinity into infinity and
having positive derivative there, while Sn = Sρ is the classical Szegő function.

Remark 4.2. Notice that both pull-back functions Sn and hS∗n are holomorphic D∗. Moreover, Sn has
exactly g zeros on R that do depend on n. It can be deduced from (2.28) that qn has a zero in the vicinity
of each zero of Sn that belongs to D (0). These zeros are called spurious or wandering as their location is
determined by the geometry of R and, in general, they do not approach ∆ with n while the rest of the
zeros of qn do. On the other hand, those zeros of Sn that belong to D (1) are the zeros of the pull-back
function S∗n and therefore describe locations of the zeros of Rn (points of overinterpolation).
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Remark 4.3. Even though our analysis allows us to treat only normal indices that are also asymptotically
normal, formulae (2.28) illuminate what happens in the degenerate cases. If for an index n the solution of
(2.22) is unique and contains l copies of∞(1), the function S∗n vanishes at infinity with order l . The latter
combined with the second line of (2.28) shows that [n/n]

bρ is geometrically close to overinterpolating bρ
at infinity with order l . Then it is feasible that there exists a small perturbation of ρ (which leaves the
vector ~cρ unaltered) that turns the index n into a last normal index before a block of size l of non-normal
indices, which corresponds to the fact that solutions of (2.22) are special for the next l −1 indices and the
solution for the index n+ l contains l copies of∞(0).

Observe that bρ−[n/n]
bρ = Rn/qn by (1.2) applied with f := bρ. Thus, the following result on uniform

convergence is a consequence of Theorem 4.

Corollary 5. Under the conditions of Theorem 4, it holds for n ∈Nε that

(2.30) bρ− [n/n]
bρ =
�

1+O (1/n)
�

S∗n
Sn

h

Φ2n

in D∗ ∩π(Rn,ε), where O (1/n) is uniform for each fixed ε > 0.

3. EXTREMAL DOMAINS

In this section we discuss existence and properties of the extremal domain D∗ ∈ D f for the function
f , holomorphic at infinity that can be continued as a multi-valued function to the whole complex plane
deprived of a polar set A, see (1.3). Recall that the compact set ∆ := ∂ D∗ defined in (1.5) makes f
single-valued in its complement and has minimal logarithmic capacity among all such compacta.

As mentioned in the introduction, the question of existence and characteristic properties of ∆ was
settled by Stahl in the most general settings. Namely, he showed that the following theorem holds [47,
Theorems 1 and 2] and [48, Theorem 1].

Theorem S. Let f ∈A (C\A)with cp(A) = 0. Then there exists unique D∗ ∈D f ,∆=C\D∗, the extremal
domain for f , such that

cp(∆)≤ cp(∂ D) for any D ∈D f ,

and if cp(∆) = cp(∂ D) for some D ∈D f , then D ⊂D∗ and cp(D∗\D) = 0. Moreover,∆ := E0∪E1∪
⋃

∆k ,
where E0 ⊆A, E1 is a finite set of points, and∆k are open analytic Jordan arcs. Furthermore, it holds that

(3.1)
∂ g∆
∂ n+

=
∂ g∆
∂ n−

on
⋃

∆k ,

where g∆ is the Green function for D∗ and n± are the one-sided normals on each∆k .

Let now f and A be as in (2.1). Denote byK the collection of all compact sets K such that K is a union
of a finite number of disjoint continua each of which contains at least two point from A and C \K ∈D f .
That is,

K :=







K : K =
q<∞
⋃

j=1

K j , ](A∩K j )≥ 2; K j \ ∂ K j =∅; K j ∩Ki =∅, i 6= j ; C \K ∈D f







.

Observe that the inclusion {C \ K : K ∈ K } ⊂ D f is proper. However, it can be shown using the
monodromy theorem (see, for example, [9, Lemma 8]) that ∆ ∈ K . Considering only functions with
finitely many branch points and sets inK allows significantly alter and simplify the proof of Theorem S,
[43, Theorems 2 and 3]. Although [43] has never been published, generalizations of the method proposed
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there were used to prove extensions of Theorem S for classes of weighted capacities, see [30], [20] and
[9]. Below, in a sequence of propositions, we state the simplified version of Theorem S and adduce its
proof as devised in [43] solely for the completeness of the exposition.

Proposition 6. There exists∆ ∈K such that cp(∆)≤ cp(K) for any K ∈K .

Proof. Let {Kn} be a sequence inK such that

cp(Kn)→ inf
K∈K

cp(K) =: c as n→∞.

Then there exists R > 0 such that Kn ⊂ DR := {z : |z | < R} for all n large enough. Indeed, it is known
[45, Theorem 5.3.2] that cp(∆)≥ cp(γ )≥ 1

4 diam(γ ), where γ is any continuum in Kn and diam(γ ) is the
diameter of γ . As γ contains at least two points from A, the claim follows.

For any K ∈ KR := K ∩DR and ε > 0, set (K)ε := {z : dist(z,K) < ε}. We endow KR with the
Hausdorff metric, i.e.,

dH (K1,K2) := inf{ε : K1 ⊂ (K2)ε,K2 ⊂ (K1)ε}.
By standard properties of the Hausdorff distance [18, Section 3.16], closdH

(KR), the closure of KR in
the dH -metric, is a compact metric space. Notice that a compact set which is the dH -limit of a sequence
of continua is itself a continuum. Observe also that the process of taking the dH -limit cannot increase
the number of the connected components since the ε-neighborhoods of the components of the limiting
set will become disjoint as ε→ 0. Thus, each element of closdH

(KR) still consists of a finite number of
continua each containing at least two points from A but possibly with multiply connected complement.
However, the polynomial convex hull of such a set, that is, the union of the set with the bounded compo-
nents of its complement, again belongs toKR and has the same logarithmic capacity [45, Theorem 5.2.3].

Let∆∗ ∈ closdH
(KR) be a limit point of {Kn}. In other words, dH (∆

∗,Kn)→ 0 as n→∞, n ∈N1 ⊆N.
We shall show that

(3.2) cp(∆∗) = c .

To this end, denote by Kε := {z : gK (z)≤ log(1+ε)}, ε > 0, where gK is the Green function with pole at
infinity for the complement of K . It can be easily shown [45, Theorem 5.2.1] that

(3.3) cp(Kε) = (1+ ε)cp(K).

Put c0 := inf{cp(γ )}, where the infimum is taken over all connected components γ of Kn and all n ∈N1.
Recall that each component γ of any Kn contains at least two points from A. Thus, it holds that c0 > 0
since cp(γ )≥ 1

4 diam(γ ).
We claim that for any ε ∈ (0,1) and δ < ε2c0/2 we have that

(3.4) (Kn)δ ⊂Kε
n

for all n large enough. Granted the claim, it holds by (3.3) that

(3.5) cp(∆∗)≤ (1+ ε)cp(Kn)

since∆∗ ⊂ (Kn)δ ⊂Kε
n . Thus, by taking the limit as n tends to infinity in (3.5), we get that

(3.6) c ≤ cp(∆∗)≤ (1+ ε)c ,

where the lower bound follows from the very definition of c since the polynomial convex hull of∆∗, say
∆, belongs toK and has the same capacity as∆∗. As ε was arbitrary, (3.6) yields (3.2) with∆ as above.

It only remains to prove (3.4). We show first that for any continuum γ with at least two points, it
holds that

(3.7) dist(γ ,eγ ε)≥
ε2

2
cp(γ ),
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where eγ ε := {z : gγ (z) = log(1+ε)}. LetΨ be a conformal map of {z : |z |> 1} ontoC\γ ,Ψ(∞) =∞. It
can be readily verified that |Ψ(z)z−1| → cp(γ ) as z→∞ and that gγ = log |Ψ−1|, whereΨ−1 is the inverse
of Ψ. Then it follows from [25, Theorem IV.2.1] that

(3.8) |Ψ′(z)| ≥ cp(γ )
�

1−
1

|z |2

�

, |z |> 1.

Let z1 ∈ γ and z2 ∈ eγ ε be such that dist(γ ,eγ ε) = |z1−z2|. Denote by [z1, z2] the segment joining z1 and z2.
Observe that Ψ−1 maps the annular domain bounded by γ and eγ ε onto the annulus {z : 1< |z |< 1+ ε}.
Denote by S the intersection of Ψ−1((z1, z2)) with this annulus. Clearly, the angular projection of S onto
the real line is equal to (1,1+ ε). Then

dist(γ ,eγ ε) =
∫

(z1,z2)
|d z |=

∫

Ψ−1((z1,z2))
|Ψ′(z)||d z | ≥ cp(γ )

∫

Φ−1((z1,z2))

�

1−
1

|z |2

�

|d z |

≥ cp(γ )
∫

S

�

1−
1

|z |2

�

|d z | ≥ cp(γ )
∫

(1,1+ε)

�

1−
1

|z |2

�

|d z |=
ε2cp(γ )

1+ ε
,

where we used (3.8). This proves (3.7) since it is assumed that ε≤ 1.
Now, let γn be a connected component of Kn such that dist(Kn , eKε

n) = dist(γn , eKε
n). By the maximal

principle for harmonic functions, it holds that gγn
> gKn

for z /∈Kn , and therefore, γ εn ⊂Kε
n . Thus,

dist(Kn , eKε
n)≥ dist(γn ,eγ εn)≥

ε2c0

2
by (3.7) and the definition of c0. This finishes the proof of the proposition. �

Let ∆ be as in Proposition 6. Observe right away that ∆ has no interior as otherwise there would
exist∆′ ⊂∆with smaller logarithmic capacity which still belongs toK . It turns out that g∆ has a rather
special structure that we describe in the following proposition which was initially proven in this form in
[43, Theorem 3] (the method of proof in a more general form was also used in [20]).

Proposition 7. Let∆ be as in Proposition 6. Then

(3.9) g∆(z) =Re







∫ z

a1

s

B(τ)

A(τ)
dτ






,

where A was defined in (2.4), B is a monic polynomial of degree p − 2, and the root is chosen so that
z
p

A(z)/B(z)→ 1 as z→∞.

Proof. Denote byωK the equilibrium measure of a compact set K and by I [µ] the logarithmic energy of
a compactly supported measure µ, i.e.,

I [µ] =−
∫∫

log |z −τ|dµ(z)dµ(τ).

Then it is known that

g∆(z) = I [ω∆]+
∫

log |z −τ|dω∆(τ),

which immediately implies that

(3.10) (∂z g∆)(z) =
1

2

∫ dω∆(τ)

z −τ
,
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where ∂z := (∂x − i∂y )/2. Since g∆ ≡ 0 on∆, it holds that

g∆(z) =Re

 

2
∫ z

a1

(∂z g∆)(τ)dτ

!

for any the path of integration in D . Thus, to prove (3.9), we need to show that

(3.11)
B(z)

A(z)
=
�
∫ dω∆(τ)

z −τ

�2

for some monic polynomial B , deg(B) = p − 2.
Let O be a neighborhood of∆. Define

δ(z) :=
A(z)

z − u
, u /∈O.

Then δ generates a local variation of O according to the rule z 7→ z t := z + tδ(z), where t is a complex
parameter. Since

(3.12)
�

�w t − z t �
�= |w − z |

�

�

�

�

�

1+ t
δ(w)−δ(z)

w − z

�

�

�

�

�

,

this transformation is injective for all |t | ≤ t0 <M , where

(3.13) M := max
w,z∈O

|(δ(w)−δ(z))/(w − z)|<∞.

Moreover, the transformation δ naturally induces variation of sets in O, E 7→ E t = {z t : z ∈ E}, and
measures supported in O, µ 7→µt , µt (E t ) =µ(E).

Let µ be a positive measure supported in O with finite logarithmic energy I [µ]. Observe that the
pull-back measure µt satisfies the following substitution rule: dµt (z t ) = dµ(z). Then it follows from
(3.12) that

I [µt ]− I [µ] = −
∫∫

log

�

�

�

�

�

1+ t
δ(w)−δ(z)

w − z

�

�

�

�

�

dµ(z)dµ(w)

= −Re

�
∫∫

log

�

1+ t
δ(w)−δ(z)

w − z

�

dµ(z)dµ(w)
�

(3.14)

for all |t | ≤ t0. Since the argument of the logarithm in (3.14) is less than 2 in modulus, it holds that

(3.15) I [µt ]− I [µ] =−Re
�

tδ(µ)+O(t 2)
�

for all |t | ≤ t0, where

δ(µ) :=
∫∫

δ(w)−δ(z)
w − z

dµ(z)dµ(w).

Let now {µt } be a family of measures on∆ such that (µt )
t =ω∆t . Then

(3.16) δ(µt )→ δ(ω∆) as t → 0.

