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ABSTRACT. Let [c , d] be an interval on the real line andµ be a measure of the form dµ= µ̇dω[c ,d]
with µ̇ = h ħh, where ħh(t ) = (t − c)αc (d − t )αd , αc ,αd ∈ [0,1/2), h is a Dini-continuous non-
vanishing function on [c , d] with an argument of bounded variation, and ω[c ,d] is the normalized
arcsine distribution on [c , d]. Further, let p and q be two polynomials such that deg(p) < deg(q)
and [c , d]∩z(q) =∅, where z(q) is the set of the zeros of q . We show that AAK-type meromorphic
as well as diagonal multipoint Padé approximants to

f(z) :=
∫ dµ(t )

z − t
+
�

p

q

�

(z)

converge locally uniformly to f in Df∩D and Df, respectively, where Df is the domain of analyticity
of f andD is the unit disk. In the case of Padé approximants we need to assume that the interpolation
scheme is “nearly” conjugate-symmetric. A noteworthy feature of this case is that we also allow the
density µ̇ to vanish on (c , d ), even though in a strictly controlled manner.

1. INTRODUCTION

Let f be a function of the form

(1.1) f(z) :=
∫ dµ(t )

z − t
+
�

p

q

�

(z), z(q)∩ [c , d] =∅,

where [c , d] = supp(µ) is the support of a complex Borel measure µ, the polynomials p and q are
coprime, deg(p) < deg(q) =: m, and z(q) is the set of zeros of q . Let ω[c ,d] be the equilibrium
distribution for [c , d], which is simply the normalized arcsine distribution. In this paper, we
assume thatµ is absolutely continuous with respect toω[c ,d] and µ̇, its Radon-Nikodym derivative
(dµ= µ̇dω[c ,d]), is such that

µ̇= h ħh,(1.2a)

µ̇= h ħh ħhx,(1.2b)

where h is a non-vanishing Dini-continuous function with argument of bounded variation on
[c , d], ħh(t ) := |t − c |αc |t − d |αd , αc ,αd ∈ [0,1/2), x ⊂ (c , d ) is a finite set of distinct points, and
ħhx(t ) :=

∏

x∈x |t − x|2αx , αx ∈ (0,1/2). Under such assumptions on f, we show locally uniform
convergence of Lp (T)-best meromorphic (in this case we assume that [c , d]⊂ (−1,1)) and certain
diagonal multipoint Padé approximants to f in

(1.3) Df :=C \ (supp(µ)∪ z(q)),
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the domain of analyticity of f, whereC is the extended complex plane. It is known [25, 5] that the
denominators of both types of approximants satisfy non-Hermitian orthogonality relations with
respect to µ that assume a similar form. This leads to similar integral representations for the error
of approximation, which is the reason why we treat them simultaneously.

Generally speaking, meromorphic approximants (MAs) are functions meromorphic in the unit
disk that provide an optimal approximation to f on the unit circle in the Lp -norm when the num-
ber of poles is fixed. When considering them, it is customary to assume that supp(µ) ∪ z(q) is
contained in the unit disk, D. The study of MAs originated from the work of V.M. Adamyan,
D.Z. Arov, and M.G. Krein [1], where the case p =∞ was considered. Nowadays such approx-
imants are often called AAK approximants. The Lp -extensions of the AAK theory were obtained
independently by L. Baratchart and F. Seyfert [5] and V.A. Prokhorov [21]. Meromorphic ap-
proximation problems have natural extension to Jordan domains with rectifiable boundary when
the approximated function f is meromorphic outside of a closed hyperbolic arc of this domain [3].
However, we shall not consider such a generalization here.

The AAK theory itself as well as its generalizations is based on the intimate relation between
best (locally best) MAs and Hankel operator whose symbol is the approximated function [1, 5, 21].
The study of the asymptotic behavior of MAs is, in fact, equivalent to the study of the asymptotic
behavior of the singular vectors and singular numbers of the underlying Hankel operator (see
Section 3). Hence, the present work (more specifically, Theorems 1 and 2) can be considered as an
asymptotic analysis of the singular vectors of Hankel operators with symbols of type (1.1)–(1.2a).

Let us briefly account for the existing results on convergence of MAs to functions of type
(1.1). Uniform convergence was obtained in [6] for the case p = 2 (in this case meromorphic
approximants reduce to rational functions) whenever µ is a positive measure and the rational
summand is not present, i.e. q ≡ 1 and necessarily p ≡ 0, (such functions f are called Markov
functions). The general case p ∈ [1,∞] was addressed in [4], where again only Markov functions
were considered and uniform convergence was shown under the assumption that µ belongs to
the Szegő class, i.e. log(dµ(t )/d t ) is integrable on [c , d]. The case of complex measures and non-
trivial rational part was taken up in [9], where convergence in capacity inD\supp(µ)was obtained
while supp(µ) was assumed to be a regular set with respect to the Dirichlet problem and µ had to
be sufficiently “thick" on its support and have an argument of bounded variation.

On the other hand, diagonal multipoint Padé approximants (PAs) are rational functions of type
(n, n) that interpolate f in a system of 2n not necessarily distinct nor finite points (interpolation
scheme) lying in Df with one additional interpolation condition at infinity. Unlike the mero-
morphic case, it is pointless to assume that supp(µ) and z(q) lie in D. It is customary to call
PA classical if all the interpolation points lie at infinity. Such approximants were initially stud-
ied by A.A. Markov [17] using the language of continued fractions. Later, A.A. Gonchar [13]
considered classical PAs to functions of type (1.1) with nontrivial rational part and positive µ.
Locally uniform convergence to f in Df was obtained under the condition that µ belongs to the
Szegő class. Continuing this work, E.A. Rakhmanov has shown [22] that the restriction on µ
to be in the Szegő class cannot be relaxed in general, but if all the coefficients of R are real, uni-
form convergence holds for any positive measure. In the recent paper [14] A.A. Gonchar and S.P.
Suetin proved that uniform convergence of classical PAs still holds if µ is a complex measure of
the form dµ = hdω[c ,d], where h is a non-vanishing analytic function in some neighborhood of
[c , d]. Recently, using the operator-theoretic approach, M.S. Derevyagin and V.A. Derkach [11]
showed that there always exists a subsequence of diagonal PAs that converges locally uniformly to
f whenever the latter is such that µ is a positive measure and p/q is real-valued on supp(µ) but
can have poles there. Finally, we mention a weaker result that holds for a larger class of complex
measures. It was shown in [9, Thm. 2.3] that multipoint Padé approximants corresponding to
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“nearly” conjugate-symmetric interpolation schemes converge in capacity in C \ supp(µ) when-
ever supp(µ) is a regular set with respect to the Dirichlet problem and µ is sufficiently “thick" on
its support and has an argument of bounded variation.

The main results of this paper are presented in Section 3, Theorems 1–4, and Section 4, Theo-
rems 5 and 6. The conditions imposed on the measure µ in these theorems come from Theorem
7. The latter is, in fact, a consequence of Theorems 2 and 3 in [7]. In particular, if Theorem 7
is established under other assumptions on µ, this would yield Theorems 1–6 for this new class of
measures. For instance, all the main results of the present work would hold whenever µ is of the
form

dµ(t ) = h(t )(t − c)αc (d − t )αd d t ,
where h is an m-times continuously differentiable non-vanishing function on [c , d] with m-th
derivative being ς -Hölder continuous and αc ,αd ∈ (−1,∞)∩ (−m− ς , m+ ς) [8].

2. PRELIMINARIES AND NOTATION

To smoothen the exposition of the material in main Sections 3 and 4, we gather below some
necessary prerequisites and notation.

Let Ts := {z : |z |= s}, T±s :=Ts ∩{z :±Im(z)≥ 0}, and Ds := {z : |z |< s}, s > 0, be the circle,
the semicircles, and the open disk centered at the origin of radius s . For simplicity, we drop the
lower index 1 for the unit circle (semicircles) and the unit disk.

Denote by H p , p ∈ [1,∞], the Hardy spaces of the unit disk consisting of holomorphic func-
tions f in D such that

(2.1)
‖ f ‖p

p := sup
0<s<1

1

2π

∫

T
| f (sξ )|p |dξ |<∞ if p ∈ [1,∞),

‖ f ‖∞ := sup
z∈D
| f (z)|<∞ if p =∞.

It is known [12, Thm. I.5.3] that a function in H p is uniquely determined by its trace (non-
tangential limit) on the unit circle and that the Lp -norm of this trace is equal to the H p -norm of
the function, where Lp is the space of p-summable functions on T. This way H p can be regarded
as a closed subspace of Lp .

In the same vein, we define H̄ p
0 , p ∈ [1,∞], consisting of holomorphic functions in C \D that

vanish at infinity and satisfy (2.1) with 1 < s <∞ and z ∈ C \D, respectively. In particular, we
have that L2 = H 2 ⊕ H̄ 2

0 . Thus, we may define orthogonal projections P+ : L2 → H 2 (analytic)
andP− : L2→ H̄ 2

0 (antianalytic). It is easy to see that
∫

T

h(ξ )

ξ − z

dξ

2πi
=
¨

P+(h)(z), z ∈D,

−P−(h)(z), z ∈C \D,
h ∈ L2.

Recall also the well-known fact [12, Cor. II.5.8] that any nonzero function in H p can be uniquely
factored as h = j w, where

w(z) = exp

¨

1

2π

∫

ξ + z

ξ − z
log |h(ξ )||dξ |

«

, z ∈D,

belongs to H p and is called the outer factor of h, while j has modulus 1 a.e. on T and is called the
inner factor of h. The latter may be further decompose as j = b s , where b is a Blaschke product,
i.e. a function of the form

b (z) = zk
∏

z j 6=0

−z̄ j

|z j |
z − z j

1− z̄ j z
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that has the same zeroing as h, while s is the singular inner factor. For simplicity, we often say that
a function is outer (resp. inner) if it is equal to its outer (resp. inner) factor.

