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ABSTRACT. We consider multipoint Padé approximation to Cauchy transforms of complex mea-
sures. We show that if the support of a measure is an analytic Jordan arc and if the measure itself
is absolutely continuous with respect to the equilibrium distribution of that arc with Dini-smooth
non-vanishing density, then the diagonal multipoint Padé approximants associated with appropri-
ate interpolation schemes converge locally uniformly to the approximated Cauchy transform in the
complement of the arc. This asymptotic behavior of Padé approximants is deduced from the anal-
ysis of underlying non-Hermitian orthogonal polynomials, for which we use classical properties of
Hankel and Toeplitz operators on smooth curves. A construction of the appropriate interpolation
schemes is explicit granted the parametrization of the arc.

1. INTRODUCTION

Rational approximation to analytic functions of one complex variable is a most classical subject
which has undergone many developments since C. Runge’s proof that such an approximation is
indeed possible, locally uniformly on the domain of holomorphy [47]. Let us quote for example
the deep study of those open sets for which holomorphic functions that extend continuously up
to the boundary can be approximated by rational functions on the closure [36, 60], see compre-
hensive expositions and further references in the monograph [18]. In another connection, the
achievable rate of convergence of rational approximants at regular points, when the degree goes
large, also received considerable attention [61, 21, 29, 42, 46]. Meantime, rational approximation
has become a tool in numerical analysis [30, 62, 59], as well as in the modeling and control of
signals and systems, see for instance [2, 14, 8, 20, 43].

From the constructive viewpoint, a great deal of interest has been directed to those rational
functions of type1 (m, n) that interpolate a given function in m + n + 1 points, counting multi-
plicity. These are the so-called multipoint Padé approximants [6], which subsume the classical Padé
approximants that interpolate the function in a single point with multiplicity m+ n+ 1 [41]. Be-
yond the natural appeal of such an elementary linear procedure, reasons why Padé approximants
have received continuing attention include their early number theoretic success when applied to
certain entire functions [26, 50, 51], the remarkable behavior of diagonal (i.e., of (n, n)-type) Padé
approximants to Markov functions [34, 23], the de Montessus de Ballore theorem and its gen-
eralizations on the convergence of (m, n)-type Padé approximants for fixed n [48] as well as the
solution to the “disk problem” for diagonal sequences [22] that give rise to extrapolation schemes
for analytic functions, the Nuttall-Pommerenke theorem on convergence in capacity of diagonal
Padé approximants to functions having singular set of zero capacity [37, 44], the numerical use of
Padé approximants for initial value problems and convergence acceleration [13, 25, 27, 12], their
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connections to quantum mechanics and quantum field perturbation theory [7, 58], and the re-
search impetus generated by the so-called Padé conjecture on the convergence of a subsequence
of the diagonal sequence [5], in the largest disk of meromorphy, that was eventually settled in
the negative [31]. The reader will find a detailed introduction to most of these topics, as well as
further references, in the comprehensive monograph [6].

In the present paper, which deals with the convergence of multipoint Padé approximants to
functions defined as Cauchy integrals over a compact arc, the relevant approximants are the diago-
nal ones with one interpolation condition at infinity for they are those producing the (generically
simple) zero assumed by the function at infinity. The first class of Cauchy integrals for which diag-
onal Padé approximants were proved convergent is the class of Markov functions, that is, Cauchy
transforms of positive measures on a real segment [34, 23]. In fact, under mild conditions, the
diagonal multipoint Padé approximants to such functions at a conjugate-symmetric system of in-
terpolation points converge strongly (i.e., locally uniformly in the domain of analyticity), as the
number of interpolation conditions goes large. The working pin of this result is the intimate
connection between Padé approximants and orthogonal polynomials: the denominator of the n-
th multipoint Padé approximant is the n-th orthogonal polynomial with respect to the measure
defining the Markov function, weighted by the inverse of the polynomial whose zeros are the in-
terpolation points (this polynomial is identically 1 for classical Padé approximants). This is a key
to sharp convergence rates, using the asymptotic theory of orthogonal polynomials with varying
weights [23, 56].

This result has been generalized in several directions, in various attempts to develop a conver-
gence theory of rational interpolants to more general Cauchy integrals. In particular, the strong
convergence of classical diagonal Padé approximants to Cauchy transforms of complex-valued func-
tions on a segment was established in [10, 37, 39], when the density of the function with respect to
the arcsine distribution on the segment is smoothly invertible, and in [33] under the mere assump-
tion that the function has continuous argument and vanishes almost nowhere. It is interesting that
the first three references proceed via strong asymptotics for non-Hermitian orthogonal polynomi-
als on a segment, whereas the last one relies on different, operator theoretic methods. Multipoint
Padé approximants to Cauchy transforms of functions with non-vanishing analytic density with
respect to the arcsine distribution on a real segment were in turn proved strongly convergent un-
der quantitative assumptions on the near conjugate-symmetry of the interpolation scheme [4, 3];
the proof rests on strong asymptotics for non-Hermitian orthogonal polynomials with varying
weight that dwell on the Riemann-Hilbert approach to classical orthogonal polynomials [15] as
adapted to the segment in [28]. Let us mention that the occurrence of zeros in the density can
harm the convergence, because some poles of the approximant may no longer cluster to the seg-
ment in this case, but if the density has an argument of bounded variation the number of these
“spurious” poles remains bounded and one can still get convergence in capacity even for substantial
zeroing of the density [9].

