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ABSTRACT. Let f be holomorphically continuable over the complex plane except for finitely many
branch points contained in the unit disk. We prove that best rational approximants to f of degree n,
in the L2-sense on the unit circle, have poles that asymptotically distribute according to the equilib-
rium measure on the compact set outside of which f is single-valued and which has minimal Green
capacity in the disk among all such sets. This provides us with n-th root asymptotics of the approxi-
mation error. By conformal mapping, we deduce further estimates in approximation by rational or
meromorphic functions to f in the L2-sense on more general Jordan curves encompassing the branch
points. The key to these approximation-theoretic results is a characterization of extremal domains
of holomorphy for f in the sense of a weighted logarithmic potential, which is the technical core of
the paper.

LIST OF SYMBOLS

Sets:
C extended complex plane
T Jordan curve with exterior domain O and interior domain G
T unit circle with exterior domainO and interior domain D
E f set of the branch points of f
K∗ reflected set {z : 1/z̄ ∈K}
K set of minimal condenser capacity inK f (G)
Γν and Dν minimal set for Problem ( f , ν) and its complement in C
(Γ)ε {z ∈D : dist(z,Γ)< ε}
γ u image of a set γ under 1/(· − u)
Collections:
K f (G) admissible sets for f ∈A (G),K f =K f (D)
G f admissible sets inK f comprised of a finite number of continua
Λ(F ) probability measures on F
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Spaces:
Pn algebraic polynomials of degree at most n
Mn(G) monic algebraic polynomials of degree n with n zeros in G,Mn =Mn(D)
Rn(G) Rn(G) :=Pn−1M−1

n (G),Rn =Rn(D)
A (G) holomorphic functions C except for branch-type singularities in G
Lp (T ) classical Lp spaces, p <∞, with respect to arclength on T and the norm ‖ · ‖p,T
‖ · ‖K supremum norm on a set K
E2(G) Smirnov class of holomorphic functions in G with L2 traces on T
E2

n(G) E2
n(G) := E2(G)M−1

n (G)
H 2 classical Hardy space of holomorphic functions in D with L2 traces on T
H 2

n H 2
n :=H 2M−1

n
Measures:
ω∗ reflected measure,ω∗(B) =ω(B∗)
bω or eω balayage ofω, supp(ω)⊂D , onto ∂ D
ωF equilibrium distribution on F
ωF ,ψ weighted equilibrium distribution on F in the field ψ
ω(F ,E) Green equilibrium distribution on F relative to C \ E
Capacities:
cap(K) logarithmic capacity of K
capν (K) ν -capacity of K
cap(E , F ) capacity of the condenser (E , F )
Energies:
I [ω] logarithmic energy ofω
Iψ[ω] weighted logarithmic energy ofω in the field ψ
ID[ω] Green energy ofω relative to D
Iν[K] ν -energy of a set K
DD (u, v) Dirichlet integral of functions u, v in a domain D
Potentials:
V ω logarithmic potential ofω
V ω
∗ spherical logarithmic potential ofω

U ν spherically normalized logarithmic potential of ν∗

V ω
D Green potential ofω relative to D

gD (·, u) Green function for D with pole at u
Constants:
c(ψ; F ) modified Robin constant, c(ψ; F ) = Iψ[ωF ,ψ]−

∫

ψdωF ,ψ
c(ν ; D) is equal to

∫

gD (z,∞)d ν(z) if D is unbounded and to 0 otherwise

1. INTRODUCTION

Approximation theory in the complex domain has undergone striking developments over the
last years that gave new impetus to this classical subject. After the solution to the Gonchar conjec-
ture [39, 44] and the achievement of weak asymptotics in Padé approximation [48, 50, 25] came
the disproof of the Baker-Gammel-Wills conjecture [36, 15], and the Riemann-Hilbert approach
to the limiting behavior of orthogonal polynomials [18, 31] that opened the way to unprecedented
strong asymptotics in rational interpolation [4, 3, 14] (see [17, 30] for other applications of this
powerful device). Meanwhile, the spectral approach to meromorphic approximation [1], already
instrumental in [39], has produced sharp converse theorems in rational approximation and fueled
engineering applications to control systems and signal processing [23, 41, 38, 40].
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In most investigations involved with non-Hermitian orthogonal polynomials and rational inter-
polation, a central role has been played by certain geometric extremal problems from logarithmic
potential theory, close in spirit to the Lavrentiev type [32], that were introduced in [49]. On the
one hand, their solution produces systems of arcs over which non-Hermitian orthogonal polyno-
mials can be analyzed; on the other hand such polynomials are precisely denominators of rational
interpolants to functions that may be expressed as Cauchy integrals over this system of arcs, the
interpolation points being chosen in close relation with the latter.

One issue facing now the theory is to extend to best rational or meromorphic approximants of
prescribed degree to a given function the knowledge that was gained about rational interpolants.
Optimality may of course be given various meanings. However, in view of the connections with
interpolation theory pointed out in [35, 11, 12], and granted their relevance to spectral theory, the
modeling of signals and systems, as well as inverse problems [2, 22, 28, 37, 10, 29, 46], it is natural
to consider foremost best approximants in Hardy classes.

The main interest there attaches to the behavior of the poles whose determination is the non-
convex and most difficult part of the problem. The first obstacle to value interpolation theory in
this context is that it is unclear whether best approximants of a given degree should interpolate
the function at enough points, and even if they do these interpolation points are no longer pa-
rameters to be chosen adequately in order to produce convergence but rather unknown quantities
implicitly determined by the optimality property. The present paper deals with H 2-best rational
approximation in the complement of the unit disk, for which maximum interpolation is known
to take place; it thus remains in this case to locate the interpolation points. This we do asymptot-
ically, when the degree of the approximant goes large, for functions whose singularities consist of
finitely many poles and branch points in the disk. More precisely, we prove that the normalized
(probability) counting measures of the poles of the approximants converge, in the weak star sense,
to the equilibrium distribution of the continuum of minimum Green capacity, in the disk, outside
of which the approximated function is single-valued. By conformal mapping, the result carries
over to best meromorphic approximants with a prescribed number of poles, in the L2-sense on a
Jordan curve encompassing the poles and branch points. We also estimate the approximation error
in the n-th root sense, that turns out to be the same as in uniform approximation for the functions
under consideration. Note that H 2-best rational approximants on the disk are of fundamental im-
portance in stochastic identification [28] and that functions with branch points arise naturally in
inverse sources and potential problems [7, 9], so the result may be regarded as a prototypical case
of the above-mentioned program.

The paper is organized as follows. In Sections 2 and 3, we fix the terminology and recall some
known facts about H 2-best rational approximants and sets of minimal condenser capacity, before
stating our main results (Theorems 5 and 7) along with some corollaries. We set up in Section 4 a
weighted version of the extremal potential problem introduced in [49] (cf. Definition 9) and stress
its main features. Namely, a solution exists uniquely and can be characterized, among continua
outside of which the approximated function is single-valued, as a system of arcs possessing the so-
called S-property in the field generated by the weight (cf. Definition 10 and Theorem 12). Section 5
is a brief introduction to multipoint Padé interpolants, of which H 2-best rational approximants
are a particular case. Section 6 contains the proofs of all the results: first we establish Theorem 12,
which is the technical core of the paper, using compactness properties of the Hausdorff metric
together with the a priori geometric estimate of Lemma 17 to prove existence; the S-property is
obtained by showing the local equivalence of our weighted extremal problem with one of mini-
mal condenser capacity (Lemma 19); uniqueness then follows from a variational argument using
Dirichlet integrals (Lemma 20). After Theorem 12 is established, the proof of Theorem 7 is not too
difficult. We choose as weight (minus) the potential of a limit point of the normalized counting
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measures of the interpolation points of the approximants and, since we now know that a compact
set of minimal weighted capacity exists and that it possesses the S-property, we can adapt results
from [25] to the effect that the normalized counting measures of the poles of the approximants
converge to the weighted equilibrium distribution on this system of arcs. To see that this is nothing
but the Green equilibrium distribution, we appeal to the fact that poles and interpolation points
are reflected from each other across the unit circle in H 2-best rational approximation. The results
carry over to more general domains as in Theorem 5 by a conformal mapping (Theorem 6). The
appendix in Section 7 gathers some technical results from logarithmic potential theory that are
needed throughout the paper.

2. RATIONAL APPROXIMATION IN L2

In this work we are concerned with rational approximation of functions analytic at infinity
having multi-valued meromorphic continuation to the entire complex plane deprived of a finite
number of points. The approximation will be understood in the L2-norm on a rectifiable Jordan
curve encompassing all the singularities of the approximated function. Namely, let T be such
a curve. Let further G and O be the interior and exterior domains of T , respectively, i.e., the
bounded and unbounded components of the complement of T in the extended complex plane C.
We denote by L2(T ) the space of square-summable functions on T endowed with the usual norm

‖ f ‖2
2,T :=

∫

T
| f |2d s ,

where d s is the arclength differential. SetPn to be the space of algebraic polynomials of degree at
most n andMn(G) to be its subset consisting of monic polynomials with n zeros in G. Define

(2.1) Rn(G) :=

(

p(z)

q(z)
=

pn−1zn−1+ pn−2zn−2+ · · ·+ p0

zn + qn−1zn−1+ · · ·+ q0

: p ∈Pn−1, q ∈Mn(G)

)

.

That is,Rn(G) is the set of rational functions with at most n poles that are holomorphic in some
neighborhood of O and vanish at infinity. Let f be a function holomorphic and vanishing at
infinity (vanishing at infinity is a normalization required for convenience only). We say that f
belongs to the classA (G) if

(i) f admits holomorphic and single-valued continuation from infinity to an open neighborhood
of O;

(ii) f admits meromorphic, possibly multi-valued, continuation along any arc in G \ E f starting
from T , where E f is a finite set of points in G;

(iii) E f is non-empty, the meromorphic continuation of f from infinity has a branch point at each
element of E f .

The primary example of functions in A (G) is that of algebraic functions. Every algebraic
function f naturally defines a Riemann surface. Fixing a branch of f at infinity is equivalent to
selecting a sheet of this covering surface. If all the branch points and poles of f on this sheet
lie above G, the function f belongs to A (G). Other functions in A (G) are those of the form
g ◦ log(l1/l2) + r , where g is entire and l1, l2 ∈ Mm(G) while r ∈ Rk (G) for some m, k ∈ N.
However,A (G) is defined in such a way that it contains no function in Rn(G), n ∈ N, in order
to avoid degenerate cases.

With the above notation, the goal of this section is to describe the asymptotic behavior of

(2.2) ρn,2( f ,T ) := inf
¦

‖ f − r‖2,T : r ∈Rn(G)
©

, f ∈A (G).
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This problem is, in fact, a variation of a classical question in Chebyshev (uniform) rational ap-
proximation of holomorphic functions where it is required to describe the asymptotic behavior
of

ρn,∞( f ,T ) := inf{‖ f − r‖T : r ∈Rn(G)} ,

where ‖ · ‖T is the supremum norm on T . The theory behind Chebyshev approximation is rather
well established while its L2-counterpart, which naturally arises in system identification and con-
trol theory [5] and serves as a method to approach inverse source problems [7, 9, 10], is not so
much developed. In particular, it follows from the techniques of rational interpolation devised by
Walsh [54] that

(2.3) limsup
n→∞

ρ1/n
n,∞( f ,T )≤ exp

¨

−
1

cap(K ,T )

«

for any function f holomorphic outside of K ⊂ G, where cap(K ,T ) is the condenser capacity
(Section 7.1.3) of a set K contained in a domain G relative to this domain1. On the other hand, it
was conjectured by Gonchar and proved by Parfënov [39, Sec. 5] on simply connected domains,
also later by Prokhorov [44] in full generality, that

(2.4) liminf
n→∞

ρ1/2n
n,∞ ( f ,T )≤ exp

¨

−
1

cap(K ,T )

«

.

Notice that only the n-th root is taken in (2.3) while (2.4) provides asymptotics for the 2n-th root.
Observe also that there are many compacts K which make a given f ∈ A (G) single-valued in
their complement. Hence, (2.3) and (2.4) can be sharpened by taking the infimum over K on the
right-hand side of both inequalities. To explore this fact we need the following definition.

Definition 1. We say that a compact K ⊂ G is admissible for f ∈ A (G) if C \K is connected and
f has meromorphic and single-valued extension there. The collection of all admissible sets for f we
denote byK f (G).

As equations (2.3) and (2.4) suggest and Theorem 5 below shows, the relevant admissible set
in rational approximation to f ∈ A (G) is the set of minimal condenser capacity [48, 49, 50, 51]
relative to G:

Definition 2. Let f ∈A (G). A compact K ∈K f (G) is said to be a set of minimal condenser capacity
for f if

(i) cap(K,T )≤ cap(K ,T ) for any K ∈K f (G);

(ii) K⊂K for any K ∈K f (G) such that cap(K ,T ) = cap(K,T ).

It follows from the properties of condenser capacity that cap(K,T ) = cap(T ,K) = cap(O,K)
since K has connected complement that contains T by Definition 1. In other words, the set K
can be seen as the complement of the “largest” (in terms of capacity) domain containing O on
which f is single-valued and meromorphic. In fact, this is exactly the point of view taken up in
[48, 49, 50, 51]. It is known that such a set always exists, is unique, and has, in fact, a rather special
structure. To describe it, we need the following definition.

1In Section 7 the authors provide a concise but self-contained account of logarithmic potential theory. The reader
may want to consult this section to get accustomed with the employed notation for capacities, energies, potentials, and
equilibrium measures.
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Definition 3. We say that a set K ∈K f (G) is a smooth cut for f if K = E0 ∪ E1 ∪
⋃

γ j , where
⋃

γ j
is a finite union of open analytic arcs, E0 ⊆ E f and each point in E0 is the endpoint of exactly one γ j ,
while E1 is a finite set of points each element of which is the endpoint of at least three arcs γ j . Moreover,
we assume that across each arc γ j the jump of f is not identically zero.

Let us informally explain the motivation behind Definition 3. In order to make f single-valued,
it is intuitively clear that one needs to choose a proper system of cuts joining certain points in E f
so that one cannot encircle these points nor access the remaining ones without crossing the cut. It
is then plausible that the geometrically “smallest” system of cuts comprises of Jordan arcs. In the
latter situation, the set E1 consists of the points of intersection of these arcs. Thus, each element of
E1 serves as an endpoint for at least three arcs since two arcs meeting at a point are considered to be
one. In Definition 3 we also impose that the arcs be analytic. It turns out that the set of minimal
condenser capacity (Theorem S) as well as minimal sets from Section 4 (Theorem 12) have exactly
this structure. It is possible for E0 to be a proper subset of E f . This can happen when some of the
branch points of f lie above G but on different sheets of the Riemann surface associated with f
that cannot be accessed without crossing the considered system of cuts.

The following is known about the set K (Definition 2) [48, Thm. 1 and 2] and [49, Thm. 1].

Theorem S. Let f ∈A (G). Then K, the set of minimal condenser capacity for f , exists and is unique.
Moreover, it is a smooth cut for f and

(2.5)
∂

∂ n+
V
ω(T ,K)

C\K
=

∂

∂ n−
V
ω(T ,K)

C\K
on

⋃

γ j ,

where ∂ /∂ n± are the partial derivatives2 with respect to the one-sided normals on each γ j , V
ω(T ,K)

C\K
is

the Green potential ofω(T ,K) relative to C\K, andω(T ,K) is the Green equilibrium distribution on T

relative to C \K (Section 7.1.3).

Note that (2.5) is independent of the orientation chosen on γ j to define ∂ /∂ n±. Property (2.5)
turns out to be more beneficial than Definition 2 in the sense that all the forthcoming proofs use
only (2.5). However, one does not achieve greater generality by relinquishing the connection to
the condenser capacity and considering (2.5) by itself as this property uniquely characterizes K.
Indeed, the following theorem is proved in Section 6.4.

Theorem 4. The set of minimal condenser capacity for f ∈ A (G) is uniquely characterized as a
smooth cut for f that satisfies (2.5).

With all the necessary definitions at hand, the following result takes place.

Theorem 5. Let T be a rectifiable Jordan curve with interior domain G and exterior domain O. If
f ∈A (G), then

(2.6) lim
n→∞

ρ1/2n
n,2 ( f ,T ) = lim

n→∞
ρ1/2n

n,∞ ( f ,T ) = exp

¨

−
1

cap(K,T )

«

,

where K is set of minimal condenser capacity for f .

The second equality in (2.6) follows from [25, Thm 1′], where a larger class of functions than
A (G) is considered (see Theorem GR in Section 6.3). To prove the first equality, we appeal to
another type of approximation, namely, meromorphic approximation in L2-norm on T , for which

2Since the arcs γ j are analytic and the potential V
ω(T ,K)

C\K
is identically zero on them, V

ω(T ,K)

C\K
can be harmonically

continued across each γ j by reflection. Hence, the partial derivatives in (2.5) exist and are continuous.
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asymptotics of the error and the poles are obtained below. This type of approximation turns out to
be useful in certain inverse source problems [9, 34, 16]. Observe that |T |1/p−1/2‖h‖2,T ≤ ‖h‖p,T ≤
|T |1/p‖h‖T for any p ∈ (2,∞) and any bounded function h on T by Hölder inequality, where
‖·‖p,T is the usual p-norm on T with respect to d s and |T | is the arclength of T . Thus, Theorem 5
implies that (2.6) holds for Lp (T )-best rational approximants as well when p ∈ (2,∞). In fact, as
Vilmos Totik pointed out to the authors [53], with a different method of proof Theorem 5 can be
extended to include the full range p ∈ [1,∞].

