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ABSTRACT. We design convergent multipoint Padé interpolation schemes to Cauchy transforms of
non-vanishing complex densities with respect to Jacobi-type weights on analytic arcs, under mild
smoothness assumptions on the density. We rely on the work [10] for the choice of the interpola-
tion points, and dwell on the Riemann-Hilbert approach to asymptotics of orthogonal polynomials
introduced in [33] in the case of a segment. We also elaborate on the ∂̄ -extension of the Riemann-
Hilbert technique, initiated in [37] on the line to relax analyticity assumptions. This yields strong
asymptotics for the denominator polynomials of the multipoint Padé interpolants, from which con-
vergence follows.

1. INTRODUCTION

Classical Padé approximants (or interpolants) and their multipoint generalization are proba-
bly the oldest and simplest candidate rational-approximants to a holomorphic function of one
complex variable. They are simply those rational functions of type1 (m, n) that interpolate the
function in m + n + 1 points of the domain of analyticity, counting multiplicity. Classical Padé
approximants refer to the case where interpolation takes place in a single point with multiplicity
m+ n+ 1 [38].

Besides their everlasting number-theoretic success [43, 32, 41], they are common tools in mod-
eling and numerical analysis of various fields, ranging from boundary value problems and conver-
gence acceleration [16, 29, 13, 26, 20] to continuous mechanics [6, 51], quantum mechanics [8, 52],
condensed matter physics [42], fluid mechanics [40], system and circuits theory [12, 31, 17], and
even page ranking the Web [14].

In spite of this, the convergence properties of Padé or multipoint Padé approximants are still far
from being understood. For particular classes of functions like Markov functions, some elliptic
functions, and certain entire functions such as Pólya frequencies or functions with smooth and
fast decaying Taylor coefficients, classical Padé approximants at infinity are known to converge,
locally uniformly on the domain of analyticity [36, 50, 4, 34]. But when applied to more general
cases they seldom accomplish the same, due to the occurrence of “spurious poles” that may wan-
der about the domain of analyticity. Further distinction should be made here between diagonal
approximants (i.e. interpolants of type (m, m)) and row approximants (i.e. interpolants of type
(m, n) where n is kept fixed), and we refer the reader to the comprehensive monograph [7] for a
detailed account of many works on the subject. Let us simply mention that, for the case of diag-
onal approximants which is the most interesting as it treats poles and zeros on equal footing, the
disproof of the Padé conjecture [35] and of the Stahl conjecture [15] have only added to the picture
that classical Padé approximants are not seen best through the spectacles of uniform convergence.
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The case of multipoint Padé approximants is somewhat different, since choosing the interpola-
tion points offers new possibilities to help convergence. However, it is not immediately clear how
to use these additional parameters. The theory was initially developed for Markov functions (i.e.
Cauchy transforms of positive measures compactly supported on the real line) showing that mul-
tipoint Padé approximants converge locally uniformly on the complement of the smallest segment
containing the support of the defining measure, provided the interpolation points are conjugate
symmetric [25]. The crux of the proof is the remarkable connection between rational interpolants
and orthogonal polynomials: the denominator of the n-th diagonal multipoint Padé approximant
is the n-th orthogonal polynomial of the measure defining the Markov function, weighted by the
inverse of the polynomial whose zeros are the interpolation points (this polynomial is identically 1
for classical Padé approximants). The conjugate symmetric distribution of the interpolation points
is to the effect that the weight is positive, so one can apply the asymptotic theory of orthogonal
polynomials with varying weights [49].

When trying to generalize this approach to more general Cauchy integrals than Markov func-
tions, one is led to consider non-Hermitian orthogonal polynomials with respect to complex-
valued measures on more general arcs than segments, and for a while it was unclear what could
be hoped for. In the pathbreaking papers [44, 46, 47, 48], devoted to the convergence in capacity
of classical Padé approximants to functions with branchpoints, it was shown that such orthogonal
polynomials lend themselves to analysis when the measure is supported on a system of arcs of
minimal logarithmic capacity linking the branchpoints, in the complement of which the function
is single-valued. Shortly after, the same type of convergence was established for multipoint Padé
approximants to Cauchy integrals of continuous (quasi-everywhere) non-vanishing densities over
arcs of minimal weighted capacity, provided that the interpolation points asymptotically distribute
like a measure whose potential is the logarithm of the weight [27]. Such an extremal system of
arcs is called a symmetric contour, or S-contour, and is characterized by a symmetry property of
the (two-sided) normal derivatives of its equilibrium potential. The corresponding condition on
the distribution of the interpolation points may be viewed as a far-reaching generalization of the
conjugate-symmetry with respect to the real line that was required to interpolate Markov func-
tions in a convergent way.

After these works it became apparent that the appropriate class of Cauchy integrals for Padé
approximation should consist of those taken over S-contours, and that the interpolation points
should distribute according to the weight that defines the symmetry property. However, it is not
so easy to decide which systems of arcs are S-contours, since finding a weight making the arcs of
smallest weighted capacity is a nontrivial inverse problem, and in any case convergence in capacity
is much weaker than locally uniform convergence.

For the class of Jordan arcs, new ground was recently broken in [10]where it is shown that such
an arc, if rectifiable and Ahlfors regular at the endpoints, is an S-contour if and only if it is analytic.
The proof recasts the S-property for Jordan arcs as the existence of a sequence of “pseudo-rational”
functions, holomorphic and tending to zero off the arc, whose boundary values from each side of
the latter remain bounded, and whose zeros remain at positive distance from the arc. There are
in fact many such sequences that can be computed explicitly from an analytic parameterization
of the arc. Then, translating the non-Hermitian orthogonality equation for the denominator into
an integral equation involving Hankel operators and using compactness properties of the latter,
the reference just quoted establishes that multipoint Padé approximants to Cauchy transforms of
Dini-continuous (essentially) non-vanishing densities with respect to the equilibrium distribution
of the arc converge locally uniformly in its complement when the interpolation points are the
zeros of these pseudo-rational functions.
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Still the above result remains unsatisfactory, for the hypotheses entail that the density with re-
spect to arclength in the integral goes to infinity towards the endpoints of the arc, since so does
the equilibrium distribution. In particular, ultra-smooth situations like the one of Cauchy inte-
grals of smooth functions over analytic arcs are not covered. The present paper develops a new
technique to handle any non-vanishing integrable Jacobi-type density under mild smoothness as-
sumptions, thereby settling more or less the issue of convergence in multipoint Padé interpolation
to functions defined as Cauchy integrals over analytic Jordan arcs.

We dwell on the Riemann-Hilbert approach to asymptotics of orthogonal polynomials with
analytic weights, pioneered on the line in [11, 19] and carried over to the segment in [33]. We
also elaborate on the ∂̄ -extension thereof, initiated on the line in [37] to relax the analyticity
requirement. This will provide us with strong (i.e. Plancherel-Rotach type) asymptotics for the
denominator polynomials of the multipoint Padé interpolants we construct and for their asso-
ciated functions of the second kind, from which the local uniform convergence we seek follows
easily. It is interesting to note that the Riemann-Hilbert approach, which is typically a tool to ob-
tain sharp quantitative asymptotics, is here used as a means to solve a qualitative question namely
the convergence of the interpolants.

The interpolation points shall be the same as in [10], namely the zeros of a sequence of pseudo-
rational functions adapted to the arc. Such an interpolation scheme will prove convergent for all
Cauchy integrals with sufficiently smooth density with respect to a Jacobi weight on the arc at
the same time. This provides us with a varying weight which is not of power type, nor in general
converging sufficiently fast to a weight of power type to take advantage of the results of [3], where
the Riemann-Hilbert approach is adapted to non-Hermitian orthogonality with analytic weights
on smooth S-arcs. Instead, when “opening the lens”, we set up a sequence of Riemann-Hilbert
problems with varying contours whose solutions converge to the desired one by properties of the
pseudo rational functions.

We pay special attention to keep smoothness requirements low, in order to obtain as general a
result as the method permits. Roughly speaking, the higher the Jacobi exponents the smoother
the density should be, see the precise assumptions (2.9). When the Jacobi exponents are negative,
only a fraction of a derivative is needed, which compares not too badly with the Dini-continuity
assumption in [10]. In the present setting, however, the density cannot vanish whereas some
weak vanishing is still allowed in [10]. We are of course rewarded not only with a larger range of
Jacobi exponents than could be handled in [10], but also with stronger asymptotics even for those
exponents already treated there.

As the varying part of our weight is analytic, the extension inside the lens with controlled ∂̄ -
estimates, introduced in [37] for power weights, needs only deal with the density defining the
Cauchy integral we interpolate. This step is treated using either tools from real analysis, e.g.
Muckenhoupt weights and Sobolev traces, or else classical Hölder estimates for singular integrals,
whichever yields the best results granted the Jacobi exponents.

Since we consider analytic arcs only, it is natural to ask how general our results with respect
to the general class of Cauchy integrals over rectifiable Jordan arcs. It turns out that they are as
general as can be, because if the Cauchy integral of a nontrivial Jacobi weight can be interpolated
in a convergent way with a triangular scheme of interpolation points that stay away from the arc,
then the arc is in fact analytic [9].

The paper is organized as follows. Section 2 fixes notation and defines pseudo rational func-
tions as well as multipoint Padé approximants before stating the main results. In Section 3, the
contours that will later be instrumental for the solution of the Riemann-Hilbert problem are in-
troduced. Section 4 contains preliminaries on smooth extensions from boundary data in domains
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with polygonal boundaries. Section 5 is devoted to key estimates of certain singular integral oper-
ators that play a main role in the extension of the weight. Section 6 and 7 deal with the analytic
Riemann-Hilbert problem, while Section 8 solves the ∂ version thereof. Finally, in Section 9, we
gather the material developed so far to establish the asymptotics and the convergence of multipoint
Padé approximants stated in Section 2.

2. STATEMENTS OF RESULTS

Let ∆ be a closed analytic Jordan arc with endpoints −1 and 1. That is to say, there exists a
holomorphic univalent function Ξ, defined in some domain DΞ ⊃ [−1,1], such that

∆=Ξ([−1,1]), Ξ(±1) =±1.

We call Ξ an analytic parameterization of ∆. We orient ∆ from −1 to 1 and, according to this
orientation, we distinguish the left and the right sides of ∆ denoted by ∆+ and ∆−, respectively.
It will be convenient to introduce two unbounded arcs, say, ∆l and ∆r , that respectively connect
−∞ to −1 and 1 to +∞, in such a manner that ∆l ∪∆∪∆r is a smooth unbounded Jordan arc
that coincides with the real line in some neighborhood of infinity. Define on∆ the Jacobi weight

(2.1) w(z) = w(α,β; z) := (1− z)α(1+ z)β, α,β>−1,

where we choose branches of (1− z)α and (1+ z)β that are holomorphic outside of ∆r and ∆l ,
respectively, and assume value 1 at the origin. In particular, w is analytic across ∆◦ := ∆ \ {±1}.
Further, set

(2.2) w(z) :=
p

z2− 1, w(z)/z→ 1, as z→∞,

to be a holomorphic branch of the square root outside of∆. Then

(2.3) ϕ(z) := z +w(z), z ∈D :=C \∆,

is holomorphic in D \ {∞}, has continuous boundary values ϕ± on∆±, respectively, and satisfies

(2.4) ϕ+ϕ− = 1 on ∆ and ϕ(z)/2z→ 1 as z→∞.

It is immediate that ϕ is inverse of the Joukovski transformation J (z) := (z2+1)/2z, i.e., J (ϕ(z)) =
z, z ∈ D . Moreover, ϕ maps D conformally onto an unbounded domain whose boundary is
an analytic Jordan curve [10, Sec. 3.1] which is symmetric with respect to the transformation
z 7→ 1/z. In particular, ϕ does not vanish.

2.1. Symmetric Contours. Multipoint Padé approximants to a given function f are defined to
be rational interpolants to f . In this paper we are interested in those functions f that can be
expressed as Cauchy integrals of Jacobi-type complex densities defined on ∆ (see the smoothness
assumptions in (2.8) and (2.9)). In order for multipoint Padé approximants to converge to such a
function, it is necessary to choose the interpolation schemes appropriately with respect to ∆. We
presently characterize these schemes in terms of the associated monic polynomials vanishing at
the interpolation points.

Let {vn} be a sequence polynomials such that deg(vn)≤ 2n and each vn has no zeros on∆. To
this sequence we associate a sequence of “pseudo-rational” functions, say {rn}, given by

(2.5) rn(z) :=
�

1

ϕ(z)

�2n−deg(vn )
∏

{e :vn (e)=0}

ϕ(z)−ϕ(e)
1−ϕ(e)ϕ(z)

, z ∈D ,

where the product is taken over all zeros of vn according to their multiplicities. It is easy to
see that each function rn is holomorphic in D , has the same zeros as vn counting multiplicities,
and vanishes at infinity with order 2n − deg(vn). Hence, each rn has exactly 2n zeros counting
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multiplicities. Moreover, the unrestricted boundary values r±n exist continuously from each side
of∆ and satisfy r+n r−n ≡ 1 by the first part of (2.4).

Hereafter, the normalized counting measure of a finite set is the probability measure that has
equal mass at each point counting multiplicities. Below, the weak∗ topology refers to the duality
between complex measures and continuous functions with compact support in C.

Definition 1. We say that a sequence of polynomials {vn}with no zeros on∆ belongs to the class S(∆)
if the following conditions hold:

(1) the associated functions rn via (2.5) satisfy |r±n |=O(1) uniformly on∆ and rn = o(1) locally
uniformly in D;

(2) there exists a neighborhood of∆ that contains no zeros of rn for all n large enough;
(3) the normalized counting measures of zeros of rn form a weak∗ convergent sequence.

The third requirement in the definition of S(∆) is purely technical and is placed only to sim-
plify the forthcoming considerations since one can always proceed with subsequences as far as
convergence is concerned.

Regarding the nature of the class S(∆), the following result was obtained in [10, Thm. 1]. For
a closed analytic Jordan arc ∆, there always exist sequences {vn} belonging to S(∆) and they can
be constructed explicitly granted the parameterization Ξ. A partial converse is also true. Namely,
let ∆ be a rectifiable Jordan arc with endpoint ±1 such that for x = ±1 and all t ∈∆ sufficiently
close to x it holds that |∆t ,x | ≤ const.|x − t |β, β> 1/2, where |∆t ,x | is the length of the subarc of
∆ joining t and x and “const.” is an absolute constant. If there exists a sequence of polynomials
{vn} meeting the first two requirements of Definition 1, then ∆ is necessarily analytic. The class
S(∆) is also intimately related to the so-called symmetry property of the contour∆ [44, 45, 10].

For our investigation we need to detail further the properties of the just defined interpolation
schemes. We gather them in the following theorem. We agree that the arcs involved have endpoints
±1. Moreover, we say that two holomorphic functions are analytic continuations of each other if
they are defined on domains that have nonempty intersection on which the functions coincide.

Theorem 1. Let ∆ be a closed analytic Jordan arc and {vn} ∈ S(∆). Then there exists a sequence of
closed analytic Jordan arcs {∆n} such that:

(i) there exist analytic parametrizations Ξn of∆n and Ξ of∆ such that the functions Ξn converge
to Ξ uniformly in some neighborhood of [−1,1] as n→∞;

(ii) for each function rn , associated to vn via (2.5), there exists an analytic continuation r ∗n , holo-
morphic in Dn :=C \∆n , such that |(r ∗n )

±| ≡ 1 on∆n .

Let wn and ϕn be defined relative to∆n as w and ϕ were defined in (2.2) and (2.3) relative to∆.
Clearly, wn and ϕn are analytic continuations of w and ϕ to Dn . In fact, r ∗n is simply the function
associated to vn via (2.5) with ϕ replaced by ϕn . It is apparent that r ∗n is nothing but the Blaschke
product with respect to Dn that has the same zeros as rn .

2.2. Multipoint Padé Approximation. Let µ be a complex Borel measure with compact sup-
port. We define the Cauchy transform of µ as

(2.6) fµ(z) :=
∫ dµ(t )

z − t
, z ∈C \ supp(µ).

Clearly, fµ is a holomorphic function in C \ supp(µ) that vanishes at infinity.
Classically, diagonal (multipoint) Padé approximants to fµ are rational functions of type (n, n)

that interpolate fµ at a prescribed system of 2n + 1 points. However, when the approximated
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function is of the from (2.6), it is customary to place at least one interpolation point at infinity so
as to let the approximants vanish at infinity as well by construction.

Definition 2. Let fµ be given by (2.6) and {vn} be a sequence of monic polynomials, deg(vn) ≤ 2n,

with zeros in C \ supp(µ). The n-th diagonal Padé approximant to fµ associated with {vn} is the
unique rational function Πn = pn/qn satisfying:

• deg pn ≤ n, deg qn ≤ n, and qn 6≡ 0;

•
�

qn(z) fµ(z)− pn(z)
�

/vn(z) is analytic in C \ supp(µ);

•
�

qn(z) fµ(z)− pn(z)
�

/vn(z) =O
�

1/zn+1� as z→∞.