Continuing with the notation, for any point-set K and any function f ∈ H p , we denote by K∗

and f σ their reflections across T, i.e., K∗ := {z : 1/z̄ ∈ K} and f σ (z) := z−1 f (1/z̄). Clearly then
f ∈ H̄ p

0 and the map ·σ is idempotent. Further, for an interval [c , d] we set

(2.2) κ := 4/(d − c), w(z) :=
Æ

(z − c)(z − d ), and D :=C \ [c , d],

where such a branch of w is chosen that w is holomorphic in D\{∞} and w(z)/z→ 1 as z→∞.
Then

ew(z) := 1/(1/w(z))σ = z2wσ (z) =
Æ

(1− c z)(1− d z),

is holomorphic in D∗ \ {∞} and ew(0)> 0. Moreover, the function

(2.3) ψ(z) :=
2z − (d + c)− 2w(z)

d − c
, z ∈D,

is the conformal map of D onto D such that ψ(∞) = 0 and ψ′(∞) = κ > 0. It is also easy to see
that ψ has well-defined unrestricted boundary values from both side of [c , d] (we assume that the
positive side of [c , d] lies on the left when the interval is traversed in the positive direction, i.e.
from c to d ). Moreover, it holds that

(2.4) ψ+ψ− = 1 on [c , d].

Let now h be a Dini-continuous non-vanishing complex-valued function on [c , d]. Recall that
Dini-continuity means

∫

[0,d−c]
δ−1 max

|t1−t2|≤δ
|h(t1)− h(t2)|dδ <∞.

It can be easily checked (cf. [7, Sec. 3.3]) that the geometric mean of h, i.e.

(2.5) Gh := exp
�∫

log h(t )dω[c ,d](t )
�

,

is independent of the actual choice of the branch of the logarithm and is non-zero. Moreover, the
Szegő function of h, i.e.

(2.6) Sh (z) := exp

¨

w(z)

2

∫ log h(t )

z − t
dω[c ,d](t )−

1

2

∫

log h(t )dω[c ,d](t )
«

,

z ∈ D, also does not depend on the choice of the branch (as long as the same branch is taken in
both integrals) and is a non-vanishing holomorphic function in D that has continuous boundary
values from each side of [c , d] and satisfies

(2.7) h =Gh S+
h

S−
h

on [c , d] and Sh (∞) = 1.

The continuity of the traces of Sh is ensured by the Dini-continuity of h, essentially because Dini-
continuous functions have continuous conjugates [12, Thm. III.1.3]. In fact, more can be said.
Let a be a non-vanishing holomorphic function in D that has continuous traces on each side of
[c , d] and a(∞) = 1. Suppose also that a+a− = c2 for some constant c . Then the functions
ai ◦ψ := c/a and ae ◦ (1/ψ) := a/c are holomorphic in D and C\D, respectively, have continuous
traces on T, ai (0) = c and ae (∞) = 1/c . Moreover, it can be readily verified that the traces of ai
and ae coincide. Thus, ai and ae are analytic continuations of each other, from which we deduce
by Liouville’s theorem that c = 1 and ai ≡ ae ≡ 1. This simple observation implies the following.
Let h be a Dini-continuous function on [c , d] and G be some constant. If S is a non-vanishing
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holomorphic function in D that assumes value 1 at inifnity, has continuous traces, and is such
that GS−S+ = h then necessarily G = Gh and S = Sh . It is also true that (2.6) is well-defined
whenever h is a non-negative integrable function with integrable logarithm; like, for example, ħh
and ħhx defined after (1.2).

We also emphasize that the Szegő function of a polynomial can be computed in a rather explicit
manner as we will now see. Let v be a polynomial with zeros in D, deg(v)≤ k. Set

(2.8) rk (v; z) := (ψ(z))k−deg(v)
∏

e∈z(v)

�

ψ(z)−ψ(e)
1−ψ(z)ψ(e)

�m(e)

, z ∈D,

where z(v) is the set of zeros of v and m(e) is the multiplicity of e ∈ z(v). Then rk (v; ·) is a
holomorphic function in D with a zero of multiplicity m(e) at each e ∈ z(v) and a (possible) zero
of multiplicity k − deg(v) at infinity. Moreover, it has unrestricted continuous boundary values
from both sides of [c , d] such that

(2.9) r+
k
(v; ·)r−

k
(v; ·) = 1

by (2.4). Then since Sv is the unique function of Szegő type such that S+v S−v is equal to a constant
multiple of v, it holds that

(2.10) S2
v =

1

Gv

vψk

rk (v; ·)
.

In some cases it will be important to consider the ratio of the boundary values of Szegő func-
tions rather then their product. Hence, we introduce

(2.11) Q±
h
(t ) := S±

h
(t )/S∓

h
(t ), t ∈ [c , d].

When h is non-vanishing Dini-continuous function, Q±
h

are continuous on [c , d] and assume the
value 1 at the endpoints. Let us state two of their properties that we shall use implicitly on several
occasions and the reader will have no difficulty in verifying. The first one is the multiplicativity
property, i.e. Sh1 h2

= Sh1
Sh2

, and the second one is the convergence property which says that

Shn
= [1+ o(1)]Sh uniformly in C, i.e. including the boundary values, whenever hn = [1+ o(1)]h

uniformly on [c , d]. For more information on Szegő functions of complex h, the reader may
consult [7, Sec. 3.3].

Next, we denote by As1,s2
:= {z : s1 < |z | < s2}, 0 < s1 < s2, and As := As ,1/s , s < 1, the annuli

centered at the origin and by ϕ the conformal map from D∩D∗ onto Aρ, ϕ(1) = 1. Recall that
annuli As are not conformally equivalent for different s and therefore ρ = ρ([c , d]) is uniquely
determined by [c , d]. From the potential-theoretic point of view ρ can be expressed as

(2.12) ρ= exp

¨

−
1

cap([c , d],T)

«

,

where cap([a, b],T) is the capacity of the condenser ([c , d],T). The map ϕ is given by [24, Thm.
VIII.6.1]

(2.13) ϕ(z) = exp

¨

T 2
∫ z

1

d t

(wew)(t )

«

with integration taken along any path in D∩D∗, where

(2.14) T −2 :=
2

π

∫

[0,1]

d x
Æ

(1− x2)[(1− cd )2− (d − c)2x2]
.
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Moreover, it holds that ϕ(z̄) = ϕ(z) and ϕ(1/z) = 1/ϕ(z), z ∈ D ∩D∗. Thus, ϕ(T) = T and
ϕ(D \ [c , d]) = Aρ,1. Further, it is not hard to check that ϕ extends continuously on each side of
[c , d] (resp. [c , d]∗) and ϕ±([c , d]) =T±

ρ
(resp. ϕ±([c , d]∗) =T±

1/ρ
). Finally, the Green equilibrium

distribution (which is a probability measure on [c , d] [24, Sec. II.5]) for the condenser D \ [c , d],
as well as for the condenser D∩D∗, is given by

(2.15) dω([c ,d],T)(t ) =
T 2d t

π|(w+ ew)(t )|
=
|dϕ+(t )|
πρ

,

where the normalization follows from (2.14) and the second equality holds by differentiating (2.13)
and taking boundary values.

3. MEROMORPHIC APPROXIMATION

The meromorphic approximants (MAs) that we deal with are defined as follows. For p ∈ [1,∞]
and n ∈N, the class of meromorphic functions of degree n in Lp is

(3.1) H p
n :=H p B−1

n ,

where Bn is the set of Blaschke products of degree at most n (with at most n zeros). By the
celebrated theorem of Adamyan, Arov, and Krein [1] (see also [20, Ch. 4]) and its generalizations
[5, 21] it is known that for any fixed n ∈ N and p ∈ [1,∞] and given f ∈ Lp there exists a
meromorphic function gn such that

(3.2) ‖ f − gn‖p = inf
g∈H p

n

‖ f − g‖p .

Moreover, gn is unique when p ∈ [1,∞), but in the case p = ∞ it is necessary to assume f ∈
H∞ +C (T) to ensure uniqueness of gn , where C (T) is the space of continuous functions on the
unit circle. Obviously, when supp(µ)⊂D and q has no zeros on T the function f defined in (1.1)
complies with these requirements for any p ∈ [1,∞]. When p < 2, no functional representation
for the error is known to satisfy orthogonality relations [5]. This is the reason why in what
follows we shall restrict to the case p ∈ [2,∞].

Due to similar functional decomposition and their appearances in the computations1, we con-
sider not only best MAs but more generally critical point of meromorphic approximation prob-
lem (3.2). Although their definition is rather technical (see below), critical points are just those
gn = hn/bn ∈ H p

n (see (3.1)) for which the derivative of ‖ f − gn‖p with respect to bn ∈ Bn and
hn ∈H p does vanish [5]. By definition, a function gn is a critical point of order n in meromorphic
approximation problem (3.2) if and only if it assumes the form

(3.3) gn = f −
H f (vn)

vn
=
P+( f vn)

vn
,

whereH f is Hankel operator with a symbol f , i.e.

H f : H p ′ → H̄ 2
0 , H f (h) :=P−( f h), 1/p + 1/p ′ = 1/2,

and vn ∈ H p ′ is of unit norm (a Blaschke product if p = 2), its inner factor is a Blaschke product
of exact degree n, and is such that

H ∗
f H f (vn) = σ

2
nP+

�

|vn |p
′−2vn

�

if p > 2,

H ∗
f H f (vn) =P+

�

|H f (vn)|2vn

�

if p = 2,

1It is most likely that a numerical search ends up with stable critical points, that is locally best MAs, rather than just
best MAs.
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withH ∗
f being the adjoint operator. A function vn is called a singular vector associated to a critical

point gn and

(3.4) σn := ‖ f − gn‖p = ‖H f (vn)‖p , p ∈ [2,∞],

is called the critical value associated to gn . In the case when gn is a best MA to f it also holds that
σn is the n-th singular number ofH f , i.e.

σn = σn(H f ) := inf
¦

‖H f −Γ‖ : Γ : H p ′ → H̄ 2
0 linear operator of rank ≤ n

©

;

when p = 2 it is assumed in addition that Γ is weak∗ continuous. Hereafter, we use the following
notation for the inner-outer decomposition of singular vectors:

(3.5) vn = bn wn , bn = qn/eqn , wn(0)> 0, eqn(z) = zn qn(1/z̄),

where wn is an outer factor, qn is a monic polynomial of exact degree n, and eqn is the reciprocal
polynomial of qn . To uniformize the notation, we simply set wn ≡ 1 when p = 2.