Just mentioned best meromorphic approximants are defined as follows. Denote by E2(G) the
Smirnov class3 for G [20, Sec. 10.1]. It is known that functions in E2(G) have non-tangential
boundary values a.e. on T and thus formed traces of functions in E2(G) belong to L2(T ). Now,
put E2

n(G) := E2(G)M−1
n (G) to be the set of meromorphic functions in G with at most n poles

there and square-summable traces on T . It is known [10, Sec. 5] that for each n ∈ N there exists
gn ∈ E2

n(G) such that

‖ f − gn‖2,T = inf
¦

‖ f − g‖2,T : g ∈ E2
n(G)

©

.

That is, gn is a best meromorphic approximant for f in the L2-norm on T .

Theorem 6. Let T be a rectifiable Jordan curve with interior domain G and exterior domain O. If
f ∈A (G), then

(2.7) | f − gn |
1/2n cap
→ exp

¨

V
ω(K,T )

G −
1

cap(K,T )

«

in G \K,

where the functions gn ∈ E2
n(G) are best meromorphic approximants to f in the L2-norm on T , K

is the set of minimal condenser capacity for f in G, ω(K,T ) is the Green equilibrium distribution on

K relative to G, and
cap
→ denotes convergence in capacity (see Section 7.1.1). Moreover, the counting

measures of the poles of gn converge weak∗ to ω(K,T ).

3. H̄ 2
0 -RATIONAL APPROXIMATION

To prove Theorems 5 and 6, we derive a stronger result in the model case where G is the unit
disk, D. The strengthening comes from the facts that in this case L2-best meromorphic approxi-
mants specialize to L2-best rational approximants the latter also turn out to be interpolants. In fact,
we consider not only best rational approximants but also critical points in rational approximation.

Let T be the unit circle and set for brevity L2 := L2(T). Denote by H 2 ⊂ L2 the Hardy space
of functions whose Fourier coefficients with strictly negative indices are zero. The space H 2 can
be described as the set of traces of holomorphic functions in the unit disk whose square-means on
concentric circles centered at zero are uniformly bounded above4 [20]. Further, denote by H̄ 2

0 the
orthogonal complement of H 2 in L2, L2 =H 2⊕ H̄ 2

0 , with respect to the standard scalar product

〈 f , g 〉 :=
∫

T
f (τ)g (τ)|dτ|, f , g ∈ L2.

From the viewpoint of analytic function theory, H̄ 2
0 can be regarded as a space of traces of func-

tions holomorphic inO :=C \D and vanishing at infinity whose square-means on the concentric
circles centered at zero (this time with radii greater then 1) are uniformly bounded above. In what

3A function h belongs to E2(G) if h is holomorphic in G and there exists a sequence of rectifiable Jordan curves, say
{Tn}, whose interior domains exhaust G, such that ‖h‖2,Tn

≤ const. independently of n.
4Each such function has non-tangential boundary values almost everywhere on T and can be recovered from these

boundary values by means of the Cauchy or Poisson integral.
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follows, we denote by ‖ · ‖2 the norm on L2 induced by the scalar product 〈·, ·〉. In fact, ‖ · ‖2 is a
norm on H 2 and H̄ 2

0 as well.
We setMn :=Mn(D) and Rn :=Rn(D). Observe that Rn is the set of rational functions of

degree at most n belonging to H̄ 2
0 . With the above notation, consider the following H̄ 2

0 -rational
approximation problem:

Given f ∈ H̄ 2
0 and n ∈N, minimize ‖ f − rn‖2 over all r ∈Rn .

It is well-known (see [6, Prop. 3.1] for the proof and an extensive bibliography on the subject) that
this minimum is always attained while any minimizing rational function, also called a best rational
approximant to f , lies inRn \Rn−1 unless f ∈Rn−1.

Best rational approximants are part of the larger class of critical points in H̄ 2
0 -rational approxi-

mation. From the computational viewpoint, critical points are as important as best approximants
since a numerical search is more likely to yield a locally best rather than a best approximant. For
fixed f ∈ H̄ 2

0 , critical points can be defined as follows. Set

(3.1)
Ψ f ,n :Pn−1×Mn → [0,∞)

(p, q) 7→ ‖ f − p/q‖2
2.

In other words, Ψ f ,n is the squared error of approximation of f by r = p/q in Rn . We topo-
logically identify Pn−1 ×Mn with an open subset of C2n with coordinates p j and qk , j , k ∈
{0, . . . , n− 1} (see (2.1)). Then a pair of polynomials (pc , qc ) ∈ Pn−1×Mn , identified with a vec-
tor in C2n , is said to be a critical pair of order n, if all the partial derivatives of Ψ f ,n do vanish at
(pc , qc ). Respectively, a rational function rc ∈ Rn is a critical point of order n if it can be written
as the ratio rc = pc/qc of a critical pair (pc , qc ) in Pn−1 ×Mn . A particular example of a crit-
ical point is a locally best approximant. That is, a rational function rl = pl/ql associated with a
pair (pl , ql ) ∈ Pn−1 ×Mn such that Ψ f ,n(pl , ql ) ≤ Ψ f ,n(p, q) for all pairs (p, q) in some neigh-
borhood of (pl , ql ) in Pn−1 ×Mn . We call a critical point of order n irreducible if it belongs to
Rn \Rn−1. As we have already mentioned, best approximants, as well as local minima, are always
irreducible critical points unless f ∈Rn−1. In general there may be other critical points, reducible
or irreducible, which are saddles or maxima. In fact, to give amenable conditions for uniqueness
of a critical point it is a fairly open problem of great practical importance, see [5, 11, 13] and the
bibliography therein.

One of the most important properties of critical points is the fact that they are “maximal” ratio-
nal interpolants. More precisely, let f ∈ H̄ 2

0 and rn be an irreducible critical point of order n, then
rn interpolates f at the reflection (z 7→ 1/z̄ ) of each pole of rn with order twice the multiplicity that
pole [35], [13, Prop. 2], which is the maximal number of interpolation conditions (i.e., 2n) that
can be imposed in general on a rational function of type (n− 1, n) (i.e., the ratio of a polynomial
of degree n− 1 by a polynomial of degree n).

With all the definitions at hand, we are ready to state our main results concerning the behavior
of critical points in H̄ 2

0 -rational approximation for functions in A (D), which will be proven in
Section 6.4.

Theorem 7. Let f ∈ A (D) and {rn}n∈N be a sequence of irreducible critical points in H̄ 2
0 -rational

approximation for f . Further, let K be the set of minimal condenser capacity for f . Then the normal-
ized counting measures5 of the poles of rn converge weak∗ to the Green equilibrium distribution on K

5The normalized counting measure of poles/zeros of a given function is a probability measure having equal point
masses at each pole/zero of the function counting multiplicity.
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relative to D, ω(K,T). Moreover, it holds that

(3.2) |( f − rn)|
1/2n cap
→ exp

§

−V
ω∗(K,T)

C\K

ª

in C \ (K∪K∗),

where K∗ and ω∗(K,T) are the reflections6 of K and ω(K,T) across T, respectively, and
cap
→ denotes conver-

gence in capacity. In addition, it holds that

(3.3) limsup
n→∞

|( f − rn)(z)|
1/2n ≤ exp

§

−V
ω∗(K,T)

C\K
(z)
ª

uniformly for z ∈O.

Using the fact that the Hardy space H 2 is orthogonal to H̄ 2
0 , one can show that L2-best mero-

morphic approximants discussed in Theorem 6 specialize to L2-best rational approximants when
G = D (see the proof of Theorem 6). Moreover, it is shown in Lemma 25 in Section 7 that

−V
ω∗(K,T)

C\K
≡ V

ω(K,T)

D − 1/cap(K,T) in D. So, formula (2.7) is, in fact, a generalization of (3.2), but

only in G \K. Lemma 25 also implies that V
ω∗(K,T)

C\K
≡ 1/cap(K,T) on T. In particular, the following

corollary to Theorem 7 can be stated.

Corollary 8. Let f , {rn}, and K be as in Theorem 7. Then

(3.4) lim
n→∞
‖ f − rn‖

1/2n
2 = lim

n→∞
‖ f − rn‖

1/2n
T = exp

¨

−
1

cap(K,T)

«

,

where ‖ · ‖T stands for the supremum norm on T.

Observe that Corollary 8 strengthens Theorem 5 in the case when T = T. Indeed, (3.4) com-
bined with (2.6) implies that the critical points in H̄ 2

0 -rational approximation also provide the best
rate of uniform approximation in the n-th root sense for f onO.

4. DOMAINS OF MINIMAL WEIGHTED CAPACITY

Our approach to Theorem 7 lies in exploiting the interpolation properties of the critical points
in H̄ 2

0 -rational approximation. To this end we first study the behavior of rational interpolants
with predetermined interpolation points (Theorem 14 in Section 5). However, before we are able
to touch upon the subject of rational interpolation proper, we need to identify the corresponding
minimal sets. These sets are the main object of investigation in this section.

Let ν be a probability Borel measure supported in D. We set

(4.1) U ν (z) :=−
∫

log |1− z ū|d ν(u).

The function U ν is simply the spherically normalized logarithmic potential of ν∗, the reflection
of ν across T (see (7.1)). Hence, it is a harmonic function outside of supp(ν∗), in particular, in
D. Considering −U ν as an external field acting on non-polar compact subsets of D, we define the
weighted capacity in the usual manner (Section 7.1.2). Namely, for such a set K ⊂D, we define the
ν -capacity of K by

(4.2) capν (K) := exp{−Iν[K]} , Iν[K] :=min
ω

�

I [ω]− 2
∫

U νdω
�

,

6For every set K we define the reflected set K∗ as K∗ := {z : 1/z̄ ∈ K}. If ω is a Borel measure in C, then ω∗ is a
measure such thatω∗(B) =ω(B∗) for every Borel set B .
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where the minimum is taken over all probability Borel measures ω supported on K (see Sec-
tion 7.1.1 for the definition of energy I [·]). Clearly, Uδ0 ≡ 0 and therefore capδ0

(·) is simply the
classical logarithmic capacity (Section 7.1.1), where δ0 is the Dirac delta at the origin.

The purpose of this section is to extend results in [48, 49] obtained for ν = δ0. For that, we
introduce a notion of a minimal set in a weighted context. This generalization is the key enabling
us to adapt the results of [25] to the present situation, and its study is really the technical core of
the paper. For simplicity, we putK f :=K f (D).

Definition 9. Let ν be a probability Borel measure supported in D. A compact Γν ∈K f , f ∈A (D),
is said to be a minimal set for Problem ( f , ν) if

(i) capν (Γν )≤ capν (K) for any K ∈K f ;

(ii) Γν ⊂ Γ for any Γ ∈K f such that cap(Γ) = cap(Γν ).

The set Γν will turn out to have geometric properties similar to those of minimal condenser
capacity sets (Definition 2). This motivates the following definition.

Definition 10. A compact Γ ∈ K f is said to be symmetric with respect to a Borel measure ω,
supp(ω)∩Γ=∅, if Γ is a smooth cut for f (Definition 3) and

(4.3)
∂

∂ n+
V ω
C\Γ
=

∂

∂ n−
V ω
C\Γ

on
⋃

γ j ,

where ∂ /∂ n± are the partial derivatives with respect to the one-sided normals on each side of γ j and

V ω
C\Γ

is the Green potential of ω relative to C \Γ.

Definition 10 is given in the spirit of [49] and thus appears to be different from the S-property
defined in [25]. Namely, a compact Γ ⊂ D having the structure of a smooth cut is said to possess
the S-property in the field ψ, assumed to be harmonic in some neighborhood of Γ, if

(4.4)
∂ (V ωΓ,ψ +ψ)

∂ n+
=
∂ (V ωΓ,ψ +ψ)

∂ n−
, q. e. on

⋃

γ j ,

whereωΓ,ψ is the weighted equilibrium distribution on Γ in the fieldψ and the normal derivatives
exist at every tame point of supp(ωΓ,ψ) (see Section 6.3). It follows from (7.23) and (7.20) that Γ
has the S-property in the field −U ν if and only if it is symmetric with respect to ν∗, taking into
account that V ωΓ,−U ν −U ν is constant on the arcs γ j which are regular (see Section 7.2.2) hence the
normal derivatives exist at every point. This reconciles Definition 10 with the one given in [25]
in the setting of our work.

The symmetry property (4.3) entails that V ω
C\Γ

has a very special structure.

Proposition 11. Let Γ = E0 ∪ E1 ∪
⋃

γ j and V ω
C\Γ

be as in Definitions 3 and 10. Then the arcs γ j

possess definite tangents at their endpoints. The tangents to the arcs ending at e ∈ E1 (there are at least
three by definition of a smooth cut) are equiangular. Further, set

(4.5) Hω,Γ := ∂zV ω
C\Γ

, ∂z := (∂x − i∂y )/2.

Then Hω,Γ is holomorphic in C \ (Γ∪ supp(ω)) and has continuous boundary values from each side
of every γ j that satisfy H+

ω,Γ = −H−
ω,Γ on each γ j . Moreover, H 2

ω,Γ is a meromorphic function in

C\ supp(ω) that has a simple pole at each element of E0 and a zero at each element e of E1 whose order
is equal to the number of arcs γ j having e as endpoint minus 2.
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The following theorem is the main result of this section and is a weighted generalization of [48,
Thm. 1 and 2] and [49, Thm. 1] for functions inA (D).

Theorem 12. Let f ∈A (D) and ν be a probability Borel measure supported in D. Then a minimal
set for Problem ( f , ν), say Γν , exists, is unique and contained in Dr , r := maxz∈E f

|z |. Moreover,
Γ ∈K f is minimal if and only if it is symmetric with respect to ν∗.

The proof of Theorem 12 is carried out in Section 6.1 and the proof of Proposition 11 is pre-
sented in Section 6.2.

5. MULTIPOINT PADÉ APPROXIMATION

In this section, we state a result that yields complete information on the n-th root behavior of
rational interpolants to functions in A (D). It is essentially a consequence both of Theorem 12
and Theorem 4 in [25] on the behavior of multipoint Padé approximants to functions analytic off
a symmetric contour, whose proof plays here an essential role.

Classically, diagonal multipoint Padé approximants to f are rational functions of type (n, n)
that interpolate f at a prescribed system of 2n + 1 points. However, when the approximated
function is holomorphic at infinity, as is the case f ∈ A (D), it is customary to place at least
one interpolation point there. More precisely, let E = {En} be a triangular scheme of points in
C \ E f and let vn be the monic polynomial with zeros at the finite points of En . In other words,
E := {En}n∈N is such that each En consists of 2n not necessarily distinct nor finite points contained
in C \ E f .

Definition 13. Given f ∈A (D) and a triangular scheme E , the n-th diagonal Padé approximant to
f associated with E is the unique rational function Πn = pn/qn satisfying:

• deg pn ≤ n, deg qn ≤ n, and qn 6≡ 0;

•
�

qn(z) f (z)− pn(z)
�

/vn(z) has analytic (multi-valued) extension to C \ E f ;

•
�

qn(z) f (z)− pn(z)
�

/vn(z) =O
�

1/zn+1� as z→∞.

Multipoint Padé approximants always exist since the conditions for pn and qn amount to solv-
ing a system of 2n + 1 homogeneous linear equations with 2n + 2 unknown coefficients, no so-
lution of which can be such that qn ≡ 0 (we may thus assume that qn is monic); note that the
required interpolation at infinity is entailed by the last condition and therefore Πn is, in fact, of
type (n− 1, n).

We define the support of E as supp(E ) := ∩n∈N∪k≥n Ek . Clearly, supp(E ) contains the support of
any weak∗ limit point of the normalized counting measures of points in En (see Section 7.2.5). We
say that a Borel measureω is the asymptotic distribution for E if the normalized counting measures
of points in En converge toω in the weak∗ sense.

Theorem 14. Let f ∈A (D) and ν be a probability Borel measure supported in D. Further, let E be
a triangular scheme of points, supp(E )⊂O, with asymptotic distribution ν∗. Then

(5.1) | f −Πn |
1/2n cap
→ exp

n

−V ν∗

Dν

o

in Dν \ supp(ν∗), Dν =C \Γν ,

where Πn are the diagonal Padé approximants to f associated with E and Γν is the minimal set for
Problem ( f , ν). It also holds that the normalized counting measures of poles of Πn converge weak∗ to
bν∗, the balayage (Section 7.2) of ν∗ onto Γν relative to Dν . In particular, the poles of Πn tend to Γν in
full proportion.
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6. PROOFS

6.1. Proof of Theorem 12. In this section we prove Theorem 12 in several steps that are orga-
nized as separate lemmas.

Denote by G f the subset of K f comprised of those admissible sets that are unions of a finite
number of disjoint continua each of which contains at least two point of E f . In particular, each
member ofG f is a regular set [45, Thm. 4.2.1] and cap(Γ1\(Γ1∩Γ2))> 0 when Γ1 6=Γ2, Γ1,Γ2 ∈G f
(if Γ1 6=Γ2, there exists a continuum γ ⊂ Γ1\(Γ1∩Γ2); as any continuum has positive capacity [45,
Thm. 5.3.2], the claim follows). Considering G f instead of K f makes the forthcoming analysis
simpler but does not alter the original problem as the following lemma shows.