A multipoint Padé approximant always exists since the conditions for pn and qn amount to
solving a system of 2n + 1 homogeneous linear equations with 2n + 2 unknown coefficients, no
solution of which can be such that qn ≡ 0 (we may thus assume that qn is monic); note that the
required interpolation at infinity is entailed by the last condition and therefore Πn is, in fact, of
type (n− 1, n).

We consider only absolutely continuous measures that are supported on∆ and whose densities
are Jacobi weights (2.1) multiplied by suitably smooth non-vanishing functions. This leads us to
define smoothness classes Cm,ς .

Definition 3. Let K be an infinitely smooth closed Jordan arc or curve. We say that θ ∈Cm,ς (K) if
θ is m-times continuously differentiable on K with respect to the arclength and its m-th derivative is
uniformly Hölder continuous with exponent ς , i.e.,

|θ(m)(t1)−θ
(m)(t2)| ≤ const.|t1− t2|

ς , t1, t2 ∈K .

When K =∆, we simply write Cm,ς instead of Cm,ς (∆). We also write C∞(K) for the space of infinitely
differentiable functions on K.

Together with Cm,ς , we also consider fractional Sobolev spaces.

Definition 4. Let K be an infinitely smooth Jordan arc or curve. We say that θ ∈ W1−1/p
p (K),

p ∈ (1,∞), if
∫∫

K×K

�

�

�

�

�

θ(x)−θ(y)
x − y

�

�

�

�

�

p

|d x||d y|<∞.

When K =∆, we simply write W1−1/p
p instead of W1−1/p

p (K).

We shall be interested only in the case p ∈ (2,∞) since in this range it holds that

(2.7) W1−1/p
p ⊂C0,ς , ς = 1−

2

p
, p ∈ (2,∞).

by Sobolev imbedding theorem (see Section 4.1).
In what follows, we assume that the measure µ in (2.6) is of the form

(2.8) dµ(t ) = (w h)(t )d t , h(t ) = eθ(t ), t ∈∆,

where the Jacobi weight w = w(α,β; ·) and the complex function θ are such that

(2.9) α,β ∈ (−s , s)∩ (−1,∞)
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with

s :=











1− 2
p , if θ ∈W1−1/p

p , p ∈ (2,∞),

2ς − 1, if θ ∈C0,ς , ς ∈
�

1
2 , 1
�

,

m+ ς , if θ ∈Cm,ς , m ∈N, ς ∈ (0,1].

To describe the asymptotic behavior of the approximation error to functions fµ by the multi-
point Padé approximants, we need to introduce complex geometric means and Szegő functions.
The geometric mean of h = eθ is given by

(2.10) Gh := exp
�∫

θdω
�

, dω(t ) :=
i d t

πw+(t )
, t ∈∆.

The measure ω is, in some sense, natural for the considered problem as suggested by the forth-
coming Theorem 2. Observe also that ω simply becomes the normalized arcsine distribution on
∆ when ∆ = [−1,1]. As

∫

dω = 1, Gh depends only on h and is non-zero when θ is Hölder
continuous (see Section 5.3). Moreover, in this case the Szegő function of h, given by

(2.11) Sh (z) := exp

¨

w(z)

2

∫

θ(t )

z − t
dω(t )−

1

2

∫

θdω
«

, z ∈D ,

is the unique non-vanishing holomorphic function in D that has continuous unrestricted bound-
ary values on∆ from each side and satisfies

(2.12) h =Gh S+
h

S−
h

on ∆ and Sh (∞) = 1.

The main result of the paper is the following theorem.

Theorem 2. Let ∆ be a closed analytic Jordan arc connecting ±1 and {vn} ∈ S(∆). Let also fµ a
Cauchy integral (2.6) with µ given by (2.8) and (2.9). Then {Πn}, the sequence of diagonal multipoint
Padé approximants to fµ associated with {vn}, is such that

( fµ−Πn)w=
�

2Gµ̇+ o(1)
�

S2
µ̇

rn ,

with o(1) satisfying

(2.13) |o(1)| ≤
const.

na , a ∈







�

0, s−max{|α|,|β|}
2

�

, s −max{|α|, |β|} ≤ 1,
�

0, 1
2

�

, s −max{|α|, |β|}> 1,

locally uniformly in D, where the constant const. depends on a, dµ= µ̇dω, i.e., µ̇=−iπw hw+, and
the functions rn are associated to the polynomials vn via (2.5) and hence converge to zero geometrically
fast in D.

Theorem 2 develops further the theory of convergent multipoint Padé interpolation started by
the authors in [10, Thm. 4]. In the present work we consider a different class of approximated
functions relaxing the assumptions on w (α,β ∈ [−1/2, c∆) with c∆ < 0 in [10], while in the
present work α,β > −1), but at the same time putting more stringent assumptions on h (merely
Dini-continuous in [10], while here we require it to be as smooth as max{|α|, |β|}). Moreover, the
presently used method of proof yields more detailed information on the speed of convergence and
the behavior of the approximants on∆ (see Theorem 3 below) as compared to the technique used
in [10].

The convergence theory of Padé approximants to Cauchy integrals is strongly interwoven with
asymptotic behavior of underlying orthogonal polynomials that are the denominators of Πn . In
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fact, it is easy to show that fµ−Πn = Rn/qn , where Rn is a function associated to qn via (2.15), and
qn satisfies the orthogonality relations of the form (2.14), (2.16) (see, for example, [10, Thm. 4]).
Hence, Theorem 2 follows from Theorem 3 below.

2.3. Strong Asymptotics for non-Hermitian Orthogonal Polynomials. In this section we in-
vestigate the asymptotic behavior of polynomials satisfying non-Hermitian orthogonality rela-
tions of the form

(2.14)
∫

∆
t j qn(t )wn(t )d t = 0, j ∈ {0, . . . , n− 1},

together with the asymptotic behavior of their functions of the second kind, i.e.,

(2.15) Rn(z) := Rn(qn ; z) =
∫

∆

qn(t )wn(t )

t − z

d t

πi
, z ∈D ,

where {wn} is the sequence of varying weights specified in (2.16).

Theorem 3. Let {qn}, deg(qn) ≤ n, be a sequence of polynomials satisfying orthogonality relations
(2.14) with weights given by

(2.16) wn :=
w hn h

vn
, h = eθ, hn = eθn ,

where θ and w = w(α,β; ·) are as in (2.9), {θn} is a normal family in some neighborhood of ∆, and
{vn} ∈ S(∆). Then, for all n large enough, the polynomials qn have exact degree n and therefore can
be normalized to be monic. Under such a normalization, we have that

(2.17)

¨

qn = [1+ o(1)]/Sn

Rnw = [1+ o(1)]γn Sn

with o(1) satsfying (2.13) locally uniformly in D, where

(2.18) Sn := (2/ϕ)n Swnw
+ , γn := 21−2nGwnw

+ ,

and Rn was defined in (2.15). Moreover, it holds that

(2.19)

¨

qn = [1+ o(1)]/S+n +[1+ o(1)]/S−n
(Rnw)

± = [1+ o(1)] γn S±n
,

where o(1) satisfies (2.13) locally uniformly in∆◦.

The method of proof can also be used to derive the asymptotics of qn and Rn around ±1 as
was done in [33]. However, the corresponding calculations are lengthy and do not impinge on the
convergence of Padé interpolants proper, which is why the authors decided to omit them here.

The appearance of the normal family {θn} in (2.16) is not necessitated by Theorem 2 but is
included for possible application to meromorphic approximation [53].

3. PROOF OF THEOREM 1 AND g -FUNCTIONS

In this section we prove Theorem 1. The notion of g -function, which we introduce along the
way, will be needed later on for the proof of Theorem 3.
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3.1. Parameterization Ξ and functions g and eg . Let {vn} ∈ S(∆) and rn be associated to vn by
(2.5). As required by Definition 1-(2) and (3), the normalized counting measures of the zeros of
rn converge weak∗ to a Borel measure ν , supp(ν) ⊂ D . Denote by V ν

D the Green potential of this
measure with respect to D . It was shown in the course of the proof of [10, Thm. 1, see (4.34)] that
Definition 1-(1) yields

(3.1) V ν
D (z) =−

∫

log

�

�

�

�

�

ϕ(z)−ϕ(t )
1−ϕ(z)ϕ(t )

�

�

�

�

�

d ν(t ).

In other words, the Green kernel − log
�

�

�

�

φ(z)−φ(t )
1−φ(t )φ(z)

�

�

�

�

, where φ is the conformal map of D onto

{|z | > 1} such that φ(∞) =∞ and φ′(∞) > 0, can be replaced by the one in (3.1) for this special
measure ν.

The Green potential V ν
D is a positive harmonic function in D \ supp(ν) whose boundary values

vanish everywhere on∆. Let Lρ := {z : V ν
D (z) = logρ}, ρ> 1, be a level line of V ν

D in Ξ(DΞ), the
range of Ξ. Without loss of generality we may assume that ρ is a regular value and therefore Lρ is
a smooth Jordan curve encompassing ∆ = L1. Denote by O the domain bounded by Lρ and ∆.
Set

(3.2) ∂ f :=
1

2

�

∂x f − i∂y f
�

and ∂̄ f :=
1

2

�

∂x f + i∂y f
�

.

Since ν is a probability measure, it can be verified as in the proof of [10, Thm. 1, see (4.39) and
after] that the function

(3.3) Φ(z) := exp

¨

2
∫ z

1

∂ V ν
D

∂ z
(t )d t

«

= exp

¨

−
∫

log
ϕ(z)−ϕ(t )
1−ϕ(z)ϕ(t )

d ν(t )
«

is well-defined in O and maps it conformally onto the annulus {z : 1< |z |<ρ}whileΦ(±1) =±1,
where we take any path from 1 to z contained in O \∆. Moreover, by direct examination of the
kernel in (3.3), we get that

(3.4) Φ+ =Φ− = 1/Φ− on ∆.

This, in particular, yields that J ◦ Φ is holomorphic across ∆, where J (z) = (z + 1/z)/2 is the
Joukovski transformation. Consequently, the inverse (J ◦Φ)−1 is a holomorphic univalent map in
some neighborhood of [−1,1] that analytically parametrizes ∆. In what follows, we assume that
Ξ= (J ◦Φ)−1.

Based on the conformal map Φ, we define two more functions, g and eg as follows. Set L :=
Φ−1([−ρ,−1]), eL :=Φ−1([1,ρ]) (see Fig. 1), and define

(3.5)
g := logΦ, lim

z→1
g (z) = 0, g ∈H(O \ L),

eg := logΦ−πi , lim
z→−1

eg (z) = 0, eg ∈H(O \ eL).

It follows immediately from (3.4) that

(3.6) g+ =−g− and eg+ =−eg− on ∆.

Hence, g 2 and eg 2 are analytic in Og := (O∪∆)\L and O
eg := (O∪∆)\ eL, respectively. Moreover,

it holds that g 2(∆) = eg 2(∆) = [−π2, 0] and g 2(1) = eg 2(−1) = 0. It is also true that g 2 and eg 2

are univalent in Og and O
eg , respectively. Indeed, suppose that g 2(z1) = g 2(z2), z1, z2 ∈Og . Then

either Φ(z1) = Φ(z2) and therefore z1 = z2 by conformality of Φ or Φ(z1) = 1/Φ(z2), which is
possible only if Φ+(z1) = Φ

−(z2), i.e., if z1 = z2 ∈∆. The case of eg 2 is no different.
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3.2. Jordan arcs ∆n and functions gn and egn . By Definition 1-(2) and upon taking ρ smaller if
necessary, we may assume that functions rn have no zeros in O. Moreover, as rn is holomorphic
in D \∆ and has 2n zeros in D \O, its winding number is equal to−2n on any positively oriented
curve homologous to Lρ and contained in O. In other words, rn has a continuous argument that
decreases by 4nπ as∆ is encompassed once in the positive direction. Thus, the functions

Φn := r−1/2n
n = exp

¨

−
∫

log
ϕ(z)−ϕ(t )
1−ϕ(z)ϕ(t )

d νn(t )
«

,

are well-defined and analytic in O, where νn is the normalized counting measure of the zeros of
rn . Moreover, as the counting measures of zeros of rn converge weak∗ to ν by assumption, the
functions Φn converge to Φ uniformly in O, distinguishing the one-sided values on∆±.

Hence, we can define

(3.7)
gn := logΦn , lim

z→1
gn(z) = 0, gn ∈H(O \ L),

egn := logΦn −πi , lim
z→−1

egn(z) = 0, egn ∈H(O \ eL).

By (2.4), it is straightforward to see that Φ+nΦ
−
n ≡ 1 on∆, and therefore

(3.8) g+n =−g−n and eg+n =−eg
−
n on ∆.

Thus, g 2
n and eg 2

n are analytic in Og and O
eg , respectively. We choose domains OL ⊂ Og and

O
eL ⊂O

eg in such a manner that OL ⊃ eL, O
eL ⊃ L, and OL∪O

eL is simply connected and contains∆
(see Fig. 1). Then it is an easy consequence of the convergence of Φn to Φ that g 2

n and eg 2
n converge

uniformly to g 2 and eg 2 on OL and O
eL, respectively.

�LL

∆n

∆

OL

O

Lρ

1−1

FIGURE 1. The domain O bounded by ∆ and Lρ(light grey), the domain OL ⊂O ∪∆
(dark grey), the cuts L and eL (dashed arcs).

Next, we claim that g 2
n and eg 2

n are univalent for all n large enough in OL and O
eL, respectively.

Assume to the contrary that there exist two sequences of points {z1,n},{z2,n} ⊂ OL such that
g 2

n (z1,n) = g 2
n (z2,n). As OL is compact, we can assume that z j ,n → z j ∈ OL, j = 1,2. Since g 2

n

converges to g 2 uniformly on OL, we have that g 2(z1) = g 2(z2) and therefore z1 = z2. Set dn(z) :=
(g 2

n (z)− g 2
n (z1,n))/(z − z1,n). Then dn are analytic functions on OL that converge uniformly to

d (z) := (g 2(z)− g 2(z1))/(z − z1). Moreover, the values dn(z2,n) are equal to 0 and converge to
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d (z1). Thus, (g 2)′(z1) = d (z1) = 0, which is impossible since g 2 is univalent. This proves the claim
as the case of eg 2

n is no different.
From the above we see that each g 2

n maps OL conformally onto a neighborhood of zero as
g 2

n (1) = 0. Set ∆n,1 to be the preimage of the intersection of this neighborhood with Σ2 :=
{ζ : Arg(ζ ) = π}. Then ∆n,1 is an analytic arc with one endpoint being 1. Analogously, eg 2

n
maps O

eL conformally into another neighborhood of zero. Thus, we can define ∆n,−1 to be again
the preimage of the intersection of this neighborhood with Σ2. Clearly, ∆n,−1 is an analytic arc
with one endpoint being −1. Noticing that g 2

n assumes negative values if and only if eg 2
n assumes

negative values on the common set of definition OL ∩O
eL, we derive that∆n :=∆n,1 ∪∆n,−1 is an

analytic arc with endpoint ±1.

3.3. Parameterizations Ξn and functions g ∗n and eg ∗n . Now, define wn and ϕn with respect to
∆n like w and ϕ were defined in (2.2) and (2.3) with respect to ∆. Clearly, ϕn is an analytic
continuation of ϕ from D onto Dn =C\∆n . Further, let r ∗n be defined by (2.5) with ϕ replaced by
ϕn while keeping the same zeros as rn . Hence, r ∗n and rn are analytic continuations of each other
defined in D and Dn , respectively. Finally, set Φ∗n , g ∗n , and eg ∗n to be the analytic continuations of

Φn , gn , and egn from O, O \L, and O \ eL, onto On := (O ∪∆)\∆n , On \L, and On \ eL, defined in,
by now, obvious manner. Hence

g 2
n = (g

∗
n )

2 and eg 2
n = (eg

∗
n )

2,

while (g ∗n )
2 is negative on∆n . Since, in addition, (g ∗n )

+ =−(g ∗n )
− on∆n , (g ∗n )

± are pure imaginary

on ∆n and |Φ∗n | ≡ 1 there. Therefore, (Φ∗n)
+ = (Φ∗n)

− and (r ∗n )
+ = (r ∗n )

−. Furthermore, Φ∗n maps
On onto some annular domain having the unit circle as a component of its boundary. Arguing
as was done after (3.4), we derive that J ◦Φ∗n is holomorphic across ∆n and that Ξn := (J ◦Φ∗n)

−1

is a holomorphic parameterization of ∆n , Ξn([−1,1]) = ∆n . Moreover, as the functions Φn con-
verge to Φ uniformly in some annular domain encompassing ∆, we see that the functions J ◦Φ∗n
converge locally uniformly to J ◦Φ in some neighborhood of ∆. Hence, the sequence of analytic
parameterizations {Ξn} of ∆n converges uniformly to the analytic parameterization Ξ of ∆ in
some neighborhood of [−1,1]. This finishes the proof of Theorem 1.