A critical point of order n may have less than n poles, even though we insisted in the definition
that vn has exactly n zeros. Cancellation may occur due to zeros of P+( f vn). When this is not
the case, we shall call gn an irreducible critical point. It is worth mentioning that when p ∈ [2,∞)
a best MA is not necessarily unique, but has exactly n poles. Thus, all best MAs are irreducible
critical points. To the contrary, if p = ∞, best MA is unique and is the only critical point of
order n, but may have less then n poles. However, there always exists a subsequence of natural
numbers for which best AAK approximants are irreducible. Since the behavior of the poles of
MAs is entirely characterized by this subsequence, hereafter we say “a sequence of irreducible
critical points” to mean if p =∞ that we pass to a subsequence if needed.

Now, we are ready to state the first theorem of this section.

Theorem 1. Let f be given by (1.1) and (1.2a). Further, let {gn} be a sequence of irreducible critical
points of the meromorphic approximation problem to f, p ∈ (2,∞]. Then the outer factors wn in (??)
are such that

(3.6) w p ′/2
n =

T + o(1)
ew

+
ln

eq
, eq(z) = z m q(1/z̄),

where o(1) holds locally uniformly in D∗, T was defined in (2.14), and the polynomials ln , deg(ln) <
m, converge to zero and are coprime with eq.

This theorem is a strengthening of Lemma 3.4 in [9] that asserts, under much milder assump-
tions on µ, that

¦

w p ′/2
n

©

is a normal family in D∗
f

and any limit point of {wn} in D is zero free.

For simplicity, set w :=
�

T /ew
�2/p ′ for each p > 2. Then Theorem 1 yields that wn → w,

uniformly in some neighborhood of D (it follows from the proof of Theorem 1 and can be seen
from asymptotic formula (3.3) that the outer factors wn can be extended to holomorphic functions
in any simply connected neighborhood of D contained in D∗

f
). Now, we are ready to describe the

asymptotic behavior of irreducible critical points.

Theorem 2. Let f and {gn} be as in Theorem 1. Then the Blaschke products bn in (??) are such that

(3.7) bn = [1+ o(1)]bϕn−m D−1
n locally uniformly in Df ∩D

∗
f
,

where b := q/eq, m = deg(q), {Dn} is a normal family of non-vanishing functions in D∩D∗, such
that |D±n | are uniformly bounded above and away from zero on [c , d] and [c , d]∗. Moreover, the
following error estimates take place

(3.8) σn = ‖f− gn‖p =
�

2MT −1+ o(1)
�

ρ2(n−m),
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where σn is the critical value associated to gn via (??), and

(3.9) (f− gn) =
2M + o(1)

ww

�

ρ

ϕ

�2(n−m) D2
n

b 2

uniformly on compact subsets of Df ∩D, where

(3.10) M := exp
�∫

log
�

�

�(b 2wµ̇)(t )
�

�

�dω([c ,d],T)(t )
�

,

is the geometric mean of |b 2wµ̇| with respect to the condenser D∩D∗.

It is worth mentioning that the functions Dn are, in fact, Szegő functions for the condenser D∩
D∗ that first were introduced in [6, Def. 2.38] for the case of a positive measure µ. In such a
situation the Szegő function for a condenser has an integral representation that is no longer valid
for complex measures. Moreover, the normalization in the complex case is more intricate (see
Proposition 11). Nevertheless, it still holds that the functions Dn have zero winding number on
any curve separating [c , d] from [c , d]∗, Dn(z)Dn(1/z̄) = 1, z ∈D∩D∗, and M |D+n D−n |= |b

2wµ̇|
on [c , d].

We remind the reader that the case p = 2 has a couple of special features. First, best MA gn
specializes to a rational function. Indeed, gn can be written as a sum hn+ pn−1/qn , where hn ∈H 2,
deg(pn−1)< deg(qn) = n. As L2 =H 2⊕ H̄ 2

0 and f ∈ H̄ 2
0 , we have that

‖f− g‖2
2 = ‖h‖

2
2+ ‖f− pn−1/qn‖

2
2.

Hence, to achieve the minimum of the left-hand side of the equality above, one necessarily should
take h ≡ 0. This is the reason why we referred on some occasions to the meromorphic approxi-
mation problem with p = 2 as to the rational approximation problem. Second, the outer factors
wn in (??) are not present, or better assumed to be identically 1. The latter allows us to consider a
slightly larger class of measures, namely those given by (1.2b).

Theorem 3. Let f be given by (1.1) and (1.2b), where sin(αxπ) ∈ (0,Ψx ),

Ψx :=min
±
{|Q±

q2 h
(x)|}exp

¨

−
4s1[Vh + 2mπ]

1− s0

«

, x ∈ x,

Vh is the total variation of the argument of h on [c , d], s0 := maxT |ψ|, and s1 := maxT |ψ′|. Let
further {gn} be a sequence of irreducible critical points of the meromorphic approximation problem
with p = 2 to f. Then (3.3), (??), and (??) hold with w ≡ 1.

It follows from (??) that each bn has exactly m zeros approaching the zeros of b . In fact, it is
possible to say more.

Theorem 4. For each η ∈ z(q) and all n large enough, there exists an arrangement of η1,n , . . .ηm(η),n ,
the zeros of bn approaching η, such that

(3.11) ηk ,n = η+Aη
k ,n

�

ρ

ϕ(η)

�2(n−m)/m(η)

exp

¨

2πki

m(η)

«

, k = 1, . . . , m(η),

where the sequences {maxk |A
η

k ,n
|} and {maxk |1/Aη

k ,n
|} are bounded above.

This theorem essentially says that each pole η of f attracts exactly m(η) poles of gn , the latter
converge geometrically fast and are asymptotically distributed as the roots of unity of order m(η).
The proof of this theorem is an adaptation of the technique developed in [14] for classical Padé
approximants to Cauchy transforms of analytic densities. As one can see from the next section,
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similar results hold not only for classical but more generally for multipoint Padé approximants to
Cauchy transforms of less regular measures.

4. MULTIPOINT PADÉ APPROXIMATION

Let f be given by (1.1). Classically, diagonal (multipoint) Padé approximants to f are rational
functions of type (n, n) that interpolate f at a prescribed system of 2n+ 1 points. However, when
the approximated function is of the form (1.1), it is customary to place at least one interpolation
condition at infinity. More precisely, let E = {En} be a sequence of sets each consisting of 2n
not necessarily distinct nor finite points in Df (interpolation scheme), and let vn be the monic
polynomial with zeros at the finite points of En .

Definition (Padé Approximants). Given f of type (1.1) and an interpolation scheme E , the n-th diag-
onal Padé approximant to f associated with E is the unique rational function Πn = pn/qn satisfying:

• deg pn ≤ n, deg qn ≤ n, and qn 6≡ 0;
•
�

qn(z)f(z)− pn(z)
�

/vn(z) is analytic in Df;
•
�

qn(z)f(z)− pn(z)
�

/vn(z) =O
�

1/zn+1� as z→∞.

A Padé approximant always exists since the conditions for pn and qn amount to solving a system
of 2n+ 1 homogeneous linear equations with 2n+ 2 unknown coefficients, no solution of which
can be such that qn ≡ 0 (we may thus assume that qn is monic); note the required interpolation at
infinity is entailed by the last condition and therefore Πn is, in fact, of type (n− 1, n).

By the very definition, the behavior of Πn depends on the choice of the interpolation scheme.
We define the support of E = {En} as supp(E ) := ∩n∈N∪k≥n Ek . Hereafter, the counting measure
of a finite set is a probability measure that has equal mass at each point counting multiplicities
and the weak∗ topology is understood with respect to the duality between complex measures and
continuous functions with compact support in C.

Definition (Admissibility). An interpolation scheme E is called admissible if

• there exist rearrangements∆n of En such that the sums
∑

e∈En
|ψ(ē)−ψ(∆n(e))| are uniformly

bounded when n→∞;
• supp(E )⊂Df and the probability counting measures of points in En converge weak∗ to some

Borel measure with finite Green energy2 relative to D.

Then the following result holds.

Theorem 5. Let {Πn} be a sequence of diagonal Padé approximants associated with an admissible
interpolation scheme E = {En} to f given by (1.1) and (1.2b) with

(4.1) αxπ ∈ (0, arcsinΥx ), Υx := liminf
n→∞

min
±

�

|(rnQh )
±(x)|

	

,

for any x ∈ x, where rn := r2n(vn ; ·). Then

(4.2) (f−Πn)w= [2Gµ̇+ o(1)] S2
µ̇

rn

r 2

locally uniformly in Df, where r := rm(q ; ·). When (p/q)≡ 0 it is not necessary to assume bounded-
ness of the variation of the argument of h.

2For information on the notions of potential theory we refer the reader to the monographs [23, 24].
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We would like to point out thatΥx is, in fact, continuous function of x on [c , d] such thatΥc =
Υd = 1 and minx∈[c ,d]Υx > 0. The latter is true since the functions Q±

h
are non-vanishing and

continuous on [c , d]. Moreover, it will be shown in the proof of Theorem 7 that the admissibility
of E implies uniform boundedness of |r±n | and hence their uniform boundedness away from zero
by (2.9). It is also easy to check that when the sets En are conjugate-symmetric and h is a positive
function, it holds that Υx ≡ 1.

Concerning the behavior of Πn near polar singularities of f, i.e. near z(q), the following the-
orem asserts the same “roots of unity” behavior as in Theorem 4 and is a generalization of [14,
Thm. 3] for the case of multipoint Padé approximants and less regular measures.