Lemma 15. It holds that inf
Γ∈G f

capν (Γ) = inf
K∈K f

capν (K).

Proof. Pick K ∈K f and let O be the collection of all domains containingC\K to which f extends

meromorphically. The set O is nonempty as it contains C \K , it is partially ordered by inclusion,
and any totally ordered subset {Oα} has an upper bound, e.g. ∪αOα. Therefore, by Zorn’s lemma
[33, App. 2, Cor.2.5], O has a maximal element, say O.

Put F =C \O. With a slight abuse of notation, we still denote by f the meromorphic contin-
uation of the latter to C \ F . Note that a point in E f is either “inactive” (i.e., is not a branch point

for that branch of f that we consider over C \ F ) or belongs to F .
If F is not connected, there are two bounded disjoint open sets V1, V2 such that (V1∪V2)∩F = F

and, for j = 1,2, ∂ V j ∩ F = ∅, V j ∩ F 6= ∅. If V j contains only one connected component of F ,
we do not refine it further. Otherwise, there are two disjoint open sets V j ,1,V j ,2 ⊂ V j such that
(V j ,1∪V j ,2)∩ F =V j ∩ F and, for k = 1,2, ∂ V j ,k ∩ F =∅, V j ,k ∩ F 6=∅. Iterating this process, we
obtain successive generations of bounded finite disjoint open covers of F , each element of which
contains at least one connected component of F and has boundary that does not meet F . The
process stops if F has finitely many components, and then the resulting open sets separate them.
Otherwise the process can continue indefinitely and, if C1, . . . ,CN are the finitely many connected
components of F that meet E f , at least one open set of the N + 1-st generation contains no C j . In
any case, if F has more than N connected components, there is a bounded open set V , containing
at least one connected component of F and no point of E f ∩ F , such that ∂ V ∩ F =∅.

Let A be the unbounded connected component of C \V and A1, . . . ,AL those bounded compo-
nents ofC\V , if any, that contain some C j (if L= 0 this is the empty collection). Since O =C\F
is connected, each ∂ A` can be connected to ∂ A by a closed arc γ` ⊂ O. Then W := V \ ∪`γ`
is open with ∂W ∩ F = ∅, it contains at least one connected component of F , and no bounded
component of its complement meets E f ∩ F . Let X be the unbounded connected component of

C \W and put U :=C \X . The set U is open, simply connected, and ∂ U ⊂ ∂W is compact and
does not meet F . Moreover, since it is equal to the union of W and all the bounded components
of C \W , U does not meet E f ∩ F .

Now, f is defined and meromorphic in a neighborhood of ∂ U ⊂ O, and meromorphically
continuable along any path in U since the latter contains no point of E f ∩ F . Since U is simply
connected, f extends meromorphically to O∪U by the monodromy theorem. However the latter
set is a domain which strictly contains O since U contains W and thus at least one connected
component of F . This contradicts the maximality of O and shows that F consists precisely of N
connected components, namely C1, . . . ,CN . Moreover, if Γ j is a Jordan curve encompassing C j
and no other C`, then by what precedes f must be single-valued along Γ j which is impossible if
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C j ∩ E f is a single point by property (iii) in the definition of the classA (G). Therefore F ∈ G f
and since F ⊂K it holds that capν (F )≤ capν (K). This achieves the proof. �

For any Γ ∈G f and ε > 0, set (Γ)ε := {z ∈D : dist(z,Γ)< ε}. We endowG f with the Hausdorff
metric, i.e.,

dH (Γ1,Γ2) := inf{ε : Γ1 ⊂ (Γ2)ε,Γ2 ⊂ (Γ1)ε}.
By standard properties of the Hausdorff distance [19, Sec. 3.16], closdH

(G f ), the closure of G f

in the dH -metric, is a compact metric space. Observe that taking dH -limit cannot increase the
number of connected components since any two components of the limit set have disjoint ε-
neighborhoods. That is, the dH -limit of a sequence of compact sets having less than N connected
components has in turn less than N connected components. Moreover, each component of the dH -
limit of a sequence of compact sets En is the dH -limit of a sequence of unions of components from
En . Thus, each element of closdH

(G f ) still consists of a finite number of continua each containing
at least two points from E f but possibly with multiply connected complement. However, the
polynomial convex hull of such a set, that is, the union of the set with the bounded components
of its complement, again belongs to G f unless the set touches T.

Lemma 16. LetG ⊂G f be such that each element of closdH
(G ) is contained inD. Then the functional

Iν[·] is finite and continuous on closdH
(G ).

Proof. Let Γ0 ∈ closdH
(G ) be fixed. Set ε0 := dist(Γ0,T)/4> 0 and define

(6.1) Nε0
(Γ0) :=

¦

Γ ∈ closdH
(G ) : dH (Γ0,Γ)< ε0

©

.

Then it holds that dist((Γ)ε,T) ≥ 2ε0 for any Γ ∈ Nε0
(Γ0) and ε ≤ ε0. Thus, the closure of each

such (Γ)ε is at least ε0 away from T1−ε0
.

Let Γ ∈ Nε0
(Γ0) and set ε := dH (Γ0,Γ). Denote by D0 and D the unbounded components of

the complements of Γ0 and Γ, respectively. It follows from (7.24) that Iν[Γ0] is finite and that

Iν[Γ]− Iν[Γ0] =
∫∫

�

gD (z, u)− gD0
(z, u)

�

deν∗(u)deν∗(z),

where eν∗ is the balayage of ν∗ onto T1−ε0
. Since Γ ⊂ (Γ0)ε and Γ0 ⊂ (Γ)ε, gD (·, u)− gD0

(·, u) is a

harmonic function in G :=C\ ((Γ)ε∩ (Γ0)ε) for each u ∈G by the first claim in Section 7.3 (recall
that we agreed to continue gD0

(·, u) and gD (·, u) by zero outside of the closures of D0 and D ,
respectively). Thus, since Green functions are non-negative, we get from the maximum principle
for harmonic functions and the fact that eν∗ is a unit measure that

|Iν[Γ]− Iν[Γ0]| ≤ max
u∈T1−ε0

max
z∈∂ G

|gD (z, u)− gD0
(z, u)|

< max
u∈T1−ε0

�

max
z∈∂ (Γ)ε

gD (z, u)+ max
z∈∂ (Γ0)ε

gD0
(z, u)

�

.(6.2)

Let γ be any connected component of Γ and Gγ be the unbounded component of its comple-
ment. Observe that (Γ)ε = ∪γ (γ )ε, where the union is taken over the (finitely many) components
of Γ. Since D ⊂Gγ , we get that

(6.3) gD (z, u)≤ gGγ
(z, u)

for any u ∈D and z ∈Gγ \ u by the maximum principle.
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Set δ :=
p

2ε/cap(γ ) and L to be the log(1+δ)-level line of gGγ
(·,∞). As Gγ is simply con-

nected, L is a smooth Jordan curve.7 Since γ is a continuum, it is well-known that cap(γ ) ≥
diam(γ )/4 [45, Thm. 5.3.2]. Recall also that γ contains at least two points from E f . Thus,
diam(γ ) is bounded from below by the minimal distance between the algebraic singularities of f .
Hence, we can assume without loss of generality that δ ≤ 1. We claim that dist(γ , L) ≥ ε and
postpone the proof of this claim until the end of this lemma. The claim immediately implies that
(γ )ε is contained in the bounded component of the complement of L and that

(6.4) max
z∈∂ (γ )ε

gGγ
(z,∞)≤ log(1+δ)≤ δ.

It follows from the conformal invariance of the Green function [45, Thm. 4.4.2] and can be
readily verified using the characteristic properties that gGγ

(z, u) = gGu
γ
(1/(z− u),∞), where Gu

γ
is

the image of Gγ under the map 1/(· − u). It is also simple to compute that

(6.5) dist(γ u ,∂ (γ )u
ε
)≤

ε

dist(u,γ )dist(u,∂ (γ )ε)
≤
ε

ε2
0

, u ∈T1−ε0
,

by the remark after (6.1), where γ u and (γ )u
ε

have obvious meaning. So, combining (6.5) with (6.4)
applied to γ u , we deduce that

(6.6) max
z∈∂ (γ )ε

gGγ
(z, u) = max

z∈∂ (γ )u
ε

gGu
γ
(z,∞)≤ max

z∈∂ (γ u )
ε/ε20

gGu
γ
(z,∞)≤ δu , u ∈T1−ε0

,

where we put δu :=
Æ

2ε/ε2
0cap(γ u ).

As we already mentioned, cap(γ )≥ diam(γ )/4. Hence, it holds that

(6.7) min
u∈T1−ε0

cap(γ u )≥
1

4
min

u∈T1−ε0

max
z,w∈γ

�

�

�

�

1

z − u
−

1

w − u

�

�

�

�

≥
diam(γ )

16
.

Gathering together (6.3), (6.6), and (6.7), we derive that

max
u∈T1−ε0

max
z∈∂ (Γ)ε

gD (z, u)≤max
γ

4

ε0

s

2ε

diam(γ )
,

where γ ranges over all components of Γ. Recall that each component of Γ contains at least two
points from E f . Thus, 1/diam(γ ) is bounded above by a constant that depends only on f .

Arguing in a similar fashion for Γ0, we obtain from (6.2) that

|Iν[Γ]− Iν[Γ0]| ≤
const.

ε0

Æ

dH (Γ,Γ0) for any Γ ∈Nε0
(Γ0),

where const. is a constant depending only on f . This finishes the proof of the lemma granted we
prove the claim made before (6.4).

It was claimed that for a continuum γ and the log(1+ δ)-level line L of gGγ
(·,∞), δ ≤ 1, it

holds that

(6.8) dist(γ , L)≥
δ2cap(γ )

2
,

where Gγ is the unbounded component of the complement of γ . Inequality (6.8) was proved in
[42, Lem. 1], however, this work was never published and the authors felt compelled to reproduce
this lemma here.

7By conformal invariance of Green functions it is enough to check it for Gγ =O in which case it is obvious.
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Let Φ be a conformal map ofO onto Gγ , Φ(∞) =∞. It is well-known that |Φ(z)z−1| → cap(γ )
as z →∞ and that gGγ

(·,∞) = log |Φ−1|, where Φ−1 is the inverse of Φ (that is, a conformal map

of Gγ ontoO, Φ−1(∞) =∞). Then it follows from [24, Thm. IV.2.1] that

(6.9) |Φ′(z)| ≥ cap(γ )
�

1−
1

|z |2

�

, z ∈O.

Let z1 ∈ γ and z2 ∈ L be such that dist(γ , L) = |z1 − z2|. Denote by [z1, z2] the segment joining
z1 and z2. Observe that Φ−1 maps the annular domain bounded by γ and L onto the annulus
{z : 1< |z |< 1+δ}. Denote by S the intersection of Φ−1((z1, z2)) with this annulus. Clearly, the
angular projection of S onto the real line is equal to (1,1+δ). Then

dist(γ , L) =
∫

(z1,z2)
|d z |=

∫

Φ−1((z1,z2))
|Φ′(z)||d z | ≥ cap(γ )

∫

Φ−1((z1,z2))

�

1−
1

|z |2

�

|d z |

≥ cap(γ )
∫

S

�

1−
1

|z |2

�

|d z | ≥ cap(γ )
∫

(1,1+δ)

�

1−
1

|z |2

�

|d z |=
δ2cap(γ )

1+δ
,

where we used (6.9). This proves (6.8) since it is assumed that δ ≤ 1. �

Set prρ(·) to be the radial projection onto Dρ, i.e., prρ(z) = z if |z | ≤ ρ and prρ(z) = ρz/|z | if
ρ < |z | <∞. Put further prρ(K) := {prρ(z) : z ∈ K}. In the following lemma we show that prρ
can only increase the value of Iν[·].

Lemma 17. Let Γ ∈ G f and ρ ∈ [r, 1), r = maxz∈E f
|z |. Then prρ(Γ) ∈ G f and capν (prρ(Γ)) ≤

capν (Γ).

Proof. As E f ⊂Dr , f naturally extends along any ray tξ , ξ ∈T, t ∈ (r,∞). Thus, the germ f has
a representative which is single-valued and meromorphic outside of prρ(Γ). It is also true that prρ
is a continuous map on C and therefore cannot disconnect the components of Γ although it may
merge some of them. Thus, prρ(Γ) ∈G f .

Set w = exp{U ν} and

δw
m(Γ) := sup

z1,...,zm∈Γ







∏

1≤ j<i≤m

|zi − z j |w(zi )w(z j )







2/m(m−1)

.

It is known [47, Thm. III.1.3] that δw
m(Γ)→ capν (Γ) as m→∞. Thus, it is enough to obtain that

δw
m(prρ(Γ))≤ δw

m(Γ) holds for any m. In turn, it is sufficient to show that

(6.10) |prρ(z1)− prρ(z2)|w(prρ(z1))w(prρ(z2))≤ |z1− z2|w(z1)w(z2)

for any z1, z2 ∈D.
Assume for the moment that ν = δu for some u ∈ D, i.e., w(z) = 1/|1− z ū|. It can be readily

seen that it is enough to consider only two cases: |z1| ≤ ρ, |z2|= x > ρ and |z1|= |z2|= x > ρ. In
the former situation, (6.10) will follow upon showing that

l1(x) :=
x2+ |z1|2− 2x|z1|cosφ

1+ x2|u|2− 2x|u|cosψ
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is an increasing function on (|z1|, 1/|u|) for any choice of φ and ψ. Since

l ′1(x) = 2
x(1− |u|2|z1|2)− |z1|cosφ(1− x2|u|2)− |u|cosψ(x2− |z1|2)

(1+ x2|u|2− 2x|u|cosψ)2

> 2
(1− |u||z1|)(1− x|u|)(x − |z1|)

(1+ x|u|)4
> 0,

l1 is indeed strictly increasing on (|z1|, 1/|u|). In the latter case, (6.10) is equivalent to showing that

l2(x) := (1/x + x|u|2− 2|u|cosφ)(1/x + x|u|2− 2|u|cosψ)

is a decreasing function on (ρ, 1/|u|) for any choice of φ and ψ. This is true since

l ′2(x) = 2(|u|2− 1/x2)(1/x + x|u|2− |u|(cosφ+ cosψ))< 0.

Thus, we verified (6.10) for ν = δu .
In the general case it holds that

|z1− z2|w(z1)w(z2) = exp

¨
∫

log
|z1− z2|

|1− z1 ū||1− z2 ū|
d ν(u)

«

.

As the kernel on the right-hand side of the equality above gets smaller when z j is replaced by
prρ(z j ), j = 1,2, by what precedes, the validity of (6.10) follows. �

Combining Lemmas 15–17, we obtain the existence of minimal sets.

Lemma 18. A minimal set Γν exists and is contained in Dr , r =max{|z | : z ∈ E f }.

Proof. By Lemma 15, it is enough to consider only the sets in G f . Let {Γn} ⊂ G f be a maximizing
sequence for Iν[·] (minimizing sequence for the ν -capacity), that is, Iν[Γn] tends to supΓ∈G f

Iν[Γ]
as n →∞. Then it follows from Lemma 17 that {prr (Γn)} is another maximizing sequence for
Iν[·] in G f , and prr (Γn) ∈ Gr := {Γ ∈ G f : Γ ⊆ Dr }. As closdH

(Gr ) is a compact metric space,

there exists at least one limit point of {prr (Γn)} in closdH
(Gr ), say Γ0, and Γ0 ⊂ Dr . Since Iν[·]

is continuous on closdH
(Gr ) by Lemma 16, Iν[Γ0] = supΓ∈G f

Iν[Γ]. Finally, as the polynomial
convex hull of Γ0, say Γ′0, belongs to G f and since Iν[Γ0] = Iν[Γ

′
0] (see Section 7.2.4), we may put

Γν =Γ
′
0. �

To continue with our analysis we need the following theorem [32, Thm. 3.1]. It describes
the continuum of minimal condenser capacity connecting finitely many given points as a union
of closures of the non-closed negative critical trajectories of a quadratic differential. Recall that a
negative trajectory of the quadratic differential q(z)d z2 is a maximally continued arc along which
q(z)d z2 < 0; the trajectory is called critical if it ends at a zero or a pole of q(z)[32, 43].

Theorem K. Let A= {a1, . . . ,am} ⊂D be a set of m ≥ 2 distinct points. Then there uniquely exists a
continuum K0, A⊂K0 ⊂D, such that

cap(K0,T)≤ cap(K ,T)
for any other continuum with A ⊂ K ⊂ D. Moreover, there exist m − 2 points b1, . . . , bm−2 ∈ D
such that K0 is the union of the closures of the non-closed negative critical trajectories of the quadratic
differential

q(z)d z2, q(z) :=
(z − b1) · . . . · (z − bm−2)(1− b̄1z) · . . . · (1− b̄m−2z)

(z − a1) · . . . · (z − am)(1− ā1z) · . . . · (1− ām z)
,
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contained in D. There exists only finitely many such trajectories. Furthermore, the equilibrium poten-
tial V

ω(K0,T)

D satisfies
�

2∂zV
ω(K0,T)

D (z)
�2
= q(z), z ∈D.