4. TRACE THEOREMS AND EXTENSIONS

As is usual in the Riemann-Hilbert approach to asymptotics of orthogonal polynomials, we
shall need to extend the weights of orthogonality from ∆ into subsets of the complex plane. As
the weights are not analytic, this extension will require a special construction that we carry out in
this section.

4.1. Domains with Smooth Boundaries. In this section we suppose that Ω is a bounded simply
connected domain with boundary Γ which is infinitely smooth and contains∆, i.e.,∆⊂ Γ.

Definition 5. Set Lp (Ω), p ∈ [1,∞), to be the space of all measurable functions f such that | f |p is
integrable over Ω. The Sobolev space W1

p (Ω), p ∈ [1,∞), is the subspace of Lp (Ω) that comprises of
functions with weak partial derivatives also in Lp (Ω).

Then the following theorem takes place [30, Thm. 1.5.1.2].

Theorem T1. For each f ∈ W1−1/p
p (Γ), p ∈ (1,∞), there exists F ∈ W1

p (Ω) such that F|Γ = f .
Moreover, the extension operator can be made independent of p. Conversely, for every F ∈W1

p (Ω) it

holds that F|Γ ∈W1−1/p
p (Γ).
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Together with the Sobolev spaces W1
p (Ω), we consider smoothness classes Cm,ς (Ω).

Definition 6. By Cm,ς (Ω), m ∈ Z+, ς ∈ (0,1], we denote the space of all functions on Ω whose
partial derivatives up to the order m are continuous on Ω and whose partial derivatives of order m are
uniformly Hölder continuous on Ω with exponent ς . Moreover, Cm,ς

0 (Ω) will stand for the subset of
Cm,ς (Ω) consisting of functions whose partial derivatives up to order m, including the function itself,
vanish on Γ. Finally, C∞(Ω) will denote the space of functions on Ω whose partial derivatives of any
order exist and are continuous on Ω.

It is known from Sobolev’s imbedding theorem [2, Thm. 5.4] that

(4.1) W1
p (Ω)⊂

¨

L2 p/(2−p)(Ω), p ∈ [1,2),
C0,1−2/p (Ω), p ∈ (2,∞).

Hence, for f ∈W1−1/p
p (Γ), p ∈ (2,∞), the function F granted by Theorem T1 belongs to C0,1−2/p (Ω)

and therefore f ∈C0,1−2/p (Γ), which is exactly what was stated in (2.7).
Later on, we shall need the following proposition.

Proposition 4. Let f be a continuous function on∆ such that f (±1) = 0. If f ∈W1−1/p
p , p ∈ (2,∞),

then there exists F ∈W1
p (Ω) such that F|∆ = f . Moreover, if f ∈C0,ς , ς ∈ (1/2,1], then there exists

F ∈W1
q (Ω) for any q ∈ (2, 1

1−ς ) such that F|∆ := f .

Proof. In both cases set f̃ = f on∆ and f̃ ≡ 0 on Γ\∆. When f ∈W1−1/p
p , it is immediate to check

that f̃ ∈W1−1/p
p (Γ) and therefore the first claim follows from Theorem T1. When f ∈ C0,ς , it

holds that f̃ ∈C0,ς (Γ) and ef ∈W1−1/q
q (Γ) for any q ∈ (1, 1

1−ς ) by an easy estimate (see Definition 4).
Hence, the second claim of the proposition again follows from Theorem T1. �

To state a trace theorem for classes Cm,ς (Ω), we need to introduce the notion of a directional
derivative. Namely, let ξ be a continuous function on Ω and f ∈W1

p (Ω). With the slight abuse of
notation, we define the derivative of f in the direction of the field ξ , denoted by ∂ξ , as

(4.2) ∂ξ f := ξ̄ ∂̄ f + ξ ∂ f =Re(ξ )∂x f + Im(ξ )∂y f ,

where ~ξ is the vector field with values in R2 corresponding to ξ .
As Γ is infinitely smooth, any conformal map φ of Ω onto the unit disk belongs to C∞(Ω) [39,

Thm. 3.6]. Moreover, it holds that φ′ 6= 0 in Ω. Thus, we may set

(4.3) n(z) :=
φ(z)

φ′(z)
and n(z) :=φ(z)

|φ′(z)|
φ′(z)

, z ∈Ω.

Then n,n ∈ C∞(Ω) and n is holomorphic in Ω. Moreover, for any z ∈ Γ, n(z) = n(z)/|n(z)|
represents the complex number corresponding to the outer unit normal to Γ at z. Then the
following theorem takes place [30, Thm. 6.2.6].

Theorem T2(1). Let { fk}m
k=0

be such that fk ∈Cm−k ,ς (Γ), m ∈ N, ς ∈ (0,1], k ∈ {0, . . . , m}. Then

there exists F ∈Cm,ς (Ω) such that (∂ k
n F )|Γ = fk , k ∈ {0, . . . , m}.
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Now, observe that

∂ k
n = |φ

′|k∂ k
n +

k−1
∑

j=1

ck , j∂
j

n ,

where the functions ck , j involve sums and products of the powers of the iterated directional deriva-

tives of |φ′| with respect to the field n and therefore belong to C∞(Ω). Set ck ,k := |φ′|k and
ck , j ≡ 0, j ∈ {k + 1, . . . , m}, k ∈ {1, . . . , m}. Then the matrix Cφ = [ck , j ]

m
k , j=1

is such that

det(Cφ) = |φ′|m(m+1)/2, which is non-vanishing at any z ∈C, and

(∂n, . . . ,∂ m
n )

T =Cφ(∂n , . . . ,∂ m
n )

T.

Thus, to every family of functions { fk}m
k=0

, fk ∈ Cm−k ,ς (Γ), there corresponds another family,

say { f̃k}m
k=0

, f̃k ∈ Cm−k ,ς (Γ), such that there exists F ∈ Cm,ς (Ω) satisfying (∂ k
n F )|Γ = fk and

(∂ k
n F )|Γ = f̃k . Moreover, this correspondence is one-to-one and onto. Hence, Theorem T2(1)

can be equivalently reformulated as follows.

Theorem T2(2). Let { fk}m
k=0

be such that fk ∈Cm−k ,ς (Γ), m ∈ N, ς ∈ (0,1], k ∈ {0, . . . , m}. Then

there exists F ∈Cm,ς (Ω) such that (∂ k
n F )|Γ = fk , k ∈ {0, . . . , m}.

Finally, we define τ := i n. Clearly, τ(z)/|τ(z)|, z ∈ Γ, is the complex number corresponding
to the positively oriented unit tangent to Γ at z. Since n and τ are holomorphic functions such
that τ = i n, it is a simple computation to verify that ∂n∂τF = ∂τ∂n F in Ω. Then the following
proposition holds.

Proposition 5. Let f ∈Cm,ς (∆), m ∈N, ς ∈ (0,1], f (k)(±1) = 0, k ∈ {0, . . . , m}. Then there exists
F ∈Cm,ς (Ω) such that F|∆ = f and ∂̄ F ∈Cm−1,ς

0 (Ω).

Proof. Set f0 = f on ∆ and f0 ≡ 0 on Γ \∆. It is clear that f0 ∈ Cm,ς (Γ). Further, set fk :=
(−i)k∂ k

τ
f0, k ∈ {1, . . . , m}. As fk ∈ Cm−k ,ς (Γ), k ∈ {0, . . . , m}, Theorem T2(2) yields that there

exists F ∈Cm,ς (Ω) such that (∂ k
n F )|Γ = fk . In particular, F|∆ = f .

It remains only to show that ∂̄ F ∈Cm−1,ς
0 (Ω). It can be easily checked that

(4.4) 2n̄∂̄ F = ∂n F + i∂τF =: H in Ω′,

where Ω′ is an annular domain such that Γ⊂ ∂ Ω′ and n is non-vanishing on this domain. As n ∈
C∞(Ω) and is zero free inΩ′, it holds that ∂̄ F ∈Cm−1,ς

0 (Ω) if and only if H ∈Cm−1,ς
0 (Ω). Moreover,

it is immediate from the construction of F that H ∈Cm−1,ς (Ω). Thus, it is only necessary to verify
that all the partial derivatives of H of order k, for any k ∈ {0, . . . , m−1}, vanish on Γ. Since partial
derivatives with respect to n and τ commute, and these fields are non-vanishing and non-collinear
in Ω′, it is enough to show that

0≡ (∂ k1
τ
∂ k2

n H )|Γ =
�

∂ k1
τ
∂ k2+1

n F
�

|Γ
+ i
�

∂ k1+1
τ

∂ k2
n F

�

|Γ

for all k1+ k2 ∈ {0, . . . , m− 1}. The latter holds since
�

∂ k1
τ
∂ k2+1

n F
�

|Γ
= ∂ k1

τ
fk2+1 = (−i)k2+1∂ k1+k2+1

τ
f0 =−i∂ k1+1

τ
fk2
=−i

�

∂ k1+1
τ

∂ k2
n F

�

|Γ
,

by the choice of { fk}. �
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4.2. Domains with Polygonal Boundary. The previous results also hold, with some modifica-
tions, for domains with polygonal boundaries. Namely, let Ω be a domain whose boundary is a
curvilinear polygon consisting of two pieces, say∆1 and∆2, such that they might form corners at
the joints. As we do not strive for generality at this point, we assume that each ∆ j is an analytic
arc connecting −1 and 1.

The first trace theorem of this section states the following [30, Thm. 1.5.2.3].

Theorem T3. Given f j ∈W1−1/p
p (∆ j ), j = 1,2, satisfying f1(±1) = f2(±1), there exists F ∈W1

p (Ω)
such that F|∆ j

= f j , j = 1,2. The choice of F can be made in such a way that it depends only on f j and
not on p.

To state an analogous theorem for the classes Cm,ς (∆ j ), we again need to define normal fields
on∆ j , j = 1,2. Let Γ j be an infinitely smooth Jordan curve such that∆ j ⊂ Γ j . Moreover, assume
that the interior domain of Γ j , say Ω j , contains Ω, j = 1,2. Define n j for Ω j as it was done in
(4.3). Composing with a self-map of the disk if necessary, we can choose conformal maps in (4.3)
so n j does not vanish in Ω. Further, set τ j := i n j if Ω lies on the left side of ∆ j and τ j := −i n j
otherwise. In particular, the fields τ j and n j commute, are infinitely smooth, non-vanishing and
non-collinear. Finally, observe that (4.4) holds with n, τ, and Ω′ replaced by n j , τ j , Ω, and the
plus sign replaced by the minus sign in the right-hand side of (4.4) when τ j =−i n j .

With all the necessary material at hand, we can state a special case of the trace theorem for
smoothness classes on domains with polygonal boundary2 [30, Cor. 6.2.8].

Theorem T4. Given { f j k}m
k=0

, f j k ∈Cm−k ,ς (∆ j ), m ∈N, ς ∈ (0,1], j = 1,2, satisfying f (k2)
j k1
(±1) =

0, k1+ k2 ∈ {0, . . . , m}, there exists F ∈Cm,ς (Ω) such that (∂ k
n j

F )|∆ j
= f j k , k ∈ {0, . . . , m}, j = 1,2.

Now, as in Section 4.1, we shall make Theorems T3 and T4 suit our needs. Let ∆ be a closed
analytic Jordan arc and ∆± be two closed analytic Jordan arcs with endpoints ±1 such that the
interior domain of∆∪∆+, say Ω+, is simply connected and lies to the left of∆ while the interior
domain of∆∪∆−, sayΩ−, is again simply connected and lies to the right of∆. Then the following
proposition holds.

Proposition 6. Let f be a continuous function on∆ such that f (±1) = 0. If f ∈W1−1/p
p , p ∈ (2,∞),

then there exist F± ∈W1
p (Ω±) such that

(4.5) F±|∆ =± f and F±|∆± ≡ 0.

Moreover, if f ∈C0,ς , ς ∈ (1/2,1], then there exist F± ∈W1
q (Ω±) for any q ∈ (2, 1

1−ς ) satisfying (4.5).

Proof. This proposition follows from Theorem T3 in the same fashion as Proposition 4 followed
from Theorem T1. �

Finally, we state the counterpart of Proposition 5 for domains with corners.

Proposition 7. Let f ∈Cm,ς (∆), m ∈ N, ς ∈ (0,1], f (k)(±1) = 0, k ∈ {0, . . . , m}. Then there exist
functions F± ∈Cm,ς (Ω±) such that

(4.6) F±|∆ =± f , F±|∆± ≡ 0, and ∂̄ F± ∈Cm−1,ς
0 (Ω±).

2In Theorem T4 we use non-unit normal fields n j rather than fields that are unit on ∆ j as it was done in the original
reference. However, we have already explained after Theorem T2(1) that these formulations are equivalent.
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Proof. First, we consider the case of Ω+. By setting f1k := (−i)k f (k), k ∈ {0, . . . , m}, we see that
f1k ∈Cs−k (∆), k ∈ {0, . . . , m}. Moreover, after putting f2k ≡ 0, we observe that

f (k2)
j k1
(±1) = 0, k1+ k2 ∈ {0, . . . , m}, j = 1,2.

Then the existence of F+ in Cm,ς (Ω+) follows from Theorem T4. The fact that ∂̄ F+ ∈Cm−1,ς
0 (Ω+)

can be shown exactly as in Proposition 5. In the case of Ω− the only difference is that we need to
set f1k :=−i k f (k) since this time the normal and tangent on∆ satisfy τ =−i n. �

5. SCALAR BOUNDARY VALUE PROBLEMS

In this section we dwell on smoothness properties of certain integral operators.

5.1. Integral Operators. Below we introduce contour and area integral operators and explain the
solution of a certain ∂̄ -problem.

Let φ be an Lp , p > 1, function on ∆, where Lp = Lp (∆) stands for the space of functions
with p-summable modulus on ∆ with respect to arclength differential |d t |. The Cauchy integral
operator on∆ is defined by

(5.1) Cφ(z) :=C∆φ(z) =
1

2πi

∫

∆

φ(t )

t − z
d t , z ∈D .

It is known that Cφ is a holomorphic function in D with Lp traces on ∆, i.e., non-tangential
limits a.e. on ∆, from above and below denoted by C ±φ. These traces are connected by the
Sokhotski-Pemelj formulae [24, Sec. I.4.2], i.e.,

(5.2) C +φ−C −φ=φ and C +φ+C −φ=S φ, a.e. on ∆,

where S is the singular integral operator on∆ given by

(5.3) S φ(τ) :=S∆φ(τ) =
1

πi

∫

∆

φ(t )

t −τ
d t , τ ∈∆◦,

with the integral being understood in the sense of the principal value.
Let nowΩ be a simply connected bounded domain with smooth boundary Γ. We defineCΓ and

SΓ by (5.1) and (5.3) integrating this time over Γ rather than ∆. The Sokhotski-Plemelj formulae
(5.2) still hold for φ ∈ Lp (Γ), p > 1, with the only difference that now CΓφ is a sectionally
holomorphic function and therefore C +Γ φ is the trace of CΓφ from within Ω and C −Γ φ is the
trace of CΓφ from within C \Ω.

Concerning the smoothness of CΓφ the following is known. If φ ∈ C0,ς (Γ), ς ∈ (0,1), then
CΓφ ∈C0,ς (Ω) [24, Sec. 5.5.1]. In particular, this means that CΓφ extends continuously from Ω
to Γ. Further, if φ is continuously differentiable on Γ, then C ′Γφ =CΓφ

′ [24, Sec. 4.4.4]. Thus,
we may conclude that when φ ∈Cm,ς (Γ), m ∈Z+, ς ∈ (0,1), then CΓφ ∈Cm,ς (Ω).

Let now φ ∈ Lp (Ω). The Cauchy area integral on Ω is defined as

(5.4) K φ(z) :=
1

2πi

∫∫

Ω

φ(ζ )

ζ − z
dζ ∧ d ζ̄ , z ∈Ω.

Then it is well-known [5, Sec. 4.9] that

(5.5) ∂̄K φ=φ and ∂K φ=Bφ,
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in the distributional sense, whereB is the Beurling transform, i.e.,

(5.6) Bφ(z) :=
1

2πi

∫∫

Ω

φ(ζ )

(ζ − z)2
dζ ∧ d ζ̄ , z ∈Ω,

and the integral is understood in the sense of the principal value.
The transformationK defines a bounded operator from Lp (Ω) into L2 p/(2−p)(Ω) for p ∈ (1,2),

[5, Thm. 4.3.8], and into C1−2/p (Ω) for p ∈ (2,∞), [5, Thm. 4.3.13]. Since nothing prevents
us from taking z outside of Ω, K φ is, in fact, defined throughout C and is clearly holomorphic
outside of Ω and vanishes at infinity. Moreover,K φ is continuous across Γwhen p ∈ (2,∞). The
latter can be easily seen if we continue φ by zero to a larger domain, say eΩ, and observe that this
extension is in Lp (eΩ).