Theorem 6. Under the conditions of Theorem 5 let qn be the denominators of Πn . Then

(4.3) qn = un−m qn,m and qn,m = (1+ o(1))q ,

where deg(un−m) = n−m, deg(qn,m) = m, the polynomials un−m have no zeros on any closed set in D

for all n large enough, and o(1) holds locally uniformly in C \ z(q). Moreover, for each η ∈ z(q) with
multiplicity m(η) and all n large enough there exists an arrangement of η1,n , . . . ,ηm(η),n ∈ z(qn,m)
such that

(4.4) ηk ,n = η+Aη
k ,n

�

rn(η)
�1/m(η) exp

¨

2πki

m(η)

«

, k = 1, . . . , m(η),

where the sequences {maxk |A
η

k ,n
|} and {maxk |1/Aη

k ,n
|} are bounded above.

5. NON-HERMITIAN ORTHOGONAL POLYNOMIALS

In this section we describe the asymptotic behavior of non-Hermitian orthogonal polynomials
with varying weights on [c , d]. In what follows, we assume that {νn} is a sequence of complex
measures on [c , d] such that

d νn = ν̇n dω[c ,d], ν̇n = h hn ħh ħhx/vn+m , m ∈Z+,

where h is a non-vanishing Dini-continuous function on [c , d], {hn} is a normal family of non-
vanishing functions in some neighborhood of [c , d] none of which limit points can vanish in
this neighborhood, vn , deg(vn) ≤ 2n, are monic polynomials with zeros at finite points of an
admissible interpolation scheme, ħh and ħhx are as in the introduction with

(5.1) αxπ ∈ (0, arcsinΥx ), Υx := liminf
n→∞

min
±

¦

|(rn+mQh hn
)±(x)|

©

,

for each x ∈ x, where rk := r2k (vk ; ·). Observe that we do not require h to have argument of
bounded variation. Then the following theorem holds.

Theorem 7. Let {νn} be as described and {un} be a sequence of polynomials satisfying
∫

t j un(t )d νn(t ) = 0, j = 0, . . . , n− 1,

and {Rn} be the sequence of corresponding functions of the second kind, i.e.,

(5.2) Rn(z) :=
∫ un(t )

z − t
d νn(t ) =

1

un(z)

∫ u2
n(t )

z − t
d νn(t ).

Then, for all n large enough, the polynomials un have exact degree n and therefore can be normalized
to be monic. Under such a normalization it holds that

(5.3)
�

un = [1+ o(1)]/Sn
Rnw = [1+ o(1)]γn Sn

locally uniformly in D,
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where Sn := Sν̇n (κψ)
n , γn := 2κ−2nGν̇n

, and κ and w were defined in (2.2).

Proof. This theorem is an adaptation of [7, Thm. 3]. To see this we need several observations.
Firstly, the orthogonality relations in [7, Thm. 3] are considered on Jordan arcs connecting −1
and 1, of which the interval [−1,1] is a particular case. The current setting can be easily deduced
by applying a linear transformation l (x) = [(d − c)x + d + c]/2.

Secondly, {hn} is taken in [7, Thm. 3] to be a family of Dini-continuous non-vanishing func-
tions on [c , d] such that any sequence in this family contains a uniformly convergent subsequence
to a non-vanishing function and the moduli of continuity of hn are bounded by the same fixed
modulus of continuity. Clearly, the normality of {hn} yields that all these restrictions are met in
the present case.

Thirdly, only the case m = 0 is considered in [7, Thm. 3]. However, the general case we are
dealing with is no different. Indeed, choose 2m zeros of each polynomial vn+m that converge to
some fixed point inD (recall that the counting measures of zeros of vn converge in the weak∗ sense)
and pay the polynomial, say p2m,n , vanishing at these points to hn . Then {hn/p2m,n} is again, a
normal family of holomorphic functions with the required properties and the new polynomial
factor vn+m/p2m of ν̇n has degree no greater than 2n.

Finally, in order to appeal to [7, Thm. 3], we need to show that the functions rn = r2n(vn ; ·) are
such that rn = o(1) locally uniformly in D, |r±n |= O (1) on [c , d], and the moduli of continuity of
|r±n ◦ψ

−1| are bounded by the same fixed modulus of continuity3. To do so, consider

r̂n(z) := rn(ψ
−1(z)) =

∏

c∈Ên

z − c

1− c z
, Ên := {ψ(e) : e ∈ En}, z ∈D.

Observe that the sets En lie at fixed positive distance from [c , d] by the assumption supp(E )⊂Df

and therefore there exists s1 < 1 such that Ên ⊂Ds1
for all n. Thus, the Blaschke products

b̂n(z) :=
∏

c∈Ên

z − c

1− c̄ z
= o(1)

locally uniformly in D [12, Thm. 2.2.1]. Further,

|ψ(z1)−ψ(z2)| ≤max
z∈K
|ψ′(z)||z1− z2|, z1, z2 ∈K :=ψ−1(Ds1

),

and we get from the admissibility of {En} that
∑

c∈Ên

|c̄ − ∆̂n(c)| ≤ s2, ∆̂n(c) :=ψ
�

∆n

�

ψ−1(c)
��

,

for all n and some positive constant s2. Consider now the functions

( r̂n/b̂n)(z) =
∏

c∈Ên

1− c̄ z

1− c z
=
∏

c∈Ên

1− c̄ z

1− ∆̂n(c)z
, z ∈D.

Clearly, this is a sequence of outer functions in D. Moreover,

log |( r̂n/b̂n)(τ)|=
∑

c∈Ên

log

�

�

�

�

�

1+
(∆̂n(c)− c̄)τ

1− ∆̂n(c)τ

�

�

�

�

�

≤
∑

c∈Ên

�

�

�∆̂n(c)− c̄
�

�

�

1− |∆̂n(c)|
≤

s2

1− s1

3Observe that ψ−1 is just the Joukovski transformation.
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for τ ∈T. Thus, we have that

| r̂n | ≤ s3|b̂n |= o(1), s3 := exp{s2/(1− s1)},

locally uniformly in D and

(5.4) | r̂n |= | r̂n/b̂n | ≤ s3 on T.

Therefore, the corresponding properties of rn and |r±n | follow.
Next, we show that |r±n ◦ψ

−1| have moduli of continuity majorized by the same function. As

|b̂n | ≡ 1 on T, it is enough to consider | r̂n/b̂n |. Let τ1,τ2 ∈T. Then

log

�

�

�

�

�

�

( r̂n/b̂n)(τ2)

( r̂n/b̂n)(τ1)

�

�

�

�

�

�

=
∑

c∈Ên

log

�

�

�

�

�

1+
(τ1−τ2)(c̄ − ∆̂n(c))

(1− c̄τ1)(1− ∆̂n(c)τ2)

�

�

�

�

�

≤
s2|τ1−τ2|
(1− s1)

2
.

Therefore, we have with s4 := s2/(1− s1)
2 that

exp{−s4|τ1−τ2|} ≤

�

�

�

�

�

�

( r̂n/b̂n)(τ̄1)

( r̂n/b̂n)(τ̄2)

�

�

�

�

�

�

=

�

�

�

�

�

�

( r̂n/b̂n)(τ2)

( r̂n/b̂n)(τ1)

�

�

�

�

�

�

≤ exp{s4|τ1−τ2|}.

Moreover, denoting by Arg(z) ∈ (−π,π] the principal argument of z 6= 0 and using

|Arg(1+ z)| ≤ arcsin |z | ≤π|z |/2, |z |< 1,

we get that
�

�

�

�

�

�

Arg







( r̂n/b̂n)(τ2)

( r̂n/b̂n)(τ1)







�

�

�

�

�

�

≤
∑

c∈Ên

�

�

�

�

�

Arg

 

1+
(τ1−τ2)(c̄ − ∆̂n(c))

(1− c̄τ1)(1− ∆̂n(c)τ2)

!�

�

�

�

�

≤
s4|τ1−τ2|

2/π

for s4|τ1−τ2| ≤ 1. Hence, for such τ1 and τ2 we obtain that

�

�

�( r̂n/b̂n)(τ1)− ( r̂n/b̂n)(τ2)
�

�

�≤ s3

�

�

�

�

�

�

1−
( r̂n/b̂n)(τ2)

( r̂n/b̂n)(τ1)

�

�

�

�

�

�

≤ s5|τ1−τ2|

for some absolute constant s5. This finishes the proof of the theorem, granted [7, Thm. 3]. �

6. PROOFS OF THEOREMS 1–4

We start by providing several auxiliary results.

Lemma 8. Under the conditions of either Theorem 2 or Theorem 3 it holds that

(6.1) qn = un−m qn,m , qn,m = (1+ o(1))q ,

locally uniformly in C \ z(q), where deg(un−m) = n−m and deg(qn,m) = m. Moreover, the zeros of
the polynomials eq2

n form an admissible interpolation scheme.

Proof. It follows from [9, Thm. 2.4] that if supp(µ) is a regular set with respect to the Dirichlet
problem, µ̇ has an argument of bounded variation on supp(µ), and |µ|([x −δ, x +δ])≥ lδL for
all x ∈ [c , d] and some fixed positive constants l and L, then in any neighborhood of η ∈ z(q) the
polynomials qn have at least m(η) zeros for all n large enough (in fact, no more then m(η) plus
an absolute constant depending only on f), which is indeed equivalent to (??). Clearly, all these
requirements on the measure µ are met in the present case.
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Concerning the admissibility property, observe that the zeros of qn are contained in D by the
very definition of gn and their counting measures converge weak∗ to the Green equilibrium dis-
tribution on [c , d] by [9, Thm. 2.1]. Thus, the second requirement for admissibility is satisfied.
So, it only remains to construct the rearrangements ∆n that we shall simply take to be the iden-
tity mappings. This way we are required to show that the sums

∑n
j=1 |φ(ξ̄ j ,n)−φ(ξ j ,n)| remain

bounded when n→∞, where ξ j ,n are the zeros of qn and φ(·) :=ψ(1/·). Since φ is holomorphic

in D∗, {ξ j ,n} ⊂D, and D⊂D∗, it holds that that

|φ(z1)−φ(z2)| ≤ s1|z1− z2|, z1, z2 ∈D,

where s1 := maxT |ψ′| = maxT |φ′| = maxD |φ′| by the very definition of φ and the maximum
modulus principle for analytic functions. Hence,

(6.2)
n
∑

j=1

|φ(ξ̄ j ,n)−φ(ξ j ,n)| ≤ 2s1

n
∑

j=1

|Im(ξ j ,n)| ≤ 2s1

n
∑

j=1

(π−Angle(ξ j ,n)),

where Angle(z) := |Arg(a − z)−Arg(b − z)|, Arg(z) ∈ (−π,π] is the principal branch of the
argument of z, and we set Arg(0) = π. The uniform boundedness of the sums on the right-hand
side of (6.1) was established in [9, Lem. 3.1], using in an essential manner that the argument of µ̇
is of bounded variation, as a prerequisite for the proof of [9, Thm. 2.1]. This finishes the proof of
the lemma. �

Proposition 9. Under the conditions of either Theorem 2 or Theorem 3 it holds that

(6.3) (f− gn)(z) =
qn,m(z)

(b 2
n wn q)(z)

∫ (b 2
n wn q)(t )

qn,m(t )

dµ(t )

z − t
, z ∈D∩D.