Indeed, by the very definition of the equilibrium measure it holds that the differences I [µt ]− I [ω∆] and
I [ω t

∆]− I [ω∆t ] are non-negative. Thus,

0≤ I [µt ]− I [ω∆] = I [µt ]− I [ω∆t ]+ I [ω∆t ]− I [ω∆]
≤ I [µt ]− I [ω∆t ]+ I [ω t

∆]− I [ω∆]

= Re
�

t (δ(µt )−δ(ω∆))+O(t 2)
�

(3.17)
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for |t | ≤ t0 by (3.15). Clearly, |δ(µ)| ≤M |µ| by (3.13), where |µ| is the total variation of µ. Since µt and
ω∆ are positive measures of unit mass, (3.17) implies that I [µt ]→ I [ω∆] as t → 0. The latter yields that
µt

∗→ω∆ by the uniqueness of the equilibrium measure,3 which immediately implies (3.16) by the very
definition of weak∗ convergence.

Now, observe that a t
k
= ak for any k ∈ {1, . . . , p}. Hence, ∆t ∈ K for all |t | ≤ t0. In particular, this

means that cp(∆t )≥ cp(∆) and therefore I [ω∆t ]≤ I [ω∆] as cp(K) = exp{−I [ωK]}. Thus, it holds that

(3.18) 0≤ I [ω∆]− I [ω∆t ]≤ I [µt ]− I [ω∆t ] =Re
�

tδ(µt )+O(t 2)
�

=Re[tδ(ω∆)+ o(t )]

by (3.15) and (3.16). Clearly, (3.18) is positive only if

(3.19) δ(ω∆) = 0.

In another connection, observe that there exists a polynomial in u, say

B(u; z, w) = a0(z, w)+ a1(z, w)u + · · ·+ ap−3(z, w)u p−3+ u p−2,

where each ak (z, w) is a polynomial in z and w, such that

(3.20) (w − u)A(z)− (z − u)A(w)+ (z −w)A(u) = (z −w)(z − u)(w − u)B(u; z, w).

Indeed, the left hand side of (3.20) is a polynomial of degree p in each of the variables z, w, u that vanishes
when u = z, u = w, and z = w. Then

δ(z)−δ(w)
z −w

=
A(z)

(z − u)(z −w)
−

A(w)

(w − u)(z −w)
= B(u; z, w)−

A(u)

(z − u)(w − u)

by (3.20). So, we have by the definition of δ(ω∆) and (3.19) that

B(u) :=
∫

B(u; z, w)dω∆(z)dω∆(w) =A(u)
∫∫ dω∆(z)dω∆(w)

(z − u)(w − u)
=A(u)

�
∫ dω∆(τ)

τ− u

�2

,

which shows the validity of (3.11) and respectively of (3.9). �

Having Proposition 7, we can describe the structure of a set ∆ as it was done in [48] with the help of
the critical trajectories of a quadratic differential [44, Section 8]. Recall that a quadratic differential is the
expression of the form Q(z)d z2, where Q is a meromorphic function in some domain. We are interested
only in the case where Q is a rational function.

A trajectory of the quadratic differential Q(z)d z2 is a smooth (in fact, analytic) maximal Jordan arc
or curve such that Q(z(t ))(z ′(t ))2 > 0 for any parametrization. The zeros and poles of the differential
are called critical points. The zeros and simple poles of the differential are called finite critical points (the
order of the point at infinity is equal to the order of Q at infinity minus 4; for instance, if Q has a double
zero at infinity, then Q(z)d z2 has a double pole there).

A trajectory is called critical if it joins two not necessarily distinct critical points and at least one of
them is finite. A trajectory is called closed if it is a Jordan curve and is called recurrent if its closure has
non-trivial planar Lebesgue measure (such a trajectory is not a Jordan arc or a curve). A differential is
called closed if it has only critical and closed trajectories.

If e is a finite critical point of order k, then there are k+2 critical trajectories emanating from e under
equally spaced angles. If e is a double pole and the differential has a positive residue at e , then there are
no trajectories emanating from e and the trajectories around e are closed, that is, they encircle e .

3The measure ω∆ is the unique probability measure that minimizes energy functional I [·] among all probability measures sup-
ported on ∆. As any weak limit point of {µt } has the same energy as ω∆ by the Principle of Descent [46, Theorem I.6.8] and
(3.17), the claim follows.
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Proposition 8. Let ∆ be as in Proposition 6 and the polynomials A,B be as in Proposition 7. Then (2.3)
holds with

⋃

∆k being the union of the non-closed critical trajectories of the closed quadratic differential
(−B/A)(z)d z2 and E being the symmetric difference of the set {a1, . . . ,ap} and the set of those zeros of B
that belong to the closure of

⋃

∆k . The remaining zeros of B, say {b1, . . . , bq}, are of even order and of total
multiplicity 2(m− 1), where m is the number of connected components of∆. Furthermore, (3.1) holds.

Proof. In [20, Lemma 5.2] it is shown that ∆ is a subset of the closure of the critical trajectories of
(−B/A)(z)d z2. Since (3.9) can be rewritten as

g∆(z) = Im







∫ z

a1

s

−
B(τ)

A(τ)
dτ






, z ∈D ,

the critical trajectories of (−B/A)(z)d z2 are the level lines of g∆ and therefore (−B/A)(z)d z2 is a closed
differential. By its very nature,∆ has connected complement and therefore the closed critical trajectories
do not belong to ∆. Since 2∂z g∆ =

p

B/A is holomorphic in D∗, all the non-closed critical trajectories
belong to ∆ and all the zeros of B that belong to the closed critical trajectories are of even order. Let
us show that their total multiplicity is equal to 2(m − 1). This will follow from the fact that the total
multiplicity of the zeros of B belonging to any connected component of∆ is equal to the the number of
zeros of A belonging to the same component minus 2.

To prove the claim, we introduce the following counting process. Given a connected compact set with
connected complement consisting of open Jordan arcs and connecting isolated points, we call a connect-
ing point outer if there is only one arc emanating from it, otherwise we call it inner. Assume further that
there are at least 3 arcs emanating from each inner connecting point. We count inner connecting points
according to their multiplicity which we define to be the number of arcs incident with the point minus 2.
Suppose further that the number of outer points is p ′ and the number of inner connecting points is p ′−2
counting multiplicities. Now, form a new connected set in the following fashion. Fix p̃ of the previously
outer points and link each of them by Jordan arcs to p̂ chosen distinct points in the complex plane in
such a fashion that the new set still has connected complement and each of the previously outer points
is connected to at least 2 newly chosen points. Then the new set has p ′− p̃ + p̂ outer connecting points
( p ′− p̃ of the old ones and p̂ of the new ones) and p ′−2+( p̂+ p̃−2 p̃) = p ′− p̃+ p̂−2 inner connecting
points. That is, the difference between the outer and inner connecting points is again 2. Clearly, starting
from any to points in E connected by a Jordan arc, one can use the previous process to recover the whole
connected component of∆ containing those two points, which proves the claim.

To prove (3.1), observe that by (3.10) and (3.11) we have that

∂ g∆
∂ n±

= 2Re
�

n±∂z g∆
�

=Re






n±







È

B

A







±






,

where n± are the unimodular complex numbers corresponding to n±. Since the tangential derivative
of g∆ is zero, so is the imaginary part of the product n±(

p

B/A)±. Since, n+ = −n− and (
p

B/A)+ =
−(
p

B/A)−, (3.1) follows. �

Propositions 6–8 are sufficient to prove Theorem 4. As an offshoot of Theorem 4 we get that the
contour ∆ is unique since (2.28) and (2.29) imply that all but finitely many zeros of [n/n]ρ̂ converge to
∆. However, this fact can be proved directly [47, Thm. 2]. Moreover, it can be shown that property (3.1)
uniquely characterizes∆ among smooth cuts making f single-valued [9, Thm. 6].

While Propositions 6–8 deal with the most general situation of an arbitrary finite set A, Condition GP
introduced in Section 2 is designed to rule out some degenerate cases. Namely, it possible for some zeros
of the polynomial B to coincide with some zeros of the polynomial A. This happens, for example, when
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FIGURE 4. Both figures depict the set ∆ for the quadratic differential
(z2− b 2)d z2

z4− (a2+ ā2)z2+ 1
,

where |a| = 1 and b is real and depends on a. On the left-hand figure Arg(a) = π/4 which
forces b = 0. On the right-hand figure, Arg(a)<π/4, in which case b > 0.

all the points in A are collinear. In this case, the minimal capacity cut ∆ is simply the smallest line
segment containing all the points in A, and the zeros of B are exactly the zeros of A excluding two that
are the end points of ∆. It is also possible for the polynomial B to have zeros of multiplicities greater
than one that belong to ∆. These zeros serve as endpoints to more than three arcs (multiplicity plus
2), see Figure 4A. However, under small perturbations of the set A, these zeros separate to form a set ∆
satisfying Condition GP, see Figure 4B.

4. RIEMANN SURFACE

Let R be the Riemann surface of h described in Section 2.3. That is, R is a hyperelliptic Riemann
surface of genus g with 2g + 2 branch (ramification) points E and the canonical projection (covering
map) π : R→C. We use bold letters z,w, t to denote generic points on R and designate the symbol ·∗ to
stand for the conformal involution acting on the points of R according to the rule

z∗ = z (1−k) for z= z (k), k ∈ {0,1}.

4.1. Abelian Differentials. For a rational function on R, say f , we denote by ( f ) the divisor of f , i.e.,
a formal symbol defined by

( f ) :=
∑

z: f (z)=0

z−
∑

w: f (w)=∞
w,

where each zero z (resp. pole w) appears as many times as its multiplicity. A meromorphic differential
on R is a differential of the form f d z, where f is a rational function on R. The divisor of f d z is defined
by

( f d z) := ( f )+ (d z) = ( f )+
∑

e∈E

e − 2∞(0)− 2∞(1).

It is more convenient to write meromorphic differentials with the help of

ħh(z (k)) := (−1)k
�

∏

k∈E

(z − ek )
�1/2

, k ∈ {0,1},

where the square root is taken so ħh(z (0))/z g+1→ 1 as z→∞. Clearly, ħh is a rational function on R with
the divisor

(ħh) =
∑

e∈E

e − (g + 1)∞(0)− (g + 1)∞(1).

Then arbitrary meromorphic differential can be written as f d eΩ, d eΩ := d z/ħh, and respectively

( f d eΩ) = ( f )+ (g − 1)∞(0)+(g − 1)∞(1).
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A meromorphic differential is called holomorphic if ( f d eΩ) ≥ 0 (its divisor is integral). Since for any
polynomial ` it holds that

(` ◦π) =
∑

z: `(z)=0

�

z (0)+ z (1)
�

− deg(`)
�

∞(0)+∞(1)
�

,

the holomorphic differentials are exactly those of the form `d eΩ, deg(`) < g . Thus, there are exactly g
linearly independent holomorphic differentials on R. Under the normalization (2.19), these are exactly
the differentials dΩk .

Let now w1,w2 ∈ eR, w1 6=w2. We denote by dΩw1,w2
the abelian differential of the third kind having

two simple poles at w1 and w2 with respective residues 1 and −1 and normalized so

(4.1)
∮

a j

dΩw1,w2
= 0, j ∈ {1, . . . , g}.

It is also known that

(4.2)
∮

b j

dΩw1,w2
=−2πi

∫ w2

w1

dΩ j , j ∈ {1, . . . , g},

where the path of integration lies entirely in eR.

4.2. Green Differential. The Green differential dG is the differential dΩ∞(1),∞(0) modified by a suitable
holomorphic differential to have purely imaginary periods. In fact, it holds that

(4.3) dG(z) = h(z)d z, z ∈R.

Indeed, the value of the integral of dG along any cycle in R \
¦

∞(0) ∪∞(1)
©

is purely imaginary as it
is a linear combination with integer coefficients of its periods on the a- and b-cycles and the residues at

∞(0) and∞(1) with purely imaginary coefficients. Thus, Re
�

∫ z (0)

a1
dG
�

is the Green function for D (0) and

therefore is equal to gD lifted to D (0). Hence, the claim follows from Proposition 7.
For z ∈R \

¦

∞(0),∞(1)
©

, put

(4.4) G(z) :=
∫ z

a1

dG.

Then G is a multi-valued analytic function on R \
¦

∞(0),∞(1)
©

which is single-valued in eR. Moreover, it
easily follows from (4.3) and the fact that a1 is a branch point for R that

(4.5) G(z (0))+G(z (1)) = 0 (mod 2πi) in Da .

Furthermore, for any point z ∈
⋃g

k=1
(ak ∪bk ) it holds that

(4.6) G+(z)−G−(z) =











−
∮

bk

dG, if z ∈ ak \bk ,
∮

ak

dG, if z ∈ bk \ ak ,
=







2πiωk , if z ∈ ak \bk ,

2πiτk , if z ∈ bk \ ak ,

where the constants ωk and τk were defined in (2.17) (clearly, the integrated differential in (2.17) is dG).
As all the periods of dG are purely imaginary, the constantsωk and τk are real. With the above notation,
we can write

(4.7) dG = dΩ∞(1),∞(0) + 2πi
g
∑

j=1

τ j dΩ j .
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Indeed, the difference between dG and the right-hand side of (4.7) is a holomorphic differential with zero
periods on a-cycles and therefore is identically zero since it should be a linear combination of differentials
satisfying (2.19). In particular, it follows from (4.2) and (4.7) that

(4.8)
∫ ∞(0)

∞(1)
d~Ω= ~ω+BΩ~τ.