The Beurling transform B defines a bounded operator from a weighted space Lp
v (C) := { f :

f p v ∈ Lp (C)} into itself when the non-negative function v is an Ap -weight (Muckenhoupt weight),
p ∈ (1,∞) [5, Thm. 4.9.6]. Let φ ∈ Lp (Ω). We can suppose that φ ∈ Lp (C) with φ ≡ 0 outside
of Ω and therefore φ/w ∈ Lp

|w|p (C). It holds that |w|p is an Ap -weight for p > 2 [28, Sec. 9.1.b].

Thus,B(φ/w) ∈ Lp
|w|p (C) and therefore

(5.7) φ ∈ Lp (Ω) implies wB(φ/w) ∈ Lp (Ω), p > 2.

Finally, we point out that φ ∈W1
p (Ω) can be recovered by means CΓ and K in the following

fashion:

(5.8) φ=CΓφ+K ∂̄ φ a.e. in Ω,

which is the Cauchy-Green formula for Sobolev functions.

5.2. Functions of the Second Kind. Let Rn be given by (2.15) with qn satisfying (2.14) and wn
defined as in (2.16). Clearly, Rn is holomorphic in D , and it vanishes at infinity with order at least
n + 1, i.e., Rn = O(z−n−1) as z →∞, on account of (2.14). It is also clear that Rn = 2C (qn wn).
Thus, it holds by (5.2) that

R+n −R−n = 2qn wn .

Further, since qn wn/w = qn hn h/vn is Hölder continuous by the conditions of Theorem 3, we
have that

(5.9) Rn =







O(|1− z |α), if α < 0,
O(log |1− z |), if α= 0,
O(1), if α > 0,

and analogous asymptotics holds near −1. Indeed, the case α < 0 follows from [24, Sec. I.8.3 and
I.8.4]. (Observe that we defined (1− t )α, t ∈∆◦, as the values on ∆ of (1− z)α, where the latter
is holomorphic outside of the branch cut taken along ∆r . However, (1− t )α equivalently can be
regared as the boundary values of (1− z)α on ∆+, where the latter is holomorphic outside of the
branch cut taken along∆l ∪∆. Hence, the analysis in [24, Sec. I.8.3] indeed applies to the present
situation.) The case α = 0 follows from [24, Sec. I.8.1 and I.8.4]. Finally, the case α > 0 holds
since Rn(1) exists for such α as wn(t )/(t − 1) is integrable near 1 in this situation.
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5.3. Szegő Functions. Let θ ∈Cm,ς , m ∈ Z+, ς(0,1], and h := eθ. The definition of the Szegő
function given in (2.11) can be rewritten as

Sh = exp

¨

wC
�

θ

w+

�

−
1

2

∫

θdω
«

.

Note that decomposition (2.12) easily follows from the Sokhotski-Plemelj formulae (5.2). More-
over, as the lemma in the next section shows, the traces S±

h
belong to Cm,ς ′ , 0 < ς ′ < ς , and

S+
h
(±1) = S−

h
(±1). In particular, the functions3 c+

h
:= S+

h
/S−

h
and c−

h
:= S−

h
/S+

h
are continuous on

∆ and assume value 1 at ±1. It also follows from the Sokhotski-Plemelj formulae that

(5.10) c±
h
= exp

¨

w±S
�

θ

w+

�«

.

The following facts are explained in detail in [10, Sec. 3.2 and 3.3]. First, if θ1,θ2 ∈ Cm,ς ,
then Sh1 h2

= Sh1
Sh2

. Second, if {θn} is a normal family in some neighborhood of ∆ then {Shn
}

is a normal family in D . If, in addition, {θn} converges then {Shn
} converges as well and the

convergence is uniform on the closure of D , that is, including the boundary values from each side.
Third, the uniqueness of decomposition (2.12), which was shown, for instance, in [53, eq. (2.7)

and after], implies the following formula for the Szegő function of the polynomial vn , deg(vn)≤
2n, with zeros in D :

(5.11) Sv2
n
= S2

vn
=

1

Gvn

vn

rnϕ
2n

,

where rn was defined in (2.5).
Fourth, observe that it is possible to define continuous arguments of (z + 1)/ϕ(z) and (z −

1)/ϕ(z) that vanish on the real axis in some neighborhood of infinity. Therefore it holds that

(5.12) Sw (z) =
�

2
z − 1

ϕ(z)

�α/2�

2
z + 1

ϕ(z)

�β/2

and Gw = 2−(α+β),

where w was defined in (2.1) and the branches of the power functions are taken such that the
positive reals are mapped into the positive reals.

Finally, using (5.12) with w = w(1/2,1/2; ·) we have that

S+w (t )S
−
w (t ) = 2

p

1− t 2 =−2iw+(t ) t ∈∆.

Hence, we get that

(5.13) Sw+ =
Æ

2w/ϕ and Gw+ = i/2,

where, as usual, the branch of the square root is chosen so that Sw+ is positive for large positive
reals. It will be useful for us later to note that

(5.14) (ϕSw+)
± = (S±

w+
)2

ϕ±

S±
w+

S∓
w+

S∓
w+
= (S±

w+
)2

iϕ±

±2w±
S∓
w+
=±i S∓

w+
,

where we used (2.12) and (5.13).

3Here we slightly abuse the notation and use superscripts + and − as a part of the symbol for the function. However,
in Lemma 16 we shall construct a function ch whose traces on∆ will coincide with c±

h
.
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5.4. Smoothness of a Singular Integral Operator. In this section we show that the boundary
values on ∆ of the Szegő function of eθ have essentially the same Sobolev or Hölder smoothness
as θ.

We start with the case of functions in W1−1/p
p , p ∈ (2,∞). Observe that W1−1/q

q ⊃W1−1/p
p when

q < p, which is immediate from Definition 4.

Proposition 8. Let θ ∈W1−1/p
p , p ∈ (2,∞). Then

w±S (θ/w+) =±d +w±`, d (±1) = 0,

where d ∈W1−1/q
q for any q ∈ (2, p) and ` is a polynomial, deg(`)≤ 1.

Proof. It follows immediately from Cauchy integral formula and the Sokhotski-Plemelj formulae
(5.2) that

(5.15) C
� 1

w+

�

=
1

2w+
and S

� 1

w+

�

= 0.

Hence, for any polynomial `0 and τ ∈∆◦ it holds that

S
�

`0

w+

�

(τ) =
1

πi

∫

∆

`0(t )

t −τ
d t

w+(t )
=

1

πi

∫

∆

`0(t )− `0(τ)

t −τ
d t

w+(t )
= `1(τ),

where `1 is a polynomial, deg(`1)< deg(`0), since `0(·)−`0(τ)
·−τ is a polynomial in τ. Choose `0 to be

the polynomial interpolating θ at ±1, deg(`0)≤ 1. Then

w±S
�

θ

w+

�

=w±S
�

θ− `0

w+

�

+w±`1.

Thus, it holds by (5.2) that

w±S
�

θ

w+

�

= 2w±
�

C +
�

θ− `0

w+

�

− `2

�

∓ (θ− `0)+w±(2`2+ `1),

where `2, deg(`2)≤ 1 will be chosen later. Set ` := `1+ 2`2 and

d := 2w+
�

C +
�

θ− `0

w+

�

− `2

�

− (θ− `0) =: 2d1− (θ− `0).

Clearly, to prove the proposition, we need to show that d1 ∈W1−1/q
q and d1(±1) = 0.

Let Γ be any infinitely smooth curve containing∆. Assume also that the inner domain of Γ, say
Ω, lies to the left of∆, i.e.,∆+ is accessible from within Ω. Define θe |∆ := θ−`0 and θe |Γ\∆ ≡ 0. It

is clear that θe ∈W1−1/p
p (Γ). Moreover, since θe is identically zero on Γ \∆, it holds by (5.2) that

d1 =w+
�

C +
�

θe

w+

�

− `2

�

=w

�

C +Γ

�

θe

w

�

− `2

�

,

where from now on we agree that w|Γ is the trace of w from within Ω, i.e. it is equal to w+ on∆.
Furthermore, we can regard d1 as a function holomorphic in Ω. Thus, by Theorem T1, to show
that d1|∆ ∈W1−1/q

q it is enough to prove that d1 ∈W1
q (Ω), q ∈ (2, p). As d1 is holomorphic in Ω, it

is, in fact, sufficient to get that ∂ d1 ∈ Lq (Ω).
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Now, Proposition 4 insures that there exists Θ ∈ W1
p (Ω) such that Θ|Γ = θe . Observe that

Θ/w ∈W1
s (Ω) for any s ∈ [1, 4 p

p+4 ) since ∂ Θ/w, ∂̄ Θ/w ∈ Ls (Ω) by Hölder inequality and Θ/w3 ∈
Ls (Ω) by the estimate

�

�

�

�

�

zΘ(z)

w3(z)

�

�

�

�

�

≤ const.|z2− 1|−2/p−1/2, z ∈Ω,

where we used the definition of Θ and (4.1). Thus, Cauchy-Green formula (5.8) applied to Θ/w
implies that

∂ d1 = ∂

 

Θ−wK
 

∂̄ Θ

w

!

−w`2

!

= ∂ Θ− ∂
 

wK
 

∂̄ Θ

w

!!

−w`′2−
z`2

w

a.e. in Ω, where we used that ∂̄ w= 0. Since ∂ Θ ∈ Lp (Ω) and w`′2 is bounded, it is only necessary
to show that

∂

 

wK
 

∂̄ Θ

w

!!

−
z`2

w
=

z

w

 

K
 

∂̄ Θ

w

!

− `2

!

+w∂K
 

∂̄ Θ

w

!

=
z

w

 

K
 

∂̄ Θ

w

!

− `2

!

+wB
 

∂̄ Θ

w

!

belongs to Lq (Ω), q ∈ (2, p), where we used (5.5). The fact that wB(∂̄ Θ/w) ∈ Lp (Ω) follows from
(5.7). Now, to show that (1/w)

�

K (∂̄ Θ/w)− `2

�

∈ Lq (Ω), q ∈ (2, p), recall that ∂̄ Θ/w ∈ Ls (Ω)

for any s ∈ [1, 4 p
p+4 ). So, as mentioned after (5.6), K (∂̄ Θ/w) ∈ L2s/2−s (Ω) when p ∈ (2,4], i.e.,

s ∈ ( 43 , 2); andK (∂̄ Θ/w) ∈C0,1−2/s (Ω) when p ∈ (4,∞), i.e., s can be chosen to lie in
�

2, 4 p
p+4

�

.

In the first case, we get that (1/w)K (∂̄ Θ/w) ∈ Lq (Ω), q ∈ (2, p), simply by applying Hölder
inequality once more. This shows that ∂ d1 ∈ Lq (Ω), q ∈ (2, p), when p ∈ (2,4] with `2 ≡ 0. In
the second case, let `2 be the polynomial interpolatingK (∂̄ Θ/w) at ±1, deg(`2)≤ 1. Then

�

�

�

�

�

�

z

w(z)

 

K
 

∂̄ Θ

w

!

− `2

!

(z)

�

�

�

�

�

�

≤ const.|z2− 1|(s−4)/2s , z ∈Ω.

Since s−4
2s ∈

�

− 1
2 ,− 2

p

�

, it holds that (1/w)
�

K (∂̄ Θ/w)− `2

�

∈ Lq (Ω), q ∈ (2, p), which shows

that ∂ d1 ∈ Lq (Ω), q ∈ (2, p), when p ∈ (4,∞).
It only remains to show that d1(±1) = 0. As θe ∈ C1−2/p (Γ) by (2.7) and θe (±1) = 0, the

functionC +(θe/w
+) is either bounded near±1 or blows up there with the order strictly less than

1/2 [24, Sec. I.8.4], see also (5.9). Thus, w+C +(θe/w
+) vanishes at ±1 and so does d1. �

We continue with the case of functions in Cm,ς .

Proposition 9. Let θ ∈Cm,ς , m ∈Z+, ς ∈ (0,1]. Then

w±S (θ/w+) =±d +w±`, d (k)(±1) = 0, k ∈ {0, . . . , m},

where ` is a polynomial, deg(`)≤ 2m+ 1, and d ∈Cm,ς when ς ∈
�

0, 1
2

�

∪
�

1
2 , 1
�

, while d ∈Cm,ς−ε

for arbitrarily small ε > 0 when ς = 1
2 , 1.
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When ς ∈
�

0, 1
2

�

, the conclusion of the proposition follows from [21, Thm. 3]. Therefore,

we are required4 to prove Proposition 9 only for ς ∈
�

1
2 , 1
�

. To this end, we shall need several
geometrical lemmas. In all of them we assume that Γ is as in Proposition 8 and we omit superscript
+ for w when dealing with the values of w on ∆. By CΓ we shall denote a constant such that
|τ| ≤CΓ, τ ∈ Γ. Moreover, τ1 and τ2 will stand for two different points on Γ satisfying

(5.16) |1−τ2
1 | ≤ |1−τ

2
2 |.

Lemma 10. Let N ∈N or N =−1. Then

(5.17)

�

�

�

�

�

1

wN (τ1)
−

1

wN (τ2)

�

�

�

�

�

≤C1|N |max

(

1

|1−τ2
1 |

1+N/2
,

1

|1−τ2
2 |

1+N/2

)

|τ1−τ2|,

where C1 is a constant depending only on Γ.

Proof. If N is an even integer, then
�

�

�

�

�

1

wN (τ1)
−

1

wN (τ2)

�

�

�

�

�

=
1

|1−τ2
1 |

N/2

�

�

�

�

�

�

1−
 

1−τ2
1

1−τ2
2

!N/2
�

�

�

�

�

�

=
|τ2

1 −τ
2
2 |

|1−τ2
1 |

N/2|1−τ2
2 |

�

�

�

�

�

�

N/2−1
∑

j=0

 

1−τ2
1

1−τ2
2

! j
�

�

�

�

�

�

≤
NCΓ|τ1−τ2|
|1−τ2

1 |
1+N/2

by (5.16). If N is an odd integer, then
�

�

�

�

�

1

wN (τ1)
−

1

wN (τ2)

�

�

�

�

�

=
1

|1−τ2
1 |

N/2|1−τ2
2 |

1/2

�

�

�

�

�

�

w(τ2)−w(τ1)

 

1−τ2
1

1−τ2
2

!(N−1)/2
�

�

�

�

�

�

=
|w(τ1)−w(τ2)|

|1−τ2
1 |

N/2|1−τ2
2 |

1/2
+
(N − 1)CΓ|τ1−τ2|
|1−τ2

1 |
N/2|1−τ2

2 |
by the first estimate and (5.16). Clearly, it only remains to prove the lemma for N = −1. It can
be readily verified that it is enough to consider |τ1 − τ2| small enough. As w is zero free in Ω,
interior of Γ, an argument function, say a, is well-defined and continuous in Ω. Since w extends
holomorphically across ∆◦ and Γ \∆, the trace of a is uniformly continuous on any compact
subset of Γ \ {±1}. Moreover, it also has one-sided limits at ±1 with the jumps of magnitude π/2.
Thus, there exists δ > 0 such that for all |τ1−τ2|<δ it holds that |a(τ1)− a(τ2)|<

2π
3 . Then

|w(τ1)+w(τ2)| ≥ |w(τ2)| −
1

2
|w(τ1)| ≥

1

2
|w(τ2)|

for |τ1−τ2|<δ by (5.16) for the last inequality and therefore

|w(τ1)−w(τ2)| ≤ 2CΓ
|τ1−τ2|

|w(τ1)+w(τ2)|
≤ 4CΓ

|τ1−τ2|
|1−τ2

2 |
1/2

,

which finishes the proof of the lemma. �

Lemma 11. Let % ∈C0,ς (Γ), ς ∈
�

1
2 , 1
�

, and %(±1) = 0. Then (%/w) ∈C0,ς−1/2(Γ) and

(5.18)

�

�

�

�

�

%(τ1)

w(τ1)
−
%(τ2)

w(τ2)

�

�

�

�

�

≤C2 min

(

1

|1−τ2
1 |

1/2
,

1

|1−τ2
2 |

1/2

)

|τ1−τ2|
ς ,

4The authors were surprised not to find this case in the literature.



CONVERGENT INTERPOLATION AND JACOBI-TYPE WEIGHTS 21

where C2 is a constant depending only on Γ.

Proof. We start by proving (5.18). By the condition of the lemma it holds that

(5.19)

¨

|%(τ1)−%(τ2)| ≤M |τ1−τ2|ς

|%(τ)| ≤M |1−τ2|ς ,
τ1,τ2,τ ∈ Γ,

for some finite constant M . Set, for brevity, κ := %/w. First, let τ1 = 1. Observe that

|κ(τ)| ≤M |1−τ2|ς−1/2 ≤M (1+CΓ)
|1−τ|ς

|1−τ2|1/2

by (5.19). Thus, κ(1) = 0 by continuity and it holds that

(5.20) |κ(τ1)−κ(τ2)| ≤M (1+CΓ)
|τ1−τ2|ς

|1−τ2
2 |

1/2
.