Proof. Let {vn} be a sequence of singular vectors associated to {gn} having inner-outer factoriza-
tions (??). It was obtained in [5, Prop. 9.1] that

(6.4)
H f (vn)(ξ ) = σnξ

�

bn jn w p ′/2
n

�

(ξ ) = σn

�

bn jn w p ′/2
n

�σ
(ξ ), p > 2

H f (vn)(ξ ) = ξ (bnan)(ξ ) =
�

bnan
�σ (ξ ), p = 2,

for a.e. ξ ∈ T, where jn is some inner function and an ∈ H 2. Following the analysis in [5, Sec.
10], this leads to orthogonality relations of the form

(6.5)
∫ (ln−1qn wn)(t )

eq2
n(t )

dµ(t )+
∫

T

(ln−1qn wn)(τ)

eq2
n(τ)

p(τ)

q(τ)

dτ

2πi
= 0

for any polynomial ln−1, deg(ln−1)≤ n− 1. In another connection, (??) yields that

(6.6) wn(f− gn) =
wnHf(vn)

vn
=
P−(fvn)

bn
.

The right-hand side of (??) is holomorphic outside of D and is vanishing at infinity. So, by the
Cauchy theorem it can be written as

P−(fvn)

bn
(z) =

1

bn(z)

∫

T

(fvn)(τ)

z −τ
dτ

2πi

=
eqn(z)

qn(z)

�
∫ (qn wn)(t )

eqn(t )

dµ(t )

z − t
+

1

2πi

∫

T

(qn wn)(τ)
eqn(τ)

p(τ)

q(τ)

dτ

z −τ

�



14 M. YATTSELEV

for |z |> 1. Using (??) with ln−1(t ) = (eqn(z)− eqn(t ))/(z − t ), we get that

P−(fvn)

bn
(z) =

eq2
n(z)

qn(z)

 

∫ (qn wn)(t )

eq2
n(t )

dµ(t )

z − t
+

1

2πi

∫

T

(qn wn)(τ)

eq2
n(τ)

p(τ)

q(τ)

dτ

z −τ

!

.

Applying (??) again, now with ln−1 = ((q un−m)(z)− (q un−m)(·))/(z − ·), and using the Cauchy
integral formula to get rid of the second integral, we obtain that

P−(fvn)

bn
(z) =

eq2
n(z)

(un−m qqn)(z)

∫ (un−m qqn wn)(t )

eq2
n(t )

dµ(t )

z − t
, |z |> 1.

Observe now that the last expression is well-defined as a meromorphic function everywhere in D.
Thus, it follows from (??) that (??) holds. �

Lemma 10. Let λn be a sequence of Borel complex measures on [c , d] such that

F̂n(z) :=
∫ q(t )

qn,m(t )

dλn(t )

z − t
, z ∈D,

converges to some function F locally uniformly in D. Then

Fn − F = o(1), Fn(z) :=
∫ dλn(t )

z − t
, z ∈D,

locally uniformly in D.

Proof. Assume first that q(z) = (z − η)m . Let z ∈Df and Γ1 and Γ2 be two Jordan curves encom-
passing [c , d] and {η}, respectively, separating them from each other, and containing z within the
unbounded components of their complements. Then

�

F̂n

qn,m

q

�

(z) =
1

2πi

∫

Γ1

�

F̂n

qn,m

q

�

(τ)
dτ

z −τ
+

1

2πi

∫

Γ2

�

F̂n

qn,m

q

�

(τ)
dτ

z −τ

= Fn(z)+
1

(m− 1)!





F̂n qn,m

z − ·





(m−1)

(η),

where we used the Fubini-Tonelli theorem and the Cauchy integral formula. Thus,

(6.7) Fn(z) =
�

(qn,m F̂n)(z)−Tη,m−1(qn,m F̂n ; z)
�

/q(z), z ∈D,

where Tη,m−1( f ; ·) is the (m − 1)−st partial sum of the Taylor expansion of f at η. By (??) the

polynomials Tη,m−1(qn,m F̂n ; ·) converge to zero as n tends to infinity and the claim of the lemma
follows by the maximum modulus principle for analytic functions. By partial fraction decompo-
sition, the case of a general q is no different. �

Proof of Theorem 1. Let

(6.8) d νn :=
qn+m,m qwn+m

eq2
n+m

dµ=
qn+m,m qwn+m h ħh

eq2
n+m

dω[c ,d].

Then we get from (??) applied with n replaced by n+m and ln+m−1(t ) = t j q(t ), j = 0, . . . , n− 1,
that

(6.9)
∫

t j un(t )d νn(t ) = 0.
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So, the asymptotic behavior of un is governed by Theorem 7, applied with vn = eq
2
n and hn =

qn+m,m qwn+m , due to Lemma 8 and the fact that {wn} is a normal family in D none of which
limit points has zeros. The latter was obtained in [9, Lem. 3.4] under the mere assumption that µ
has infinitely many points in the support and an argument of bounded variation.

In another connection, observe that

bn

�

bn jn w p ′/2
n

�σ
= |bn |

2
�

jn w p ′/2
n

�σ
=
�

jn w p ′/2
n

�σ
on T

and that
�

jn w p ′/2
n

�σ
is the trace of a function from H̄ 2

0 . Thus, it follows from (??) that

P−(bnHf(vn)) = σnP−
�

bn

�

bn jn w p ′/2
n

�σ�
= σn

�

jn w p ′/2
n

�σ
.

It is also readily checked that

P−(bnHf(vn))(z) =P−(bnP−(fvn))(z) =P−(fbn vn)(z) =
∫

T

(fbn vn)(τ)

z −τ
dτ

2πi
for |z |> 1. Hence, we derive by using the Fubini-Tonelli theorem that

(6.10)
σn

γn−m

�

jn w p ′/2
n

�σ
(z) =

1

γn−m

 

∫ (b 2
n wn)(t )

z − t
dµ(t )+

∫

T

(b 2
n wn)(τ)

z −τ
p(τ)

q(τ)

dτ

2πi

!

,

for |z |> 1, where γn has the same meaning as in Theorem 7. As the right-hand side of (??) is defined
everywhere in Df, the restriction |z | > 1 is no longer necessary. This, in particular, implies that
jn is a finite Blaschke product as neither singular inner factors nor infinite Blaschke products can
be extended even continuously on T. However, notice that first we should evaluate the second
integral on the right-hand side of (??) by the residue formula and only then remove the restriction
|z | > 1. Clearly, this integral represents a rational function vanishing at infinity whose poles are
those of q . It is also easy to observe that if

(6.11) γ−1
n−m(b

2
n wn p)(k)(η) = o(1), k = 0, . . . , m(η)− 1, and (b 2

n wn p)(η) 6= 0,

this rational function converges to zero locally uniformly in C \ z(q) and has poles of exact multi-
plicity m(η) at each η ∈ z(q). Now, we have by (??), (5.2), and (5.3) that

(6.12) (f− gn) =
qn,m

q

γn−m yn

b 2
n wn

, yn :=
1

γn−m
un−m Rn−m ,

and

(6.13) yn(z) :=
∫ u2

n−m(t )

γn−m

d νn−m(t )

z − t
=
∫ (b 2

n wn)(t )

γn−m

q(t )

qn,m(t )

dµ(t )

z − t
=

1+ o(1)

w(z)

locally uniformly in D. Then we get from (??) that

(qn,m yn)(z) = γ
−1
n−m(b

2
n wn)(z)(fµq + p)(z)+ γ−1

n−m(q bn wn hn)(z), z ∈D,

where f= fµ+ p/q and gn = hn/bn , and therefore for η ∈ z(q) we obtain

(6.14) (qn,m yn)
(k)(η) = γ−1

n−m(b
2
n wn p)(k)(η), k = 0, . . . , m(η)− 1.

Hence, the first part of (??) follows from (??) and the normality of {yn}, which is immediately
deduced from (??). The second part of (??) holds since (??) and (??), applied with k = 0, yield that
for all n large enough we have

0 6= yn(η) = γ
−1
n−m(bn wn p un−m/eqn))(η)

and therefore (bn wn p)(η) as well as (b 2
n wn p)(η) cannot vanish.
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In another connection, (??) and Lemma 10 yield that

(6.15)
1

γn−m

∫ (b 2
n wn)(t )

z − t
dµ(t ) =

1+ o(1)

w(z)

locally uniformly in D. Thus, combining (??) and (??) with (??), we get that

σn

γn−m

�

jn w p ′/2
n

�σ
=

1+ o(1)

w
+
`n

q

locally uniformly in D, where deg(`n)< m, the polynomials `n are coprime with q , and converge
to zero locally uniformly in C when n→∞. Equivalently, we have that

(6.16)
σn

γ̄n−m
jn w p ′/2

n
ew= 1+ o(1)+

e`n ew

eq
= 1+ o(1),

where the first o(1) holds locally uniformly in D∗, the second one holds locally uniformly in D∗
f
,

and e`n(z) := z m−1`n(1/z̄), deg(e`n) < m since deg(`n) < m. This, in particular, implies that the
Blaschke products jn are identically 1 for all n large enough since the right-hand side of (??) cannot
vanish inD for such n. Finally, recall that by its very definition w p ′/2

n has unit L2 norm. Therefore,
deformation of the integral onT to [c , d] covered twice by the Cauchy integral formula yields that

�

σn

|γn−m |

�2

=
1

2π

∫

T

|dτ|
|ew(τ)|2

+ o(1) =
1

2πi

∫

T

dτ

(wew)(τ)
+ o(1)

=
1

πi

∫

[c ,d]

d t

(w− ew)(t )
+ o(1) =T −2+ o(1)(6.17)

since ew(τ) = τw(τ) on T, w− = −w+ = −i |w±| on [c , d], and on account of (2.15). Thus, (3.3)
shall follow from (??) and (??) with ln :=T e`n upon showing that

(6.18) γn/|γn |= 1+ o(1).