The last equation in Theorem K should be understood as follows. The left-hand side of this
equality is defined in D\K0 and represents a holomorphic function there, which coincides with q
on its domain of definition. As K0 has no interior because critical trajectories are analytic arcs with
limiting tangents at their endpoints [43], the equality on the whole setD is obtained by continuity.
Note also that D \K0 is connected by unicity claimed in Theorem 6.1, for the polynomial convex
hull of K0 has the same Green capacity as K0 (cf. section 7.1.3). Moreover, it follows from the local
theory of quadratic differentials that each b j is the endpoint of at least three arcs of K0 (because b j
is a zero of q(z)) and that each a j is the endpoint of exactly one arc of K0 (because a j is a simple
pole of q(z)).

Having Theorem K at hand, we are ready to describe the structure of a minimal set Γν .

Lemma 19. A minimal set Γν is symmetric (Definition 10) with respect to ν∗.

Proof. Let eν∗ be the balayage of ν∗ onto Tρ with ρ < 1 but large enough to contain Γν in the

interior ofDρ. Let γ be any of the continua constituting Γν . Clearly V :=V eν∗

Dν
, where Dν =C\Γν ,

is harmonic in Dν \Tρ and extends continuously to the zero function on Γν since Γν is a regular
set. Moreover, by Sard’s theorem on regular values [27, Sec. 1.7] there exists δ > 0 arbitrarily
small such that Ω, the component of {z : V (z) < δ} containing γ , is itself contained in Dρ and
its boundary is an analytic Jordan curve, say L. Let φ be a conformal map of Ω onto D. Set
eγ := φ−1( eK), where eK is the continuum of minimal condenser capacity8 for φ(E f ∩ γ ). Our
immediate goal is to show that γ = eγ .

Assume to the contrary that γ 6= eγ , i.e., φ(γ ) =: K 6= eK , and therefore

(6.11) cap( eK ,T)< cap(K ,T).
Set

(6.12) eV :=







δcap( eK ,T)
�

V
ω(T, eK)

C\ eK
◦φ
�

, z ∈Ω,

V , z /∈Ω,

where ω(T, eK) is the Green equilibrium distribution on T relative to C \ eK . The functions V and
eV are continuous in Ω and equal to δ on L. Furthermore, they are harmonic in Ω \ γ and Ω \ eγ
and equal to zero on γ and eγ , respectively. Then it follows from Lemma 24 and the conformal
invariance of the condenser capacity (7.7) that

(6.13)
1

2π

∫

L

∂ V

∂ n
d s =−δcap(K ,T) and

1

2π

∫

L

∂ eV

∂ n
d s =−δcap( eK ,T),

where ∂ /∂ n stands for the partial derivative with respect to the inner normal on L. (In Lemma 24,
L should be contained within the domain of harmonicity of V and eV . As V and eV are constant
on L, they can be harmonically continued across by reflection. Thus, Lemma 24 does apply.)
Moreover, eV −V eν∗

eD
is a continuous function on C that is harmonic in eD \ L by the first claim in

Section 7.3, where eD := (Dν ∪ γ ) \ eγ , and is identically zero on Γ := C \ eD . Thus, we can apply

8In other words, if we put φ(E f ∩ γ ) = {p1, . . . , pm} and g (z) := 1/ m
Æ
∏

(z − p j ), then eK is the set of minimal
condenser capacity for g as defined in Definition 2.
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Lemma 23 with eV −V eν∗

eD
and eD (smoothness properties of V −V eν∗

eD
follow from the fact that eV

can be harmonically continued across L), which states that

(6.14) eV =V eν∗−σ
eD

, dσ :=
1

2π

∂ ( eV −V )

∂ n
d s ,

where σ is a finite signed measure supported on L (observe that the outer and inner normal deriva-
tives of V eν∗

eD
on L are opposite to each other as V eν∗

eD
is harmonic across L and therefore they do not

contribute to the density of σ ; due to the same reasoning the outer normal derivative of eV is equal
to minus the inner normal derivative of V by (6.12)). Hence, one can easily deduce from (6.13)
and (6.11) that

(6.15) σ(L) = δ
�

cap(K ,T)− cap( eK ,T)
�

> 0.

Since the components of Γν and Γ contain exactly the same branch points of f and Γ has
connected complement (for Dν is connected and so is C \ eγ because D \ eK is connected), it follows
that Γ ∈G f by the monodromy theorem. Moreover, we obtain from (7.24), (6.12), and (6.14) that

Iν[Γ]− Iν[Γν] = I
eD[eν

∗]− IDν
[eν∗] =

∫

�

V eν∗

eD
−V

�

deν∗ =
∫

V σ
eD

deν∗

since supp(eν∗)∩Ω=∅. Further, applying the Fubini-Tonelli theorem and using (6.14) once more,
we get that

Iν[Γ]− Iν[Γν] =
∫

V eν∗

eD
dσ =

∫

eV dσ + I
eD[σ] = δσ(L)+ I

eD[σ]> 0

by (6.15) and since the Green energy of a signed compactly supported measure of finite Green
energy is positive by [47, Thm. II.5.6]. However, the last inequality clearly contradicts the fact
that Iν[Γν] is maximal among all sets in G f and therefore γ = eγ . Hence, K = eK = φ(γ ) and
eV =V .

Observe now that by Theorem K stated just before this lemma and the remarks thereafter, the
set K consists of a finite number of open analytic arcs and their endpoints. These fall into two
classes a1, . . . ,am and b1, . . . , bm−2, members of the first class being endpoints of exactly one arc
and members of the second class being endpoints of at least three arcs. Thus, the same is true for
γ . Moreover, the jump of f across any open arc C ⊂ γ cannot vanish, otherwise excising out
this arc would leave us with an admissible compact set Γ′ ⊂ Γν of strictly smaller ν-capacity since
ωΓν ,−U ν (C )> 0 by (7.23) and the properties of balayage at regular points (see Section 7.2.4). Hence
Γν is a smooth cut (Definition 3). Finally, we have that

∂ V

∂ n±
γ

= δcap(φ(γ ),T)
 

∂

∂ n±K
V
ω(T,K)

C\K

!

|φ′|

by (6.12) and the conformality of φ, where ∂ /∂ n±
γ

and ∂ /∂ n±K are the partial derivatives with
respect to the one-sided normals at the smooth points of γ and K , respectively. Thus, it holds that

∂ V

∂ n−
γ

=
∂ V

∂ n+
γ

on the open arcs constituting γ since the corresponding property holds for V
ω(T,K)

C\K
by (2.5). As γ

was arbitrary continuum from Γν , we see that all the requirements of Definition 10 are fulfilled.
�
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To finish the proof of Theorem 12, it only remains to show uniqueness of Γν , which is achieved
through the following lemma:

Lemma 20. Γν is uniquely characterized as a compact set symmetric with respect to ν∗.

Proof. Let Γs ∈ G f be symmetric with respect to ν∗ and Γν be any set of minimal capacity for
Problem ( f , ν). Such a set exists by Lemma 18 and it is symmetric by Lemma 19. Suppose to the
contrary that Γs 6=Γν , that is,

(6.16) Γs ∩ (C \Γν ) 6=∅
(Γs cannot be a strict subset of Γν for it would have strictly smaller ν-capacity as pointed out in the
proof of Lemma 19). We want to show that (6.16) leads to

(6.17) Iν[Γs]− Iν[Γν]> 0.

Clearly, (6.17) is impossible by the very definition of Γν and therefore the lemma will be proven.
By the very definition of symmetry (Definition 10), Γν and Γs are smooth cuts for f . In partic-

ular, C \Γν , C \Γs are connected and we have a decomposition of the form

Γs = E s
0 ∪ E s

1 ∪
⋃

γ s
j and Γν = E ν0 ∪ E ν1 ∪

⋃

γ νj ,

where E s
0 , E ν0 ⊆ E f , γ νj ,γ s

j are open analytic arcs, and each element of E s
0 , E ν0 is an endpoint of ex-

actly one arc from
⋃

γ s
j ,
⋃

γ νj while E s
1 , E ν1 are finite sets of points each elements of which serving

as an endpoint for at least three arcs from
⋃

γ s
j ,
⋃

γ νj , respectively. Moreover, the continuations of
f from infinity that are meromorphic outside of Γs and Γν , say fs and fν , are such that the jumps
f +s − f −s and f +

ν
− f −

ν
do not vanish on any subset with a limit point of

⋃

γ s
j and

⋃

γ νj , respec-

tively. Note that Γs ∩Γν 6=∅ otherwiseC\ (Γν ∪Γs )would be connected, so f could be continued
analytically over (C \Γν )∪ (C \Γs ) =C and it would be identically zero by our normalization.

Write Γs = Γ
1
s ∪ Γ

2
s and Γν = Γ

1
ν
∪ Γ2

ν
, where Γk

s (resp. Γk
ν
) are compact disjoint sets such that

each connected component of Γ1
s (resp. Γ1

ν
) has nonempty intersection with Γν (resp. Γs ) while

Γ2
s ∩Γν =Γ

2
ν
∩Γs =∅.

Now, put, for brevity, Dν := C \ Γν and Ds := C \ Γs . Denote further by Ω the unbounded
component of Dν ∩Ds . Then

(6.18) Ω∩ E s
0 ∩Γ

1
s =Ω∩ E ν0 ∩Γ

1
ν
.

Indeed, assume that there exists e ∈ (Ω∩E s
0 ∩Γ

1
s )\ (E

ν
0 ∩Γ

1
ν
) and let γ s

e be the arc in the union
⋃

γ s
j

that has e as one of the endpoints. By our assumption there is an open disk W centered at e such
that W ∩Γs = {e}∪(W ∩γ s

e ) and W ∩Γν =∅. Thus W \({e}∪γ s
e )⊂Dν∩Ds . Anticipating the proof

of Proposition 11 in Section 6.2 (which is independent of the present proof), γ s
e has well-defined

tangent at e so we can shrink W to ensure that ∂W ∩ γ s
e is a single point. Then W \ ({e} ∪ γ s

e )
is connected hence contained in a single connected component of Dν ∩Ds which is necessarily Ω
since e ∈ Ω. As fs and fν coincide on Ω and fν is meromorphic in W , fs has identically zero jump
on γ s

e ∩W which is impossible by the definition of a smooth cut. Consequently the left hand side
of (6.18) is included in the right hand side and the opposite inclusion can be shown similarly.

Next, observe that

(6.19) Γ2
s ∩Ω=∅.

Indeed, since ∂ Ω ⊂ Γs ∪ Γν and Γ2
s , Γ

1
s ∪ Γν are disjoint compact sets, a connected component of

∂ Ω that meets Γ2
s is contained in it. If z ∈ Γ2

s ∩ ∂ Ω lies on γ s
j , then by analyticity of the latter
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Ω

Γ2
s

Γ3
s

Γs

Γν

FIGURE 1. A particular example of Γs (solid lines) and Γν (dashed lines). Black dots
represent branch points (black dots within big gray disk are branch point f that lie on
other sheets of the Riemann surface than the one we fixed). The white area on the figure
represents domain Ω.

each sufficiently small disk Dz centered at z is cut out by γ s
j ∩Dz into two connected components

included in Dν ∩Ds , and of necessity one of them is contained in Ω. Hence γ s
j ∩Dz is contained in

∂ Ω, and in turn so does the entire arc γ s
j by connectedness. Hence every component of Γ2

s ∩ ∂ Ω
consists of a union of arcs γ s

j connecting at their endpoints. Because Γ2
s has no loop, one of

them has an endpoint z1 ∈ E s
0 ∪ E s

1 belonging to no other arc. If z1 ∈ E s
0 , reasoning as we did to

prove (6.18) leads to the absurd conclusion that fs has zero jump across the initial arc. If z1 ∈ E s
1 ,

anticipating the proof of Proposition 11 once again, each sufficiently small disk Dz1
centered at z1

is cut out by Γ2
s ∩Dz1

into curvilinear sectors included in Dν ∩Ds , and of necessity one of them is
contained in Ω whence at least two adjacent arcs γ s

j emanating from z1 are included in ∂ Ω. This

contradicts the fact that z1 belongs to exactly one arc of the hypothesized component of Γ2
s ∩ ∂ Ω,

and proves (6.19).
Finally, set

Γ3
s :=

�

Γ1
s \
�

∂ Ω \ E s
1

��

∩Dν and Γ4
s :=

h

Γ1
s ∩
⋃

γ s
j

i

∩ ∂ Ω∩Dν .

Clearly

(6.20)
�

Γ3
s \ E s

1

�

∩Ω=∅.

Moreover, observing that any two arcs γ s
j , γ νk either coincide or meet in a (possibly empty) discrete

set and arguing as we did to prove (6.19), we see that
h

Γ1
s ∩
⋃

γ s
j

i

∩ ∂ Ω consists of subarcs of

arcs γ s
j whose endpoints either belong to some intersection γ s

j ∩ γ
ν
k (in which case they contain

this endpoint) or else lie in E s
0 ∪ E s

1 (in which case they do not contain this endpoint). Thus
Γ4

s is comprised of open analytic arcs eγ s
`

contained in ∂ Ω ∩
⋃

γ s
j and disjoint from Γν . Hence

for any z ∈ Γ4
s , say z ∈ eγ s

`
, and any disk Dz centered at z of small enough radius it holds that

Dz ∩ ∂ Ω=Dz ∩ eγ s
`

and that Dz \ eγ s
`

has exactly two connected components:

(6.21) Dz ∩Ω 6=∅ and Dz ∩
�

C \Ω
�

6=∅

for if z ∈ eγ s
`

was such that Dz \ eγ s
`
⊂Ω, the jump of fs across eγ s

`
would be zero as the jump of fν is

zero there and fs = fν in Ω (see Figure 1).
As usual, denote by eν∗ the balayage of ν∗ onto Tρ with ρ ∈ (r, 1) but large enough so that Γs

and Γν are contained in the interior of Dρ (see Lemma 18 for the definition of r ). Then, according
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to (7.24) and (7.39), it holds that

(6.22) Iν[Γs]− Iν[Γν] = IDs
[eν∗]− IDν

[eν∗] =DDs
(Vs )−DDν

(Vν ),

where Vs :=V eν∗

Ds
and Vν :=V eν∗

Dν
. Indeed, as eν∗ has finite energy (see Section 7.2.3), the Dirichlet in-

tegrals of Vs and Vν in the considered domains (see Section 7.4) are well-defined by Proposition 11,
which is proven later but independently of the results in this section.

Set D := Dν \ (Γ2
s ∪Γ

3
s ). Since

�

Γ1
s \
�

∂ Ω \ E s
1

��

consists of piecewise smooth arcs in Γ1
s whose

endpoints either belong to this arc (if they lie in E s
1 ), or to E s

0 ∩Γ
1
s (hence also to Γν by (6.18)), or

else to some intersection γ s
j ∩ γ

ν
k (in which case they belong to Γν again), we see that D is an open

set. As Vν is harmonic across Γ2
s ∪Γ

3
s and Vs is harmonic across Γν \Γs , we get from (7.38) that

(6.23) DDν
(Vν ) =DD (Vν ) and DDs

(Vs ) =DD\Γ4
s
(Vs )

since Ds \Γν =Dν \Γs =D \Γ4
s , by inspection on using (6.18).

Now, recall that Γs has no interior and Vs ≡ 0 on Γs , that is, Vs is defined in the whole complex
plane. So, we can define a function on C by putting

(6.24) eV :=
¨

Vs , in Ω,
−Vs , otherwise.

We claim that eV is superharmonic in D and harmonic in D \Tρ. Indeed, it is clearly harmonic in
D \ (Γ4

s ∪Tρ) = (Ds ∩Dν ) \Tρand superharmonic in a neighborhood of Tρ ⊂ Ω where its weak
Laplacian is −2πeν∗ which is a negative measure. Moreover, Γ4

s is a collection of open analytic
arcs such that ∂ Vs/∂ n+ = ∂ Vs/∂ n− by the symmetry of Γs , where n± are the two-sided normal
on each subarc of Γ4

s . The equality of the normals means that Vs can be continued harmonically

across each subarc of Γ4
s by −Vs . Hence, (6.21) and the definition of eV yield that it is harmonic

across Γ4
s thereby proving the claim. Thus, using (7.41) (applied with D ′ =Ω) and (7.38), we obtain

(6.25) DD\Γ4
s
(Vs ) =DD\Γ4

s
( eV ) =DD ( eV )

hence combining (6.22), (6.23), and (6.25), we see that

(6.26) Iν[Γs]− Iν[Γν] =DD ( eV )−DD (Vν ).

By the first claim in Section 7.3, it holds that h := eV −Vν is harmonic in D . Observe that h
is not a constant function, for it tends to zero at each point of Γs ∩Γν ⊂ ∂ D whereas it tends to a
strictly negative value at each point of Γs ∩Dν ⊂D which is nonempty by (6.16). Then

(6.27) DD ( eV ) =DD (Vν )+DD (h)+ 2DD (Vν , h).