Clearly, an analogous bound holds when τ1 =−1.
Second, let |τ1−τ2| ≥ |1−τ2

1 |. In this case, we also have that

(5.21) |1−τ2
2 | ≤ |τ

2
1 −τ

2
2 |+ |1−τ

2
1 | ≤C ∗Γ |τ1−τ2|, C ∗Γ := 1+ 2CΓ.

Then it follows from (5.19), (5.16), and (5.21) that

|κ(τ1)−κ(τ2)| ≤ |κ(τ1)|+ |κ(τ2)| ≤M
�

|1−τ2
1 |
ς−1/2+ |1−τ2

2 |
ς−1/2

�

≤ 2M |1−τ2
2 |
ς−1/2 ≤ 2M (C ∗Γ)

ς |τ1−τ2|ς

|1−τ2
2 |

1/2
.(5.22)

Third, let |τ1−τ2| ≤ |1−τ2
1 |. Then, it also holds that

(5.23) |1−τ2
2 | ≤ |1−τ

2
1 |+ |τ

2
1 −τ

2
2 | ≤C ∗Γ |1−τ

2
1 |.

Thus, (5.19) and Lemma 10 imply that

|κ(τ1)−κ(τ2)| ≤ |%(τ1)|

�

�

�

�

�

1

w(τ1)
−

1

w(τ2)

�

�

�

�

�

+
|%(τ1)−%(τ2)|
|w(τ2)|

≤ M |1−τ2
1 |
ςC1

|τ1−τ2|
|1−τ2

1 |
3/2
+M

|τ1−τ2|ς

|1−τ2
2 |

1/2
.

Using the conditions |τ1−τ2| ≤ |1−τ2
1 | and (5.23), we obtain that

|κ(τ1)−κ(τ2)| ≤ M |τ1−τ2|
ς

 

C1

|τ1−τ2|1−ς

|1−τ2
1 |

1−ς

1

|1−τ2
1 |

1/2
+

1

|1−τ2
2 |

1/2

!

≤ M (C1

Æ

C ∗Γ + 1)
|τ1−τ2|ς

|1−τ2
2 |

1/2
.(5.24)

This finishes the proof of (5.18).
Finally, it can be readily verified that the equations leading to (5.20), (5.22), and (5.24) also yield

that κ ∈C0,ς−1/2(Γ) and hence, the lemma is proved. �

Lemma 12. Let % be as in Lemma 11. Then SΓ(%/w) ∈C0,ς−1/2(Γ) and

(5.25)
�

�

�

�

SΓ
�%

w

�

(τ1)−SΓ
�%

w

�

(τ2)
�

�

�

�

≤C3 min

(

1

|1−τ2
1 |

1/2
,

1

|1−τ2
2 |

1/2

)

|τ1−τ2|
ς ,
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where C3 is a constant depending only on Γ.

Proof. Since κ := %/w ∈C0,ς−1/2(Γ),SΓκ ∈C0,ς−1/2(Γ) as well by [24, Sec. I.5.1]. To prove (5.25),
one needs to trace the local character of the proof in [24, Sec. I.5.1]. This is a tedious job but the
authors felt compelled to carry it out for the reader.

Define

S (τ) :=SΓκ(τ)−κ(τ) =
1

πi

∫

Γ

κ(t )−κ(τ)
t −τ

d t , τ ∈ Γ.

In the light of (5.18), it is enough to show (5.25) with SΓκ replaced by S . Observe also that the
integral that defines S is no longer singular as κ(±1) = 0.

Denote by Γ∗ the connected component of Γ∩ {τ : |τ1− τ| ≤ 2|τ1− τ2|} that contains τ1. We
order τ1 and τ2 so that (5.16) holds. Then we can write

S (τ2)−S (τ1) =
1

πi

∫

Γ∗

κ(τ)−κ(τ2)

τ−τ2
dτ−

1

πi

∫

Γ∗

κ(τ)−κ(τ1)

τ−τ1
dτ

+
1

πi

∫

Γ\Γ∗

κ(τ1)−κ(τ2)

τ−τ1
dτ+

1

πi

∫

Γ\Γ∗

(τ2−τ1)(κ(τ)−κ(τ2))

(τ−τ1)(τ−τ2)
dτ

= I1+ I2+ I3+ I4.

Before we continue, observe that there exists a finite constant M such that

(5.26) |Γ(t ,τ)| ≤M |t −τ|, t ,τ ∈ Γ,

since Γ is a smooth Jordan curve, where |Γ(t ,τ)| is the arclength of the smallest subarc of Γ con-
necting t and τ.

First, let us estimate I1. We get from (5.18) and (5.26) that

|I1| ≤
C2

π
sup
τ∈Γ∗

min

(

1

|1−τ2|1/2
,

1

|1−τ2
2 |

1/2

)

∫

Γ∗

|dτ|
|τ−τ2|1−ς

≤
C2M 1−ς

π|1−τ2
2 |

1/2

∫ 4M |τ1−τ2|

0

d s

s1−ς ≤
C24ςM

ςπ

|τ1−τ2|ς

|1−τ2
2 |

1/2
.(5.27)

Clearly, an analogous estimate can be made for I2.
Now, we shall estimate I3. It holds that

|I3|=

�

�

�

�

�

(κ(τ1)−κ(τ2)) log

�

τa −τ1

τb −τ1

�

�

�

�

�

�

,

where τa and τb are the endpoints of Γ∗. As |τa −τ1|= |τb −τ1|, we have that

(5.28) |I3| ≤ const.
|τ1−τ2|ς

|1−τ2
2 |

1/2
,

where const. is the product of C2 and the maximum of the argument of τa−τ1
τb−τ1

for all possible
choices of τa and τb .

Finally, let us estimate I4. Observe that |τ−τ1| ≤ 2|τ−τ2|, τ ∈ Γ \Γ∗, since

|τ−τ1| ≤ |τ−τ2|+ |τ1−τ2| ≤ |τ−τ2|+
1

2
|τ−τ1|.
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Then we get from (5.18) and the bound above that

|I4| ≤
C2

π
max
τ∈Γ\Γ∗

min

(

1

|1−τ2|1/2
,

1

|1−τ2
2 |

1/2

)

∫

Γ\Γ∗

|τ2−τ1||dτ|
|τ−τ1||τ−τ2|1−ς

=
C2

π

|τ2−τ1|
|1−τ2

2 |
1/2

∫

Γ\Γ∗

�

�

�

�

�

τ−τ1

τ−τ2

�

�

�

�

�

1−ς |dτ|
|τ−τ1|2−ς

≤
C221−ςM 2−ς

π

|τ2−τ1|
|1−τ2

2 |
1/2

∫ ∞

2|τ1−τ2|

d s

s2−ς =
C2M 2−ς

(1− ς)π
|τ2−τ1|ς

|1−τ2
2 |

1/2
.(5.29)

Combining (5.27), (5.28), and (5.29) with (5.18), we see that (5.25) holds. �

Lemma 13. Let % ∈C0,υ, υ ∈
�

0, 1
2

�

, %(±1) = 0, be such that

|%(τ1)−%(τ2)| ≤C4 min

(

1

|1−τ2
1 |

1/2
,

1

|1−τ2
2 |

1/2

)

|τ1−τ2|
υ+1/2,

τ1,τ2 ∈ Γ, τ1 6= τ2, where C4 is a constant depending only on Γ. Then w% ∈C0,υ+1/2(Γ). Further, let
% ∈CN ,υ(Γ), N ∈N, %( j )(±1) = 0, j ∈ {0, . . . ,N}. Then

(5.30)







(%/w2N−1) ∈C0,υ+1/2(Γ) if υ ∈
�

0, 1
2

�

,

(%/w2N+1) ∈C0,υ−1/2(Γ) if υ ∈
�

1
2 , 1
�

.

Proof. To verify the first claim, assume first that |τ1−τ2| ≥ |1−τ2
1 |. Since % ∈C0,υ(Γ) and vanishes

at ±1, it holds for some finite constant M that

(5.31) |%(τ)| ≤M |1−τ2|υ.

Then we get from (5.21) and the inequality above that

(5.32) |(w%)(τ1)− (w%)(τ2)| ≤M
�

|1−τ2
1 |
ς + |1−τ2

2 |
ς
�

≤M (1+C ∗Γ)|τ1−τ2|
ς .

Assume now that |τ1 − τ2| ≤ |1− τ2
1 |. Then we get by (5.31), (5.17), and the conditions of the

lemma that

|(w%)(τ1)− (w%)(τ2)| ≤ |w(τ2)| |%(τ1)−%(τ2)|+ |%(τ1)||w(τ1)−w(τ2)|

≤ |1−τ2
2 |

1/2C4

|τ1−τ2|υ+1/2

|1−τ2
2 |

1/2
+M |1−τ2

1 |
υC1

|τ1−τ2|
|1−τ2

1 |
1/2

≤ (C4+C1M )|τ1−τ2|
υ+1/2.(5.33)

Equations (5.32) and (5.33) show that (w%) ∈C0,υ+1/2(Γ).
It remains to prove (5.30). Suppose first that υ ∈

�

0, 1
2

�

. Then, by the assumptions on %, it
holds for some finite constant M that

(5.34)







�

�

�%(τ2)−
∑N

j=1%
( j )(τ1)(τ2−τ1)

j
�

�

�≤M |τ2−τ1|N+υ,
�

�

�%( j )(τ)
�

�

�≤M |1−τ2|N− j+υ,
τ1,τ2,τ ∈ Γ.
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Thus, for |τ1−τ2| ≥ |1−τ2
1 |, we have from (5.34) and (5.21) that

�

�

�

�

�

%(τ1)

w2N−1(τ1)
−

%(τ2)

w2N−1(τ2)

�

�

�

�

�

≤

�

�

�

�

�

%(τ1)

w2N−1(τ1)

�

�

�

�

�

+

�

�

�

�

�

%(τ2)

w2N−1(τ2)

�

�

�

�

�

≤M (1+(C ∗Γ)
ς )|τ1−τ2|

υ+1/2.

For |τ1−τ2| ≤ |1−τ2
1 |, we have from (5.34) that

�

�

�

�

�

%(τ1)

w2N−1(τ1)
−

%(τ2)

w2N−1(τ2)

�

�

�

�

�

=

�

�

�

�

�

�

%(τ1)

w2N−1(τ1)
±

N
∑

j=0

%( j )(τ1)(τ2−τ1)
j

w2N−1(τ2)
−

%(τ2)

w2N−1(τ2)

�

�

�

�

�

�

≤

�

�

�

�

�

�

%(τ1)

w2N−1(τ1)
−

N
∑

j=0

%( j )(τ1)(τ2−τ1)
j

w2N−1(τ2)

�

�

�

�

�

�

+
M |τ2−τ1|N+υ

|1−τ2
2 |

N−1/2

≤ I +M |τ2−τ1|
υ+1/2.

Furthermore, it holds by (5.17) and (5.34) that

I ≤
N
∑

j=0

�

�

�

�

�

%( j )(τ1)(τ2−τ1)
j

�

1

w2N−1(τ1)
−

1

w2N−1(τ2)

�

�

�

�

�

�

+
N
∑

j=1

�

�

�

�

�

%( j )(τ1)(τ2−τ1)
j

w2N−1(τ1)

�

�

�

�

�

≤ (2N − 1)C1M
N
∑

j=0

|1−τ2
1 |

N− j+υ|τ2−τ1| j+1

|1−τ2
1 |

N+1/2
+M

k
∑

j=1

|1−τ2
1 |

N− j+υ|τ2−τ1| j

|1−τ2
1 |

N−1/2

≤ 2NC1M
N+1
∑

j=1

�

�

�

�

�

τ2−τ1

1−τ2
1

�

�

�

�

�

j−υ−1/2

|τ2−τ1|
υ+1/2 ≤ 2N 2C1M |τ2−τ1|

υ+1/2.

Clearly, the case υ ∈
�

1
2 , 1
�

can be handled in a similar fashion. �

Proof of Proposition 9. Clearly, we need to prove the proposition only for ς 6= 1
2 , 1 as these two

cases follow from the obvious inclusion Cm,ς−ε ⊂Cm,ς .
Let `0, deg(`0)≤ 2m+1, be the polynomial interpolating θ at±1 up to and including the order

m. Throughout the proof we assume that Γ is as in Proposition 8 and that θ is extended to Γ \∆
by `0. Clearly, this implies that θ ∈Cm,ς (Γ). As `1 := S (`0/w

+) is a polynomial of degree 2m,
we have that

S
�

θ

w

�

=S
�

θ− `0

w

�

+ `1 =SΓ

�

θ− `0

w

�

|∆
+ `1.

Assume first that m = 0. Then θ− `0 satisfies the conditions of % in Lemma 11 and therefore
Lemma 12 holds with θ−`0 in place of %. Let `2 be the polynomial interpolatingSΓ((θ−`0)/w)
at ±1 and set

(5.35) d :=w

�

SΓ

�

θ− `0

w

�

− `2

�

and ` := `1+ `2.

Clearly, d (±1) = 0. Then the conclusion of the proposition follows from Lemma 13 applied with
%=SΓ((θ− `0)/w)− `2.

Assume now that m ∈ N. Since the derivative of a singular integral is the singular integral of
the derivative [24, Sec. I.4.4], observe that

S (m)Γ

�

θ− `0

w

�

=SΓ

 
�

θ− `0

w

�(m)!

=
m
∑

j=0

�m

j

�

SΓ





v j (θ− `0)
(m− j )

w2 j+1



 ,
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where v j are polynomials. ThenSΓ((θ−`0)/w) ∈Cm,ς−1/2(Γ) by (5.30), applied with %= v j (θ−
`0)
(m− j ), N = j , and υ = ς , and the fact that singular integrals preserve Hölder smoothness [24,

Sec. I.5.1]. Thus, SΓ((θ−`0)/w) has m continuous derivatives on Γ. Let then d and ` be defined
by (5.35), where `2 is the polynomial interpolating SΓ((θ− `0)/w) at ±1 up to and including the
order m. Once more, since singular integral commutes with differentiation, we get

d (m) =
m
∑

k=0

�m

k

� uk

w2k−1

�

S (m−k)
Γ

�

θ− `0

w

�

− `(m−k)
2

�

=
m
∑

k=0

m−k
∑

j=0

�m

k

��m− k

j

� uk

w2k−1






SΓ







v j (θ− `0)
(m−k− j )

w2 j+1






− ` j ,k






,

where uk are polynomials and the polynomials ` j ,k interpolate the corresponding term in the
parenthesis. Then

S (k)Γ







v j (θ− `0)
(m−k− j )

w2 j+1






=

k
∑

l=0

�k

l

�

SΓ







v j+l (θ− `0)
(m− j−l )

w2( j+l )+1






∈C0,ς−1/2(Γ),

by (5.30), applied with % = v j+l (θ − `0)
(m− j−l ), N = j + l , υ = ς , and the fact that singular

integrals preserve Hölder smoothness. Thus, (5.30) applied once more, now with %=SΓ(v j (θ−
`0)
(m−k− j )/w2 j+1)− ` j ,k , N = k, and, υ = ς − 1/2, yields that d (m) ∈C0,ς (Γ), which finishes the

proof of the lemma. �

6. RIEMANN-HILBERT-∂̄ PROBLEM

In what follows, we adopt the notation φmσ3 for the diagonal matrix
�

φm 0
0 φ−m

�

, where

φ is a function, m is a constant, and σ3 is the Pauli matrix σ3 =
�

1 0
0 −1

�

.

6.1. Initial Riemann-Hilbert Problem. Let Y be a 2× 2 matrix function and wn be given by
(2.16). Consider the following Riemann-Hilbert problem for Y (RHP-Y ):

(a) Y is analytic in C \∆ and lim
z→∞
Y (z)z−nσ3 =I , where I is the identity matrix;

(b) Y has continuous traces from each side of∆◦, Y±, and Y+ =Y−
�

1 2wn
0 1

�

;

(c) Y has the following behavior near z = 1:

Y =



























O
�

1 |1− z |α
1 |1− z |α

�

, if α < 0,

O
�

1 log |1− z |
1 log |1− z |

�

, if α= 0,

O
�

1 1
1 1

�

, if α > 0,

as D 3 z→ 1;

(d) Y has the same behavior when D 3 z→−1 as in (c) only with α replaced by β and 1− z
replaced by 1+ z.

The connection between RHP-Y and polynomials orthogonal with respect to wn was first
realized by Fokas, Its, and Kitaev [22, 23] and lies in the following.
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Lemma 14. Let qn be a polynomial satisfying orthogonality relations (2.14) and Rn be the correspond-
ing function of the second kind given by (2.15). Further, let q∗n−1 be a polynomial satisfying

∫

∆
t j q∗n−1(t )wn(t )d t = 0, j ∈ {0, . . . , n− 2},

and R∗n−1 = Rn−1(q
∗
n−1; ·) be the function of the second kind for q∗n−1. If a solution of RHP-Y exists

then it is unique. Moreover, in this case deg(qn) = n, R∗n−1(z) =O(z−n) as z →∞, and the solution
of RHP-Y is given by

(6.1) Y =
�

qn Rn
mn q∗n−1 mn R∗n−1

�

,

where mn is a constant such that mn R∗n−1(z) = z−n[1+o(1)] near infinity. Conversely, if deg(qn) = n
and R∗n−1(z) =O(z−n) as z→∞, then Y defined in (6.1) solves RHP-Y .