Using the Green deferential dG, we can equivalently redefine Φ introduced in (2.14) by

(4.9) Φ := exp{G}, Φ(z (0)) =
z

cp(∆)
+ · · · .

Then Φ is a meromorphic function on eR with a simple pole at ∞(0), a simple zero at ∞(1), otherwise
non-vanishing and finite. Moreover, Φ possesses continuous traces on both sides of each ak and bk that
satisfy (2.16) by (4.6), and (2.15) by (4.5). Let us also mention that the pull-back function of Φ from R(0)

onto Da , which we continue to denote by Φ, is holomorphic and non-vanishing in Da except for a simple
pole at infinity. It possesses continuous traces that satisfy

(4.10)

¨

Φ+/Φ− = exp{2πiωk} on ∆a
k

Φ−Φ+ = exp{2πiδk} on ∆k ,

by (2.16), (2.15), and the holomorphy of Φ across those cycles Lk that are not the b-cycles, where we set
δk := τ jk

if∆k =π(b jk
), and δk := 0 otherwise.

4.3. Jacobi Inversion Problem. Let r be a rational function on C. Then r ◦π is a rational function on
R with the involution-symmetric divisor, i.e.,

(r ◦π) =
∑

j

t j −
∑

j

w j =
∑

j

t∗j −
∑

j

w∗j .

As R is hyperelliptic, any rational function over R with fewer or equal to g poles is necessarily of this
form. Recall that a divisor is called principal if it is a divisor of a rational function. Thus, the involution-
symmetric divisors are always principal. By Abel’s theorem, a divisor

∑k
j=1 t j −

∑l
j=1 w j is principal if

and only if k = l and
∑

∫ t j

w j

d~Ω ≡ ~0
�

mod periods d~Ω
�

.

In fact, it is known that given an arbitrary integral divisor
∑g

j=1 w j , for any vector ~c there exists an

integral divisor
∑g

j=1 t j such that

(4.11)
g
∑

j=1

∫ t j

w j

d~Ω ≡ ~c
�

mod periods d~Ω
�

.

The problem of finding a divisor
∑g

j=1 t j for given ~c is called the Jacobi inversion problem. The solution
of this problem is unique up to a principal divisor. That is, if

(4.12)
g
∑

j=1

t j −
�

principal divisor
	

is an integral divisor, then it also solves (4.11). Immediately one can see that the principle divisor in
(4.12) should have at most g poles. As discussed before, such divisors come only from rational functions
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over C. Hence, if
∑g

j=1 t j , a solution of (4.11), is special, that is, contains at least one pair of involution-
symmetric points, then replacing this pair by another such pair produces a different solution of the same
Jacobi inversion problem. However, if

∑g
j=1 t j is not special, then it solves (4.11) uniquely.

4.4. Riemann Theta Function. Theta function associated toBΩ is an entire transcendental function of
g complex variables defined by

θ
�

~u
�

:=
∑

~n∈Zg

exp
�

πi~nTBΩ~n+ 2πi~nT ~u
�

, ~u ∈Cg .

As shown by Riemann, the symmetry ofBΩ and positive definiteness of its imaginary part ensures the
convergence of the series for any ~u. It can be directly checked that θ enjoys the following periodicity
properties:

(4.13) θ
�

~u + ~j +BΩ ~m
�

= exp
�

−πi ~mTBΩ ~m− 2πi ~mT ~u
�

θ
�

~u
�

, ~j , ~m ∈Zg .

The theta function can be lifted to R in the following manner. Define a vector ~Ω of holomorphic and
single-valued functions in eR by

(4.14) ~Ω(z) :=
∫ z

a1

d~Ω, z ∈ eR.

This vector-function has continuous traces on each side of the a- and b-cycles that satisfy

(4.15) ~Ω+− ~Ω− =
¨

−BΩ~ek on ak ,
~ek on bk ,

k ∈ {1, . . . , g},

by (2.19) and (2.20). It readily follows from (4.15) that each Ωk is, in fact, holomorphic in bR \ bk . It is
known that

(4.16) θ
�

~u
�

= 0 ⇔ ~u ≡
g−1
∑

j=1

~Ω
�

t j

�

+ ~K
�

mod periods d~Ω
�

for some divisor
∑g−1

j=1 t j , where ~K is the vector of Riemann constants defined by (~K) j := ((BΩ) j j −
1)/2−

∑

k 6= j
∮

ak
Ω−j dΩk , j ∈ {1, . . . , g}.

Let
∑g

j=1 t j and
∑g

j=1 z j be non-special divisors. Set

(4.17) Θ
�

z;
∑

t j ,
∑

z j

�

:=
θ
�

~Ω(z)−
∑g

j=1
~Ω
�

t j

�

− ~K
�

θ
�

~Ω(z)−
∑g

j=1
~Ω
�

z j

�

− ~K
� .

It follows from (4.15) that this is a meromorphic and single-valued function in bR (multiplicatively multi-
valued in R). Furthermore, by (4.16) it has a pole at each z j and a zero at each t j (coincidental points
mean increased multiplicity), and by (4.13) it satisfies

(4.18) Θ+
�

z;
∑

t j ,
∑

z j

�

=Θ−
�

z;
∑

t j ,
∑

z j

�

exp







2πi
g
∑

j=1

�

Ωk (z j )−Ωk (t j )
�







for z ∈ ak \
¦

∪z j

⋃

∪t j

©

.
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If the divisor
∑g

j=1 t j (resp.
∑g

j=1 z j ) in (4.17) is special, then the numerator (resp. denominator) is
identically zero by (4.16). This difficulty can be circumvented in the following way. Let w1,w2 ∈R\{w}
for some w ∈R. Set

(4.19) Θ(z;w1,w2) :=
θ
�

~Ω(z)− ~Ω(w1)− (g − 1)~Ω(w∗)− ~K
�

θ
�

~Ω(z)− ~Ω(w2)− (g − 1)~Ω(w∗)− ~K
�

.

Since the divisors w j+(g−1)w∗ are non-special,Θ(·;w1,w2) is a multiplicatively multi-valued meromor-
phic function on R with a simple zero at w1, a simple pole at w2, and otherwise non-vanishing and finite.
Moreover, it is meromorphic and single-valued in bR and

(4.20) Θ+ (z;w1,w2) = Θ
− (z;w1,w2)exp

�

2πi
�

Ωk (w2)−Ωk (w1)
�	

for z ∈ ak \ {w1,w2}. Observe that the jump does not depend on ~Ω(w∗). Hence, analytic continuation
argument and (4.20) immediately show that Θ(·;w1,w2) can be defined (up to a multiplicative constant)
using any divisor

∑g−1
j=1 t j as long as wi +

∑g−1
j=1 t j is non-special and that

Θ
�

z;
∑

t j ,
∑

z j

�

Θ
�

w;
∑

t j ,
∑

z j

� =
g
∏

j=1

Θ
�

z; t j ,z j

�

Θ
�

w; t j ,z j

�

for any w fixed and satisfying {w}∩
¦

∪z j

⋃

∪t j

©

=∅. Let us point out that even though the construction
(4.17) is simpler, it requires only non-special divisors, while this restriction is not needed for (4.19).

5. BOUNDARY VALUE PROBLEMS ON L

This is a technical section needed to prove Proposition 3. The results of this sections will be applied to
logarithm of ρ ∈W∆, which is holomorphic across each arc comprising∆. However, here we treat more
general Hölder continuous densities as this generalization comes at no cost (analyticity of the weight ρ
will be essential for the Riemann-Hilbert analysis carried in Sections 7–8). In what follows, we describe
properties of

(5.1) Ψ(z) :=
1

4πi

∮

L
ψdΩz,z∗ , z ∈ bR \ L,

for a given function ψ on L. Before we proceed, let us derive an explicit expression for dΩz,z∗ . To this
end, set

(5.2) Hk (z) :=
∮

ak

d eΩ

w − z
= 2
∫

∆a
k

1

w − z

d w

ħh(w)
, k ∈ {1, . . . , g}.

Clearly, each Hk is a holomorphic function on R \ ak that satisfies

(5.3) ħhH+
k
− ħhH−

k
= 4πi on ak

due to Sokhotski-Plemelj formulae [24] as apparent from the second integral representation in (5.2).
Then, using functions Hk , we can write

(5.4) dΩz,z∗(w) =
ħh(z)

w − z
d eΩ(w)−

g
∑

k=1

(ħhHk )(z)dΩk (w).
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5.1. Hölder Continuous Densities. Let ψ be a function on L\E with Hölder continuous extension to
each cycle Lk andΨ be given by (5.1). The differential dΩz,z∗ plays a role of the Cauchy kernel on R with
a discontinuity. Indeed, it follows from (5.4) that

(5.5) Ψ(z) =
ħh(z)
4πi

∑

j

∮

L j

ψ(t)

t − z

d t

ħh(t)
−
ħh(z)
4πi

g
∑

k=1

Hk (z)
∮

L
ψdΩk =:

∑

j

ΨL j
(z)−

g
∑

k=1

Ψak
(z).

Each function ΨL j
is holomorphic in R \

�

L j ∪{∞(0),∞(1)}
�

with Hölder continuous traces on L j

that satisfy

(5.6) Ψ+L j
−Ψ−L j

=ψ.

Clearly, ΨL j
(e) = 0 for e ∈ E \ L j . Moreover, it holds by (5.6) and the identity ΨL j

(z)+ΨL j
(z∗)≡ 0 that

(5.7) ΨL j
(z (k))→

(−1)k

2
ψ|L j
(e) as z→ e

for univalent ends e ∈ E ∩L j . To describe the behavior of ΨL j
near trivalent ends, recall that∆ splits any

disk centered at e of small enough radius into three sectors. Two of these sectors contain part of ∆ j in
their boundary and one sector does not. Recall further that ħh(z) changes sign after crossing each of the
subarcs of∆. Thus, it holds for trivalent ends e ∈ E ∩ L j that

(5.8) ΨL j
(z (k))→±

(−1)k

2
ψ|L j
(e) as z→ e ,

where + sign corresponds to the approach within the sectors partially bounded by ∆ j and the − sign
corresponds to the approach within the sector which does not contain∆ j as part of its boundary.

Similarly, eachΨak
is a holomorphic function inR\

�

ak ∪{∞(0),∞(1)}
�

with Hölder continuous traces
on ak that satisfy

(5.9) Ψ+ak
−Ψ−ak

=
∮

L
ψdΩk

by (5.3). Analogously to (5.7), one can verify that Ψak
(e) = 0 for e ∈ E \ ak and

(5.10) Ψak
(z (k))→

(−1)k

2

∮

L
ψdΩk as z→ e ∈ ak ∩ E .

Combining all the above, we get that Ψ is a holomorphic function in bR\L including at∞(0) and∞(1)
where it holds that

(5.11) Ψ(∞(0)) =−Ψ(∞(1)) =
1

2
~τT
∮

L
ψd~Ω−

1

4πi

∮

L
ψdG

by (4.7). Moreover, it has Hölder continuous traces on both sides of (L∪
⋃

ak ) \ E that satisfy

(5.12) Ψ+−Ψ− =
¨

ψ, on L \ E ,
−
∮

LψdΩk , on ak \ E ,

according to (5.6) and (5.9). Finally, the behavior at e ∈ E can be deduced from (5.7), (5.8), and (5.10).
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5.2. Logarithmic Discontinuities. Assume now that ψ has logarithmic singularities at e ∈ E , which,
obviously, violates the condition of global Hölder continuity of ψ on the cycles Lk . However, global
Hölder continuity is not necessary for Ψ to be well-defined. In fact, it is known that the traces Ψ± are
Hölder continuous at t ∈ L as long as ψ is locally Hölder continuous around this point. Thus, we only
need to describe the behavior of Ψ near those e ∈ E where ψ has a singularity.

Let a be a fixed univalent end of ∆ and ∆ j be the arc incident with a. Further, let ψ be a fixed
determination of α log(· − a) holomorphic around each arc ∆k (except at a when k = j ), where α is a
constant. As before, define Ψ by (5.1). It clearly follows from (5.5) that we only need to describe the
behavior of ΨL j

around a as the behavior of the other terms is unchanged. To this end, it can be readily
verified that

(5.13) ΨL j
(z) =
ħh(z)
2πi

∫

∆ j

ψ(t )

t − z

d t

ħh+(t )
.

Denote by Ua,δ a ball centered at a of radius δ chosen small enough that the intersection∆ j ∩Ua,δ is an
analytic arc. Denote also by U±

a,δ
the maximal open subset of Ua,δ \∆ j in which ψ is holomorphic and

∆±j ⊂ ∂ U±
a,δ

if∆ j is orienter towards a and∆±j ⊂ ∂ U∓
a,δ

if∆ j is oriented away from a. Set

(5.14) arg(a− z) := arg(z − a)±π in U±
a,δ

.