Now, Vν ≡ 0 on Γν and it is harmonic across Γ2
s ∪Γ

3
s , hence

∂ h

∂ n+
+
∂ h

∂ n−
=
∂ eV

∂ n+
+
∂ eV

∂ n−
on Γ2

s ∪Γ
3
s .

Consequently, we get from (7.35), since eV = −Vs in the neighborhood of Γ2
s ∪ Γ

3
s by (6.19) and

(6.20), that

(6.28) DD (Vν , h) =−
∫

Γ2
s∪Γ

3
s

Vν







∂ eV

∂ n+
+
∂ eV

∂ n−







d s

2π
=
∫

Γ2
s∪Γ

3
s

Vν

�

∂ Vs

∂ n+
+
∂ Vs

∂ n−

�

d s

2π
≥ 0
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because Vν is nonnegative while ∂ Vs/∂ n+, ∂ Vs/∂ n− are also nonnegative on Γ2
s ∪Γ

3
s as Vs ≥ 0

vanishes there. Altogether, we obtain from (6.26), (6.27), and (6.28) that

Iν[Γs]− Iν[Γν]≥DD (h)> 0

by (7.40) and since h = Ṽ −Vν is a non-constant harmonic function in D . This shows (6.17) and
finishes the proof of the lemma. �

6.2. Proof of Proposition 11. It is well known that Hω,Γ is holomorphic in the domain of har-
monicity of V ω

C\Γ
, that is, in C \ (Γ∪ supp(ω)). It is also clear that H±

ω,Γ exist smoothly on each γ j

since V ω
C\Γ

can be harmonically continued across each side of γ j .

Denote by n±t the one-sided unit normals at t ∈
⋃

γ j and by τt the unit tangent pointing
in the positive direction. Let further n±(t ) be the unimodular complex numbers corresponding
to vectors n±t . Then the complex number corresponding to τt is ∓i n±(t ) and it can be readily
verified that

∂ V ω
C\Γ

∂ n±t
= 2Re

�

n±(t )H±
ω,Γ(t )

�

and
∂
�

V ω
C\Γ

�±

∂ τt
=∓2Im

�

n±(t )H±
ω,Γ(t )

�

.

As
�

V ω
C\Γ

�±
≡ 0 on Γ, the tangential derivatives above are identically zero, therefore n±H±

ω,Γ

is real on Γ. Moreover since n+ = −n− and by the symmetry property (4.3), it holds that
H+
ω,Γ = −H−

ω,Γ on
⋃

γ j . Hence, H 2
ω,Γ is holomorphic in C \ (E0 ∪ E1 ∪ supp(ω)). Since E0 ∪ E1

consists of isolated points around which H 2
ω,Γ is holomorphic each e ∈ E0 ∪ E1 is either a pole,

a removable singularity, or an essential one. As Hω,Γ is holomorphic on a two-sheeted Riemann
surface above the point, it cannot have an essential singularity since its primitive has bounded real
part ±V ω

C\Γ
. Now, by repeating the arguments in [43, Sec. 8.2], we deduce that (z− e) je−2H 2

ω,Γ(z)

is holomorphic and non-vanishing in some neighborhood of e where je is the number of arcs γ j
having e as an endpoint, that the tangents at e to these arcs exist, and that they are equiangular if
je > 1.

6.3. Proof of Theorem 14. The following theorem [25, Thm. 3] and its proof are essential in
establishing Theorem 14. Before stating this result, we remind the reader that a polynomial v is
said to by spherically normalized if it has the form

(6.29) v(z) =
∏

v(e)=0, |e |≤1

(z − e)
∏

v(e)=0, |e |>1

(1− z/e).

We also recall from [25] the notions of a tame set and a tame point of a set. A point z belonging
to a compact set Γ is called tame, if there is a disk centered at z whose intersection with Γ is an
analytic arc. A compact set Γ is called tame, if Γ is non-polar and quasi-every point of Γ is tame.

A tame compact set Γ is said to have the S-property in the field ψ, assumed to be harmonic in
some neighborhood of Γ, if supp(ωΓ,ψ) forms a tame set as well, every tame point of supp(ωΓ,ψ)
is also a tame point of Γ, and the equality in (4.4) holds at each tame point of supp(ωΓ,ψ).

Whenever the tame compact set Γ has connected complement in a simply connected region
G ⊃ Γ and g is holomorphic in G \Γ, we write

∮

Γ g (t )d t for the contour integral of g over some
(hence any) system of curves encompassing Γ once in G in the positive direction. Likewise, the
Cauchy integral

∮

Γ g (t )/(z− t )d t can be defined at any z ∈C\Γ by choosing the previous system
of curves in such a way that it separates z from Γ.
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If g has limits from each side at tame points of Γ, and if these limits are integrable with respect
to linear measure on Γ, then the previous integrals may well be rewritten as integrals on Γ with g
replaced by its jump across Γ. However, this is not what is meant by the notation

∮

Γ.

Theorem GR. Let G ⊂ D be a simply connected domain and Γ ⊂ G be a tame compact set with
connected complement. Let also g be holomorphic in G \Γ and have continuous limits on Γ from each
side in the neighborhood of every tame point, whose jump across Γ is non-vanishing q.e. Further, let
{Ψn} be a sequence of functions that satisfy:

(1) Ψn is holomorphic in G and − 1
2n log |Ψn | → ψ locally uniformly there, where ψ is harmonic

in G;
(2) Γ possesses the S-property in the field ψ (see (4.4)).

Then, if the polynomials qn , deg(qn)≤ n, satisfy the orthogonality relations9

(6.30)
∮

Γ
qn(t )ln−1(t )Ψn(t )g (t )d t = 0, for any ln−1 ∈Pn−1,

then µn
∗→ ωΓ,ψ, where µn is the normalized counting measure of zeros of qn . Moreover, if the

polynomials qn are spherically normalized, it holds that

(6.31) |An(z)|
1/2n cap
→ exp{−c(ψ;Γ)} in C \Γ,

where c(ψ;Γ) is the modified Robin constant (Section 7.1.2), and

(6.32) An(z) :=
∮

Γ
q2

n(t )
(Ψn g )(t )d t

z − t
=

qn(z)

ln(z)

∮

Γ
(ln qn)(t )

(Ψn g )(t )d t

z − t
,

where ln can be any10 nonzero polynomial of degree at most n.

Proof of Theorem 14. Let En be the sets constituting the interpolation scheme E . Set Ψn to be
the reciprocal of the spherically normalized polynomial with zeros at the finite elements of En ,
i.e., Ψn = 1/ṽn , where ṽn is the spherical renormalization of vn (see Definition 13 and (6.29)).
Then the functions Ψn are holomorphic and non-vanishing in C \ supp(E ) (in particular, in D),
1

2n log |Ψn |
cap
→ U ν in C \ supp(ν∗) by Lemma 21, and this convergence is locally uniform in D by

definition of the asymptotic distribution and since log1/|z − t | is continuous on a neighborhood
of supp(E ) for fixed z ∈ D. As U ν is harmonic in D, requirement (1) of Theorem GR is fulfilled
with G = D and ψ = −U ν . Further, it follows from Theorem 12 that Γν is a symmetric set.
In particular it is a smooth cut, hence it is tame with tame points ∪ jγ j . Moreover, since Γν is
regular, we have that supp(ωΓ,ψ) = Γν by (7.18) and properties of balayage (Section 7.2.2). Thus,
by the remark after Definition 10, symmetry implies that Γν possesses the S-property in the field
−U ν and therefore requirement (2) of Theorem GR is also fulfilled. Let now Q, deg(Q) =: m,
be a fixed polynomial such that the only singularities of Q f in D belong to E f . Then Q f is
holomorphic and single-valued in D\Γν , it extends continuously from each side on ∪γ j , and has a
jump there which is continuous and non-vanishing except possibly at countably many points. All
the requirement of Theorem GR are then fulfilled with g =Q f .

Let L ⊂ D be a smooth Jordan curve that separates Γν and the poles of f (if any) from E .
Denote by qn the spherically normalized denominators of the multipoint Padé approximants to f

9Note that the orthogonality in (6.30) is non-Hermitian, that is, no conjugation is involved.
10The fact that we can pick an arbitrary polynomial ln for this integral representation of An is a simple consequence of

orthogonality relations (6.30).
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associated with E . It is a standard consequence of Definition 13 (see e.g. [25, sec. 1.5.1]) that

(6.33)
∫

L
z j qn(z)Ψn(z) f (z)d z = 0, j ∈ {0, . . . , n− 1}.

Clearly, relations (6.33) imply that

(6.34)
∮

Γν

(l qnΨn f Q)(t )d t = 0, deg(l )< n−m.

Equations (6.34) differ from (6.30) only in the reduction of the degree of polynomials l by a con-
stant m. However, to derive the first conclusion of Theorem GR, namely that µn

∗→ ωΓ,ψ, or-
thogonality relations (6.30) are used solely when applied to a specially constructed sequence {ln}
such that ln = ln,1 ln,2, where deg(ln,1) ≤ nθ, θ < 1, and deg(ln,2) = o(n) as n→∞ (see the proof
of [25, Thm. 3] in between equations (27) and (28)). Thus, the proof is still applicable in our
situation, to the effect that the normalized counting measures of the zeros of qn converge weak∗

to bν∗ =ωΓν ,−U ν , see (7.23).
For each n ∈N, let qn,m , deg(qn,m) = n−m, be a divisor of qn . Observe that the polynomials

qn,m have exactly the same asymptotic zero distribution in the weak∗ sense as the polynomials qn .
Put

(6.35) An,m(z) :=
∮

(qn,m qn)(t )
(Ψn f Q)(t )d t

z − t
, z ∈Dν .

Due to orthogonality relations (6.34), An,m can be equivalently rewritten as

(6.36) An,m(z) :=
qn,m(z)

ln−m(z)

∮

(ln−m qn)(t )
(Ψn f Q)(t )d t

z − t
, z ∈Dν ,

where ln−m is an arbitrary polynomial of degree at most n−m. Formulae (6.35) and (6.36) differ
from (6.32) in the same manner as orthogonality relations (6.34) differ from those in (6.30). Ex-
amination of the proof of [25, Thm. 3] (see the discussion there between equations (33) and (37))
shows that limit (6.31) is proved using expression (6.32) for An with a choice of polynomials ln that
satisfy some set of asymptotic requirements and can be chosen to have the degree n−m. Hence it
still holds that

(6.37) |An,m(z)|
1/2n cap
→ exp{−c(−U ν ;Γν )} in Dν .

Finally, using the Hermite interpolation formula like in [52, Lem. 6.1.2], the error of approxi-
mation has the following representation

(6.38) ( f −Πn)(z) =
An,m(z)

(qn,m qnQΨn)(z)
, z ∈Dν .

From Lemma 21 we know that log(1/|qn |)/n
cap
→V bν∗

∗ =V bν∗ in Dν , since ordinary and spherically
normalized potentials coincide for measures supported in D. This fact together with (6.37) and
(6.38) easily yield that

| f −Πn |
1/2n cap
→ exp

¦

−c(−U ν ;Γν )+V bν∗ −U ν
©

in Dν \ supp(ν∗).

Therefore, (5.1) follows from (7.20) and the fact that U ν =V ν∗

∗ by the remark at the beginning of
Section 7.2.4. �
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6.4. Proof of Theorem 4, Theorem 7, Corollary 8, Theorem 6, and Theorem 5.

Proof of Theorem 4. Let Γ ∈K f (G) be a smooth cut for f that satisfies (2.5) and Θ be a conformal
map of D onto G. Set K :=Θ−1(Γ). Then we get from the conformal invariance of the condenser
capacity (see (7.7)) and the maximum principle for harmonic functions that

cap(Γ,T ) = cap(K ,T) and V
ω(K ,T)

C\K
=V

ω(Γ,T )

C\Γ
◦Θ in D.

As Θ is conformal in D, it can be readily verified that V
ω(K ,T)

C\K
satisfies (2.5) as well (naturally, on

K). Univalence ofΘ also implies that the continuation properties of ( f ◦Θ)(Θ′)1/2 inD are exactly
the same as those of f in G. Moreover, this is also true for fΘ, the orthogonal projection of ( f ◦
Θ)(Θ′)1/2 from L2 onto H̄ 2

0 (see Section 3). Indeed, fΘ is holomorphic in O by its very definition
and can be continued analytically across T by ( f ◦Θ)(Θ′)1/2 minus the orthogonal projection of
the latter from L2 onto H 2, which is holomorphic in D by definition. Thus, fΘ ∈ A (D) and
Γ ∈K f (G) if and only if K ∈K fΘ

. Therefore, it is enough to consider only the case G =D.
Let Γ ∈ K f be a smooth cut for f that satisfies (2.5) and K be the set of minimal condenser

capacity (cf. Theorem 2). We must prove that Γ = K. Set, for brevity, DΓ := C \Γ, VΓ :=V
ω(T,Γ)

DΓ
,

DK := C \K, VK := V
ω(T,K)

DK
, and Ω to be the unbounded component of DK ∩ DΓ. Let also fDΓ

and fDK
indicate the meromorphic branches of f in DΓ and DK, respectively. Arguing as we did

to prove (6.19), we see that no connected component of ∂ Ω can lie entirely in Γ \K (resp. K \Γ)
otherwise the jump of fDΓ

(resp. fDK
) across some subarc of Γ (resp. K) would vanish. Hence by

connectedness

(6.39) Γ∩K∩ ∂ Ω 6=∅.

First, we deal with the special situation where ω(T,K) = ω(T,Γ). Then VΓ −VK is harmonic in Ω
by the first claim in Section 7.3. As both potentials are constant in O ⊂ Ω, we get that VΓ =
VK + const. in Ω. Since K and Γ are regular sets, potentials VΓ and VK extend continuously to
∂ Ω and vanish at ∂ Ω ∩ Γ ∩K which is non-empty by (6.39). Thus, equality of the equilibrium
measures means that VΓ ≡VK in Ω. However, because VΓ (resp. VK) vanishes precisely on Γ (resp.
K), this is possible only if ∂ Ω ⊂ Γ ∩K. Taking complements in C, we conclude that DΓ ∪DK,
which is connected and contains∞, does not meet ∂ Ω. Therefore DΓ∪DK ⊂Ω⊂DΓ∩DK, hence
DΓ =DK thus Γ=K, as desired.

In the rest of the proof we assume for a contradiction that Γ 6=K. Thenω(T,K) 6=ω(T,Γ) in view
of what precedes, and therefore

(6.40) DDK
(VK) = IDK

�

ω(T,K)

�

< IDK

�

ω(T,Γ)

�

=DDK
(V

ω(T,Γ)

DK
)

by (7.39) and since the Green equilibrium measure is the unique minimizer of the Green energy.
The argument now follows the lines of the proof of Lemma 20. Namely, we write

Γ= EΓ0 ∪ EΓ1 ∪
⋃

γΓj , K= EK
0 ∪ EK

1 ∪
⋃

γK
j ,

and we define the sets Γ1, Γ2, Γ3, Γ4 like we did in that proof for Γ1
s , Γ

2
s , Γ

3
s , Γ

4
s , upon replacing Ds

by DΓ, Dν by DK, E s
j by EΓj , E νj by EK

j , γ s
j by γΓj and γ νj by γK

j . The same reasoning that led to us
to (6.19) and (6.20) yields

(6.41) Γ2 ∩Ω=∅,
�

Γ3 \ EΓ1
�

∩Ω=∅.
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Subsequently we set D := DK \ (Γ2 ∪ Γ3) and we prove in the same way that it is an open set
satisfying

(6.42) DDK
(V

ω(T,Γ)

DK
) =DD (V

ω(T,Γ)

DK
) and DDΓ

(VΓ) =DD\Γ4(VΓ)

(compare (6.23)). Defining eV as in (6.24) with Vs replaced by VΓ, and using the symmetry of Γ
(that is, (2.5) with Γ instead of K, which allows us to continue VΓ harmonically by −VΓ across
each arc γΓj ) we find that eV is harmonic in D \T, superharmonic in D , and that

(6.43) DDΓ\Γ4(VΓ) =DD ( eV )

(compare (6.25)). Next, we set h := eV −V
ω(T,Γ)

DK
which is harmonic in D by the first claim in

Section 7.3, and since h =VΓ−V
ω(Γ,T)

DK
in Ω⊃T. Because eV =−VΓ in the neighborhood of Γ2

s ∪Γ
3
s

by (6.41), the same computation as in (6.28) gives us

DD (V
ω(T,Γ)

DK
, h)≥ 0,

so we get from (7.39), (6.42), (6.43), (7.40) and (6.40) that

IDΓ
[ω(T,Γ)] = DDΓ

(VΓ) =DD ( eV ) =DD (V
ω(T,Γ)

DK
+ h)

= DD (V
ω(T,Γ)

DK
)+ 2DD (V

ω(T,Γ)

DK
, h)+DD (h)

≥ DDK
(V

ω(T,Γ)

DK
)+DD (h)>DDK

(VK) = IDK
[ω(T,K)].(6.44)

However, it holds that

IDK
[ω(T,K)] = 1/cap(K,T) and IDΓ

[ω(T,Γ)] = 1/cap(Γ,T)

by (7.6). Thus, (6.44) yields that cap(Γ,T)< cap(K,T), which is impossible by the very definition
of K. This contradiction finishes the proof. �

Proof of Theorem 7. Let {rn} be a sequence of irreducible critical points for f . Further, let νn be
the normalized counting measures of the poles of rn and ν be a weak∗ limit point of {νn}, i.e.,
νn
∗→ ν , n ∈N1 ⊂N. Recall that all the poles of rn are contained in D and therefore supp(ν)⊆D.
By Theorem 12, there uniquely exists a minimal set Γν for Problem ( f , ν). Let Zn be the set

of poles of rn , where each pole appears with twice its multiplicity. As mentioned in Section 3,
each rn interpolates f at the points of Z∗n , counting multiplicity. Hence, {rn}n∈N1

is the sequence
of multipoint Padé approximants associated with the triangular scheme E = {Z∗n}n∈N1

that has
asymptotic distribution ν∗, where ν∗ is the reflection of ν across T. So, according to Theorem 14
(applied for subsequences), it holds that ν = bν∗, supp(ν) = Γν , i.e., ν is the balayage of its own
reflection across T relative to Dν .