Proof. As only the smoothness properties of the function wn were used in [33, Lem. 2.3], this
lemma translates without change to the case of a general closed analytic arc and yields the unique-
ness of the solution of RHP-Y whenever the latter exists.

Suppose now that the solution, say Y = [Y j k]
2
j ,k=1

, of RHP-Y exists. Then Y11 = zn+ lower
order terms by the normalization in RHP-Y (a). Moreover, by RHP-Y (b),Y11 has no jump on∆
and hence is holomorphic in the whole complex plane. Thus, Y11 is necessarily a polynomial of
degree n by Liouville’s theorem. Further, since Y12 =O(z−n−1) and satisfies RHP-Y (b), it holds
thatY12 = 2C (Y11wn). From the latter, we easily deduce thatY11 satisfies orthogonality relations
(2.14). Applying the same arguments to the second row of Y , we obtain that Y21 = q∗n−1 and
Y22 = mn R∗n−1 with mn well-defined.

Conversely, let deg(qn) = n and R∗n−1(z) = O(z−n) as z →∞. Then it can be easily checked
by direct examination of RHP-Y (a)-(d), using the material in Section 5.2, that Y , given by (6.1),
solves RHP-Y . �

6.2. Renormalized Riemann-Hilbert Problem. Throughout, unless specified otherwise, we fol-
low the convention

p
z =

p

|z |exp{iArg(z)/2}, Arg(z) ∈ (−π,π]. Set

(6.2) εn :=
Æ

G(vn/h hn )
/2 and En := εnϕ

n S(vn/h hn )
.

Then En has continuous boundary values on each side of∆ that satisfy

E+n E−n =
vn

2h hn
=

w

2wn

due to (2.4), (2.12), and (2.16). Further, put

(6.3) c+ := S+
h
/S−

h
, c+n := S+

hn
/S−

hn
, c− := 1/c+, and c−n := 1/c+n .

Then we get on account of (2.12), (5.11), and the multiplicativity property of the Szegő functions
that

(6.4)
E−n
E+n
=

�

Svn
ϕn
�−

�

Svn
ϕn
�+

S+
h hn

S−
h hn

=
vn c+n c+

Gvn

�

S2
vn
ϕ2n
�+ = (rn cn c)+ and

E+n
E−n
= (rn cn c)−,

where we slightly abuse the notation by writing (rn cn c)± instead of r±n c±n c±. Since any Szegő
function assumes value one at infinity andϕ(z)/2z→ 1 as z→∞, it holds that En(z)/[εn(2z)n]→
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1 as z→∞. Then it is a quick computation to check that
�

E−n
�σ3

�

1 2wn
0 1

�

�

E+n
�−σ3 =

�

(rn cn c)+ w
0 (rn cn c)−

�

and
lim
z→∞
(2nεn)

σ3Y E−σ3
n (z) =I .

Suppose now that RHP-Y is solvable and Y is the solution. Define

(6.5) T := (2nεn)
σ3Y E−σ3

n .

Then T solves the following Riemann-Hilbert problem (RHP-T ):
(a) T is analytic in D and T (∞) =I ;

(b) T has continuous traces, T±, on∆◦ and T+ =T−
�

(rn cn c)+ w
0 (rn cn c)−

�

;

(c) T has the following behavior near z = 1:

T =



























O
�

1 |1− z |α
1 |1− z |α

�

, if α < 0,

O
�

1 log |1− z |
1 log |1− z |

�

, if α= 0,

O
�

1 1
1 1

�

, if α > 0,

as D 3 z→ 1;

(d) T has the same behavior when D 3 z→−1 as in (c) only with α replaced by β and 1− z
replaced by 1+ z.

Trivially, the following lemma holds.

Lemma 15. RHP-T is solvable if and only if RHP-Y is solvable. When solutions of RHP-T and
RHP-Y exist, they are unique and connected by (6.5).

6.3. Opening the Lenses, Contours Σe x t , Σn , and Σmd
n . As is standard in the Riemann-Hilbert

approach, the second transformation of RHP-Y is based on the following factorization of the
jump matrix in RHP-T (b):
�

(rn cn c)+ w
0 (rn cn c)−

�

=
�

1 0
(rn cn c)−/w 1

��

0 w
−1/w 0

��

1 0
(rn cn c)+/w 1

�

,

where we took into account that r+n r−n ≡ 1 on ∆. This factorization leads us to consider a new
Riemann-Hilbert problem with three jumps on a lens-shaped contour Σn (see Fig. 2). However,

+
−

+
−
+
−

∆n+

∆+

∆−

∆n−

∆−1 1

FIGURE 2. The contour Σn := ∆n+ ∪∆ ∪∆n− ⊂ Ξ(DΞ) (solid lines). The extension
contour Σe x t :=∆+ ∪∆∪∆− (dashed lines and∆).



28 L. BARATCHART AND M. YATTSELEV

to proceed with such a decomposition, we need to extend c± and c±n to the complex plane. We
shall do it in such a manner that the extended functions, denoted by c and cn , are analytic outside
of a fixed lens Σe x t (see Fig. 2). We postpone this task until the next section and describe here the
construction of the lenses Σe x t and Σn .

We start from Σe x t . When ∆ = [−1,1], fix x > 0 and set ∆+ to be the subarc of the circle
{z : |z − i x| = |x + 1|} that lies in the upper half plane. Clearly, ∆+ joins −1 and 1 and can be
made as uniformly close to [−1,1] as we want by taking x sufficiently large. We set ∆− to be
the reflection of ∆+ across the real axis. We also denote by Ω+ and Ω− the upper and the lower
parts of the lens Σe x t , i.e., Ω+ (resp. Ω−) is a domain bounded by ∆+ (resp. ∆−) and ∆. When
∆ is a general closed analytic arc parametrized by Ξ, set Σe x t to be the image under Ξ of the
corresponding lens for [−1,1] (the latter can always be made small enough to lie in DΞ).

We continue by constructing the lens Σ, which will we the limit lens for the sequence {Σn}.
Let g 2 and Og ⊂ Ξ(DΞ) be defined in (3.5). Then 1 ∈ Og , g 2(1) = 0, and g 2 is conformal in Og .
Set Uδ := {z : |z − 1| < δ}. Choose δ0 > 0 to be so small that Uδ ⊂ Og and g 2(Uδ ) is convex

for any δ < δ0. We require the same conditions to be fulfilled by δ0 and eUδ := {z : |z + 1| < δ}
with respect to eg 2 and O

eg also defined in (3.5). Fix δ < δ0. Let Jordan arcs K j , j = 1,3, be the
preimages of Σ1 := {ζ : Arg(ζ ) = 2π/3} and Σ3 := {ζ : Arg(ζ ) = −2π/3} under g 2 in Uδ . Let
also eK j , j = 1,3, be the preimages of Σ1 and Σ3 under eg 2 in eUδ . Set K+ := K1 ∪K2 ∪ eK3, where

K2 is the image under Ξ of the line segment that joins Ξ−1(K1 ∩Uδ ). Set also eΞ−1( eK3 ∩ eUδ ), and
K− :=K3∪K4∪ eK1, where K4 is the image under Ξ of the line segment that joins Ξ−1(K3∩Uδ ) and
eΞ−1( eK1∩ eUδ ). Then∆± are Jordan arcs that with endpoints ±1. We define Σ :=∆∪K+∪K− (see
Fig. 3).

Let gn and egn be defined by (3.7). Assume that δ is small enough that Uδ ⊂OL and eUδ ⊂O
eL.

Then we construct the lens Σn :=∆∪∆n+∪∆n− exactly as we constructed Σ only with g , eg , and
Ξ replaced by gn , egn , and Ξn , where we also employ the notation∆n± for the upper and lower lips
of the lens. It can be easily seen that the arcs∆n± and∆ intersect only at±1 for all n large enough

K1

K3

�K3

�K1

∆n+

K4

K2

∆n−

∆n

∆

Uδ
�Uδ

FIGURE 3. Contours Σ (dashed lines) and Σmd
n (solid lines). Neighborhoods Uδ and eUδ

(disks around ±1).

since ∆n approach ∆ in a uniform manner by Theorem 1 and ∆n± and ∆n form angles π/3 at 1
and −1 by construction.

Finally, it will be useful for us later to define one more system of contours, say Σmd
n . The lens

Σmd
n is obtained from Σn simply by replacing ∆ by ∆n (see Fig. 3). We also require the lens Σe x t

to be contained within each lens Σn (see Fig. 2).
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6.4. Extension with Controlled ∂̄ Derivative. Without loss of generality we may assume that
Σn ⊂ DΞ and all the functions hn are holomorphic in DΞ. By the very definition of c±n we have
that

c±n =Ghn

�

S±
hn

�2
h−1

n .

Thus, there is a natural holomorphic extension of each c±n given by

(6.6) cn :=Ghn
S2

hn
h−1

n in DΞ \∆.

Concerning the extension of c , we can prove the following.

Lemma 16. Let θ ∈W1−1/p
p , p ∈ (2,∞), or θ ∈Cm,ς , m ∈ Z+, ς ∈ (0,1], m + ς > 1

2 . Then there
exists a function c, continuous in C \∆ and up to∆±, satisfying

c|∆± = c±, c = exp{w`} in C \ (Ω+ ∪Ω−), and ∂̄ c = c f ,

where ` is a polynomial, deg(`)≤ 2m+ 1, f ∈ Lp (Ω±) when θ ∈W1−1/p
p , f ∈ Lq (Ω±), q ∈

�

2, 1
1−ς

�

when θ ∈C0,ς , and f ∈Cm−1,ς−ε
0 (Ω±) when θ ∈Cm,ς , m ∈N, and ε ∈ (0,ς).

Proof. This lemma is a straightforward consequence of (5.10), inclusion C0,ς ⊂ W1−1/q
q for q ∈

�

2, 1
1−ς

�

, and Propositions 8 and 9 combined with Propositions 6 and 7. �

6.5. Formulation of Riemann-Hilbert-∂̄ Problem. In this section we reformulate RHP-T as
a Riemann-Hilbert-∂̄ problem. In what follows, we understand under c and cn the extensions
obtained in Section 6.4 above. Suppose that RHP-T is solvable and T is the solution. We define
a matrix function S on C \Σn as follows:

(6.7) S :=







T
�

1 0
∓rn cn c/w 1

�

, in Ωn±,

T , outside the lens Σn ,

where the upper part, Ωn+, (resp. lower part, Ωn−) of the lens Σn is a domain bounded by ∆n+
(resp. ∆n−) and∆. This new matrix function is no longer analytic in general in the whole domain
D since c may not be analytic inside the extension lens Σe x t . Recall, however, that by the very
construction, c coincides with a holomorphic function ec = exp{w`} outside the lens Σe x t . To
capture the non-analytic character of S , we introduce the following matrix function that will
represent the deviation from analyticity:

(6.8) W0 :=











�

0 0
∓rn cn ∂̄ c/w 0

�

, in Ω±,
�

0 0
0 0

�

, outside the lens Σe x t .

Then S solves the following Riemann-Hilbert-∂̄ problem (RH∂̄ P-S ):

(a) S is a continuous matrix function in C \Σn and S (∞) =I ;
(b) S has continuous boundary values, S±, on Σ◦n :=Σn \ {±1} and

S+ = S−
�

1 0
rn cn c/w 1

�

on ∆◦n+ ∪∆
◦
n−,

S+ = S−
�

0 w
−1/w 0

�

on ∆◦;
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(c) For α < 0, S has the following behavior near z = 1:

S (z) =O
�

1 |1− z |α
1 |1− z |α

�

, as C \Σn 3 z→ 1.

For α= 0, S has the following behavior near z = 1:

S (z) =O
�

log |1− z | log |1− z |
log |1− z | log |1− z |

�

as C \Σn 3 z→ 1.

For α > 0, S has the following behavior near z = 1:

S (z) =











O
�

1 1
1 1

�

, as z→ 1 outside the lens Σn ,

O
�

|1− z |−α 1
|1− z |−α 1

�

, as z→ 1 inside the lens Σn ;

(d) S has the same behavior when C \Σn 3 z →−1 as in (c) only with α replaced by β and
1− z replaced by 1+ z;

(e) S deviates from an analytic matrix function according to ∂̄ S =S W0.
Then the following lemma holds.

Lemma 17. RH∂̄ P-S is solvable if and only if RHP-T is solvable. When solutions of RH∂̄ P-
S and RHP-T exist, they are unique and connected by (6.7).

Proof. By construction, the solution of RHP-T yields a solution of RH∂̄ P-S . Conversely, let
S ∗ be a solution of RH∂̄ P-S . It is easy to check using the Leibnitz’s rule that ∂̄ T ∗ is equal to
the zero matrix outside of Σn , where T ∗ is obtained from S ∗ by inverting (6.7). Thus, T ∗ is an
analytic matrix function inC\Σn with continuous boundary values on each side ofΣ◦n . Moreover,
it can be readily verified that T ∗ has no jumps on ∆◦n± and therefore is, in fact, analytic in D . It
is aslo obvious that it equals to the identity matrix at infinity and has a jump on ∆ described by
RHP-T (b). Thus, T ∗ complies with RHP-T (a)–(b).

Now, if α,β< 0 then it follows from RH∂̄ P-S (c)–(d) and (6.7) that T ∗ has the same behavior
near endpoints ±1 as S ∗. Therefore, T ∗ solves RHP-T in this case. When either α or β is
nonnegative, it is no longer immediate that the first column of T ∗ has the behavior near ±1
required by RHP-T (c)–(d). This difficulty was resolved in [33, Lem. 4.1] by considering T ∗T −1,
where T is the unique solution of RHP-T . However, in the present case it is not clear that such a
solution exists (see Lemma 14). Thus, we are bound to consider the first column of T ∗ by itself.

Denote by T ∗11 and T ∗21 the 11- and 21-entries of T ∗. Then T ∗11 and T ∗21 are analytic functions in
D with the following behavior near 1:

(6.9) T ∗j 1(z) =















O(1), if α < 0
O(log |1− z |), if α= 0,
O(|1− z |−α), if α > 0 and z is inside the lens,
O(1), if α > 0 and z is outside the lens,

for j = 1,2. The behavior near −1 is identical only with α replaced by β and 1− z replaced by
1+ z. Moreover, each T ∗j 1 solves the following scalar boundary value problem:

(6.10) φ+ =φ−(rn cn c)+ on ∆, φ ∈H(D).

Now, recall that r+n r−n ≡ 1 on ∆ and rn has 2n zeros in D that lie away from the lens Σn . Hence,
the argument of r+n increases by 2πn when ∆ is traversed from −1 to 1. Moreover, for c+ and
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each c+n a branch of the argument can be taken continuous and vanishing at±1 (it is the imaginary
part of w+S (θ/w+), which is continuous and vanishing at ±1 by Propositions 8 and 9). Define
% := log(rn cn c)+, %(−1) = 0. This normalization is possible since r+n (−1) = 1 as r+n is a product
of 2n factors each of which is equal to −1 at −1. Furthermore, this normalization necessarily
yields that %(1) = 2πni and that the so-called canonical solution of the problem (6.10) is given by
[24, Sec. 43.1]

φc (z) := (z − 1)−n exp{C (%; z)} , z ∈D .
Recall that φc is bounded above and below in the vicinities of 1 and −1, has a zero of order n at
infinity, and otherwise is non-vanishing. Hence, the functions φ j :=T ∗j 1/φc , j = 1,2, are analytic
inC\{±1}. Moreover, according to (6.9), the singularities of these functions at 1 and−1 cannot be
essential, they are either removable or polar. In fact, since φ j (z) =O(1) or φ j (z) =O(log |1± z |)
when z approaches 1 or −1 outside of the lens, φ j can have only removable singularities at these
points. Hence,φ j (z) =O(1) and subsequentlyT ∗j 1 =O(1) near 1 and−1. Thus,T ∗ satisfies RHP-
T (c)–(d) for all α and β, which means that T ∗ is the solution of RHP-T . Therefore, indeed, the
problems RHP-T and RH∂̄ P-S are equivalent. �

7. ANALYTIC APPROXIMATION OF RH∂̄ P-S

Elaborating on the path developed in [37], we put RH∂̄ P-S aside for a while and consider an
analytic approximation of this problem. In other words, we seek the solution of the following
Riemann-Hilbert problem (RHP-A ):

(a) A is a holomorphic matrix function in C \Σn andA (∞) =I ;
(b) A has continuous traces,A±, on Σ◦n that satisfy the same relations as in RH∂̄ P-S (b);
(c) the behavior ofA near 1 is described by RH∂̄ P-S (c);
(d) the behavior ofA near −1 is described by RH∂̄ P-S (d).