It can be readily verified that thus defined log(a−z) := log |a−z |+i arg(a−z) is holomorphic in Ua,δ\∆ j .
Then, arguing as in [24, Equations (8.34)–(8.35)], that is, by identifying a function with the same jump
across∆ j as the one of integral in (5.13), we get that

(5.15)
1

2πi

∫

∆ j

ψ(t )

t − z

d t

ħh+(t )
=
α

2

log(a− z)

ħh(z)
+ { terms that are holomorphic at a }

in Ua,δ \∆ j . Multiplying both sides of (5.15) by ħh, we get that (5.7) is replaced by

(5.16) ΨL j
(z (k))− (−1)k

α

2
log(a− z)→ 0 as z→ a.

Let now b be a trivalent end of ∆ and ψ be a fixed determination of α log(· − b ) analytic across ∆,
where α as before is a constant. Further, let ∆b , j be the arcs incident with b . Fix l ∈ {1,2,3} and
let log(b − z) be defined by (5.14) with respect to ∆b ,l . Then (5.15) still takes place within the sectors
delimited by∆b ,l ∪∆b ,l+1 and∆b ,l ∪∆b ,l−1, where l±1 is understood cyclicly within {1,2,3}. However,
within the sector delimited by∆b ,l+1∪∆b ,l−1, the right-hand side of (5.15) has to be multiplied by−1 to
ensure analyticity across∆b ,l+1 ∪∆b ,l−1. Then, multiplying both sides of (5.15) by ħh, we get that

(5.17) ΨLb ,l
(z (k))∓ (−1)k

α

2
log(b − z)→ 0 as z→ b ,

where− sign corresponds to the approach within the sectors delimited by∆b ,l∪∆b ,l+1 and∆b ,l∪∆b ,l−1,
and the− sign corresponds to the approach within the sector delimited by the pair∆b ,l+1∪∆b ,l−1. Hence,
the behavior of Ψ near b is completely determined by the behavior of the sum

∑3
l=1ΨLb ,l

.

5.3. Auxiliary Functions. For an arbitrary ~x ∈Rg set ψ~x to be a function on L such that

ψ~x :=
¨

2πi
�

~x
�

k on bk ,
0 otherwise.
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Define further

(5.18) S~x (z) := exp
� 1

4πi

∮

L
ψ~x dΩz,z∗

�

, z ∈ bR \ L.

Then S~x is a holomorphic and non-vanishing function in eR, with Hölder continuous non-vanishing
traces on both sides of each a- and b-cycle that satisfy

(5.19) S+
~x
= S−

~x







exp
�

2πi
�

~x
�

k

	

on bk ,

exp
�

− 2πi
�

BΩ~x
�

k

	

on ak ,

for k ∈ {1, . . . , g} by (5.12) and (2.20). Observe also that

(5.20) S~x =
g
∏

k=1

S (~x)k
~ek

,

where, as before,
�

~ek
	g

k=1
is the standard basis in Rg .

Now, let ρ ∈W∆ and logρ be a fixed branch holomorphic across each∆k in∆. Define

(5.21) Slogρ(z) := exp
� 1

4πi

∮

L
log(ρ ◦π)dΩz,z∗

�

, z ∈ bR \ L.

Then, as in the case of (5.18), it follows from (5.12) that Slogρ is a holomorphic function in bR \ L and

(5.22) S+
logρ
= S−

logρ

¨

ρ ◦π, on L \ E ,
exp
�

−
∮

L log(ρ ◦π)dΩk
	

, on ak \ E , k ∈ {1, . . . , g}.

If a is a univalent end of ∆ and ∆ j is the arc incident with a, then ρ|∆ j
(z) = w j (z)(z − a)αa , where w j

is holomorphic and non-vanishing in some neighborhood of ∆ j and (z − a)αa is a branch holomorphic
around∆ j \ {a}. Let (a− z)αa be the branch defined by (5.14). Then (a− z)αa = (z− a)αa exp{±αaπi} in
U±

a,δ
, where the latter were defined right before (5.14). Thus, it holds by (5.7) and (5.16) that

(5.23) S2
logρ(z)/ρ(z)→ exp

(

±αaπi −
g
∑

k=1

εak
(a, z)

∮

L
log(ρ ◦π)dΩk

)

as U±
a,δ
3 z→ a,

where εak
(a,z) ≡ 0 if a 6∈ ak , and εak

(a,z) ≡ ±1 if a ∈ ak and z→ a ∈ a±
k

. If b is a trivalent end of ∆, let
∆b , j , j ∈ {1,2,3}, be the arcs incident with b . Further, let Sb , j be a sector delimited ∆b , j±1 within a disk
centered at b of small enough radius, where j ± 1 is understood cyclicly within {1,2,3}. Then it follows
from (5.8) that

(5.24) S2
logρ(z)→

ρ|∆b , j−1
(b )ρ|∆b , j+1

(b )

ρ|∆b , j
(b )

as Sb , j 3 z→ b .

Finally, we can deduce the behavior of Slogρ at∞(0) from (5.11) in a straightforward fashion.
Now, let log h+ be a fixed branch continuous on∆\E . Define Slog h as in (5.21) with logρ replaced by

log h+. Then Slog h enjoys the same properties Slogρ does except for (5.23) and (5.24) as h is not holomor-
phic across∆ \ E unlike ρ. In particular, it holds that

(5.25) S+
log h
= S−

log h

¨

h+ ◦π, on L \ E ,
exp
�

−
∮

L log(h+ ◦π)dΩk
	

, on ak \ E , k ∈ {1, . . . , g}.
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Moreover, it can be easily verified that (5.23) gets replaced by

(5.26) S2
log h (z)/h(z)→ exp

(

∓
πi

2
−

g
∑

k=1

εak
(a, z)

∮

L
log(h+ ◦π)dΩk

)

as z→ a

with − sign used when ∆ j is oriented towards a (one needs to take U+
a,δ
= Ua,δ \∆ j and U−

a,δ
= ∅ in

(5.16)) and + sign used when ∆ j is oriented away from a (U−
a,δ
= Ua,δ \∆ j and U+

a,δ
= ∅). Similarly,

(5.24) is replaced by

(5.27) S2
log h/h→ exp

�

±πi/2
	

as z→ b ,

where the sign + corresponds to the case when the arcs incident with b are oriented towards b and the
sign − corresponds to the other case (this conclusion is deduced from (5.8) and (5.17) applied to each arc
incident with b ).

6. SZEGŐ FUNCTIONS

In this section we prove Propositions 1, 2, and 3.

6.1. Proof of Proposition 1. It follows from the discussion in Section 4.3 that a solution of (2.22) is
either unique or special; and in the latter case any pair of involution-symmetric points can be replaced
by any other such pair. According to the convention adopted in Definition 2, we denote by

∑g
j=1 tn, j the

divisor that either uniquely solves (2.22) or solves (2.22) and all the involution-symmetric pairs are taken
to be∞(0)+∞(1).

Let
∑g

j=1 b (1)j be as in (2.13) and ~ω,~τ,~cρ be as in (2.21). Notice that by (4.8) it holds that

(6.1)
g
∑

j=1

∫ tn, j

b (1)j

d~Ω+ i
∫ ∞(0)

∞(1)
d~Ω ≡ ~cρ+(n+ i)

�

~ω+BΩ~τ
�
�

mod periods d~Ω
�

.

Then if
g
∑

j=1

tn, j =
g−l
∑

j=1

t j + k∞(0)+(l − k)∞(1),

where
�

t j
	g−l

j=1 ⊂R \
�

∞(0),∞(1)
	

, it holds by (6.1) that

g
∑

j=1

tn+i , j =
g−l
∑

j=1

t j +(k + i)∞(0)+(l − k − i)∞(1)

for each i ∈ {−k , . . . , l − k}. The uniqueness of the solutions for i =−k , l − k immediately follows from
the fact that

∑g
j=1 tn+i , j is not special for these indices.

Now, let
∑g

j=1 tn, j be the unique solution of (2.22) that does not contain∞(k), k ∈ {0,1}. If
∑g

j=1 tn−(−1)k , j

were not the unique solution, it would contain at least one pair∞(1)+∞(0) and therefore
∑g

j=1 tn, j would

contain ∞(k) by the first part of the proof. Thus,
∑g

j=1 tn−(−1)k , j solves (2.22) uniquely, and it only re-
mains to show that

(6.2)
�

tn, j
	g

j=1 ∩
�

tn−(−1)k , j

	g
j=1 =∅.

Assume the contrary. For definiteness, let g ′ < g be the number of distinct points in the divisors
∑g

j=1 tn, j and
∑g

j=1 tn−(−1)k , j , and label the common points by indices ranging from g ′ + 1 to g . If
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(6.2) were false, then it would follow from (2.22) and (4.8) that
g ′
∑

j=1

∫ tn, j

t
n−(−1)k , j

d~Ω− (−1)k
∫ ∞(0)

∞(1)
d~Ω ≡ ~0

�

mod periods d~Ω
�

.

That is, the divisor
g ′
∑

j=1

tn, j −
g ′
∑

j=1

tn−(−1)k , j − (−1)k∞(0)+(−1)k∞(1)

would be principal. However, since g ′+ 1≤ g , such divisors come solely from rational functions over C
and their zeros as well as poles appear in involution-symmetric pairs. Hence, the divisor

∑g ′

j=1 tn, j would

contain an involution-symmetric pair or ∞(k). As both conclusions are impossible, (6.2) indeed takes
place. This completes the proof of Proposition 1.

6.2. Proof of Proposition 2. Let N′′ ⊆ N′ be such a subsequence that the divisors
∑g

i=1 tn+ j ,i converge

to a divisor
∑g

i=1 wi as N′′ 3 n→∞ for a fixed index j ∈ {−l0− k , . . . , l1+ k}. Then the continuity of ~Ω
implies that

lim
N′′3n→∞

g
∑

i=1

∫ tn+ j ,i

b (1)i

d~Ω=
g
∑

i=1

∫ wi

b (1)i

d~Ω=
g
∑

i=1

~Ω
�

wi
�

− ~vb ,

where ~vb :=
∑g

i=1
~Ω
�

b (1)i

�

(recall also the convention that all the paths of integration belong to eR and

therefore the right-hand side of the equality above does not depend on the labeling of
∑

tn+ j ,i and
∑

b (1)i ).
Hence, it holds that

lim
N′′3n→∞

�

~cρ+(n+ j )
�

~ω+BΩ~τ
�
�

≡
g
∑

i=1

~Ω
�

wi
�

− ~vb ,

where, from now on, all the equivalences are understood mod periods d~Ω. Set l := l0− l1. Assume first
that l ≥ 0. Then, analogously to the previous computation, we have that

lim
N′3n→∞

�

~cρ+ n
�

~ω+BΩ~τ
�
�

≡
g−2k−l0−l1
∑

i=1

~Ω
�

ti
�

+ l~Ω
�

∞(0)
�

− ~vb

since ~Ω
�

z (0)
�

=−~Ω
�

z (1)
�

.
In what follows, we assume that l+2 j ≥ 0, otherwise, if l+2 j < 0, each occurrence of∞(0) and l+2 j

needs to be replaced by∞(1) and−(l+2 j ), respectively. Then (4.8) and the just mentioned anti-symmetry
of ~Ω yield that

lim
N′3n→∞

�

~cρ+(n+ j )
�

~ω+BΩ~τ
�
�

≡
g−2k−l0−l1
∑

i=1

~Ω
�

ti
�

+(l + 2 j )~Ω
�

∞(0)
�

− ~vb .

Hence, it is true that
g
∑

i=1

~Ω
�

wi
�

≡
g−2k−l0−l1
∑

i=1

~Ω
�

ti
�

+(l + 2 j )~Ω
�

∞(0)
�

.

Therefore, for any collection {ui}
l1+k− j
i=1 ⊂C it holds by Abel’s theorem that the divisor

g−2k−l0−l1
∑

i=1

ti +
l1+k− j
∑

i=1

�

u (0)i + u (1)i

�

+(l + 2 j )∞(0)−
g
∑

i=1

wi
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is principal (l1+k− j needs to be replaced by l0+k+ j when l+2 j < 0). As the integral part of this divisor
has at most g elements, the divisor should be involution-symmetric. However, if

∑g−2k−l0−l1
i=1 t j + (l +

2 j )∞(0) is non-void, it is non-special, and therefore
∑g

i=1 wi is equal to
∑g−2k−l0−l1

i=1 ti +
∑l1+k− j

i=1

�

u (0)i +
u (1)i

�

+(l +2 j )∞(0); if it is void,
∑g

i=1 wi is an arbitrary involution-symmetric divisor. In any case, this is
exactly what is claimed by the proposition. Clearly, the case l < 0 can be treated similarly.

To prove the last assertion of the proposition, observe that the divisors
∑g

j=1 t j and
∑g

j=1 w j are
connected by the relation

g
∑

j=1

~Ω(t j )− (−1)k
∫ ∞(0)

∞(1)
d~Ω≡

g
∑

j=1

~Ω(w j ).

Hence, by Abel’s theorem the divisor
∑g

j=1 t j −
∑g

j=1 w j − (−1)k∞(0) + (−1)k∞(1) is principal. Since
∑g

j=1 t j +∞(1−k) is non-special, the claim follows as in the end of the proof of Proposition 1.