The latter is an easy consequence of (??) since ew(0) = 1 and wn(0)> 0. �

In the next proposition of technical nature, we define a special sequence of Szegő functions for
the condenser D∩D∗ that appears in Theorem 2.

Proposition 11. For each p ∈ [2,∞] there exists a normal family of non-vanishing functions in
D∩D∗, denoted by {Dn}, such that

M̂ |D±n |=
�

�

�

�

(rn/r )±S±
b 2wµ̇

�

�

�

�

on [c , d], G
eqn/eq

(Sb 2wµ̇ rn)(1)

(r Dn)(1)
> 0,

where rn := rn(eqn ; ·), r := rm(eq ; ·), M̂ 2 = M/|Gb 2wµ̇|, and M is given by (??). Moreover, each Dn

satisfies Dn(z)Dn(1/z̄) = 1, z ∈D∩D∗, has continuous traces on each side of [c , d], and has winding
number zero on any curve separating [c , d] from [c , d]∗.

Proof. The concept of Szegő function for a condenser initially was developed in [16, Thm. 1.6] in
the case of an annulus. It was shown that if Y is a continuous (strictly) positive function on Ts ,
s < 1, then there exists a function u, harmonic in As , such that u = 1

2 log(Y /MY ) on Ts , u ≡ 0

on T, and u(1/z̄) =−u(z), z ∈As , where MY := exp
n

∫

Ts
logY (τ) |dτ|2πs

o

is the geometric mean of

Y . Moreover, it was shown that u has single-valued harmonic conjugate v. Moreover, the latter is
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unique up to an additive constant. Finally, it was deduced that Ds (Y ; ·) := exp{u + i v}, the Szegő
function of Y for As , is a non-vanishing holomorphic function in As such that MY |Ds (Y ; ·)|2 =
Y on Ts , Ds (Y ; z)Ds (Y ; 1/z̄) = 1, z ∈ As , and Ds (Y ; ·) is an outer function in As with zero
winding number on any curve in As . The latter was not explicitly stated in [16] but clearly
holds since log |Ds (Y ; ·)| = u and therefore it is the integral of its boundary values against the
harmonic measure on ∂ As while Arg(Ds (Y ; ·)) = v, which has zero increment on any curve in
As . Obviously, the Szegő function for As is unique up to a multiplicative unimodular constant.

Let now y+ and y− be two continuous positive functions on [c , d] whose values at the end-
points coincide. We define the geometric mean and the Szegő function of the pair y := (y+, y−)
for the condenser D∩D∗ by

My :=MY and Dy(z) :=Dρ(Y ;ϕ(z)), z ∈D∩D∗,

respectively, where Y (τ) = y±(ϕ−1(τ)), τ ∈ T±
ρ

. It is an immediate consequence of the corre-
sponding properties of Dρ(Y ; ·) and ϕ that Dy is outer, has non-tangential continuous boundary
values on both sides of [c , d] and [c , d]∗ whenever y is a Dini-continuous pair4, has winding num-
ber zero on any curve in D∩D∗, and satisfies

|D±
y
(t )|2 =

¨

y±(t )/My, t ∈ [c , d],
My/y±(1/t ), t ∈ [c , d]∗,

and Dy(z)Dy(1/z̄) = 1, z ∈D∩D∗.

Now, put y± := |b 2wµ̇| and y±n :=
�

�

�

�

(rn/r )±S±
b 2wµ̇

�

�

�

�

2

. Observe that in this case

y+n (t )y
−
n (t ) = |S

+
b 2wµ̇
(t )S−

b 2wµ̇
(t )|2 =

�

�

�

�

�

(b 2wµ̇)(t )

Gb 2wµ̇

�

�

�

�

�

2

=
y+(t )y−(t )

|Gb 2wµ̇|2
,

t ∈ [c , d], by (2.7) and (2.9). Then for yn := (y+n , y−n ) we get that

log Myn
=

∫

T+
ρ

log[Yn(τ)Yn(τ̄)]
|dτ|
2πρ

=
∫

T+
ρ

log[y+n (t )y
−
n (t )]

|dτ|
2πρ

=
∫

T+
ρ

log





y+(t )y−(t )

|Gb 2wµ̇|2





|dτ|
2πρ

= log My− log |Gb 2wµ̇|,

where t = ϕ−1(τ) = ϕ−1(τ̄). Further, by (2.15) and (??), we have that

log My =
∫

[c ,d]
log
�

�

�(b 2wµ̇)(t )
�

�

�

d |ϕ+(t )|
πρ

= log M .

So, Myn
= M/|Gb 2wµ̇| = M̂ 2 and therefore the claim of the proposition follows by setting Dn :=

Dyn
with the chosen normalization (recall that the functions Dyn

are uniquely defined up to a
unimodular constant). �

The following Lemma was proved in [6, Lem. 4.7].

4This means that Y and therefore logY are Dini-continuous as ϕ−1 is Lipschitz on Tρ. Hence, the boundary values of
v are continuous on ∂ Aρ [12, Ch. III].
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Lemma 12. Let U be a domain, ∂ U =K1 ∪K2, K1 and K2 be two disjoint compact sets in C, and u
be a harmonic function in U . Assume that

∫

Γ

∂ u

∂ n
d s = 0,

where ∂ /∂ n and d s are, respectively, the normal derivative and the arclength differential on Γ, and
the latter is an oriented smooth Jordan curve that separates K1 from K2, has winding number 1 with
respect to any point of K1, and winding number 0 with respect to any point of K2. Then

sup
z ′∈K1

limsup
z→z ′, z∈U

u(z)≥ inf
z ′∈K2

liminf
z→z ′, z∈U

u(z)

and the same relation holds with K1 and K2 interchanged.

Proof of Theorem 2. It was shown in Lemma 8 that qn can be written as un−m qn,m and the behavior
of un−m is governed by Theorem 7 with νn defined in (??). Thus, we have from (5.3) that

(6.19) 1+ o(1) = un−m Sn−m = un−m(κψ)
n−m Sqµ̇/eq2

n
Sqn,m wn

locally uniformly in D. Further, since qn,m wn converges to qw uniformly on [c , d] by Lemma 8
and Theorem 1 we get that Sqn,m wn

= [1+ o(1)]Sqw uniformly in D and therefore we obtain from
(??) that

(6.20) 1+ o(1) = un−mκ
n−m Sb 2wµ̇ ψ

n−m S
eq2/eq2

n

locally uniformly in D, where b 2 = q2/eq2. Now, it follows from (2.10) that

S
eq2/eq2

n
= S2

eq/eqn
=
ψm−n

G
eq/eqn

eq

eqn

rn

r
,

where r := rm(eq ; ·) and rn := rn(eqn ; ·) as in Proposition 11. Hence, we deduce from (??) that

(6.21) 1+ o(1) =
bn

b

q

qn,m

κn−m

G
eq/eqn

Sb 2wµ̇

rn

r

locally uniformly in D. Then Lemma 8 implies that

(6.22) λnXn Dn bnϕ
m−n b−1 = 1+ o(1),

locally uniformly in Df, where

λn :=
M̂ (κρ)n−m

G
eq/eqn

and Xn(z) :=
Sb 2wµ̇

M̂ Dn

rn

r

�

ϕ

ρ

�n−m

.

Now, we shall show that

(6.23) λnXn = 1+ o(1) uniformly in D.

Observe, that

(6.24) |X±n |=

�

�

�

�

�

�

 

Sb 2wµ̇

M̂ Dn

rn

r

!±
�

�

�

�

�

�

≡ 1 on [c , d]

by the very definition of Dn (see Proposition 11). Moreover, since the zeros of r , z(eq), lie outside of
D and the zeros of rn , z(eqn), approach [c , d]∗ and z(eq) by Lemma 8 and Theorem 7, the functions
Xn are zero free in some neighborhood of D, where the values on [c , d] are twofold. Further,
the winding number of Xn along any smooth Jordan curve encompassing [c , d] in D is equal to
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zero. Indeed, the winding number of Sb 2wµ̇/Dn on such a curve is zero by the properties of Szegő
functions, rn/r has winding number m−n since it is meromorphic outside of [c , d]with n zeros
and m poles outside ofD, and it follows from [18, Ch. VI] that ϕ has winding number one on any
such curve. Thus, logXn are well-defined holomorphic functions in D\[c , d]. In turn, this means
that log |Xn | satisfies the conditions of Lemma 12 with U = D \ [c , d]. Applying this lemma in
both directions, we get from (??) that

(6.25) inf
T
|Xn | ≤ sup

[c ,d]
|X±n |= 1= inf

[c ,d]
|X±n | ≤ sup

T
|Xn |.

In another connection, (??) and (??) yield that uniformly on T we have

(6.26) |Xn |=

�

�

�

�

�

G
eq/eqn

M̂ (κρ)n−m

κn−m

G
eq/eqn

Sb 2wµ̇

rn

r

�

�

�

�

�

=
1+ o(1)

|λn |

since Dn , ϕ, bn , and b are unimodular on T. Combining (??) with (??), we get that |λn |= 1+ o(1)
and therefore

(6.27) |λnXn |=

�

�

�

�

�

(κϕ)n−m

G
eq/eqn

Sb 2wµ̇ rn

Dn r

�

�

�

�

�

= 1+ o(1) uniformly in D

by the maximum principle for harmonic functions applied to ± log |Xn | in D \ [c , d]. Hence,
{λnXn} is a normal family of harmonic functions in D \ [c , d] and all the limit points of this
family are the unimodular constants. Therefore (??) follows from the normalization of Dn (see
Proposition 11) and the fact that ϕ(1)=1.