Before we proceed, observe that the function c coincides on ∆n± with the analytic function ec :=
exp{w`}, where ` is a polynomial, by construction. Hence, we can assume that the jump matrix
in RHP-A (b) is expressed in terms of ec rather than c .

7.1. Modified RHP-A . The problem above almost falls into the scope of the classical approach
to asymptotics of orthogonal polynomials. We say “almost” because it is not generally true that
the functions rn can be written as the 2n-th power of a single function, even up to a normal family
as is the case in [3, Thm. 2]. This will explain why we constructed another lens, Σmd

n , in Section
6.3.

Consider the following Riemann-Hilbert problem (RHP-B ):

(a) B is a holomorphic matrix function in C \Σmd
n andB(∞) =I ;

(b) B has continuous traces,B±, on (Σmd
n )

◦ that satisfy

B+ = B−
�

1 0
rn cnec/w 1

�

on ∆◦n+ ∪∆
◦
n−,

B+ = B−
�

0 w
−1/w 0

�

on ∆◦n ;

(c) the behavior ofB near 1 is described by RHP-A (c) with respect to the lens Σmd
n ;

(d) the behavior ofB near −1 is described by RHP-A (d), again, with respect to Σmd
n .

In fact, this new problem is equivalent to RHP-A .

Lemma 18. The problems RHP-A and RHP-B are equivalent.



32 L. BARATCHART AND M. YATTSELEV

Proof. Suppose that RHP-B is solvable andB is a solution. As before, let Ωn+ (resp. Ωn−) be the
upper (resp. lower) part of the lens Σn . Analogously define Ωmd

n± and set

(7.1) A ∗ :=



















B
�

0 w
−1/w 0

�

, in Ωn+ ∩Ωmd
n− ,

B
�

0 −w
1/w 0

�

, in Ωn− ∩Ωmd
n+ ,

B , elsewhere.

Observe that Ωn± ∩Ωmd
n∓ is a finite, possibly empty, union of Jordan domains by analyticity of ∆

and ∆n . It is a routine exercise to verify that A ∗ complies with RHP-A (a) and (b). Moreover,
within Ωn+ ∩Ωmd

n− and Ωn− ∩Ωmd
n+ we have that for α < 0, A ∗ has the following behavior near

z = 1:

A ∗(z) =O
�

1 |1− z |α
1 |1− z |α

�

O
�

0 |1− z |α
|1− z |−α 0

�

=O
�

1 |1− z |α
1 |1− z |α

�

,

as z → 1; for α = 0,A ∗ has the same behavior near z = 1 asB since the latter is multiplied by a
bounded matrix near 1; for α > 0,A ∗ has the following behavior near z = 1:

A ∗(z) =O
�

|1− z |−α 1
|1− z |−α 1

�

O
�

0 |1− z |α
|1− z |−α 0

�

=O
�

|1− z |−α 1
|1− z |−α 1

�

.

Hence,A ∗ has exactly the behavior near 1 required by RHP-A (c). In the same fashion one can
check that A ∗ satisfies RHP-A (d) and therefore it is, in fact, a solution of RHP-A . Clearly,
the arguments above could be reversed and hence each solution of RHP-A yields a solution of
RHP-B . �

Let us now alleviate the notation by slightly abusing it. Throughout this section, we shall
understand under ϕ, rn , gn , egn , cn , ec , w, Shn

, Sw+ , and Sw their holomorphic continuations that
are analytic outside of ∆n rather than ∆. Note that outside the bounded set with boundary ∆∪
∆n these continued functions coincide with the original ones. Moreover, their values considered
within the interior domain of∆n∪∆ can be obtained through analytic continuation of the original
functions across∆.

7.2. Auxiliary Riemann-Hilbert Problems. In this subsection we define the necessary objects
to solve RHP-B . This material essentially appeared in [33] for the case∆= [−1,1].

7.2.1. Parametrix away from the endpoints. As rn converges to zero geometrically fast away from
∆n , the jump matrix in RHP-B (b) is close to the identity on ∆◦n+ and ∆◦n−. Thus, the main

term of the asymptotics forB in Dn = C \∆n is determined by the following Riemann-Hilbert
problem (RHP-N ):

(a) N is a holomorphic matrix function in Dn andN (∞) =I ;

(b) N has continuous traces,N±, on∆◦n andN+ =N−
�

0 w
−1/w 0

�

;

It can be easily checked using (5.14) that a solution of RHP-N when w ≡ 1 is given by

(7.2) N∗ =
 

S−1
w+

i(ϕSw+)
−1

−i(ϕSw+)
−1 S−1

w+

!

.

Then a solution of RHP-N for arbitrary w is given by

(7.3) N = (Gw )
σ3/2N∗(Gw S2

w )
−σ3/2.
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7.2.2. Auxiliary parametrix near the endpoints. The following construction was introduced in [33,
Thm. 6.3]. Let Iα and Kα be the modified Bessel functions and H (1)

α
and H (2)

α
be the Hankel

functions [1, Ch. 9]. Set Ψ to be the following sectionally holomorphic matrix function:

Ψ(ζ ) = Ψ(ζ ;α) :=







Iα
�

2ζ 1/2
�

i
π

Kα
�

2ζ 1/2
�

2πiζ 1/2I ′
α

�

2ζ 1/2
�

−2ζ 1/2K ′
α

�

2ζ 1/2
�







for |Arg(ζ )|< 2π/3;

Ψ(ζ ) :=







1
2 H (1)

α

�

2(−ζ )1/2
�

1
2 H (2)

α

�

2(−ζ )1/2
�

πζ 1/2
�

H (1)
α

�′ �
2(−ζ )1/2

�

πζ 1/2
�

H (2)
α

�′ �
2(−ζ )1/2

�






e

1
2απiσ3

for 2π/3<Arg(ζ )<π;

Ψ(ζ ) :=







1
2 H (2)

α

�

2(−ζ )1/2
�

− 1
2 H (1)

α

�

2(−ζ )1/2
�

−πζ 1/2
�

H (2)
α

�′ �
2(−ζ )1/2

�

πζ 1/2
�

H (1)
α

�′ �
2(−ζ )1/2

�






e−

1
2απiσ3

for −π < Arg(ζ ) < −2π/3, where Arg(ζ ) ∈ (−π,π] is the principal determination of the argu-
ment of ζ . Let further Σ1, Σ2, and Σ3 be the rays {ζ : Arg(ζ ) = 2π/3}, {ζ : Arg(ζ ) = π}, and
{ζ : Arg(ζ ) = −2π/3}, respectively, oriented from infinity to zero. Using known properties of
Iα, Kα, H (1)

α
, H (2)

α
, and their derivatives, it can be checked that Ψ is the solution of the following

Riemann-Hilbert problem RHP-Ψ:

(a) Ψ is a holomorphic matrix function in C \ (Σ1 ∪Σ2 ∪Σ3);
(b) Ψ has continuous traces, Ψ±, on Σ◦j , j ∈ {1,2,3}, and

Ψ+ = Ψ−

�

1 0
eαπi 1

�

on Σ◦1,

Ψ+ = Ψ−

�

0 1
−1 0

�

on Σ◦2,

Ψ+ = Ψ−

�

1 0
e−απi 1

�

on Σ◦3;

(c) Ψ has the following behavior near∞:

Ψ(ζ ) =
�

2πζ 1/2
�−σ3/2 1

p
2







1+O
�

ζ −1/2
�

i +O
�

ζ −1/2
�

i +O
�

ζ −1/2
�

1+O
�

ζ −1/2
�






e2ζ 1/2σ3

uniformly in C \ (Σ1 ∪Σ2 ∪Σ3);
(d) For α < 0, Ψ has the following behavior near 0:

Ψ=O
�

|ζ |α/2 |ζ |α/2
|ζ |α/2 |ζ |α/2

�

as ζ → 0;

For α= 0, Ψ has the following behavior near 0:

Ψ=O
�

log |ζ | log |ζ |
log |ζ | log |ζ |

�

as ζ → 0;
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For α > 0, Ψ has the following behavior near 0:

Ψ=











O
�

|ζ |α/2 |ζ |−α/2
|ζ |α/2 |ζ |−α/2

�

as ζ → 0 in |Arg(ζ )|< 2π/3,

O
�

|ζ |−α/2 |ζ |−α/2
|ζ |−α/2 |ζ |−α/2

�

as ζ → 0 in 2π/3< |Arg(ζ )|<π.

Further, if we set
eΨ := σ3Ψ(·;β)σ3,

then this matrix function satisfies RHP-Ψ with α replaced by β and reversed orientation for Σ j ,
j ∈ {1,2,3}.

7.2.3. Parametrix near 1. As shown in [33], the main term of the asymptotics of the solution of
RHP-B near the endpoints of∆n is described by a solution of a special Riemann-Hilbert problem
for which Ψ will be instrumental. Let Uδ be as in the construction of Σn (see Section 6.3). Below
we describe the solution of the following Riemann-Hilbert problem (RHP-P ):

(a) P is a holomorphic matrix function in Uδ \Σmd
n ;

(b) P has continuous boundary values,P±, on Uδ ∩ (Σmd
n )

◦ and

P+ = P−
�

1 0
rn cnec/w 1

�

on Uδ ∩ (∆◦n+ ∪∆
◦
n−),

P+ = P−
�

0 w
−1/w 0

�

on Uδ ∩∆◦n ;

(c) PN −1 =I +O(1/n) uniformly on ∂ Uδ ;
(d) For α < 0,P has the following behavior near z = 1:

P =O
�

1 |1− z |α
1 |1− z |α

�

, as Uδ \Σ
md
n 3 z→ 1;

For α= 0,P has the following behavior near z = 1:

P =O
�

log |1− z | log |1− z |
log |1− z | log |1− z |

�

, as Uδ \Σ
md
n 3 z→ 1;

For α > 0,P has the following behavior near z = 1:

P =











O
�

1 1
1 1

�

, as z→ 1 outside the lens Σmd
n ,

O
�

|1− z |−α 1
|1− z |−α 1

�

, as z→ 1 inside the lens Σmd
n .

To present a solution of RHP-P , we need to introduce more notation. Denote by U+
δ

and
U−
δ

the subsets of Uδ that are mapped by g 2
n into the upper and lower half planes, respectively.

Without loss of generality we may assume that functions θn are holomorphic in Uδ and the branch
cut of w in Uδ coincides with the preimage of the positive reals under g 2

n . In particular, we have
that w is analytic in U+

δ
and U−

δ
and therefore across∆◦n±. Set

An(z) :=
exp
¦

1
2

�

θn(z)−w(z)`(z)
�
©

Æ

Ghn
Shn
(z)

(z − 1)α/2(z + 1)β/2,
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where we use the same branch of (z+1)β/2 as in definition of w and a branch of (z−1)α/2 analytic
in Uδ \∆n and positive for positive reals large enough. Then

(7.4) A2
n =

(

eαπi w/cnec , in U+
δ

,

e−απi w/cnec , in U−
δ

,

by the definition of ec and on account of (6.6). Moreover, it readily follows from (7.4) and (6.3) that

(7.5) A+n A−n = w on ∆◦n .

Observe that g 1/2
n is a holomorphic function on Uδ \∆n such that

(7.6) (g 1/2
n )

+ = i(g 1/2
n )

− on ∆n

by (3.8). Then the following lemma holds.

Lemma 19. A solution of RHP-P is given by

P = EΨ
 

n2 g 2
n

4

!

A−σ3
n r σ3/2

n , E :=N Aσ3
n

1
p

2

�

1 −i
−i 1

�

�

πn gn
�σ3/2 .

Proof. Except for some technical differences, the proof is analogous to the considerations in [33,
eqn. (6.27) and after]. First, we must show that E is holomorphic in Uδ . This is clearly true in
Uδ \∆n . It is also clear that E has continuous boundary values on each side of∆◦n . Since

E+ = N+
�

A+n
�σ3

1
p

2

�

1 −i
−i 1

�

(πn)σ3/2
�
�

g 1/2
n

�+�σ3

= N−
�

0 w
−1/w 0

�

 

w

A−n

!σ3 1
p

2

�

1 −i
−i 1

�

(πn)σ3/2
�

i 0
0 −i

�

�
�

g 1/2
n

�−�σ3

= N−
�

A−n
�σ3

�

0 1
−1 0

� 1
p

2

�

i −1
1 −i

�

(πn)σ3/2
�
�

g 1/2
n

�−�σ3
= E−,

where we used RHP-N (b), (7.5), and (7.6), E is holomorphic across∆◦n . Thus, it remains to show
that E has no singularity at 1. For this observe that

�

g 1/2
n (z)

�σ3 =O
�

|1− z |1/4 0
0 |1− z |−1/4

�

, as z→ 1,

since g 2
n has a simple zero at 1. Furthermore, by the very definition it holds that

N∗ =O
�

|1− z |−1/4 |1− z |−1/4

|1− z |−1/4 |1− z |−1/4

�

, as z→ 1.

Finally, (An/Sw )(z) → 2−(α+β)/2 as z → 1 by (5.12). Hence, the entries of E can have at most
square-root singularity at 1, which is impossible since E is analytic in Uδ \ {1}, and therefore E is
analytic in the whole disk Uδ .

The analyticity of E implies that the jumps of P are those of Ψ
�

n2 g 2
n/4
�

A−σ3
n r σ3/2

n . Clearly,
the latter has jumps on Σmd

n ∩Uδ by the very definition of g 2
n and Ψ. Moreover, it is a routine

exercise, using RHP-Ψ(b) and (7.4), to verify that these jumps are described exactly by RHP-P (b).
It is also clear that RHP-P (a) is satisfied. Further, we get directly from RHP-Ψ(c) that the behavior
of Ψ

�

n2 g 2
n/4
�

on ∂ Uδ can be described by

Ψ

 

n2 g 2
n

4

!

= (πn gn)
−σ3/2

�

1+O (1/n) i +O (1/n)
i +O (1/n) 1+O (1/n)

�

r−σ3/2
n ,
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where the property O(1/n) holds uniformly on ∂ Uδ . Hence, using that the diagonal matrices
A−σ3

n and r σ3/2
n commute, we get that

PN −1 = E
�

πn gn
�−σ3/2

�

1+O (1/n) i +O (1/n)
i +O (1/n) 1+O (1/n)

�

A−σ3
n N

−1

= N Aσ3
n (I +O (1/n))A−σ3

n N
−1 =I +O (1/n)

since the moduli of all the entries of N Aσ3
n are uniformly bounded above and away from zero

on ∂ Uδ . Thus, RHP-P (c) holds. Finally, RHP-P (d) follows immediately from RHP-Ψ(d) upon
recalling that |g 2

n (z)|=O(|1− z |) and |An(z)| ∼ |1− z |α/2 as z→ 1. �

7.2.4. Parametrix near −1. In this section we describe the solution of the Riemann-Hilbert prob-
lem that plays the same role with respect to −1 as RHP-P did for 1. Below we describe the
solution of the following Riemann-Hilbert problem (RHP-fP ):

(a) fP is a holomorphic matrix function in eUδ \Σmd
n ;

(b) fP has continuous boundary values, fP±, on eUδ ∩ (Σmd
n )

◦ and

fP+ = fP−
�

1 0
rn cnec/w 1

�

on eUδ ∩ (∆◦n+ ∪∆
◦
n−),

fP+ = fP−
�

0 w
−1/w 0

�

on eUδ ∩∆◦n ;

(c) fPN −1 =I +O(1/n) uniformly on ∂ eUδ ;
(d) For β< 0, fP has the following behavior near z =−1:

fP =O
�

1 |1+ z |β
1 |1+ z |β

�

, as eUδ \Σ
md
n 3 z→−1;

For β= 0, fP has the following behavior near z =−1:

fP =O
�

log |1+ z | log |1+ z |
log |1+ z | log |1+ z |

�

, as eUδ \Σ
md
n 3 z→−1;

For β> 0, fP has the following behavior near z =−1:

fP =











O
�

1 1
1 1

�

, as z→−1 outside the lens Σmd
n ,

O
�

|1+ z |−β 1
|1+ z |−β 1

�

, as z→−1 inside the lens Σmd
n .

This problem is solved exactly in the same manner as RHP-P . Thus, we set

eAn(z) :=
exp
¦

1
2

�

θn(z)−w(z)`(z)
�
©

Æ

Ghn
Shn
(z)

(1− z)α/2(−1− z)β/2,

where the branch of (1− z)α/2 is the same as the corresponding one in w, and (−1− z)β/2 is
holomorphic in eUδ \∆n and positive for negative real large enough. As in (7.4), we have that

eA2
n =







eβπi w/cnec , in eU+
δ

,

e−βπi w/cnec , in eU−
δ

,
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where eU±
δ

have the same meaning as in the previous section. However, here one needs to be
cautious since egn reverses the orientation on Σ2, i.e. Σ2 is now oriented from zero to infinity, and
therefore eU+

δ
is mapped into {z : Im(z) < 0} and eU−

δ
into {z : Im(z) > 0}. Again, it can be

checked that
eA+n
eA−n = w on ∆◦n .