6.3. Proof of Proposition 3. Any vector ~u ∈Cg can be uniquely and continuously written as ~x+BΩ~y,
~x,~y ∈Rg , since the imaginary part ofBΩ is positive definite. Hence, we can define

(6.3) ~xn +BΩ~yn :=
g
∑

j=1

∫ tn, j

b (1)j

d~Ω=
g
∑

j=1

�

~Ω
�

tn, j

�

− ~Ω
�

b (1)j

��

.

As the image of the closure of eR under ~Ω is bounded in Cg , it holds that

(6.4) |~xn |, |~yn | ≤ const.

independently of n, where |~c |2 :=
∑g

k=1
|(~c)k |2. Set further

~xρ+BΩ~yρ :=~cρ.

Then it follows from the very choice of
∑g

j=1 tn, j , see (2.22), that there exist unique vectors ~jn , ~mn ∈ Zg

such that

(6.5) ~xρ+ n ~ω = ~xn + ~jn and ~yρ+ n~τ = ~yn + ~mn .

Therefore, we immediately deduce from (6.4) that

(6.6) | ~mn − ~mn−1|, |(2n− 1)~τ− ~mn − ~mn−1|, |n~τ− ~mn | ≤ const.

independently of n.
Let now S~τ and S ~mn

be defined by (5.18). Then it is an easy consequence of (6.6) and (5.20) that

(6.7) 0< const.≤
�

�

�S ~mn
/S ~mn−1

�

�

� ,
�

�

�S2n−1
~τ

/S ~mn
S ~mn−1

�

�

� ,
�

�

�S ~mn
/Sn
~τ

�

�

�≤ const.<∞

uniformly in eR. Notice also that

(6.8)
�

S ~mn
/Sn
~τ

�+
=
�

S ~mn
/Sn
~τ

�−







exp
�

− 2πi nτk
	

on bk ,

exp
�

− 2πi
�

BΩ
�

~mn − n~τ
��

k

	

on ak .

Using definitions (4.17) and (4.19), set

Θn(z) :=Θ
�

z;
∑

tn, j ,
∑

b (1)j

�

and Θn(z) :=
g
∏

j=1

Θ
�

z; tn, j , b (1)j

�

,
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where the first formula is used for non-special divisors
∑

tn, j and the second one otherwise. ThenΘn is a

meromorphic function in bR with poles at b (1)j , zeros at tn, j (as usual, coincidental points mean increased
multiplicity), and otherwise non-vanishing and finite. It also follows from (4.20), (4.18), and (6.3) that

(6.9) Θ+n =Θ
−
n exp

¦

−2πi
�

~xn +BΩ~yn
�

k

©

on ak .

Finally, let Slog h and Slogρ be defined as in Section 5.3 with the branch of the difference logρ− log h+

chosen to match the one used in (2.21) to define ~cρ. Set

(6.10) Sn :=
Slog h

Slogρ

S ~mn

Sn
~τ

Θn .

Then Sn is a meromorphic function in bR \ L and SnΦ
n is meromorphic in R \ L by (2.16), (5.22), (5.25),

(6.8), (6.9), and (6.5). Clearly, the same equations also yield that SnΦ
n satisfies (2.25). Finally, (2.26)

follows from (5.23) and (5.24), (5.26) and (5.27), reciprocal symmetry of Slogρ and Slog h on different sheets
of R, and the properties of Θn .

Now, let S be as described in the statement of Proposition 3. Then by the principle of analytic contin-
uation S/Sn is a rational function over R with the divisor

∑

t j −
∑g

j=1 tn, j . Since rational functions have
as many zeros as poles, the divisor

∑

t j has exactly g elements. Further, as explained in Section 4.3, the
principal divisors with strictly fewer than g + 1 poles are necessarily involution-symmetric; that is, they
come from the lifts of rational functions on C to R. It also follows from Proposition 1 that

∑g
j=1 tn, j

consists of a non-special part and a number of pairs∞(1) +∞(0). Hence,
∑

t j has the same non-special
part as

∑g
j=1 tn, j and the same number of involution-symmetric pairs of elements. Due to Proposition 1,

the latter means that
∑

t j solves (2.22). Lastly, as all the poles of the rational function S/Sn are equally
split between∞(0) and∞(1), this is a polynomial.

It remains to show the validity of (2.27). It follows from the definition of Sn and (6.7) that we only
need to estimate

Θn−1(z)

Θn(z)

Θn(∞(0))
Θn−1(∞(1))

.

To this end, denote by C0
ε

and C1
ε

the closures of
�∑

tn, j
	

n∈Nε
and

�∑

tn−1, j
	

n∈Nε
in the Rg/Σg -

topology. Neither of these sets contains special divisors. Indeed, both sequences consists of non-special
divisors and therefore we need to consider only the limiting ones. The limit points belonging to C0

ε
are

necessarily of the form
g−2k−l
∑

i=1

ti +
k
∑

i=1

�

z (0)i + z (1)i

�

+ l∞(1),

where
∑g−2k−l

i=1 ti , |π(ti )| < ∞, is non-special and {zi}ki=1 ⊂ C. If k > 0, Proposition 2, applied with
l0 = 0, l1 = 1, and j =−1, would imply that C1

ε
contains divisors of the form

g−2k−l
∑

i=1

ti +
k ′
∑

i=1

�

w (0)i +w (1)i

�

+(k − k ′− 1)∞(0)+(l + 1+ k − k ′)∞(1)

0 ≤ k ′ ≤ k − 1. In particular, it would be true that l + 1+ k − k ′ ≥ 2, which is impossible by the very
definition of Nε. Since the set C1

ε
can be examined similarly, the claim follows.
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Hence, given
∑

t j ∈ Ck
ε
, we can define Θ(z;

∑

t j ,
∑

b (1)j ) via (4.17). By the very definition of Ck
ε
, it

holds that
0<

�

�

�Θ
�

∞(k);
∑

t j ,
∑

b (1)j

��

�

�<∞.

Moreover, compactness of Ck
ε

and the continuity of
∑~Ω(t j ) with respect to

∑

t j imply that there are
uniform constants c(Ck

ε
) and C (Ck

ε
) such that

0< c(Ck
ε
)≤
�

�

�Θ
�

∞(k);
∑

t j ,
∑

b (1)j

��

�

�≤C (Ck
ε
)<∞

for any
∑

t j ∈ Ck
ε
. Analogously, observe that the absolute value of Θn−1/Θn is bounded above in Rn,ε

as it is a meromorphic function in bR with poles given by the divisor
∑

tn, j . The fact that this bound is

uniform follows again from continuity of ~Ω and compactness of Ck
ε
.

For future reference, let us point out that a slight modification of the above considerations and (6.7)
lead to the estimates

(6.11) |Sn/Sn(∞)| ,
�

�

�hS∗n−1/S∗n−1(∞)
�

�

�≤Cε,ε,ρ <∞

that holds uniformly in D∗ \∪e∈E{z : |z − e |< ε} for all n ∈Nε.

7. RIEMANN-HILBERT PROBLEM

In what follows, we adopt the notation φmσ3 for the diagonal matrix
�

φm 0
0 φ−m

�

, where σ3 is the

Pauli matrix σ3 =
�

1 0
0 −1

�

. Moreover, for brevity, we put γ∆ := cp(∆).

7.1. Initial Riemann-Hilbert Problem. Let Y be a 2 × 2 matrix function. Consider the following
Riemann-Hilbert problem for Y (RHP-Y ):

(a) Y is analytic in C \∆ and lim
z→∞
Y (z)z−nσ3 =I , where I is the identity matrix;

(b) Y has continuous traces on each∆k that satisfy Y+ =Y−
�

1 ρ
0 1

�

;

(c) Y is bounded near each e ∈ E \A and the behavior of Y near each e ∈A is described by


























O
�

1 |z − e |αe

1 |z − e |αe

�

, if αe < 0,

O
�

1 log |z − e |
1 log |z − e |

�

, if αe = 0,

O
�

1 1
1 1

�

, if αe > 0,

as D∗ 3 z→ e .

The connection between RHP-Y and polynomials orthogonal with respect to ρ was first realized by
Fokas, Its, and Kitaev [22, 23] and lies in the following.

Lemma 1. If a solution of RHP-Y exists then it is unique. Moreover, in this case deg(qn) = n, Rn−1(z) ∼
z−n as z→∞, and the solution of RHP-Y is given by

(7.1) Y =
�

qn Rn
mn−1qn−1 mn−1Rn−1

�

,

where mn is a constant such that mn−1Rn−1(z) = z−n[1+ o(1)] near infinity. Conversely, if deg(qn) = n
and Rn−1(z)∼ z−n as z→∞, then Y defined in (7.1) solves RHP-Y .
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Proof. In the case when ∆ = [−1,1] and ρ > 0 on ∆ this lemma has been proven in [32, Lemma 2.3].
It has been explained in [12] that the lemma translates without change to the case of a general closed
analytic arc and a general analytic non-vanishing weight ρ, and yields the uniqueness of the solution
of RHP-Y whenever the latter exists. For a general contour ∆ the claim follows from the fact that
Rn =

∑

k Rnk , where

Rnk (z) :=
∫

∆k

qn(t )ρ(t )

t − z

d t

2πi
=
∫

∆k

qn(t )wk (t )(t − a)αa (t − b )αb

t − z

d t

2πi

and therefore the behavior of Rn near e ∈A is deduced from the behavior Rnk there. On the other hand,
for each arc ∆e , j incident with e ∈ E \A (see notation in (2.8)), the respective function Rnk behaves as
[24, Section 8.1]

ρe , j (e)

2πi
log(z − e)+R∗e , j (z),

where the function R∗e , j has a definite limit at e and the logarithm is holomorphic outside of∆e , j . Using
(2.10), we get that

R(z) =
ρe ,1(e)

2π
arge ,1(z − e)+

ρe ,2(e)

2π
arge ,2(z − e)+

ρe ,3(e)

2π
arge ,3(z − e)+R∗e (z),

where R∗e has a definite limit at e and arge , j (z − e) has the branch cut along ∆e , j . Thus, Y is bounded in
the vicinity of each e ∈ E \A.

Suppose now that the solution, say Y = [Y j k]
2
j ,k=1

, of RHP-Y exists. Then Y11 = zn+ lower order
terms by the normalization in RHP-Y (a). Moreover, by RHP-Y (b), Y11 has no jump on ∆ and hence
is holomorphic in the whole complex plane. Thus, Y11 is necessarily a polynomial of degree n by Liou-
ville’s theorem. Further, since Y12 = O (z−n−1) and satisfies RHP-Y (b), it holds that Y12 is the Cauchy
transform of Y11ρ. From the latter, we easily deduce that Y11 satisfies orthogonality relations (1.10).
Applying the same arguments to the second row of Y , we obtain that Y21 = qn−1 and Y22 = mn−1Rn−1
with mn−1 well-defined.

Conversely, let deg(qn) = n and Rn−1(z) = O (z−n) as z →∞. Then it can be easily checked by the
direct examination of RHP-Y (a)–(c) that Y , given by (7.1), solves RHP-Y . �

7.2. Renormalized Riemann-Hilbert Problem. Suppose now that RHP-Y is solvable and Y is the
solution. Define

(7.2) T := γ−nσ3
∆ Y Φ−nσ3 ,

where, as before, we use the same symbol Φ for the pull-back function of Φ from D (0). By (4.9) it holds
that limz→∞ z/Φ(z) = γ∆ and therefore

(7.3) lim
z→∞
T (z) = lim

z→∞
γ−nσ3
∆ Y (z)z−nσ3 (z/Φ(z))nσ3 =I .

Moreover, it holds by (4.10) that

(7.4) (Φ+)−nσ3 = (Φ−)−nσ3 e−2πi nωkσ3

on each∆a
k
. Finally, on each∆k we have that

(Φ−)−nσ3

�

1 ρ
0 1

�

(Φ+)−nσ3 =
�

(Φ−/Φ+)n (Φ−Φ+)nρ
0 (Φ+/Φ−)n

�

=
�

e2πi nδk (Φ+)−2n e2πi nδkρ

0 e2πi nδk (Φ−)−2n

�

,(7.5)
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where the second equality holds again by (4.10) and δk are defined right after (4.10). Combining (7.3)—
(7.5), we see that T solves the following Riemann-Hilbert problem (RHP-T ):

(a) T is analytic in Da and T (∞) =I ;
(b) T has continuous traces on

⋃

∆k ∪
⋃

∆a
k

that satisfy

T+ =T−











e−2πi nωkσ3 on each ∆a
k
,

�

e2πi nδk (Φ+)−2n e2πi nδkρ

0 e2πi nδk (Φ−)−2n

�

on each ∆k ;

(c) T has the behavior near each e ∈ E as described in RHP-Y (c) only with D∗ replaced by Da .
Trivially, the following lemma holds.

Lemma 2. RHP-T is solvable if and only if RHP-Y is solvable. When solutions of RHP-T and RHP-
Y exist, they are unique and connected by (7.2).