Applying Lemma 25, we deduce that ν is the Green equilibrium distribution on Γν relative
to D, that is, ν = ω(Γν ,T), and eν , the balayage of ν onto T, is the Green equilibrium distribution
on T relative to Dν , that is, eν = ω(T,Γν )

. Moreover, Lemma 25 yields that V ν∗

Dν
= V eν

Dν
in D and

therefore V eν
Dν

enjoys symmetry property (2.5) by Theorem 12. Hence, we get from Theorem 4
that Γν = K, the set of minimal condenser capacity for f , and that ν = ω(K,T). Since ν was an

arbitrary limit point of {νn}, we have that νn
∗→ ω(K,T) as n →∞. Finally, observe that (3.2) is a

direct consequence of Theorem 14.
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To prove (3.3), we need to go back to representation (6.38), where qn ∈Mn is the denominator
of an irreducible critical point rn and qn,m , deg(qn,m) = n−m, is an arbitrary divisor of qn , while

Ψn = 1/eq2
n with eqn(z) = zn qn(1/z̄).

Denote by bn the Blaschke product qn/eqn . It is easy to check that bn(z)bn(1/z̄)≡ 1 by algebraic
properties of Blaschke products. Thus, (6.38) yields that

(6.45) ( f − rn)(z) = b 2
n(1/z̄)(ln,mAn,m/Q)(z), z ∈O.

where ln,m is the polynomial of degree m such that qn = qn,m ln,m . Choose ε > 0 so small that
K⊂D1−ε (see Theorem 12). As ln,m is an arbitrary divisor of qn of degree m, we can choose it to
have zeros only in D1−ε for all n large enough (this is possible since in full proportion the zeros of
qn approach K). Then it holds that

(6.46) lim
n→∞
|ln,m/Q|1/2n = 1

uniformly onO. Further, by (3.2) and the last claim of Lemma 25, we have that

(6.47) | f − rn |
1/2n cap
→ exp

¨

−
1

cap(K,T)

«

on T.

As any Blaschke product is unimodular on the unit circle, we deduce from (6.45)–(6.47) with the
help of (6.37) (i.e., An,m goes to a constant) that

|An,m |
1/2n cap
→ exp

¨

−
1

cap(K,T)

«

in C \K.

Then we get from Lemma 22 that

(6.48) limsup
n→∞

|Anm |
1/2n ≤ exp

¨

−
1

cap(K,T)

«

uniformly on closed subsets ofC\K, in particular, uniformly onO. Set qn,ε for the monic polyno-

mial whose zeros are those of qn lying in D1−ε. Put nε := deg(qn,ε), eqn,ε(z) = znεqn,ε(1/z̄), and let

νn,ε be the normalized counting measure of the zeros of qn,ε. As νn
∗→ω(K,T), it is easy to see that

nε/n→ 1 and that νn,ε
∗→ω(K,T) when n→+∞. Thus, by the principle of descent (Section 7.2.5),

it holds that

(6.49) limsup
n→∞

|qn,ε|
1/n = limsup

n→∞
|qn,ε|

1/nε ≤ exp{−V ω(K,T)} ,

locally uniformly in C. In another connection, since log |1 − z ū| is continuous for (z, u) ∈
D1/(1−ε)×D1−ε, it follows easily from the weak∗ convergence of νn,ε that

(6.50) lim
n→∞
|eqn,ε(z)|

1/n = lim
n→∞
|eqn,ε(z)|

1/nε = exp
�∫

log |1− z ū|dω(K,T)(u)
�

,

uniformly in D. Put bn,ε := qn,ε/eqn.ε. Since the Green function of D with pole at u is given by
log |(1− z ū)/(z − u)|, we deduce from (6.49), (6.50), and a simple majorization that

limsup
n→∞

|bn |
1/n ≤ limsup

n→∞
|bn,ε|

1/n ≤ exp
¦

−V
ω(K,T)

D

©
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uniformly in D. Besides, the Green function of O is still given by log |(1− z ū)/(z − u)|, hence
V ω
D (1/z̄) =V ω∗

O (z), z ∈O, whereω is any measure supported in D. Thus, we derive that

(6.51) limsup
n→∞

|b 2
n(1/z̄)|1/2n ≤ exp

§

−V
ω∗(K,T)

O (z)
ª

holds uniformly onO. Combining (6.45)–(6.51), we deduce that

limsup
n→∞

| f − rn |
1/2n ≤ exp

¨

−
1

cap(K,T)
−V

ω∗(K,T)

O

«

uniformly on O. This finishes the proof of the theorem since V
ω∗(K,T)

C\K
= 1

cap(K,T) +V
ω∗(K,T)

O in O by

Lemma 25, the maximum principle for harmonic functions applied in O, and the fact that the
difference of two Green potentials of the same measure but on different domains is harmonic in a
neighborhood of the support of that measure by the first claim in Section 7.3. �

Proof of Corollary 8. It follows from (3.3) and Lemma 25 that

limsup
n→∞

‖ f − rn‖
1/2n
T ≤ exp

¨

−
1

cap(K,T)

«

.

On the other hand, by (3.2) and the very definition of convergence in capacity, we have for any
ε > 0 small enough that

| f − rn |>
�

exp

¨

−
1

cap(K,T)

«

− ε
�2n

on T \ Sn,ε,

where cap(Sn,ε) → 0 as n → ∞. In particular, it means that |Sn,ε| → 0 by [45, Thm. 5.3.2(d)],
where |Sn,ε| is the arclength measure of Sn,ε. Hence, we have that

liminf
n→∞

‖ f − rn‖
1/2n
2 ≥ lim

n→∞

� |T \ Sn,ε|
2π

�1/4n�

exp

¨

−
1

cap(K,T)

«

− ε
�

= exp

¨

−
1

cap(K,T)

«

− ε.

As εwas arbitrary and since ‖ f − rn‖2 ≤ 2π‖ f − rn‖T, this finishes the proof of the corollary. �

Proof of Theorem 6. Let Θ be the conformal map of D onto G. Observe that Θ′ is a holomorphic
function in D with integrable trace on T since T is rectifiable [20, Thm. 3.12], and that Θ extends
in a continuous manner to T where it is absolutely continuous. Hence, ( f ◦ Θ)(Θ′)1/2 ∈ L2.
Moreover, g lies in E2

n(G) if and only if (g ◦Θ)(Θ′)1/2 lies in H 2
n := H 2M−1

n . Indeed, denote by
E∞(G) the space of bounded holomorphic functions in G and set E∞n (G) := E∞(G)M−1

n (G). It
is clear that g ∈ E∞n (G) if and only if it is meromorphic in G and bounded outside a compact
subset thereof. This makes it obvious that g ∈ E∞n (G) if and only if g ◦Θ ∈ H∞n := H∞M−1

n ,
where H∞ is the space of bounded holomorphic functions inD. It is also easy to see that E2

n(G) =
E2(G)E∞n (G). Since it is known that g ∈ E2(G) if and only if (g ◦Θ)(Θ′)1/2 ∈H 2 [20, corollary to
Thm. 10.1], the claim follows. Notice also that gn is a best approximant for f from E2

n(G) if and
only if (gn ◦Θ)(Θ′)1/2 is a best approximant for ( f ◦Θ)(Θ′)1/2 from H 2

n . This is immediate from
the change of variable formula, namely,

‖ f − g‖2
2,T =

∫

T
| f ◦Θ− g ◦Θ|2|Θ′|dθ= ‖( f ◦Θ)(Θ′)1/2− (gn ◦Θ)(Θ

′)1/2‖2
2,
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where we used the fact that |dΘ(e iθ)|= |Θ′(e iθ)|dθ a.e. on T [20, Thm. 3.11].
Now, let gn be a best meromorphic approximants for f from E2

n(G). As L2 =H 2⊕H̄ 2
0 , it holds

that (gn ◦Θ)(Θ′)1/2 = g+n + rn and ( f ◦Θ)(Θ′)1/2 = f ++ f −, where g+n , f + ∈H 2 and rn , f − ∈ H̄ 2
0 .

Moreover, it can be easily checked that rn ∈Rn and, as explained at the beginning of the proof of
Theorem 4, that f − ∈A (D). Since by Parseval’s relation

‖( f ◦Θ)(Θ′)1/2− (gn ◦Θ)(Θ
′)1/2‖2

2 = ‖ f +− g+n ‖
2
2+ ‖ f −− rn‖

2
2,

we immediately deduce that g+n = f + and that rn is an H̄ 2
0 -best rational approximant for f −. More-

over, by the conformal invariance of the condenser capacity (see (7.7)), cap(K,T ) = cap(Θ−1(K),T).
It is also easy to verify that K ∈K f (G) if and only if Θ−1(K) ∈K f −(D). Hence, we deduce from
Theorem 7 and the remark thereafter that

| f −− rn |
1/2n cap
→ exp

¨

V
ω(Θ−1(K),T)

D −
1

cap(Θ−1(K),T)

«

in D \Θ−1(K).

The result then follows from the conformal invariance of the Green equilibrium measures, Green
capacity, and Green potentials and the fact that, since Θ is locally Lipschitz-continuous in D, it
cannot locally increase the capacity by more than a multiplicative constant [45, Thm. 5.3.1]. �

Proof of Theorem 5. By Theorem S and decomposition (7.16), the set K of minimal condenser ca-
pacity for f is a smooth cut, hence a tame compact set with tame points ∪γ j , such that

∂

∂ n+
V bω(T ,K)−ω(T ,K) =

∂

∂ n−
V bω(T ,K)−ω(T ,K) on

⋃

γ j ,

where bω(T ,K) is the balayage of ω(T ,K) onto K. As bω(T ,K) is the weighted equilibrium distribution
on K in the field V −ω(T ,K) (see (7.18)), the set K possesses the S-property in the sense of (4.4). If f
is holomorphic in C\K and since it extends continuously from both sides on each γ j with a jump
that can vanish in at most countably many points, we get from [25, Thm. 1′] that

(6.52) lim
n→∞

ρ1/2n
n,∞ ( f ,T ) = exp

¨

−
1

cap(K,T )

«

.

However, Theorem 1′ in [25] is obtained as an application of Theorem GR. Since the latter also
holds for functions inA (G), that is, those that are meromorphic in C\K, (see the explanation in
the proof of Theorem 14), (6.52) is valid for these functions as well. As ρn,2( f ,T )≤ |T |ρn,∞( f ,T ),
where |T | is the arclength of T , we get from (6.52) that

limsup
n→∞

ρ1/2n
n,2 ( f ,T )≤ exp

¨

−
1

cap(K,T )

«

.

On the other hand, let gn be a best meromorphic approximants for f from E2
n(G) as in Theo-

rem 6. Using the same notation, it was shown that (( f − gn) ◦Θ)(Θ′)1/2 = ( f −− rn), where rn is
a best H̄ 2

0 -rational approximant for f − fromRn . Hence, we deduce from the chain of equalities

‖ f − gn‖2,T = ‖( f ◦Θ)(Θ
′)1/2− (gn ◦Θ)(Θ

′)1/2‖2 = ‖ f −− rn‖2

and Corollary 8 that

lim
n→∞
‖ f − gn‖

1/2n
2,T
= exp

¨

−
1

cap(Θ−1(K),T)

«

= exp

¨

−
1

cap(K,T )

«

.
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As ρn,2( f ,T ) ≥ ‖ f − gn‖2,T by the very definition of gn and the inclusion Rn(G) ⊂ E2
n(G), the

lower bound for the limit inferior of ρ1/2n
n,2 ( f ,T ) follows. �

7. SOME POTENTIAL THEORY

Below we give a brief account of logarithmic potential theory that was used extensively through-
out the paper. We refer the reader to the monographs [45, 47] for a thorough treatment.

7.1. Capacities. In this section we introduce, logarithmic, weighted, and condenser capacities.

7.1.1. Logarithmic Capacity. The logarithmic potential of a finite positive measure ω, compactly
supported in C, is defined by

V ω(z) :=−
∫

log |z − u|dω(u), z ∈C.

The function V ω is superharmonic with values in (−∞,+∞] and is not identically +∞. The
logarithmic energy ofω is defined by

I [ω] :=
∫

V ω(z)dω(z) =−
∫∫

log |z − u|dω(u)dω(z).

As V ω is bounded below on supp(ω), it follows that I [ω] ∈ (−∞,+∞].
Let F ⊂ C be compact and Λ(F ) denote the set of all probability measures supported on F .

If the logarithmic energy of every measure in Λ(F ) is infinite, we say that F is polar. Otherwise,
there exists a unique ωF ∈ Λ(F ) that minimizes the logarithmic energy over all measures in Λ(F ).
This measure is called the equilibrium distribution on F and it is known that ωF is supported on
the outer boundary of F , i.e., the boundary of the unbounded component of the complement of
F . Hence, if K and F are two compact sets with identical outer boundaries, thenωK =ωF .

The logarithmic capacity, or simply the capacity, of F is defined as

cap(F ) = exp{−I [ωF ]}.

By definition, the capacity of an arbitrary subset of C is the supremum of the capacities of its
compact subsets. We agree that the capacity of a polar set is zero. It follows readily from what
precedes that the capacity of a compact set is equal to the capacity of its outer boundary.

We say that a property holds quasi everywhere (q.e.) if it holds everywhere except on a set of
zero capacity. We also say that a sequence of functions {hn} converges in capacity to a function h,

hn
cap
→ h, on a compact set K if for any ε > 0 it holds that

lim
n→∞

cap
�

{z ∈K : |hn(z)− h(z)| ≥ ε}
�

= 0.

Moreover, we say that the sequence {hn} converges in capacity to h in a domain D if it converges

in capacity on each compact subset of D . In the case of an unbounded domain, hn
cap
→ h around

infinity if hn(1/·)
cap
→ h(1/·) around the origin.

When the support of ω is unbounded, it is easier to consider V ω
∗ , the spherical logarithmic

potential ofω, i.e.,

(7.1) V ω
∗ (z) =

∫

k(z, u)dω(u), k(z, u) =−
¨

log |z − u|, if |u| ≤ 1,
log |1− z/u|, if |u|> 1.

The advantages of dealing with the spherical logarithmic potential shall become apparent later in
this section.
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7.1.2. Weighted Capacity. Let F be a non-polar compact set and ψ be a lower semi-continuous
function on F such that ψ<∞ on a non-polar subset of F . For any measureω ∈Λ(F ), we define
the weighted energy11 ofω by

Iψ[ω] := I [ω]+ 2
∫

ψdω.

Then there exists a unique measure ωF ,ψ, the weighted equilibrium distribution on F , that mini-
mizes Iψ[ω] among all measures in Λ(F ) [47, Thm. I.1.3]. Clearly,ωF ,ψ =ωF when ψ≡ 0.

The measure ωF ,ψ admits the following characterization [47, Thm. I.3.3]. Let ω be a positive
Borel measure with compact support and finite energy such that V ω + ψ is constant q.e. on
supp(ω) and at least as large as this constant q.e. on F . Thenω =ωF ,ψ. The value of V ω+ψ q.e.
on supp(ωF ,ψ) is called the modified Robin constant and it can be expressed as

(7.2) c(ψ; F ) = Iψ[ωF ,ψ]−
∫

ψdωF ,ψ = I [ωF ,ψ]+
∫

ψdωF ,ψ.

The weighted capacity of F is defined as capψ(F ) = exp
¦

−Iψ[ωF ,ψ]
©

.

7.1.3. Condenser Capacity. Let now D be a domain with non-polar boundary and gD (·, u) be the
Green function for D with pole at u ∈D . That is, the unique function such that

(i) gD (z, u) is a positive harmonic function in D \ {u}, which is bounded outside each neigh-
borhood of u;

(ii) gD (z, u)+
�

− log |z |, if u =∞,
log |z − u|, if u 6=∞, is bounded near u;

(iii) lim
z→ξ , z∈D

gD (z, u) = 0 for quasi every ξ ∈ ∂ D .

For definiteness, we set gD (z, u) = 0 for any z ∈C \D , u ∈ D . Thus, gD (z, u) is defined through-
out the whole extended complex plane.