The following lemma can be proven exactly as Lemma 19 using that (−1)n r 1/2
n = enegn .

Lemma 20. The solution of RHP-fP is given by

fP = eE eΨ
 

n2
eg 2

n

4

!

eA−σ3
n (−1)nσ3 r σ3/2

n , eE :=N eAσ3
n

1
p

2

�

1 i
i 1

�

�

πnegn
�σ3/2 .

Finally, we are prepared to solve RHP-A .

7.3. Solution of RHP-A . Denote by Σr d
n the reduced system of contours obtained from Σmd

n by

removing ∆n and ∆n± ∩ (Uδ ∪ eUδ ) and adding ∂ Uδ ∪ ∂ eUδ . For this new system of contours we
consider the following Riemann-Hilbert problem (RHP-R ):

(a) R is a holomorphic matrix function in C \Σr d
n andR(∞) =I ;

(b) the traces ofR ,R±, are continuous on Σr d
n except for the branching points of Σr d

n , where
they have definite limits from each sector and along each branch of Σr d

n . Moreover, R±
satisfy

R+ =R−















PN −1 on ∂ Uδ ,
fPN −1 on ∂ eUδ

N
�

1 0
rn cnec/w 1

�

N −1 on Σr d
n \ (∂ Uδ ∪ ∂ eUδ ).

Then the following lemma takes place.

Lemma 21. The solution of RHP-R exists for all n large enough and satisfies

(7.7) R =I +O (1/n) ,

where O(1/n) holds uniformly in C. Moreover, det(R) = 1.

Proof. By RHP-P (c) and RHP-fP (c), we have that RHP-R (b) can be written as

(7.8) R+ =R− (I +O (1/n))

uniformly on ∂ Uδ ∪ ∂ eUδ . Further, since the jump of R on Σr d
n \ (∂ Uδ ∪ ∂ eUδ ) is analytic,

it allows us to deform the problem RHP-R to a fixed contour, say Σr d , obtained from Σ like
Σr d

n was obtained from Σmd
n (the solutions exist, are simultaneously unique, and can be easily

expressed through each other as in (7.1)). Moreover, by the properties of rn , the jump of R on
Σr d \ (∂ Uδ ∪ ∂ eUδ ) is geometrically uniformly close to I . Hence, (7.8) holds uniformly on Σr d .
Thus, by [18, Cor. 7.108], RHP-R is solvable for all n large enough andR± converge to zero on
Σr d in L2-sense as fast as 1/n. The latter yields (7.7) locally uniformly in C \Σr d . To show that
(7.7) holds at z ∈Σr d , deformΣr d to a new contour that avoids z (by making δ smaller or chosing
different arcs to connect Uδ and eUδ ). As the jump in RHP-R is given by analytic matrix functions,
one can state an equivalent problem on this new contour, the solution to which is an analytic
continuation ofR . However, now we have that (7.7) holds locally around z. Compactness of Σr d

finishes the proof of (7.7).
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Finally, asN , P , and fP have determinants equal to 1 throughout C [33, Rem. 7.1], detR is
an analytic function inC\Σr d that is equal to 1 at infinity, has equal boundary values on each side
of Σr d \ {branching points}, and is bounded near the branching points. Thus, det(R)≡ 1. �

Finally, we provide the solution of RHP-A .

Lemma 22. The solution of RHP-A exists for all n large enough and is given by (7.1) with

(7.9) B :=







RN , in C \ (Uδ ∪ eUδ ∪Σn),
RP , in Uδ ,

R fP , in eUδ ,

whereR is the solution of RHP-R . Moreover, detA ≡ 1.

Proof. It can be easily checked from the definition ofP , fP , andN , thatB , given by (7.9), is the
solution of RHP-B . As detR = det(P ) = det(fP )≡ 1, it holds that det(A ) = det(B)≡ 1 in C,
which finishes the proof of the lemma. �

8. ∂̄ -PROBLEM

In the previous section we completed the first step in solving RH∂̄ P-S . That is we solved
RHP-A , the problem with the same conditions as in RH∂̄ P-S except for the deviation from an-
alyticity, which was entirely ignored. In this section, we solve a complementary problem, namely,
we show that a solution of a certain ∂̄ -problem for matrix functions exists. Set

(8.1) W =AW0A
−1,

where W0 was defined in (6.8) and A is the solution of RHP-A . In what follows, we seek the
solution of the following ∂̄ -problem (∂̄ P-D):

(a) D is a continuous matrix function in C and D(∞) =I ;
(b) D deviate from an analytic matrix function according to ∂̄ D = DW , where the equality

is understood in the sense of distributions.
Then the following lemma holds.

Lemma 23. If (2.9) is fulfilled, then ∂̄ P-D is solvable for all n large enough. The solutionD is unique
and satisfies

(8.2) D =I + o(1),

where o(1) satisfies (2.13).

Proof. We start by examining the summability and smoothness of the entries ofW . AsA is the
solution of RHP-A , it is an analytic matrix function in Ω± and its behavior near ±1 is given by
RH∂̄ P-S (c)–(d). Since detA ≡ 1 in C, the behavior of A −1 near ±1 is also governed by the
matrices in RH∂̄ P-S (c)-(d) with the elements on the main diagonal interchanged. Observe also
that |cn c | is uniformly bounded in Ω±. Then a simple computation combined with Lemma 16
yields that

(8.3) |Wl k | ≤ const.|rn fα,β f |, l , k = 1,2,

where f comes from the decomposition of ∂̄ c in Lemma 16 and fα,β(z) := log2 |1− z2| if υ :=
max{|α|, |β|}= 0 and fα,β(z) := |1− z2|υ otherwise.
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Let s be as in (2.9) and denote by Ω the union Ω+ ∪Ω− ∪∆◦. When θ ∈W1−1/p
p , p ∈ (2,∞), it

holds that f ∈ Lp (Ω) by Lemma 16. Then we get from the Hölder inequality that

(8.4) fα,β f ∈ Lq (Ω), q ∈
( �

2, 2
1+υ−s

�

, s − υ≤ 1,

(2,∞] , s − υ > 1,

since fα,β ∈ Lq (Ω), q ∈
�

2 p
p−2 , 2

υ

�

. When θ ∈ C0,ς , ς ∈
�

1
2 , 1
�

, (8.4) can be obtained from the

inclusion C0,ς ⊂ W1−1/q
q for q ∈

�

2, 1
1−ς

�

. When θ ∈ Cm,ς , m ∈ N, ς ∈ (0,1], we have that5

f ∈Cm−1,ς−ε
0 (Ω), ε ∈ (0,ς), by Lemma 16. This, in particular, implies that

|( fα,β f )(z)| ≤ const.|z2− 1|s−1−υ−ε,

which consequently yields (8.4).
Suppose now that ∂̄ P-D is solvable andD is a solution. Let Γ be a smooth arc encompassing Ω.

Convolve D with a family of mollifiers so that the result is smooth and converges in the Sobolev
sense to D. Then by applying the Cauchy-Green formula (5.8) to this convolution and taking the
limit, we get that

D =CΓ(D)+KΓ(DW ) =I +KWD

sinceW has compact support Ω, i.e., D is analytic outside of Ω, and D(∞) = I , whereKW (·) =
K (·W ). Hence, every solution of ∂̄ P-D is a solution of the following integral equation

(8.5) I = (I −KW )D,

where I is the identity operator. As explained in Section 5.1, I −KW is a bounded operator
from L∞(C) into itself that maps continuous functions into continuous functions preserving their
value at infinity. Conversely, ifD is a solution of (8.5) in L∞(C2×2) thenD is, in fact, continuous in
C

2×2
, analytic outside of Ω, D(∞) =I , and ∂̄ D =DW by (5.5) in the distributional sense. Thus,

∂̄ P-D is equivalent to uniquely solving (8.5) in (L∞(C))2×2 because D −KWD is holomorphic in
C and is identity at infinity.

We claim that

(8.6) ‖KW ‖ ≤
C0

na , a ∈







�

0, s−υ
2

�

, s − υ≤ 1,
�

0, 1
2

�

, s − υ > 1,

where ‖ · ‖ is the norm ofKW as an operator from L∞(C) into itself and the constant C0 depends
on a. Assuming this claim to be true, we get that (I −KW )−1 exists as a Neumann series and

D =I +O
�

‖KW ‖
1−‖KW ‖

�

,

which finishes the proof of the lemma granted the validity of (8.6). Thus, it only remains to prove
estimate (8.6). To this end, observe that (8.3), (8.4), and the Hölder inequality imply

(8.7) ‖KW ‖ ≤C1 max
z∈Ω
















rn fα,β f

z − ·
















1,Ω

≤C2 max
z∈Ω













rn

z − ·













q ,Ω
, q ∈

( �

2
s−υ+1 , 2

�

, s − υ≤ 1,

[1,2) , s − υ > 1,

5Recall that by Lemma 16, f and all its partial derivatives up to and including the order m − 1 have well-defined
vanishing boundary values on∆ and therefore f is indeed C m−1,ς throughout Ω.
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where C1,C2 are constants depending on q and ‖ · ‖q ,Ω is the usual norm on Lq (Ω). Thus, it holds
that

(8.8) ‖KW ‖ ≤C3‖rn‖q ,Ω, q ∈
( �

2
s−υ ,∞

�

, s − υ≤ 1,

(2,∞) , s − υ > 1,

by Hölder inequality, where C3 is a constant depending on q .
In another connection, let ψ be the conformal map of D onto D, ψ(∞) = 0, ψ′(∞)> 0, and let

bn be a Blaschke product with respect to D that has the same zeros as rn counting multiplicities,
i.e.,

bn(z) =
∏

rn (e)=0

ψ(z)−ψ(e)

1−ψ(e)ψ(z)
, z ∈D .

Then by the maximum modulus principle for analytic functions and Definition 1-(1), we have that

(8.9) |rn(z)| ≤max
t∈∆
|r±n (t )||bn(z)| ≤C4|bn(z)|, z ∈D ,

where C4 is independent of n and z. Denote by Lρ, ρ ∈ (0,1), the level line of ψ, i.e. Lρ := {z ∈
D : |ψ(z)| = ρ}. Due to Definition 1-(2), there exist 1 > ρ0 > ρ1 > 0 such that Ω is contained
within the bounded domain with boundary Lρ0

, say Ωρ0
, and all the zeros of bn are contained

within the unbounded domain with boundary Lρ1
. Then

(8.10) ‖bn‖q ,Ω ≤ ‖bn‖q ,Ωρ0
=







(bn ◦ψ
−1)
�

(ψ−1)′
�2









q ,Aρ0,1

,

where Aρ0,1 := {z : ρ0 < |z |< 1}, ψ−1 is the inverse of ψ, and the index q is as in (8.8). As ψ−1 is
a conformal map of D onto D , it holds that |(ψ−1)′| ≤C5 in Aρ0,1. Set

b ∗n (z) := (bn ◦ψ
−1)(z) =

∏

bn (ψ
−1(e∗))=0

z − e∗

1− ze∗
, z ∈D.

Then by (8.8), (8.9), and (8.10) and after, we get that

(8.11) ‖KW ‖ ≤C5‖b
∗
n‖q ,Aρ0,1

,

where the constant C5 depends on q . Observe now that for |z |= ρ, ρ ∈ (ρ0, 1), it holds that

(8.12) |b ∗n (z)| ≤
∏ ρ+ |e∗|

1+ρ|e∗|
≤ exp

¨

−(1−ρ)
∑ 1− |e∗|

1+ρ|e∗|

«

≤ exp

¨

−2n
(1−ρ)(1−ρ1)

1+ρ

«

since |e∗|<ρ1 by the definition of ρ1. Clearly, (8.11) and (8.12) yield that

‖KW ‖ ≤C5

 

∫ 2π

0

∫ 1

ρ0

exp

¨

−2nq
(1−ρ)(1−ρ1)

1+ρ

«

ρdρd t

!1/q

≤C6n−1/q ,

which is exactly (8.6) with a = 1/q . �

9. SOLUTION OF RHP-Y AND PROOF OF THEOREM 3

In this last section, we gather the material from Sections 6–8 to prove Theorem 3. It is an
immediate consequence of Lemmas 14, 15, and 17, combined with Lemmas 18, 22, and 23 that the
following result holds.
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Lemma 24. If (2.9) is fulfilled, then the solution of RHP-Y uniquely exists for all n large enough and
can be expressed by reversing the transformationsY →T →S using (6.5) and (6.7) withS =DA ,
whereA is the solution of RHP-A and D is the solution of ∂̄ P-D .

9.1. Asymptotics away from ∆, formula (2.17). We claim that (2.17) holds locally uniformly in
D . Clearly, for any given closed set in D , it can be easily arranged that this set lies exterior to the
lens Σr d

n , and therefore to the lenses Σn and Σe x t . Thus, the asymptotic behavior of Y on this
closed set is given by

Y =
�

2nεn
�−σ3RN DEσ3

n

due to Lemma 24, where εn and En were defined in (6.2), R is the solution of RHP-R given by
Lemma 22, andN is the solution of RHP-N given by (7.3). Moreover, we have that

(9.1) RN D =
�

[1+ o(1)]Nl k
�

l ,k=1,2 ,

where o(1) satisfies (2.13) locally uniformly in C \ {±1}, including on (∆±)◦, on account of (7.7)
and (8.2). Thus, it holds that

(

Y11 = [1+ o(1)]N11En/(2
nεn) = ϕ

n/(2n Sww+S(h hn/vn )
)

Y12 = [1+ o(1)]N12/(En2nεn) = 2iGw G(h hn/vn )
Sw S(h hn/vn )

/(ϕn+1Sw+)

by (6.2) and (7.3), where o(1) satisfies (2.13) locally uniformly in D . Recall now that the entries of
N are, in fact, continued Szegő functions defined with respect to ∆n . However, we have already
mentioned that they coincide with Sw+ and Sw outside of a set exterior to ∆n ∪∆. Thus, the
equations above indeed hold true. Hence, asymptotic formulae (2.17) follow from (6.1), (2.18),
and (5.13).

9.2. Asymptotics in the Bulk, Formula (2.19). To derive asymptotic behavior of qn and Rn on
∆ \ {±1}, we need to consider what happens within the lens Σe x t and outside the disks Uδ and
eUδ . We shall consider the asymptotics of Y from within Ω+, the upper part of the lens Σe x t , the

behavior of Y in Ω− can be deduced in a similar fashion.
Recall that ∆n either coincides with ∆ or intersects it at finite number of points, as both arcs

are images of [−1,1] under holomorphic maps. Set

∆∗n :=∆∩Ωn+ ∆∗∗n :=∆∩Ωn−,

where Ωn+ and Ωn− are the upper and lower parts of the lens Σmd
n . Then, it holds that

(9.2) A+ =







B+, on ∆∗n ,

B−
�

0 w
−1/w 0

�

, on ∆∗∗n ,

by (7.1), where with a slight abuse of notation we denote byB± the values ofB in Ωn± and on
∆±n . Then it holds on∆◦ by RHP-N (b) and on account of Lemma 24, (9.2), and (7.9) that

S+ =







RN+D, on ∆∗n

RN−
�

0 w
−1/w 0

�

D, on ∆∗∗n
=R fN+D,

where, again, underN± we understand the values ofN in Ωn± and on ∆±n and fN is the analytic

continuation of N that satisfies RHP-N , only with a jump across ∆. Clearly, fN is defined by
(7.2) and (7.3), where Sw+ and Sw are the Szegő functions of w+ and w with respect to ∆ and not
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the continued functions that actually appear in (7.2) and (7.3). Thus, we deduce from Lemma 24
and (9.1) that

Y+ =
�

2nεn
�−σ3

�

[1+ o(1)] fN +
l k

�

l ,k=1,2

�

1 0
(rn cn c)+/w 1

�

(E+n )
σ3

=
�

2nεn
�−σ3

�

[1+ o(1)] fN +
l k

�

l ,k=1,2

�

E+n 0
E−n /w 1/E+n

�

where o(1) satisfies (2.13) locally uniformly on∆◦ and we used (6.4) to obtain the second equality.
Therefore, it holds that

(

Y11 = [1+ o(1)] fN +
11 E+n /(2

nεn)+ [1+ o(1)] fN +
12 E−n /(2

nεn w)

Y +12 = [1+ o(1)] fN +
12 /(E

+
n 2nεn)

with o(1) satisfying (2.13) locally uniformly on ∆◦. As in the end of the previous section, we
deduce (2.19) from (6.1), the formulae

fN ±
11 E±n

2nεn
=

1

S±n
and

fN +
12

E+n 2nεn
=

S+n
w+

,

and by noticing that
1

w

fN +
12

fN −
11

=
1

w

Gw S+w S−w S−
w+

ϕ+S+
w+

=
i S−

w+

ϕ+S+
w+

≡ 1

on∆◦ by (2.12) and (5.14).
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