7.3. Opening of Lenses. As is standard in the Riemann-Hilbert approach, the second transformation
of RHP-Y is based on the following factorization of the jump matrix (7.5) in RHP-T (b):

�

1 0
(Φ−)−2n/ρ 1

�
�

0 e2πi nδkρ
−e−2πi nδk/ρ 0

�
�

1 0
(Φ+)−2n/ρ 1

�

,

where we used (4.10). This factorization allows us to consider a Riemann-Hilbert problem with jumps
on a lens-shaped contour Σ (see the right-hand part of Figure 5), which is defined as follows. For each

∆e,3

∆e,2

∆e,1

�∆e,3

�∆e,2

�∆e,1

+ −

+ −

+
−+−

+−
+−

∆1+ ∆1−

∆2+

∆3−

∆3+

∆2−∆4+
∆4−

∆5−∆5+ ∆6− ∆6+

∆a
1

∆a
2

∆a
3

FIGURE 5. The left figure: the arcs e∆e , j introduced in the construction of the lens Σ near a
trivalent end. The right figure: the full lens Σ consisting of the arcs ∆k (not labeled), the arcs
∆a

k
, and the outer arcs ∆k± (the choice of ± is determined by the chosen orientation of the

corresponding arc∆k ), and the domains Ωk± (shaded areas, not labeled).

trivalent end e , let ∆e , j , j ∈ {1,2,3}, be the arcs in ∆ incident with e . For definiteness, assume that
they are ordered counter-clockwise; that is, when encircling e in the counter-clockwise direction we first
encounter ∆e ,1, then ∆e ,2, and then ∆e ,3. Assume also that ε > 0 is small enough so that the intersection
of the disk centered at e of radius ε, say Ue ,ε, with any∆e , j is a Jordan arc and the disk itself is contained

in the domain of holomorphy of each we , j (see (2.11)). Firstly, let e∆e , j , j ∈ {1,2,3}, be three open analytic

arcs incident with e and some points on the circumference of Ue ,ε placed so that the arc e∆e , j splits the
sector formed by∆e , j−1 and∆e , j+1, where we understand j ±1 cyclicly within the set {1,2,3}. We orient
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the arcs e∆e , j so that all the arcs including∆e , j are simultaneously oriented either towards e or away from
e (see the left-hand side of Figure 5). Secondly, let ∆k be an arc with one univalent and one trivalent
endpoint, say e . Then we chose open analytic arcs∆k± ⊂Da so that∆k∪∆k+∪ e∆e , j and∆k∪∆k−∪ e∆e ,l
(l = j + 1 if ∆k is oriented towards e and l = j − 1 otherwise) delimit two simply connected domains,
say Ωk+ and Ωk−, that lie to the left and right of ∆k (see the right-hand side of Figure 5). We oriented
∆k± the way∆k is oriented and assume that they lie within the domain of holomorphy of wk . The cases
where ∆k is incident with two univalent ends or two trivalent ends, we treat similarly with the obvious
modifications. Finally, we require all the arcs∆k ,∆k±,∆a

k
, and e∆e , j to be mutually disjoint, in particular,

we have that∆a
k
∩Ω j± =∅ for all possible pairs of k and j .

Suppose now that RHP-T is solvable and T is the solution. Define S on C \Σ by

(7.6) S :=







T
�

1 0
∓Φ−2n/ρ 1

�

, in each Ωk±,

T , outside the lens Σ.

Then S solves the following Riemann-Hilbert problem (RHP-S ):

(a) S is analytic in C \Σ and S (∞) =I ;
(b) S has continuous traces on Σ that satisfy

(1) S+ =S−e−2πi nωkσ3 on each∆a
k
;

(2) S+ =S−

�

0 e2πi nδkρ
−e−2πi nδk/ρ 0

�

on each∆k ;

(3) S+ =S−
�

1 0
Φ−2n/ρ 1

�

on each∆k±;

(4) S+ =S−
�

1 0
Φ−2n(1/ρe , j−1+ 1/ρe , j+1) 1

�

on each e∆e , j ;

(c) S is bounded near each e ∈ E \A and the behavior of S near each e ∈A is described by














































O
�

1 |z − e |αe

1 |z − e |αe

�

, if αe < 0, as C \Σ 3 z→ e ,

O
�

log |z − e | log |z − e |
log |z − e | log |z − e |

�

, if αe = 0, as C \Σ 3 z→ e ,

O
�

1 1
1 1

�

, if αe > 0, as z→ e outside the lens Σ,

O
�

|z − e |−αe 1
|z − e |−αe 1

�

, if αe > 0, as z→ e inside the lens Σ.

Then the following lemma holds.

Lemma 3. RHP-S is solvable if and only if RHP-T is solvable. When solutions of RHP-S and RHP-
T exist, they are unique and connected by (7.6).

Proof. By construction, the solution of RHP-T yields a solution of RHP-S . Conversely, let S ∗ be a
solution of RHP-S . It can be readily verified that T ∗, obtained from S ∗ by inverting (7.6), satisfies
RHP-T (a)-(b). Denote by T ∗j k the j k-entry of T ∗, j , k ∈ {1,2}. The appropriate behavior of T ∗j 2 near the
points of E follows immediately from RHP-S (c) and (7.6). Thus, we only need to show that T ∗j 1 = O (1)
in the vicinity of E and only for e ∈ A. Observe that by simply inverting transformation (7.6), we get
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that

(7.7) T ∗j 1(z) =















O (1), if αe < 0
O (log |z − e |), if αe = 0,
O (|z − e |−αe ), if αe > 0 and z is inside the lens,
O (1), if αe > 0 and z is outside the lens,

for j = 1,2. However, each T ∗j 1 solves the following scalar boundary value problem:

(7.8) φ+ =φ−
¨

e−2πi nωk on
⋃

∆a
k
,

e2πi nδk (Φ+)−2n on
⋃

∆k ,

where φ is a holomorphic function in Da . It can be easily checked using (4.10) that Φ−n is the canonical
solution of (7.8). Hence, the functions φ j := T ∗j 1Φ

n , j = 1,2, are analytic in C \ E . Moreover, accord-
ing to (7.7), the singularities of these functions at the points e ∈ E cannot be essential, thus, they are
either removable or polar. In fact, since φ j (z) = O (1) or φ j (z) = O (log |z − e |) when z approaches e
outside of the lens Σ, φ j can have only removable singularities at these points. Hence, φ j (z) = O (1) and
subsequently T ∗j 1 = O (1) near each e ∈ E (clearly, these functions have the form qΦ−n , where q is any
polynomials of degree at most n). �

8. ASYMPTOTIC ANALYSIS

8.1. Analysis in the Bulk. As Φ−2n converges to zero geometrically fast away from∆, the second jump
matrix in RHP-S (b) is close to the identity on

⋃

∆k±. Thus, the main term of the asymptotics forS in
Da is determined by the following Riemann-Hilbert problem (RHP-N ):

(a) N is analytic in Da andN (∞) =I ;
(b) N has continuous traces on

⋃

∆k ∪
⋃

∆a
k

that satisfy RHP-S (b1)–(b2).

As usual, we denote by Sn and S∗n the pull-back functions of Sn on R defined in Proposition 3.

Lemma 4. If n ∈Nε, then RHP-N is solvable and the solution is given by

(8.1) N =
�

1/Sn(∞) 0
0 γ∆/S∗n−1(∞)

��

Sn hS∗n
Sn−1/Φ hΦS∗n−1

�

.

Moreover, det(N )≡ 1 on C, and it holds thatN behaves like

(8.2)







O
�

|z − e |−(2αe+1)/4
�

O
�

|z − e |(2αe−1)/4
�

O
�

|z − e |−(2αe+1)/4
�

O
�

|z − e |(2αe−1)/4
�






and

�

O
�

|z − e |−1/4
��2

j ,k=1

Da 3 z→ e for univalent and trivalent ends e ∈ E, respectively.

Proof. Observe that whenever n ∈Nε it holds that Sn(∞)S∗n−1(∞) 6= 0 by the construction and therefore
N is well-defined for such indices. Since Sn and hΦS∗n are holomorphic function in Da by (2.26),N is an
analytic matrix function there. The normalizationN (∞) =I follows from the analyticity of Sn and S∗n
at infinity and the fact that (hΦ)(z) = 1/γ∆+O (1/z). Further, for any∆a

k
we have that

N+ =
�

1/Sn(∞) 0
0 γ∆/S∗n−1(∞)

��

S−n e−2πi nωk h(S∗n)
−e2πi nωk

(Sn−1/Φ)
−e−2πi nωk h(ΦS∗n−1)

−e2πi nωk

�

= N−e−2πi nωkσ3 ,
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where we used (2.16), analyticity of SnΦ
n across the a-cycles, and the fact that S+n /S−n = (S

∗
n)
−/(S∗n)

+.
Moreover, for each∆k it holds that

S±n = (S
∗
n)
∓ exp

�

− 2πi nδk
	�

h+/ρ
�

by (4.10), (2.25), and (2.15). Then

N+ =
�

1/Sn(∞) 0
0 γ∆/S∗n−1(∞)

�
 

−(hS∗n)
−e−2πi nδk/ρ S−n e2πi nδkρ

−(hS∗n−1Φ)
−e−2πi nδk/ρ (Sn−1/Φ)

−e2πi nδkρ

!

= N−

�

0 e2πi nδkρ

−e−2πi nδk/ρ 0

�

on ∆k , again by (4.10), (2.25), (2.15), and since h− = −h+ there. Thus, N as defined in (8.1) does solve
RHP-N . Equations (8.2) readily follow from (2.26). Finally, as the determinants of the jump matrices in
RHP-N (b) are equal to 1, det(N ) is a holomorphic function in C \ E . However, it follows from (8.2)
that

det(N )(z)≤ const.|z − e |−1/2 as z→ e ∈ E .
Thus, det(N ) is a function holomorphic in the entire extended complex plane and therefore is a constant.
From the normalization at infinity, we get that det(N )≡ 1. �

8.2. Local Analysis Near Univalent Ends. In the previous section we described the main term of the
asymptotics of S away from ∆. In this section we shall do the same near the points in A. Recall that
there exists exactly one k = k(a) such that the arc∆k is incident with a. Until the end of this section, we
understand that k is this fixed integer. Moreover, we let Ja to be the possibly empty index set such that
∆a

j has a as its endpoint for each j ∈ Ja .

8.2.1. Riemann-Hilbert Problem for Local Parametrix. Let δ > 0 be small enough so that the intersection
of the ball of radius δ centered at a, say Ua,δ , with each of the arcs comprising Σ and incident with a is
again a Jordan arc. We are seeking the solution of the following RHP-Pa :

(a) Pa is analytic in Ua,δ \Σ;
(b) Pa has continuous traces on each side of Ua,δ ∩Σ that satisfy RHP-S (b1)–(b3);
(c) Pa has the behavior near a within Ua,δ described by RHP-S (c);
(d) PaN −1 =I +O (1/n) uniformly on ∂ Ua,δ \Σ, whereN is given by (8.1).

We solve RHP-Pa only for n ∈ Nε. For these indices the above problem is well-posed as det(N ) ≡ 1 by
Lemma 4 and thereforeN −1 is an analytic matrix function in Da . In fact, the solution does not depend
on the actual value of ε, however, the term O (1/n) in RHP-Pa(d) does depend on ε as well as δ. That
is, this estimate is uniform with n for each fixed ε and δ, but is not uniform with respect to ε or δ
approaching zero.

To describe the solution of RHP-Pa , we need to define three special objects. The first one is the so-
called G-function whose square conformally maps Ua,δ into some neighborhood of the origin in such a
fashion that ∆k is mapped into negative reals. The second one is a holomorphic matrix function needed
to satisfy RHP-Pa(d). The third is a holomorphic matrix function that solves auxiliary Riemann-Hilbert
problem with constant jumps.

8.2.2. G-Function. Set

Ga(z) :=
∫ z

a
h(t )d t , z ∈Ua,δ \∆k .

Then Ga is a holomorphic function in Ua,δ \∆k such that

(8.3)
�

�

�Φe−Ga

�

�

�≡ 1 in Ua,δ .
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Indeed, since both a1 and a belong to∆ and the Green differential dG has purely imaginary periods, the
integral

∫ a
a1

dG is purely imaginary itself. It is also true that

(8.4) G+a +G−a ≡ 0 on ∆k ∩Ua,δ

since h+ + h− ≡ 0 on ∆. Moreover, it holds that the traces G±a have purely imaginary values on ∆k as
the same is true for h±(t )d t (recall that the quadratic differential h2(z)d z2 is negative on ∆k ). The last
observation and (8.4) imply that G2

a is a holomorphic function in Ua,δ that assumes negative values on
∆k ∩Ua,δ . Furthermore,

(8.5) |(G2
a )
′(a)|= 2 lim

t→a
|h(t )||t − a|1/2 6= 0.