Clearly, we can rewrite (??) with the help of (??) as

Dn bnϕ
m−n b−1 = 1+ o(1) uniformly on compact subsets of D∩Df.

Now, recall that Dn(1/̄·) = 1/Dn . Moreover, the same property holds for bn , b , and ϕ. Thus,

Dn bnϕ
m−n b−1 = 1/(Dn bnϕ

m−n b−1)(1/̄·) = 1+ o(1)

uniformly on closed subsets of D∗
f
\D and (??) follows.

It only remains to prove (??) and (??). By the very definition of γn in Theorem 7, we have that

|γn−m |=
2|Gν̇n−m

|

κ2(n−m)
= [1+ o(1)]

2|Gb 2wµ̇||G2
eq/eqn
|

κ2(n−m)

by Lemma 8 and limit (3.3). Further, the very definitions of M̂ and λn yield that

2|Gb 2wµ̇||G2
eq/eqn
|

κ2(n−m)
=

2|Gb 2wµ̇|M̂ 2

ρ2(m−n)

|G
eq/eqn
|2

M̂ 2(κρ)2(n−m)
=

2Mρ2(n−m)

|λn |2
.

Since |λn |= 1+ o(1), it holds that

(6.28) γn−m = [1+ o(1)]|γn−m |= [1+ o(1)]2Mρ2(n−m),

where we used (??). Thus, (??) follows from (??). Finally, we deduce from (??) and (??) that

(f− gn) = [1+ o(1)]
qn,m

q

γn−m

b 2
n wn

1+ o(1)

w

uniformly on compact subsets of Df ∩D. Since qn,m/q → 1 by Lemma 8, wn → w by (3.3), and
using (??) with (??), (??) follows. �
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Proof of Theorem 3. Recall that Lemma 8 holds under the conditions of this theorem and the Szegő
functions Dn exist for p = 2 as well. As the starting point of the proof of Theorem 2 was the
application of (5.3) with νn defined in (??), all we need to do is to show that the conditions of
Theorem 7 still hold under the present assumptions. This is tantamount to showing that Υx ,
defined in (5.1), is minorized by Ψx , defined in the statement of the theorem, for all x ∈ x. In
other words, that

Ψx ≤ liminf
n→∞

min
±

n�

�

�(rnQqqn,m h )
±(x)

�

�

�

o

, x ∈ x.

Equivalently, we need to show that

− liminf
n→∞

log |r±n (x)|
2 = limsup

n→∞
log |r∓n (x)|

2 ≤
4s1(Vh + 2mπ)

1− s0
, x ∈ x,

by Lemma 8 and the definition of Ψx . Let, as in the proof of Lemma 8, ξ j ,n , j = 1, . . . , n, be the
zeros of qn . Then we get from (6.1) that

n
∑

j=1

|ψ(1/ξ̄ j ,n)−ψ(1/ξ j ,n)| ≤ 2s1

n
∑

j=1

(π−Angle(ξ j ,n))≤ 2s1(Vh + 2mπ),

where we used [9, Lem. 3.2] for the last inequality. Put r̂n := rn ◦ψ−1. Then, exactly as we did to
prove (5.4), we obtain that

log | r̂n | ≤ 2s1(Vh + 2mπ)/(1− s0),

which finishes the proof of the theorem. �

To prove Theorem 4 we need the following lemma.

Lemma 13. Let R = P/Q be a rational function of degree d , ζ ∈ C, and δ > 0. Assume further
that P and Q have no zeros in {z : |z − ζ | ≤ δ}. Then for any k < d , k ∈N, there exists ck = ck (δ)
independent of R such that

�

�

�R(k)(ζ )/R(ζ )
�

�

�≤ ck d k .

Proof. Clearly, if T is a polynomial of degree at most d with no zeros in {z : |z − ζ | ≤ δ}, then
�

�

�

�

�

T ( j )(ζ )

T (ζ )

�

�

�

�

�

≤
d · . . . · (d − j + 1)

δ j
≤
�

d

δ

� j

, j = 1, . . . , k .

Thus, it can be checked that
�

�

�

�

�

T (ζ )
�

1

T (ζ )

�( j )
�

�

�

�

�

=

�

�

�

�

�

�

j
∑

l=1

∑

∑

di=l

∏

∑

si di= j

cl ,{di },{si }

 

T (si )(ζ )

T (ζ )

!di

�

�

�

�

�

�

≤ c∗j d j ,

j = 1, . . . , k, where coefficients cl ,{di },{si } do not depend on T . Then
�

�

�

�

�

R(k)(ζ )

R(ζ )

�

�

�

�

�

=

�

�

�

�

�

�

k
∑

j=1

�k

j

�P ( j )(ζ )

P (ζ )
Q(ζ )

�

1

Q(ζ )

�(k− j )
�

�

�

�

�

�

≤
k
∑

j=1

�k

j

� c∗k− j d
k

δ j
=: ck d k .

�

Proof of Theorem 4. As the forthcoming analysis is local around η, we may suppose without loss
of generality that m(η) = m, i.e. η is the only zero of q .
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Exactly as in (??), we obtain that

(6.29) y (k)n (η) = (Yn qn,m)
(k)(η), k = 0, . . . , m− 1, Yn :=

u2
n−m wn p

γn−m eq
2
n

.

It is apparent from (??), (??), and foremost (??), which holds locally uniformly in D rather then Df,
that

un−m

eun−m

Dn

ϕn−m = 1+ o(1) locally uniformly in D∩D.

So, we see using (3.3), (??), (??) with (??), and (??) that

(6.30) Yn = [1+ o(1)]
ϕ2(n−m)

T σn

w p

D2
n eq

2
=
� 1

2M
+ o(1)

�
�

ϕ

ρ

�2(n−m) w p

D2
n eq

2

uniformly in some neighborhood of η. Thus, we obtain from (??) with k = 0 that

(6.31) χ m
n qn,m(η) =−1, χ m

n :=−Yn(η)/yn(η),

where for each n we fixed an arbitrary rootχn . Observe also thatχn tends to infinity geometrically
fast by (??) since |ϕ(η)| > ρ and the boundedness of {|yn(η)|}, which is apparent from (??). By
putting k = 1 in (??), we see that

χ m−1
n q ′n,m(η) =

1

χn

 

Y ′n(η)

Yn(η)
−

y ′n(η)

yn(η)

!

= o(1)

since {y ′n(η)/yn(η)} is a convergent sequence by (??) and Yn are rational functions, which do not
vanish in some fixed neighborhood of η, multiplied by wn , which form a convergent sequence by
(3.3), the numbers |(Y ′n/Yn)(η)| grow linearly with n by Lemma 13 while 1/χn decays exponen-
tially. Continuing by induction, we get

(6.32) χ m−k
n q (k)n,m(η) =

k
∑

j=1

�k

j

�Y ( j )n (η)

Yn(η)

χ m−k+ j
n q (k− j )

n,m (η)

χ j
n

−
1

χ k
n

y (k)n (η)

yn(η)
= o(1),

for any k = 2, . . . , m− 1. Hence, we deduce from (??) and (??) that

m
∏

k=1

�

z +χn(η−ηk ,n)
�

= z m +
m−1
∑

k=0

χ m−k
n q (k)n,m(η)z

k = z m + o(1)− 1,

uniformly in some neighborhood of η. In particular, this means that

ηk ,n = η+
1+δk ,n

χn
exp

¨

2πki

m

«

, k = 1, . . . , m,

where δk ,n = o(1) for each k and
∏m

k=1(1+δk ,n) = 1. By setting

�

Aη
k ,n

�m
:=

1+δk ,n

χ m
n

�

ρ

ϕ(η)

�2(m−n)

=−[1+δk ,n]
�

ρ

ϕ(η)

�2(m−n) yn(η)

Yn(η)
,

we see that (3.4) follows. The boundedness of {maxk |A
η

k ,n
|} and {maxk |1/Aη

k ,n
|} is a consequence

of (??) and (??). �



22 M. YATTSELEV

7. PROOFS OF THEOREMS 5 AND 6

Proof of Theorem 5. Let qn be the denominators of Πn . We start by showing that

(7.1) qn = un−m qn,m , qn,m = (1+ o(1))q ,

locally uniformly inC\z(q). This follows from [10, Thm. 2.4] in the same fashion as (??) followed
from [9, Thm. 2.4]. The requirements placed on µ are the same, so they are satisfied. However,
in [10, Thm. 2.4] there are also restrictions placed on the interpolation schemes. Namely, an
interpolation scheme E should be such that supp(E )∩([c , d]∪z(q)) =∅, the probability counting
measures of points in En would converge to some Borel measure with finite logarithmic energy,
and the argument functions of polynomials vn would have uniformly bounded derivatives on
[c , d].

Clearly, the first two requirement placed on the interpolation scheme is the second requirement
of the admissibility property. Hence, we only need to show the uniform boundedness of the
derivatives of the arguments of vn . Clearly, it amounts to showing that

(7.2) limsup
n→∞

1

2
















Im

 

v ′n
vn

!














[c ,d]

= limsup
n→∞

1

2



















∑

e∈En∩C
Im
� 1

· − e

�



















[c ,d]

<∞.

Since Im(t − e) = Im(ē − t ) for t ∈ [c , d], we have that
�

�

�

�

∑

Im
� 1

t − e

��

�

�

�

=
1

2

�

�

�

�

�

∑

Im

�

1

t −∆n(e)

�

−
∑

Im
� 1

t − ē

�

�

�

�

�

�

=
1

2

�

�

�

�

�

Im

�

∑ ∆n(e)− ē

(t −∆n(e))(t − ē)

�

�

�

�

�

�

≤
1

2s2

∑

|∆n(e)− ē |,

where the sums are taken over e ∈ En∩C and s > 0 is such that |t− e | ≥ s for all e ∈ En and n ∈N.
So, (??) and therefore (??) follow from the admissibility of E .