It is known that gD (z, u) = gD (u, z), z, u ∈ D , and that the subset of ∂ D for which (iii) holds
does not depend on u. Points of continuity of gD (·, u) on ∂ D are called regular, other points on
∂ D are called irregular; the latter form Fσ polar set (in particular, it is totally disconnected). When
F is compact and non-polar, we define regular points of F as points of continuity of gD (·,∞),
where D is the unbounded component of the complement of F . In particular, all the inner points
of F are regular, i.e., the irregular points of F are contained in the outer boundary of F , that is,
∂ D . We call F regular if all the point of F are regular.

It is useful to notice that for a compact non-polar set F the uniqueness of the Green function
implies that

(7.3) gC\F (z,∞)≡− logcap(F )−V ωF (z), z ∈C \ F ,

by property (ii) in the definition of the Green function and the characterization of the equilibrium
potential (see explanation before (7.2)).

In analogy to the logarithmic case, one can define the Green potential and the Green energy of a
positive measureω supported in a domain D as

V ω
D (z) :=

∫

gD (z, u)dω(u) and ID[ω] :=
∫∫

gD (z, w)dω(z)dω(w).

11Logarithmic energy with an external field is called weighted as it turns out to be an important object in the study of
weighted polynomial approximation [47, Ch. VI].
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Exactly as in the logarithmic case, if E is a non-polar compact subset of D , there exists a unique
measure ω(E ,∂ D) ∈ Λ(E) that minimizes the Green energy among all measures in Λ(E). This
measure is called the Green equilibrium distribution on E relative to D . The condenser capacity of
E relative to D is defined as

cap(E ,∂ D) := 1/ID[ω(E ,∂ D)].

It is known that the Green potential of the Green equilibrium distribution satisfies

(7.4) V
ω(E ,∂ D)

D (z) =
1

cap(E ,∂ D)
, for q.e. z ∈ E .

Moreover, the equality in (7.4) holds at all the regular points of E . Furthermore, it is known that
ω(E ,∂ D) is supported on the outer boundary of E . That is,

(7.5) ω(E ,∂ D) =ω(∂ Ω,∂ D),

where Ω is the unbounded component of the complement of E .
Let F be a non-polar compact set, D any component of the complement of F , and E a non-

polar subset of D . Then we define ω(E ,F ) and cap(E , F ) as ω(E ,∂ D) and cap(E ,∂ D), respectively.
It is known that

(7.6) cap(E , F ) = cap(F , E),

where F and E are two disjoint compact sets with connected complements. That is, the condenser
capacity is symmetric with respect to its entries and only the outer boundary of a compact plays a
role in calculating the condenser capacity.

As in the logarithmic case, the Green equilibrium measure can be characterized by the proper-
ties of its potential. Namely, if ω has finite Green energy, supp(ω) ⊆ E , V ω

D is constant q.e. on
supp(ω) and is at least as large as this constant q.e. on E , then ω = ω(E ,∂ D) [47, Thm. II.5.12].
Using this characterization and the conformal invariance of the Green function, one can see that
the condenser capacity is also conformally invariant. In other words, it holds that

(7.7) cap(E ,∂ D) = cap(φ(E),∂ φ(D)),

where φ is a conformal map of D onto its image.

7.2. Balayage. In this section we introduce the notion of balayage of a measure and describe some
of its properties.

7.2.1. Harmonic Measure. Let D be a domain with compact boundary ∂ D of positive capacity
and {ωz}z∈D , be the harmonic measure for D . That is, {ωz}z∈D is the collection of probability
Borel measures on ∂ D such that for any bounded Borel function f on ∂ D the function

PD f (z) :=
∫

f dωz , z ∈D ,

is harmonic [45, Thm. 4.3.3] and limz→x PD f (z) = f (x) for any regular point x ∈ ∂ D at which
f is continuous [45, Thm. 4.1.5].

The generalized minimum principle [47, Thm. I.2.4] says that if u is superharmonic, bounded
below, and liminfz→x,z∈D u(z)≥ m for q.e. x ∈ ∂ D , then u > m in D unless u is a constant. This
immediately, implies that

(7.8) PD h = h

for any h which is bounded and harmonic in D and extends continuously to q.e. point of ∂ D .
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For z ∈C and z 6= w ∈D \ {∞}, set

(7.9) hD (z, w) :=
¨

log |z −w|+ gD (z, w), if D is bounded,
log |z −w|+ gD (z, w)− gD (z,∞)− gD (w,∞), otherwise.

Observe that by the properties of Green function hD (z, ·) is harmonic at z. Moreover, it can be
computed using (7.3) that lim|zw|→∞ hD (z, w) = logcap(∂ D) when D is unbounded. Therefore,
hD (z, w) is defined for all w ∈D and z ∈C∪D . Moreover, for each w ∈D , the function hD (·, w)
is bounded and harmonic in D and extends continuously to every regular point of ∂ D . It is also
easy to see that hD (z, w) = hD (w, z) for z, w ∈D . Hence, we deduce from (7.8) that

(7.10) hD (z, w) =
¨

PD (log |z − ·|)(w), if D is bounded,
PD (log |z − ·|− g (z,∞))(w), otherwise,

z ∈ (C∪D) \ ∂ D , for w ∈D and all regular w ∈ ∂ D .

7.2.2. Balayage. Let ν be a finite Borel measure supported in D . The balayage of ν , denoted by bν,
is a Borel measure on ∂ D defined by

(7.11) bν(B) :=
∫

ωt (B)d ν(t )

for any Borel set B ⊂ ∂ D . Since ωz (∂ D) = 1, the total mass of bν is equal to the total mass of
ν . Moreover, it follows immediately from (7.11) that bδz = ωz , z ∈ D . In particular, if D is
unbounded, bδ∞ =ω∞ =ω∂ D (for the last equality see [45, Thm. 4.3.14]). In other words, bδ∞ is
the logarithmic equilibrium distribution on ∂ D .

It is a straightforward consequence of (7.11) that

(7.12)
∫

f dbν =
∫

PD f d ν

for any bounded Borel function on ∂ D . Thus, we can conclude from (7.8) and (7.12) that

(7.13)
∫

hdbν =
∫

hd ν

for any function h which is bounded and harmonic in D and extends continuously to q.e. point
of ∂ D .

Assume now that x ∈ ∂ D is a regular point and W an open neighborhood of x in ∂ D . Let
further f ≥ 0 be a continuous function on ∂ D which is supported in W and such that f (x) >
0. Since PD f (z) → f (x) when D 3 z → x, we see from (7.12) that ν̂(W ) > 0. In particular,
∂ D \ supp(ν̂) is polar.

Let D ′ be a domain with non-polar compact boundary such that D ⊂ D ′ and let {ω′z}z∈D ′

be the harmonic measure for D ′. For any Borel set B ⊂ ∂ D ′ it holds that ω′z (B) is a harmonic
function in D with continuous boundary values on ∂ D . Thus,

∫

ω′z (B)dbν(z) =
∫

ω′z (B)d ν(z)

by (7.13). This immediately implies that

(7.14) eν = ebν ,

where eν is the balayage of ν onto ∂ D ′. In other words, balayage can be done step by step.
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7.2.3. Balayage and Potentials. It readily follows from (7.9), (7.10), and (7.13) that

(7.15)
∫

hD (z, w)d ν(w) =
¨

−V bν (z), if D is bounded,
−V bν (z)− gD (z,∞), otherwise,

z ∈ (C∪D) \ ∂ D .

Clearly, the left-hand side of (7.15) extends continuously to q.e. z ∈ ∂ D . Thus, the same is true
for the right-hand side. In particular, this means that V bν is bounded on ∂ D and continuous q.e.
on ∂ D . Hence, bν has finite energy.

In the case when ν is compactly supported in D , formula (7.15) has even more useful conse-
quences. Namely, it holds that

(7.16) V ν
D (z) =V ν−bν (z)+ c(ν ; D), z ∈C,

where c(ν; D) =
∫

gD (z,∞)d ν(z) if D is unbounded and c(ν ; D) = 0 otherwise, and where we used
a continuity argument to extend (7.16) to every z ∈C. This, in turn, yields that

(7.17) V bν (z) =V ν (z)+ c(ν; D) for q.e. z ∈C \D ,

where equality holds for all z ∈C \D and also at all regular points of ∂ D . Moreover, employing
the characterization of weighted equilibrium measures, we obtain from (7.17) that

(7.18) bν =ω∂ D ,−V ν and c(−V ν ;∂ D) = c(ν; D).

If a measure ν is not compactly supported, the logarithmic potential of ν may not be defined.
However, representations similar to (7.16)–(7.18) can be obtained using the spherical logarithmic
potentials. Indeed, it follows from (7.15) that

(V ν
∗ −V bν −V ν

D )(z) =
∫

[k(z, u)+ log |z − u| − gD (u,∞)]d ν(u)

=
∫

|u|>1
[log |u| − gD (u,∞)]d ν(u)−

∫

|u|≤1
gD (u,∞)d ν(u).

As the right-hand side of the chain of the equalities above is a finite constant and V ν
D vanishes quasi

everywhere on ∂ D , we deduce as in (7.16)–(7.18) that this constant is −c(−V ν
∗ ;∂ D) and that

(7.19) bν =ω∂ D ,−V ν
∗
.

Moreover, it holds that

(7.20) V ν
D (z) =V ν

∗ (z)−V bν (z)+ c(−V ν
∗ ;∂ D), z ∈C.

Let now D be a bounded domain and K be a compact non-polar subset of D . If E ⊆ K is also
non-polar and compact, then

(7.21) |ID[ωE]− I [ωE]| ≤ max
z∈K ,u∈∂ D

| log |z − u||

by integrating both sides of (7.16) againstωE with ν =ωE . This, in particular, yields that

(7.22)

�

�

�

�

�

1

cap(E ,∂ D)
+ logcap(E)

�

�

�

�

�

≤ max
z∈K ,u∈∂ D

| log |z − u||.
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7.2.4. Weighted Capacity in the Field −U ν . Let ν be a probability Borel measure supported in
D, K ⊂ Dr , r < 1, be a compact non-polar set, and D be the unbounded component of the
complement of K . Further, let U ν (z) =−

∫

log |1− z ū|d ν(u) as defined in (4.1). It is immediate to
see that U ν =V ν∗

∗ , where, as usual, ν∗ is the reflection of ν across T. In particular, it follows from
(7.19), (7.20), and the characterization of the weighted equilibrium distribution that

(7.23) bν∗ =ωK ,−U ν ,

where bν∗ is the balayage of ν∗ onto ∂ D relative to D . Thus, ωK ,−U ν is supported on the outer
boundary of K and remains the same for all sets whose outer boundaries coincide up to a polar
set. In another connection, it holds that

U ν (z) =−
∫

log |1− z/u|d ν∗(u) =−
∫

log |1− z/u|deν∗(u) =V eν∗(z)−V eν∗(0)

for any z ∈Dr by (7.13) and harmonicity of log |1− z/u| as a function of u ∈D∗r , where eν∗ is the

balayage of ν∗ onto Tr . It is also true that bν∗ = beν∗ by (7.14). Thus,

Iν[K] = I [bν∗]− 2
∫

V eν∗dbν∗+ 2V eν∗(0),

where Iν[K] was defined12 in (4.2). Using the harmonicity of V bν∗ + gD (·,∞) in D and continuity
at regular points of ∂ D , (7.13), the Fubini-Tonelli theorem, and (7.16), we obtain that

Iν[K] =
∫

�

V bν∗(z)+ gD (z,∞)
�

dbν∗(z)− 2
∫

V bν∗deν∗+ 2V eν∗(0)

=
∫

�

V eν∗

D (z)−V eν∗(z)− c(eν∗; D)+ gD (z,∞)
�

deν∗(z)+ 2V eν∗(0)

= ID[eν
∗]− I [eν∗]+ 2V eν∗(0).(7.24)

Equation (7.24), in particular, means that the problem of maximizing Iν[·] among the sets in Dr
is equivalent to the problem of maximizing the Green energy of eν∗ among the domains with
boundary in Dr .

7.2.5. Weak∗ Convergence and Convergence in Capacity. By a theorem of F. Riesz, the space of
complex continuous functions on C, endowed with the sup norm, has dual the space of complex
measures onC normed with the mass of the total variation (the so-called strong topology for mea-
sures). We say that a sequence of Borel measures {ωn} on C converges weak∗ to a Borel measure
ω if

∫

f dωn →
∫

f dω for any complex continuous function f on C. By the Banach-Alaoglu
theorem, any bounded sequence of measures has a subsequence that converges in the weak∗ sense.
Conversely, by the Banach-Steinhaus theorem, a weak∗ converging sequence is bounded.

We shall denote weak∗ convergence by the symbol
∗→. Weak∗ convergence of measures im-

plies some convergence properties of logarithmic and spherical logarithmic potentials, which we
mention below.

The following statement is known as the Principle of Descent [47, Thm. I.6.8]. Let {ωn} be a
sequence of probability measures all having support in a fixed compact set. Suppose thatωn

∗→ω
and zn→ z, zn , z ∈C. Then

V ω(z)≤ liminf
n→∞

V ωn (zn) and I [ω]≤ liminf
n→∞

I [ωn].

12In (4.2) we slightly changed the notation comparing to Section 7.1.2. Clearly, Iν[·] and capν (·) should be I−U ν [·] and
cap−U ν (·). Even though this change is slightly ambiguous, it greatly alleviates the notation throughout the paper.
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Weak∗ convergence of measures entails some convergence in capacity of their spherical potentials.
This is stated rather informally in [25, Sec. 3 and 4], but the result is slightly subtle because,
as examples show, convergence in capacity generally occurs outside the support of the limiting
measure only. A precise statement is as follows.

Lemma 21. Let {ωn} be a sequence of positive Borel measures such that ωn
∗→ω. Then V ωn

∗
cap
→V ω

∗
inC\supp(ω). In particular, ifω is the zero measure, then the spherically normalized potentials V ωn

∗
converge to zero in capacity in the whole extended complex plane.

Proof. Suppose first that ωn converges weak∗ to the zero measure. Then the convergence is actu-
ally strong. Assume moreover that the measures ωn are supported on a fixed compact set K ⊂C.
Let G be a simply connected domain that contains K , L be a Jordan curve that contains the closure
of G in its interior, and D be a bounded simply connected domain that contains L. Fix ε > 0 and
define En := {z ∈ D : V ωn

D (z) > ε}. By superharmonicity of V ωn
D the set En is open, and we can

assume En ⊂ G by taking n large enough. If En is empty then cap(En) = 0, otherwise let E ⊂ En
be a nonpolar compact set. Then the Green equilibrium potential V

ω(E ,∂ D)

D is bounded above by
1/cap(E ,∂ D) [47, Thm. 5.11] which is finite. Hence h := V ωn

D − εcap(E ,∂ D)V
ω(E ,∂ D)

D is super-
harmonic and bounded below in in D \ E , with liminf h(z) ≥ 0 as z tends to ∂ E ∪ ∂ D . By the
minimum principle, we thus have

V ωn
D ≥ εcap(E ,∂ D)V

ω(E ,∂ D)

D in D \ E .

Set
m :=min

u∈G
min
z∈L

gD (z, u)> 0.

Clearly, V
ω(E ,∂ D)

D (z)> m, z ∈ L, thus

V ωn
D ≥ εmcap(E ,∂ D) on L.

Hence, in view of (7.22) applied with K =G, we get

− logcap(En) =− sup
E⊂En

logcap(E)≥
εm

supL V ωn
D

−C

where C is independent of n. Using the uniform convergence to 0 of V ωn
D on L, we get that

cap(En)→ 0 as n→∞, that is, V ωn
D

cap
→ 0 in D . Let, as usual, bωn be the balayage of ωn onto ∂ D .

Since | bωn | = |ωn | → 0 as n → ∞, we have that V bωn → 0 locally uniformly in D . Combining

this fact with (7.16), we get that V ωn
cap
→ 0 in D . Let u be an arbitrary point in G. Then {V ωn +

|ωn | log | · −u|} is a sequence of harmonic functions in C \G. It is easy to see that this sequence

converges uniformly to 0 there. As |ωn | log | ·−u|
cap
→ 0 inC, we deduce that V ωn

cap
→ 0 in the whole

extended complex plane and so does V ωn
∗ =V ωn +

∫

log+ |u|dωn (cf. (7.1)) since supp(ωn)⊂K .
Next, let {ωn} be an arbitrary sequence of positive measures that converges to the zero measure.

As the restriction ωn |D converges to zero, we may assume by the first part of the proof that

supp(ωn)⊂O. It can be easily seen from the definition of the spherical potential (7.1) that

(7.25) V ωn
∗ (1/z) =V ω̃n

∗ (z)+ |ωn | log |z |, z ∈C \ {0},

where ω̃n is the reciprocal measure of ωn , i.e., ω̃n(B) = ωn({z : 1/z ∈ B}) for any Borel set B .

Clearly ω̃n → 0 and supp(ω̃n) ⊂ D, thus from the first part of the proof we get V ω̃n
∗

cap
→ 0. Since
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|ωn | → 0, we also see by inspection that |ωn | log |z |
cap
→ 0. Therefore, by (7.25), we obtain that

V ωn
∗ (1/z)

cap
→ 0 which is equivalent to V ωn

∗
cap
→ 0.