Property (8.5) implies that G2
a is univalent in some neighborhood of a. Without loss of generality, we can

assume that δ is small enough for G2
a to be univalent in Ua,δ . Hence, G2

a maps Ua,δ conformally onto
some neighborhood of the origin. In particular, this means that ∆k can be extended as an analytic arc
beyond a by the preimage of [0,∞) under G2

a and we denote by e∆k this extension.
Let I+ := {z : Arg(z) = 2π/3}, I := {z : Arg(z) = π}, and I− := {z : Arg(z) = −2π/3} be three

semi-infinite rays oriented towards the origin. Since we had some freedom in choosing the arcs ∆k±, we
require that

G2
a

�

(∆k+ ∪∆k−)∩Ua,δ

�

⊂ I+ ∪ I−.

The latter is possible as G2
a is conformal around a. We denote by U+

a,δ
(resp. U−

a,δ
) the open subset of Ua,δ

that is mapped by G2
a into the upper (resp. lower) half-plane. Clearly, there are two possibilities, either

∆k+ ⊂ U+
a,δ

and therefore ∆k is oriented towards a, or ∆k+ ⊂ U−
a,δ

and respectively ∆k is oriented away
from a (see Figure 6).

U+
a,δ

U−
a,δ

a

∆k−

∆k+

∆k

�∆k U−
a,δ

U+
a,δ

a
∆k−

∆k+ ∆k

�∆k

FIGURE 6. Schematic representation of the arcs∆k , e∆k ,∆k±, the domains U+
a,δ

(shaded part of
the disk) and U−

a,δ
(unshaded part of the disk), and two possible cases: ∆k± ⊂ U±

a,δ
(∆k oriented

towards a) and∆k± ⊂U∓
a,δ

(∆k oriented away from a).

Finally, since the traces G±a are purely imaginary on ∆k ∩Ua,δ , satisfy (8.4) there, and the increment
of the argument of Ga is π when a is encircled in the clockwise direction from a point on∆k ∩Ua,δ back
to itself, we can define the square root of Ga that satisfies

(8.6)
�

G1/2
a

�+
=±i

�

G1/2
a

�−
on ∆k ∩Ua,δ ,

where the sign +must be used when∆k is oriented towards a and the sign − otherwise.
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8.2.3. Matrix Function E . Let arg(z − a) be the branch of the argument of (z − a) that was used in the
definition of ρ in (2.11). Without loss of generality we assume that its branch cut is e∆k . Put

(8.7) W :=
�

Φn w1/2
k
(a− ·)αa/2

�σ3
in Ua,δ \∆k ,

where we take the principal value of the square root of wk (we assume that δ is small enough so wk is
holomorphic and non-vanishing in Ua,δ ) and use the branch (5.14) to define (a−·)αa/2. Then it holds that

(8.8)
�

w1/2
k
(a− ·)αa/2

�2
= e±αaπiρ in U±

a,δ

and

(8.9)
�

w1/2
k
(a− ·)αa/2

�+�
w1/2

k
(a− ·)αa/2

�−
= ρ on ∆k ∩Ua,δ .

So the matrix functionN W is holomorphic in Ua,δ \
�

∆k ∪
⋃

Ja
∆a

j

�

and

N+W+ =N−W−
�

0 1
−1 0

�

on ∆k ∩Ua,δ .

Moreover, it is, in fact, holomorphic across each∆a
j , j ∈ Ja , as

N+W+ =N−e−2πi nω jσ3W−e2πi nω jσ3 =N−W−
by (7.4) and sinceW is diagonal. Hence, we deduce from (8.4) that N W exp{−nGaσ3} is holomorphic
in Ua,δ \∆k and has the same jump across∆k asN W . Define

E :=N W exp
�

− nGaσ3
	 1
p

2

�

1 ∓i
∓i 1

�

�

πnGa
�σ3/2

where the sign−must be used when∆k is oriented towards a and the sign+ otherwise. Since the product
�
�

G1/2
a

�−�−σ3
�

1/2 ±i/2
±i/2 1/2

��

0 1
−1 0

��

1 ∓i
∓i 1

�

�
�

G1/2
a

�+�σ3

is equal to I by (8.6), the matrix function E is holomorphic in Ua,δ \ {a}. Now, the second part of (8.2)
and (8.7) yield that all the entries of N W behave like O

�

|z − a|−1/4� as z → a. Hence, it follows from
(8.5) that the entries of E can have at most square-root singularity there, which is possible only if E is
analytic in the whole disk Ua,δ .

8.2.4. Matrix Functions Ψ and eΨ. The following construction was introduced in [32, Theorem 6.3]. Let
Iα and Kα be the modified Bessel functions and H (1)

α
and H (2)

α
be the Hankel functions [1, Ch. 9]. Set Ψ

to be the following sectionally holomorphic matrix function:

Ψ(ζ ) = Ψ(ζ ;α) :=







Iα
�

2ζ 1/2
�

i
π

Kα
�

2ζ 1/2
�

2πiζ 1/2I ′
α

�

2ζ 1/2
�

−2ζ 1/2K ′
α

�

2ζ 1/2
�







for |Arg(ζ )|< 2π/3;

Ψ(ζ ) :=







1
2 H (1)

α

�

2(−ζ )1/2
�

1
2 H (2)

α

�

2(−ζ )1/2
�

πζ 1/2
�

H (1)
α

�′ �
2(−ζ )1/2

�

πζ 1/2
�

H (2)
α

�′ �
2(−ζ )1/2

�






e

1
2απiσ3
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for 2π/3<Arg(ζ )<π;

Ψ(ζ ) :=







1
2 H (2)

α

�

2(−ζ )1/2
�

− 1
2 H (1)

α

�

2(−ζ )1/2
�

−πζ 1/2
�

H (2)
α

�′ �
2(−ζ )1/2

�

πζ 1/2
�

H (1)
α

�′ �
2(−ζ )1/2

�






e−

1
2απiσ3

for −π < Arg(ζ ) < −2π/3, where Arg(ζ ) ∈ (−π,π] is the principal determination of the argument of
ζ . Assume that the rays I , I+, and I− defined in Section 8.2.2 are oriented towards the origin. Using
known properties of Iα, Kα, H (1)

α
, H (2)

α
, and their derivatives, it can be checked that Ψ is the solution of

the following Riemann-Hilbert problem RHP-Ψ:

(a) Ψ is a holomorphic matrix function in C \ (I ∪ I+ ∪ I−);
(b) Ψ has continuous traces on I+ ∪ I− ∪ I that satisfy

Ψ+ =Ψ−











�

1 0
e±απi 1

�

on I±
�

0 1
−1 0

�

on I ;

(c) Ψ has the following behavior near 0:














































O
�

|ζ |α/2 |ζ |α/2
|ζ |α/2 |ζ |α/2

�

if α < 0, as ζ → 0,

O
�

log |ζ | log |ζ |
log |ζ | log |ζ |

�

if α= 0, as ζ → 0,

O
�

|ζ |α/2 |ζ |−α/2
|ζ |α/2 |ζ |−α/2

�

if α > 0, as ζ → 0 in |Arg(ζ )|< 2π/3,

O
�

|ζ |−α/2 |ζ |−α/2
|ζ |−α/2 |ζ |−α/2

�

if α > 0, as ζ → 0 in 2π/3< |Arg(ζ )|<π.

(d) Ψ has the following behavior near∞:

Ψ(ζ ) =
�

2πζ 1/2
�−σ3/2 1

p
2

�

1 i
i 1

�

�

I +O
�

ζ −1/2
��

exp
¦

2ζ 1/2σ3

©

uniformly in C \ (I ∪ I+ ∪ I−).

Finally, if we set eΨ := σ3Ψσ3. It can be readily checked that this matrix function satisfies RHP-Ψ with
the orientations of the rays I , I+, and I− reversed.

8.2.5. Solution of RHP-Pa . With the notation introduced above, the following lemma holds.

Lemma 5. For n ∈Nε, a solution of RHP-Pa is given by

(8.10) Pa = EΨW
−1, ζ = (n/2)2G2

a ,

if∆k is oriented towards a and with Ψ replaced by eΨ otherwise, where Ψ=Ψ(·;αa).

Proof. Assume that ∆k , and respectively ∆k±, is oriented towards a. In this case G2
a preserves the ori-

entation of these arcs and we use (8.10) with Ψ. The analyticity of E implies that the jumps of Pa are
those of ΨW −1. By the very definition of G2

a and Ψ, the latter has jumps only on Σ∩Ua,δ and otherwise
is holomorphic. This shows the validity of RHP-Pa(a). It also can be readily verified that RHP-Pa(b)
is fulfilled by using (7.4), (8.8), and (8.9). Next, observe that RHP-Pa(c) follows from RHP-Ψ(c) upon
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recalling that |G2
a (z)| ∼ |z − a| and |W (z)| ∼ |z − a|(αa/2)σ3 as z→ a. Observe now that with ζ defined as

in (8.10), it holds by the definition of E and RHP-Ψ(d) that

PaN
−1−I =N W exp{−nGaσ3}O

� 1

n

�

exp{nGaσ3}W
−1N −1 =N O

� 1

n

�

N −1

on ∂ Ua,δ , where we also used (8.3). Multiplying the last three matrices out we get that the entires
of thus obtained matrix contain all possible products of Sn/Sn(∞), hS∗n/Sn(∞), Sn−1/S∗n−1(∞), and
hS∗n−1/S∗n−1(∞). Then it follows from (6.11) used with ε < δ that the moduli of the entires ofPaN −1−I
are of order O (1/n) uniformly for n ∈Nε. This finishes the proof of the lemma since the case where∆k
is oriented away from a can be examined analogously. �

8.3. Local Analysis Near Trivalent Ends. In this section we continue to investigate the behavior of S
near the points in E . However, now we concentrate on the zeros of h, that is, the trivalent ends of∆. As
in the construction of the lens Σ, let∆b ,k be the arcs comprising∆ incident with b which are numbered
in the counter-clockwise fashion.

8.3.1. Riemann-Hilbert Problem for Local Parametrix. As before, we denote by Ub ,δ a disk centered at b
of small enough radius δ (“small enough” is specified as we proceed with the solution of RHP-Pb ). We
are seeking the solution of the following RHP-Pb :

(a) Pb is analytic in Ub ,δ \Σ;
(b) Pb has continuous traces on each side of Ub ,δ ∩Σ that satisfy RHP-S (b2) and (b4);
(c) Pb is bounded in the vicinity of b ;
(d) PbN −1 =I +O (1/n) uniformly on ∂ Ub ,δ \Σ, whereN is given by (8.1).

As in the case of RHP-Pa , we consider only the indices n ∈ Nε and the estimate O (1/n) in RHP-Pb (d)
is not uniform with respect to ε or δ approaching zero.

8.3.2. G-Function. Set, for convenience, Sb ,k to be the sectorial subset of Ub ,δ bounded by ∆b ,k+1,
∆b ,k−1, and ∂ Ub ,δ . Define

Gb (z) := (−1)k
∫ z

b
h(t )d t , z ∈ Sb ,k .

Thus defined, the function Gb satisfies

(8.11)
�

�

�Φb Gb

�

�

�≡ 1 in Sb ,1 ∪ Sb ,3 and
�

�

�Φb−Gb

�

�

�≡ 1 in Sb ,2.

The same reasoning as in (8.4) yields that Gb is a holomorphic function in Ub ,δ \∆b ,2 whose traces on
∆b ,1∩Ub ,δ and∆b ,3∩Ub ,δ as well as on both side of∆b ,2∩Ub ,δ are purely imaginary and G+

b
+G−

b
≡ 0

on∆b ,2∩U b
δ

. The last observation implies that G2
b

is a holomorphic function in Ub ,δ for δ small enough
that assumes negative values on each∆b ,k ∩Ub ,δ .

Recall that h2 has a simple zero at b and therefore |h(z)| ∼ |z − b |1/2 as z → b . This, in turn, implies
we can holomorphically define a cubic root of G2

b
in Ub ,δ . In what follows, we set G2/3

b
to be a conformal

map of Ub ,δ onto some neighborhood of the origin such that

(8.12) G2/3
b

�

∆b ,k ∩Ub ,δ

�

⊂ Ik ,

where we set Ik := {z : arg(z) =π(2k − 1)/3}, k ∈ {1,2,3}, and these rays are oriented towards the origin.
Moreover, since we had some freedom in choosing the arcs e∆b ,k , we require that

(8.13) G2/3
b

�

e∆b ,k ∩Ub ,δ

�

⊂ eIk ,
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where eIk := {z : Arg(z) = 2π(k − 2)/3}, k ∈ {1,2,3}, and the rays are once again oriented towards the
origin. Such a choice is always possible as G2

b
maps the sector Sb ,k ⊃ e∆b ,k onto a neighborhood of the

origin cut along I2.
Finally, since the traces G±

b
are purely imaginary on ∆b ,2 ∩Ub ,δ , satisfy G+

b
= −G−

b
there, and the

increment of the argument of Gb is 3π when b is encircled in the clockwise direction from a point on
∆b ,2 ∩Ub ,δ back to itself, we can define the sixth root of Gb , which is equivalent to the fourth root of

G2/3
b

, that satisfies

(8.14)
�

G1/6
b

�+
=±i

�

G1/6
b

�−
on ∆b ,2 ∩Ub ,δ ,

where the + sign must be used when∆b ,k are oriented towards b and the − sign otherwise.