It is well-known [25, Lem. 6.1.2] and is easily seen from the defining properties of Padé approx-
imants and the Fubini-Tonelli theorem that

(7.3)
∫

t j q(t )qn(t )
dµ(t )

vn(t )
= 0, j = 0, . . . , n−m− 1,

and

(7.4) (f−Πn)(z) =
vn(z)

(qn q ln−m)(z)

∫ (qn q ln−m)(t )

z − t

dµ(t )

vn(t )
, z ∈Df,

for any polynomial ln−m of degree at most n−m. Now, using decomposition (??) and denoting

(7.5) d νn :=
qn+m,m q

vn+m
dµ=

qn+m,m q h ħh ħhx

vn+m
dω[c ,d],

orthogonality relations (7.3) become
∫

t j un(t )d νn(t ) = 0, j = 0, . . . , n− 1.

It is also quite easy to see that the asymptotic behavior of un is governed by Theorem 7 applied
with hn = qn+m,m q . The orthogonality relation above also imply that

(7.6) Rn(z) :=
∫ un(t )

z − t
d νn(t ) =

1

un(z)

∫ u2
n(t )

z − t
d νn(t ), z ∈D.
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Thus, putting ln−m = un−m , we can rewrite (7.4) as

(7.7) f−Πn =
vn Rn−m

un−m qn,m q
.

Hence, we derive from (5.3) and (??) that

(7.8) f−Πn = [1+ o(1)]
vnγn−m S2

n−m

wqqn,m
= [2+ o(1)]Gν̇n−m

S2
ν̇n−m

ψ2(n−m)vn

wqn,m q

locally uniformly in D. Therefore, we get from (2.10) and (??) that

Gν̇n−m
S2
ν̇n−m

ψ2(n−m)vn

qn,m q
= Gµ̇S2

µ̇

Gqn,m
S2

qn,m

qn,mψ
m

Gq S2
q

qψm

vnψ
2n

Gvn
S2

vn

=
Gµ̇S2

µ̇
rn

rm(qn,m ; ·)r
= [1+ o(1)]Gµ̇S2

µ̇

rn

r 2
(7.9)

locally uniformly in Df, where rn and r are defined as in the statement of this theorem. Combin-
ing (??) with (??) we get (4.2).

Finally, observe that the boundedness of the variation of argument of h was needed in order to
appeal to [10, Thm. 2.4]. However, when the rational summand of f is not present (q ≡ 1), (4.2) is
a consequence of Theorem 7 only and the latter does not require the boundedness of the variation
of argument of h. �

Proof of Theorem 6. The asymptotic equality in (??) is exactly the one in (??). The fact that un−m
have no zeros on compact sets in D follows since the asymptotic behavior of un−m is governed by
Theorem 7 with νn given by (??) and all the zeros of such orthogonal polynomials approach [c , d].

Let η ∈ z(q). As in the proof of Theorem 4, we may suppose without loss of generality that
m(η) = m, i.e. η is the only zero of q . Using the notation of Theorem 7, we can rewrite (??) as

u2
n−m qn,m q

γn vn
(f−Πn) =

1

γn−m
un−m Rn−m =: yn ,

or equivalently

(7.10) yn = Yn qn,m +
un−m(fµqn − pn)

γn−m vn
q , Yn :=

u2
n−m p

γn−m vn
,

where f= fµ+ p/q . It follows from (5.3) that

ynw= 1+ o(1) locally uniformly in D.

In particular, it means that sequences {|y (k)n (η)|} are uniformly bounded above and away from zero
for all k ∈N. Moreover, (??) yields that

y (k)n (η) = (Yn qn,m)
(k)(η), k = 0, . . . , m− 1.

This, for instance, implies that neither of ηk ,n , k = 1, . . . , m, the zeros of qn,m , is equal to η.
Further, using (5.3), (2.10), and (??), we get that

Yn = [1/2+ o(1)]ψ2m p/(Gµ̇q2 S2
µ̇q2 rn)
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uniformly in some neighborhood of η. Now, it it clear that we may proceed exactly as in the proof
of Theorem 4 with the only difference that we set

�

Aη
k ,n

�m
:= (1+δk ,n)rn(η)/χ

m
n =−(1+δk ,n)(rn yn/Yn)(η).

�

8. NUMERICAL EXPERIMENTS

The Hankel operator H f with symbol f ∈ H∞ +C (T) is of finite rank if and only if f is a
rational function [19, Thm. 3.11]. In practice one can only compute with finite rank operators,
due to the necessity of ordering the singular values, so a preliminary rational approximation to f
is needed when the latter is not rational. One way to handle this problem is to truncate the Fourier
series of f at some high order N . This provides us with a rational function fN that approximates f
in the Wiener norm which, in particular, dominates any Lp norm on the unit circle, p ∈ [1,∞]. It
was proved in [15] that the best approximation operator from H∞n (mapping f to gn according to
(??)) is continuous in the Wiener norm provided (n+ 1)-st singular value of the Hankel operator
is simple. It was shown in [2, Cor. 2] that the last assertion is satisfied for Hankel operators
with symbols in some open dense subset of H∞ +C (T), and the same technique can be used to
prove that it is also the case for the particular subclass (1.1). Thus, even though the simplicity
of singular values cannot be asserted beforehand, it is generically true. When it prevails, one can
approximates fN instead of f and get a close approximation to gn when N is large enough. This
amounts to perform the singular value decomposition ofH fN

(see [26, Ch. 16]).
As to Padé approximants, we restricted ourselves to the classical case and we constructed their

denominators by solving the orthogonality relations (7.3) with vn ≡ 1. Thus, finding these de-
nominators amounts to solving a system of linear equations whose coefficients are obtained from
the moments of the measure µ.

The following computations were carried with MAPLE 8 software using 35 digits precision.
On the figures the solid line stands for the support of the measure and circles denote the poles of
the correspondent approximants. The approximated function is given by the formula

f(z) =
∫

[−0.7,0]

7e i t

z − t

d t
p

(t + 0.7)(0.4− t )
+
∫

[0,0.4]

i t + 1

z − t

d t
p

(t + 0.7)(0.4− t )

+
1

5!(z − 0.7− 0.2i)6
.

Acknowledgment. I express my sincere gratitude to Dr. L. Baratchart for valuable discussions and
comments, his reading the manuscript and suggesting this problem.

REFERENCES

[1] V.M. Adamyan, D.Z. Arov, and M.G. Krein. Analytic properties of Schmidt pairs for a Hankel operator on the
generalized Schur-Takagi problem. Math. USSR Sb., 15:31–73, 1971.

[2] L. Baratchart, J. Leblond, and J.R. Partington. Problems of Adamyan-Arov-Krein type on subsets of the circle and
minimal norm extentions. Constr. Approx., 16(3):333–357, 2000.

[3] L. Baratchart, F. Mandrèa, E.B. Saff, and F. Wielonsky. 2-D inverse problems for the Laplacian: a meromorphic
approximation approach. J. Math. Pures Appl., 86:1–41, 2006.

[4] L. Baratchart, V.A. Prokhorov, and E.B. Saff. Best meromorphic approximation of Markov functions on the unit
circle. Found. Comput. Math., 1(4):385–416, 2001.

[5] L. Baratchart and F. Seyfert. An Lp analog to AAK theory for p ≥ 2. J. Funct. Anal., 191(1):52–122, 2002.
[6] L. Baratchart, H. Stahl, and F. Wielonsky. Asymptotic error estimates for L2 best rational approximants to Markov

functions. J. Approx. Theory, 108(1):53–96, 2001.



UNIFORM APPROXIMATION OF CAUCHY INTEGRALS 25

−1.0

0.80.40.0−0.4−0.8

1.0

0.8

0.6

0.4

0.2

0.0

−0.2

−0.4

−0.6

−0.8

−1.0

0.80.40.0−0.4−0.8

1.0

0.8

0.6

0.4

0.2

0.0

−0.2

−0.4

−0.6

−0.8

FIGURE 1. Poles of Padé (left) and AAK (right) approximants of degree 10.

−1.0

−0.8

0.80.40.0−0.4−0.8

1.0

0.8

0.6

0.4

0.2

0.0

−0.2

−0.4

−0.6

−1.0

−0.8

0.80.40.0−0.4−0.8

1.0

0.8

0.6

0.4

0.2

0.0

−0.2

−0.4

−0.6

FIGURE 2. Poles of Padé (left) and AAK (right) approximants of degree 20.

[7] L. Baratchart and M. Yattselev. Convergent interpolation to Cauchy integrals over analytic arcs. To appear in Found.
Comput. Math., http://arxiv.org/abs/0812.3919.

[8] L. Baratchart and M. Yattselev. Convergent interpolation to Cauchy integrals over analytic arcs of Jacobi-type
weights. In preparation.

[9] L. Baratchart and M. Yattselev. Meromorphic approximants to complex Cauchy transforms with polar singularities.
To appear in Mat. Sb., http://arxiv.org/abs/0806.4681.

[10] L. Baratchart and M. Yattselev. Multipoint Padé approximants to complex Cauchy transforms with polar singulari-
ties. J. Approx. Theory, 2(156):187–211, 2009.

[11] M.S. Derevyagin and V.A. Derkach. On the convergence of Padé approximants for generalized Nevalinna functions.
Trans. Moscow Math. Soc., 68:119–162, 2007.

[12] J.B. Garnett. Bounded Analytic Functions, volume 236 of Graduate Texts in Mathematics. Springer, New York, 2007.
[13] A.A. Gonchar. On the convergence of Padé approximants for some classes of meromorphic functions. Mat. Sb.,

97(139):607–629, 1975. English transl. in Math. USSR Sb. 26(4):555–575, 1975.
[14] A.A. Gonchar and S.P. Suetin. On Padé approximants of meromorphic functions of Markov type. Current problems

in mathematics, 5, 2004. In Russian, available electronically at http://www.mi.ras.ru/spm/pdf/005.pdf.
[15] E. Hayashi, L.N. Trefethen, and M.H. Gutknecht. The CF Table. Constr. Approx., 6(2):195–223, 1990.
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