Let now {ωn} be a sequence of positive measures converging weak∗ to some Borel measure
ω 6= 0. If supp(ω) = C, there is nothing to prove. Otherwise, to each ε > 0, we set Fε :=
{z ∈ C : dc (z, supp(ω)) ≥ ε} where dc is the chordal distance on the Riemann sphere. Pick a
continuous function f , with 0≤ f ≤ 1, which is identically 1 on Fε and supported in Fε/2.By the
positivity ofωn and its weak∗ convergence toω, we get

0≤ lim
n→+∞

ωn(Fε)≤ lim
n→+∞

∫

f dωn =
∫

f dω = 0.

From this, it follows easily that if εn → 0 slowly enough, then the restriction ω1
n := ωn |Fεn

con-

verges strongly to the zero measure. Therefore V
ω1

n
∗

cap
→ 0 in C by the previous part of the proof.

Now, put ω2
n :=ωn −ω1

n =ωn |C\Fεn
. For fixed z ∈ C \ supp(ω), the function k(z, u) from (7.1)

is continuous on a neighborhood of C \ Fεn
for all n large enough. Redefining k(z, u) near z to

make it continuous does not change its integral againstω norω2
n , therefore V ω

∗ (z)−V
ω2

n
∗ (z)→ 0

as n→+∞ sinceω2
n
∗→ω. Moreover, it is straightforward to check from the boundedness of |ω2

n |
that the convergence is locally uniform with respect to z ∈ C. Finally, if supp(ω) is bounded, we
observe that when z→∞

V ω
∗ (z)−V

ω2
n

∗ (z)∼ log |z |
�

ω2
n(C)−ω(C)

�

+
∫

log+ |u|dω−
∫

log+ |u|dω2
n

which goes to zero in capacity since ω2
n(C)→ω(C) and log+ is continuous in a neighborhood of

both supp(ω) and supp(ω2
n) for n large enough. This finishes the proof of the lemma. �

The following lemma is needed for the proof of Theorem 7.

Lemma 22. Let D be a domain in C and {An} be a sequence of holomorphic functions in D such that
|An |1/n cap

→ c in D as n→∞ for some constant c. Then limsupn→∞ |An |1/n ≤ c uniformly on closed
subsets of D.

Proof. By the maximum principle, it is enough to consider only compact subsets of D and there-
fore it is sufficient to consider closed disks. Let z ∈ D and x > 0 be such that the closure of
D3x := {w : |w − z |< 3x} is contained in D . We shall show that limsupn→∞ ‖An‖

1/n

D x

≤ c .

Fix ε > 0. As |An |1/n cap
→ c on D3x \ D2x , there exists yn ∈ (2x, 3x) such that |An |1/n ≤ c + ε

on Ln := {w : |w − z | = yn} for all n large enough. Indeed, define Sn := {w ∈ D3x \ D2x :
||An(w)|1/n − c | > ε}. By the definition of convergence in capacity, we have that cap(Sn)→ 0 as
n → ∞. Further, define S ′n := {|w − z | : w ∈ Sn} ⊂ [2x, 3x]. Since the mapping w 7→ |w − z |
is contractive, cap(S ′n) ≤ cap(Sn) by [45, Thm. 5.3.1] and therefore cap(S ′n)→ 0 as n →∞. The
latter a fortiori implies that |S ′n | → 0 as n→∞ by [45, Thm. 5.3.2(c)], where |S ′n | is the Lebesgue
measure of S ′n . Thus, yn with the claimed properties always exists for all n large enough. Using
the Cauchy integral formula, we get that

‖An‖
1/n

D x

≤
 

maxLn
|An |

2πx

!1/n

≤
c + ε

n
p

2πx
.

As x is fixed and ε is arbitrary, the claim of the lemma follows. �
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7.3. Green Potentials. In this section, we prove some facts about Green potentials that we used
throughout the paper. We start from the following useful fact.

Let D1 and D2 be two domains with non-polar boundary and ω be a Borel measure supported
in D1 ∩D2. Then V ω

D1
−V ω

D2
is harmonic in D1 ∩D2.

Clearly, this claim should be shown only on the support ofω. Using the conformal invariance
of Green potentials, it is only necessary to consider measures with compact support. Denote by
bω and eω the balayages of ω onto ∂ D1 and ∂ D2, respectively. Since V ω

D1
= V ω− bω + c(ω; D1)

and V ω
D2
=V ω− eω + c(ω; D2) by (7.16) and V bω and V eω are harmonic on supp(ω), it follows that

V ω
D1
−V ω

D2
=V eω− bω + c(ω; D1)− c(ω; D2) is also harmonic there.

7.3.1. Normal derivatives. Throughout this section, ∂ /∂ ni (resp. ∂ /∂ no) will stand for the par-
tial derivative with respect to the inner (resp. outer) normal on the corresponding curve.

Lemma 23. Let L be a C 1-smooth Jordan curve in a domain D and V be a continuous function in
D. If V is harmonic in D \ L, extends continuously to the zero function on ∂ D and to C 1-smooth
functions on each side of L, then V =−V σ

D , where σ is a signed Borel measure on L given by

dσ =
1

2π

�

∂ V

∂ ni
+
∂ V

∂ no

�

d s

and d s is the arclength differential on L.

Proof. As discussed just before this section, the distributional Laplacian of −V σ
D in D is equal to

2πσ . Thus, according to Weyl’s Lemma and the fact that V = V σ
D ≡ 0 on ∂ D , we only need to

show that∆V = 2πσ . By the very definition of the distributional Laplacian, it holds that

(7.26)
∫∫

D
φ∆V d m2 =

∫∫

D
V∆φd m2 =

∫∫

O
V∆φd m2+

∫∫

D\O
V∆φd m2,

for any infinitely smooth function φ compactly supported in D , where O is the interior domain
of L and d m2 is the area measure. According to Green’s formula (see (7.35) further below) it holds
that

(7.27)
∫∫

O
V∆φd m2 =

∫∫

O
∆Vφd m2+

∫

L

�

φ
∂ V

∂ ni
−V

∂ φ

∂ ni

�

d s =
∫

L

�

φ
∂ V

∂ ni
−V

∂ φ

∂ ni

�

d s

as V is harmonic in O. Analogously, we get that

(7.28)
∫∫

D\O
V∆φd m2 =

∫

L

�

φ
∂ V

∂ no
−V

∂ φ

∂ no

�

d s ,

where we also used the fact thatφ≡ 0 in some neighborhood of ∂ D . Combining (7.27) and (7.28)
with (7.26) and observing that ∂ φ/∂ ni =−∂ φ/∂ no yield

∫∫

D
φ∆V d m2 =

∫

L

�

∂ V

∂ ni
+
∂ V

∂ no

�

d s = 2π
∫

L
φdσ .

That is,∆V = 2πσ , which finishes the proof of the lemma. �

Lemma 24. Let F be a regular compact set and G a simply connected neighborhood of F . Let also
V be a continuous function in G that is harmonic in G \ F and is identically zero on F . If L is an
analytic Jordan curve in G such that V ≡ δ > 0 on L, then

1

2π

∫

L

∂ V

∂ ni
d s =−δcap(F ∩Ω, L),
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where Ω is the inner domain of L.

Proof. It follows immediately from the maximum principle for harmonic functions, applied in
Ω \ F , that V = δcap(F ∩Ω, L)V ω

D in Ω, where D := C \ (F ∩Ω) and ω := ω(L,F∩Ω). Thus, it is
sufficient to show that

(7.29)
1

2π

∫

L

∂ V ω
D

∂ ni
d s =−1.

Observe that V ω
D can be reflected harmonically across L by the assumption on V and therefore

normal inner derivative of V ω
D does exist at each point of L. According to (7.16), it holds that

(7.30)
1

2π

∫

L

∂ V ω
D

∂ ni
d s =

1

2π

∫

L

∂ V ω− bω

∂ ni
d s ,

where bω is the balayage ofω onto F ∩Ω. By Gauss’ theorem [47, Thm. II.1.1], it is true that

(7.31)
1

2π

∫

L

∂ V bω

∂ ni
d s = bω(Ω) = bω(F ∩Ω) = 1.

Since V ω
D ≡ 1/cap(L, F ∩Ω) outside of Ω and V bω is harmonic across L, we get from (7.31) and the

analog of (7.30) with ∂ ni replaced by ∂ n0, that

(7.32)
1

2π

∫

L

∂ V ω

∂ no
d s =

1

2π

∫

L

∂ V bω

∂ no
d s =−

1

2π

∫

L

∂ V bω

∂ ni
d s =−1.

As ∂ V ω/∂ ni and ∂ V ω/∂ no are smooth on L by (7.16), in particular, Lipschitz smooth, we
obtain from [47, Thm. II.1.5] that

dω =−
1

2π

�

∂ V ω

∂ ni
+
∂ V ω

∂ no

�

d s

and therefore

(7.33)
1

2π

∫

L

∂ V ω

∂ ni
d s =−ω(L)−

1

2π

∫

L

∂ V ω

∂ no
d s = 0

by (7.32). Finally, by plugging (7.31) and (7.33) into (7.30), we see the validity of (7.29). Hence, the
lemma follows. �

7.3.2. Reflected sets. In the course of the proof of Theorem 7, we used the conclusions of Lemma
25 below. It has to do with the specific geometry of the disk, and we could not find an appropriate
reference for it in the literature.

Lemma 25. Let E ⊂ D be a compact set of positive capacity with connected complement D, and E∗

stand for the reflection of E across T. Further, let ω ∈ Λ(E) be such that ω = bω∗, where ω∗ is the
reflection ofω across T and bω∗ is the balayage ofω∗ onto E. Thenω =ω(E ,T) and eω =ω(T,E), where
eω is the balayage of ω onto T relative to D. Moreover, it holds that V ω∗

D =V eω
D = 1/cap(E ,T)−V ω

D
in D.

Proof. Denote by eω and eω∗ the balayage ofω onto T relative to D and the balayage ofω∗ onto T
relative to O. It holds that eω = eω∗. Indeed, since gO(z,∞) = log |z |, we get from (7.15) for z ∈ T
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that

V eω∗(z) =
∫

[log |t | − log |z − t |]dω∗(t ) =
∫

[− log |u| − log |z − 1/ū|]dω(u)

= −
∫

log |1− z ū|dω(u) =V ω(z) =V eω(z),

where we used the fact that z = 1/z̄ for z ∈T and (7.17) applied toω. Since both measures, eω and
eω∗, have finite energy, the uniqueness theorem [47, Thm. II.4.6] yields that eω = eω∗.

By (7.16), we have that V eω
D =V eω−cfω + c( eω; D). Since cfω =Óf∗ω = bω∗ =ω and by the equality

eω = eω∗, (7.14), and the conditions of the lemma, it holds that

(7.34) V eω
D (z) =V eω−ω(z)+ c( eω; D) = c( eω; D)−V ω

D (z), z ∈C,

where we used (7.16) once more. Hence, V ω
D = c( eω; D) q.e. on E and the unique characterization

of the Green equilibrium distribution implies that ω =ω(E ,T) and c( eω; D) = 1/cap(E ,T). More-

over, it also holds that V eω
D = c( eω; D) = 1/cap(E ,T) in O and therefore eω =ω(T,E), again by the

characterization of the Green equilibrium distribution.
The first part of the last statement of the lemma is independent of the geometry of the re-

flected sets and follows easily from (7.13) and the fact that for any z ∈D the function gD (z, u) is a
harmonic function of u ∈O continuous on T. The second part was shown in (7.34). �

7.4. Dirichlet Integrals. Let D be a domain with compact boundary comprised of finitely many
analytic arcs that possess tangents at the endpoints. In this section we only consider functions
continuous on D whose weak (i.e., distributional) Laplacian in D is a signed measure supported
in D with total variation of finite Green energy, and whose gradient, which is smooth off the
support of the Laplacian, extends continuously to ∂ D except perhaps at the corners where its
norm grows at most like the reciprocal of the square root of the distance to the corner. These can
be written as a sum of a Green potential of a signed measure as above and a harmonic function
whose boundary behavior has the smoothness just prescribed above. By Proposition 11, the results
apply for instance to V ω

C\Γ
on C \Γ as soon asω has finite energy.

Let u and v be two such functions. We define the Dirichlet integral of u and v in D by

(7.35) DD (u, v) =−
1

2π

∫∫

D
u∆vd m2−

1

2π

∫

∂ D
u
∂ v

∂ n
d s ,

where ∆v is the weak Laplacian of v and ∂ /∂ n is the partial derivative with respect to the inner
normal on ∂ D . The Dirichlet integral is well-defined since the measure |∆v | has finite Green
energy and is supported in D while |u∂ v/∂ n| is integrable on ∂ D . Moreover, it holds that

(7.36) DD (u, v) =DD (v, u).

Indeed, this follows from Fubini’s theorem if u and v are both Green potentials and from Green’s
formula when they are both harmonic. Thus, we only need to check (7.36) when v is harmonic
and u is a Green potential. Clearly, then it should hold DD (u, v) = 0. Let a be a point in the
support of ∆u and ε > 0 be a regular value of gD (.,a) which is so small that the open set A :=
{z ∈ D : gD (z,a)< ε} does not intersect the support of ∆u. By our choice of ε, the boundary of
A consists of ∂ D and a finite union of closed smooth Jordan curves. Write v = v1+ v2 for some
C∞-smooth functions v1, v2 such that the support of v2 is included in A (hence v2 is identically
zero in a neighborhood of D \A where the closure is taken with respect to D) while the support
of v1 is compact in D . Such a decomposition is easily constructed using a smooth partition of
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unity subordinated to the open covering of D consisting of A and {z ∈ D : gD (z,a) > ε/2}. By
the definition of the weak Laplacian we have that

DD (v, u) = −
1

2π

∫∫

D
v1∆ud m2−

1

2π

∫

∂ D
v2

∂ u

∂ n
d s

= −
1

2π

∫∫

D
u∆v1d m2−

1

2π

∫

∂ D
v2

∂ u

∂ n
d s

= −
1

2π

∫∫

D
u∆v1d m2−

1

2π

∫∫

D
u∆v2d m2 = 0,

where we used Green’s formula

(7.37)
∫∫

A
(v2∆u − u∆v2)d m2 =

∫

∂ A

�

u
∂ v2

∂ n
− v2

∂ u

∂ n

�

d s .

Note that if γ ⊂D is an analytic arc which is closed in D and u, v are harmonic across γ , then

(7.38) DD (u, v) =DD\γ (u, v)

because the rightmost integral in (7.35) vanishes on γ as the normal derivatives of v from each side
of γ have opposite signs.

Observe also that if ν is a positive Borel measure supported in D with finite Green’s energy
then∆V ν

D =−2πν by Weyl’s lemma (see Section 7.3) and so by (7.35)

(7.39) DD (V
ν

D ) :=DD (V
ν

D ,V ν
D ) = ID[ν].

Finally, if v is harmonic in D , it follows from the divergence theorem that

(7.40) DD (v) =
∫∫

D
‖∇v‖2d m2,

which is the usual definition for Dirichlet integrals. In particular, if D ′ ⊂ D is a subdomain with
the same smoothness as D , and if we assume that supp∆v ⊂D ′, we get from (7.38) and (7.40) that

(7.41) DD (v) =DD ′(v)+DD\D ′(v) =DD ′(v)+
∫∫

D\D ′
‖∇v‖2d m2.

8. NUMERICAL EXPERIMENTS

In order to numerically construct rational approximants, we first compute the truncated Fourier
series of the approximated function (resulting rational functions are polynomials in 1/z that con-
verge to the initial function in the Wiener norm) and then use Endymion software (it uses the
same algorithm as the previous version Hyperion [26]) to compute critical points of given degree
n. The numerical procedure in Endymion is a descent algorithm followed by a quasi-Newton
iteration that uses a compactification of the setRn whose boundary consists of n copies ofRn−1
and n(n − 1)/2 copies of Rn−2 [8]. This allows to generate several initial conditions leading to a
critical point. If the sampling of the boundary gets sufficiently refined, the best approximant will
be attained. In practice, however, one cannot be absolutely sure the sampling was fine enough.
This why we speak below of rational approximants and do not claim they are best rational ap-
proximants. They are, however, irreducible critical points, up to numerical precision.

In the numerical experiments below we approximate functions given by

f1(z) =
1

4
p

(z − z1)(z − z2)(z − z3)(z − z4)
+

1

z − z1
,
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where z1 = 0.6+0.3i , z2 =−0.8+0.1i , z3 =−0.4+0.8i , z4 = 0.6−0.6i , and z5 =−0.6−0.6i ; and

f2(z) =
1

3
p

(z − z1)(z − z2)(z − z3)
+

1
p

(z − z4)(z − z5)
,

where z1 = 0.6+0.5i , z2 =−0.1+0.2i , z3 =−0.2+0.7i , z4 =−0.4−0.4i , and z5 = 0.1−0.6i . We
take the branch of each function such that limz→∞ z f j (z) = 2, j = 1,2, and use first 100 Fourier
coefficients for each function.
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FIGURE 2. The poles of rational approximant to f1 of degree 12 (left) and superimposed
poles of rational approximants to f1 of degrees 12 and 16 (right).
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FIGURE 3. The poles of rational approximant to f2 of degree 16 and superimposed poles
of rational approximants to f2 of degrees 13 and 16 (right).

On the figures diamonds depict the branch points of f j , j = 1,2, and disks denote the poles of
the corresponding approximants.
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