8.3.3. Matrix Function E . Recall our notation, ρb ,k = ρ|∆b ,k
. For each function ρb ,k , fix a continuous

branch of the square rootpρb ,k . LetN be the solution of RHP-N presented in Section 8.1. Set

W :=























 

−iΦn
pρb ,3

pρb ,2
pρb ,1

!σ3

, in Sb ,1,

 

iΦn
pρb ,k−1

pρb ,k+1
pρb ,k

!σ3

, in Sb ,2 ∪ Sb ,3.

Then the matrix functionN W is holomorphic in Ub ,δ \∪k∆b ,k and satisfies

N+W+ =N−W−















�

0 −1
1 0

�

on ∆b ,1 ∩Ub ,δ ,

�

0 1
−1 0

�

on
�

∆b ,2 ∪∆b ,3

�

∩Ub ,δ .

Further, put

E ∗ :=







N W exp{nGbσ3} , in Sb ,1 ∪ Sb ,3,

N W
�

0 ±1
∓1 0

�

exp{nGbσ3} , in Sb ,2,

where we use the upper signs when the arcs ∆k are oriented towards b and the lower ones otherwise.
Then E ∗ is a holomorphic matrix function in Ub ,δ \∆b ,2 and

E ∗+ = E
∗
−

�

0 1
−1 0

�

on ∆b ,2 ∩Ub ,δ

since G+
b
=−G−

b
there. Finally, define

E := E ∗
�

1/2 ∓1/2
∓i/2 −i/2

�

Gσ3/6
b
(3n/2)σ3/6

where we use the − sign when the arcs ∆k are oriented towards b and the + sign otherwise. Since the
product

�
�

G1/6
b

�−�−σ3
�

1 ±i
∓1 i

��

0 1
−1 0

��

1/2 ∓1/2
∓i/2 −i/2

�
�
�

G1/6
b

�+�σ3

is equal to I by (8.14) where we use the upper signs when the arcs ∆k are oriented towards b and the
lower ones otherwise, the matrix function E is holomorphic in Ub ,δ \ {b}. Since |Gb (z)|1/6 ∼ |z − b |1/4



STRONG ASYMPTOTICS OF NUTTALL-STAHL POLYNOMIALS 43

as z → b and by the first part of (8.2), the entries of E can have at most square-root singularity there.
Therefore E is analytic in the whole disk Ub ,δ .

8.3.4. Matrix Function Υ. The following construction is a modification of the one introduced in [15,
Section 7]. Let Ai be the Airy function. Set

Υ0(ζ ) :=









Ai(ζ ) Ai
�

e
4πi

3 ζ
�

Ai′(ζ ) e
4πi

3 Ai′
�

e
4πi

3 ζ
�









e−
πi
6 σ3

and

Υ1(ζ ) :=









Ai(ζ ) −e
4πi

3 Ai
�

e
2πi

3 ζ
�

Ai′(ζ ) −Ai′
�

e
2πi

3 ζ
�









e−
πi
6 σ3 .

Further, put

Υ :=



























Υ0

�

0 −1
1 0

�

, Arg(ζ ) ∈
�

0, π3
�

,

Υ0, Arg(ζ ) ∈
�

π
3 , 2π

3

�

,

Υ0

�

1 0
−1 1

�

, Arg(ζ ) ∈
�

2π
3 ,π

�

,

:=



























Υ1

�

0 −1
1 0

�

, Arg(ζ ) ∈
�

−π
3 , 0
�

,

Υ1, Arg(ζ ) ∈
�

− 2π
3 ,−π

3

�

,

Υ1

�

1 0
1 1

�

, Arg(ζ ) ∈
�

−π,− 2π
3

�

.

It is known that






Ai(ζ ) = 1
2
p
π
ζ −1/4 exp

¦

− 2
3ζ

3/2
©�

1+O (ζ −3/2)
�

Ai′(ζ ) = − 1
2
p
π
ζ 1/4 exp

¦

− 2
3ζ

3/2
©�

1+O (ζ −3/2)
�

as ζ →∞ in the angle |Arg(ζ )|<π, from which it was deduced in [15, Lemma 7.4] that

(8.15) Υ(ζ ) =
e−

πi
6

2
p
π
ζ −σ3/4

�

1 i
−1 i

�

�

I +O
�

ζ −3/2
��

exp
�

−
2

3
ζ 3/2σ3

�

as ζ → ∞ for |Arg(ζ )| ∈
�

π
3 , 2π

3

�

∪
�

2π
3 ,π

�

. Asymptotics for |Arg(ζ )| ∈
�

0, π3
�

can be obtained by

multiplying the left-hand side of (8.15) by the matrix

�

0 −1
1 0

�

from the right. Altogether, it can be

�I3

�I2

�I1 I3

I2

I1

+ −+ −
+
−
+−+−

+−

�
1 0
1 1

� �
0 1

−1 0

�

�
1 0
1 1

�

�
0 −1
1 0

��
1 0
1 1

�

�
0 1

−1 0

�

FIGURE 7. The jump matrices that describe the relations between the traces of Υ on
⋃

k

�

Ik ∪ eIk

�

.
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checked as in [15, Section 7] that Υ is the solution of the following Riemann-Hilbert problem RHP-Υ:

(a) Υ is a holomorphic matrix function in C \
⋃

k

�

Ik ∪ eIk

�

;

(b) Υ has continuous traces on
⋃

k

�

Ik ∪ eIk

�

that satisfy the jump relations described by Figure 7;
(c) each entry of Υ has a finite nonzero limit at the origin from within each sector;
(d) the behavior of Υ near∞ is governed by (8.15).

Finally, if we set eΥ := σ3Υσ3. It can be readily checked that this matrix function satisfies RHP-Υ with
the orientations of the rays Ik and eIk reversed.

8.3.5. Solution of RHP-Pb . With the notation introduced above, the following lemma holds.

Lemma 6. For n ∈Nε, a solution of RHP-Pb is given by

(8.16) Pb = 2
p
πe

πi
6 EΥW −1, ζ = (3n/2)2/3G2/3

b
,

if the arcs∆b ,k are oriented towards b and with Υ replaced by eΥ otherwise.

Proof. Assume that the arcs ∆b ,k are oriented towards b . As E is holomorphic in Ub ,δ , it can be readily
verified using (8.12) and (8.13) thatΥW −1 satisfies RHP-Pb (b). It is also evident thatΥW −1 has no other
jumps and therefore RHP-Pb (a) is fulfilled. Since all the matrices are bounded in the vicinity of b , so is
RHP-Pb (c). Observe now that with ζ defined as in (8.16), it holds by the definition of E and (8.15) that

PbN
−1−I =N W exp{nGbσ3}O

� 1

n

�

exp{−nGbσ3}W
−1N −1

on ∂ Ub ,δ ∩ ∂ (Sb ,1 ∪ Sb ,3) and

PbN
−1−I =N W

�

0 1
−1 0

�

exp{nGbσ3}O
� 1

n

�

exp{−nGbσ3}
�

0 −1
1 0

�

W −1N −1

on ∂ Ub ,δ ∩ ∂ Sb ,2. As in the case of RHP-Pa(d), these representations yield RHP-Pb (d) on account of
(8.11) and (6.11) used with ε < δ. This finishes the proof of the lemma since the case where the arcs∆b ,k
are oriented away from b can be examined analogously. �

8.4. Final Transformation. Denote by eΣ the reduced system of contours that we define as

eΣ :=






Σ \






∆∪

⋃

e∈E

Ue ,δ ∪
g
⋃

k=1

∆a
k












∪
⋃

e∈E

∂ Ue ,δ

(see Figure 8). For this new system we consider the following Riemann-Hilbert problem (RHP-R ):

(a) R is a holomorphic matrix function in C \ eΣ andR(∞) =I ;
(b) the traces ofR on each side of eΣ are continuous except for the branching points of eΣ, where they

have definite limits from each sector and along each Jordan arc in eΣ. Moreover, they satisfy

R+ =R−







PeN −1 on ∂ Ue ,δ for each e ∈ E ,

N
�

1 0
Φ−2n/ρ 1

�

N −1 on eΣ \
⋃

e∈E ∂ Ue ,δ .

Then the following lemma takes place.

Lemma 7. The solution of RHP-R exists for all n ∈Nε large enough and satisfies

(8.17) R =I +O (1/n) ,

where O (1/n) holds uniformly in C (but not uniformly with respect to ε).
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∆1+ ∆1−

∆2+
∆2−

∆3−

∆3+

∆4+
∆4−

∆5−

∆5+

∆6−
∆6+

Ua1,δ

Ua2,δ

Ua3,δUa4,δ

Ua5,δ Ua6,δ

Ub1,δUb2,δ

FIGURE 8. Contour eΣ for Σ from Figure 5.

Proof. By RHP-Pa(d) and RHP-Pb (d), we have that RHP-R (b) can be written as

(8.18) R+ =R− (I +O (1/n))

uniformly on
⋃

e∈E ∂ Ue ,δ . Further, as Φ−2n converges to zero geometrically fast away from∆, the jump

of R on eΣ \
⋃

e∈E ∂ Ue ,δ is geometrically uniformly close to I . Hence, (8.18) holds uniformly on eΣ.

Thus, by [14, Corollary 7.108], RHP-R is solvable for all n large enough andR± converge to zero on eΣ
in L2-sense as fast as 1/n. The latter yields (8.17) locally uniformly in C \ eΣ. To show that (8.17) holds
at z ∈ eΣ, deform eΣ to a new contour that avoids z. As the jump in RHP-R is given by analytic matrix
functions, one can state an equivalent problem on this new contour, the solution to which is an analytic
continuation ofR . However, now we have that (8.17) holds locally around z. Compactness of eΣ finishes
the proof of (8.17). �

Now, it can be verified directly from Lemmas 4, 5, and 7 that the following lemma holds.

Lemma 8. The solution of RHP-S exists for all n ∈Nε large enough and is given by

(8.19) S :=







RN , in C \
�

eΣ∪
⋃

e∈E Ue ,δ

�

,

RPe , in Ue ,δ for each e ∈ E ,

whereR is the solution of RHP-R .

It is an immediate consequence of Lemmas 2, 3, and 8 that the following result holds.

Lemma 9. If Condition GP is fulfilled, then the solution of RHP-Y uniquely exists for all n ∈ Nε large
enough and can be expressed by reversing the transformations Y → T → S using (7.2) and (7.6) with S
given by (8.19).

9. ASYMPTOTICS OF NUTTALL-STAHL POLYNOMIALS

9.1. Proof of Theorem 4. Assume that n ∈Nε. For any given closed set in D∗, it can be easily arranged
that this set lies exterior to the lens eΣ. Thus, the matrix Y on this closed set is given by

Y = γ nσ3
∆ RN Φ

nσ3 ,
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whereR is the solution of RHP-R given by Lemma 8 andN is the solution of RHP-N given by (8.1).
Then

(9.1) RN =

















�

1+ υn1
� Sn

Sn(∞)
+ υn2

γ∆Sn−1

ΦS∗n−1(∞)
�

1+ υn1
�

hS∗n
Sn(∞)

+ υn2

γ∆hΦS∗n−1

S∗n−1(∞)

υn3

Sn

Sn(∞)
+
�

1+ υn4
� γ∆Sn−1

ΦS∗n−1(∞)
υn3

hS∗n
Sn(∞)

+
�

1+ υn4
�
γ∆hΦS∗n−1

S∗n−1(∞)

















with |υnk | ≤ c(ε)/n uniformly in C by (8.17); and therefore (2.28) follow from (7.1).
To derive asymptotic behavior of qn and Rn on ∆ \ E , we need to consider what happens within the

lens Σ and outside the disks Ue ,δ . We shall consider the asymptotics of Y from within
⋃

k Ωk+, the
“upper” part of the lens Σ, the behavior of Y in

⋃

k Ωk− can be derived in a similar fashion. We deduce
from Lemma 9 that

Y+ = γ
nσ3
∆ (RN )+

�

1 0
(Φ+)−2n/ρ 1

�

(Φ+)nσ3 = γ nσ3
∆ (RN )+

�

(Φ+)n 0
(Φ+)−n/ρ (Φ+)−n

�

locally uniformly on∆ \ E . Therefore, it holds that






Y11 = (RN )+11(γ∆Φ
+)n +(RN )+12γ

n
∆(Φ

+)−n/ρ,

Y +12 = (RN )+12(γ∆/Φ
+)n .

Hence, we get (2.29) from (9.1), (7.1), and (2.25). �

9.2. Proof of Corollary 5. Since bρ− [n/n]
bρ = Rn/qn , it follows from (2.28) that

bρ− [n/n]
bρ =

S∗n
Sn

h

Φ2n

1+ υn1+(υn2Φ)(γ
∗
n/γn)(S

∗
n−1/S∗n)

1+ υn1+(υn2/Φ)(γ
∗
n/γn)(Sn−1/Sn)

.

Since υn2 is vanishing at infinity, it follows from (8.17) that |υn2Φ|, |υn2/Φ| ≤ c(ε)/n uniformly in D∗.
Thus, (2.30) is the consequence of (2.27). �
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