The case of Cauchy integrals over more general arcs than a segment turns out to be harder. In
the series of pathbreaking papers [52, 53, 54, 55], classical diagonal Padé approximants to func-
tions with branchpoints were shown to converge in capacity on the complement of the system of
arcs of minimal logarithmic capacity outside of which the function is analytic and single-valued.
This extremal system of arcs, often called nowadays a symmetric contour or an S-contour, is charac-
terized by a symmetry property of the (two-sided) normal derivatives of its equilibrium potential,
and the above-mentioned convergence ultimately depends on a deep potential-theoretic analysis of
the zeros of non-Hermitian orthogonal polynomials over S-contours. Shortly after, the result was
extended to multipoint Padé approximants for Cauchy integrals of continuous quasi-everywhere
non-vanishing functions over S-contours minimizing some weighted capacity, provided that the
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interpolation points asymptotically distribute like a measure whose potential is the logarithm of
the weight [24]. With these works it became transparent that the appropriate Cauchy integrals
for Padé approximation must be taken over S-contours, and that the interpolation points should
distribute according to the weight that defines the symmetry property. Subsequently, strong con-
vergence of diagonal multipoint Padé approximants was obtained in this setting for analytic S-
contours and non-vanishing analytic densities with respect to either the equilibrium distribution
of the contour or the arclength, under certain quantitative assumptions on the convergence of the
interpolation points [3]. Earlier results in a specific case can be found in [57].

Surprisingly perhaps, the natural inverse problem whether given a system of arcs, say S , there
exists a logarithmic potential whose exponential defines a suitable weight making S into an S-
contour, and whether the interpolation points can be chosen accordingly to produce strong con-
vergence of multipoint Padé approximants to Cauchy integrals on S , was apparently not con-
sidered. The goal of the present paper is to fill this gap when S is smooth. More precisely, we
prove that a smooth arc is an S-contour for a weight whose logarithm is the potential of a positive
measure supported disjointly from the arc if and only if the arc is analytic (cf. Theorem 1). When
this is the case, we further show there exists a scheme of interpolation points producing strong
convergence of the sub-diagonal multipoint Padé approximants to Cauchy integrals on the arc,
provided the density of the integral with respect to some positive power of the equilibrium mea-
sure of the arc is Dini-smooth and non-vanishing (cf. Theorems 2 and 4). This result seems first to
ascertain convergence of an interpolation scheme for Cauchy integrals of fairly general densities
(note analyticity is not required) over a rather large class of arcs (namely analytic ones). Finally,
we show that the non-vanishing requirement on the density can be relaxed a little (cf. Theorems
3 and 4), thereby providing an initial example, over an arbitrary analytic arc, of a family of func-
tions whose zeroing at isolated places does not destroy the strong convergence of multipoint Padé
approximants to their Cauchy integral.

Our proofs differ somewhat from those commonly encountered in the field. In particular, we
translate the symmetry property, which is of geometric character, into an analytic one, namely
the existence of a sequence of pseudo-rational functions tending to zero off the arc and remaining
bounded on the latter. Choosing the interpolation points to be the zeros of these pseudo-rational
functions, we transform the non-Hermitian orthogonality equation satisfied by the denomina-
tor of the multipoint Padé approximant into an integral equation involving Hankel and Toeplitz
operator on the arc S . Then, the bounded behavior of our pseudo-rational functions teams up
with classical compactness properties of Hankel operators to produce strong asymptotics for the
non-Hermitian orthogonal polynomials under study. This in turn provides us with locally uni-
form error rates for the approximant on the complement of S . From the technical point of view
the paper can be seen as deriving strong asymptotics for non-Hermitian orthogonal polynomials
with complex densities with respect to the equilibrium distribution of the arc under minimum
smoothness assumptions as compared to those currently used in the Riemann-Hilbert methods
[35, 3].

The paper is organized as follows. In the next section we formulate our main results (Theorems
1–4). Section 3 contains the necessary background material for the proofs adduced in Section 4.
The last section contains an example of a class of contours for which the behavior of orthogonal
polynomials is “highly similar” to the case where F = [−1,1].

2. MAIN RESULTS

Let F be a rectifiable Jordan arc with endpoints ±1 oriented from −1 to 1. Set

(2.1) w(z) = w(F ; z) :=
p

z2− 1, w(z)/z→ 1 as z→∞,
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which is a holomorphic function outside of F . Then w has continuous traces (boundary values)
from each side of F , denoted by w+ and w− (e.g. w+ is the trace of w taken from the left side of F
as F is traversed in the positive direction). In this paper we consider polynomials qn , deg(qn)≤ n,
satisfying non-Hermitian orthogonality relations with varying weights of the form

(2.2)
∫

F
t j qn(t )wn(t )

d t

w+(t )
= 0, j = 0, . . . , n− 1,

together with their associated functions of the second kind, i.e.,

(2.3) Rn(z) :=
1

πi

∫

F

qn(t )wn(t )

t − z

d t

w+(t )
, z ∈D :=C \ F ,

where C is the extended complex plane and {wn} is a sequence of complex-valued functions on
F . Our main goal is to show that the polynomials qn possess so-called strong (Szegő-type) asymp-
totics under the assumption that wn = hn/vn , where {hn} is a compact family of sufficiently
smooth functions on F and vn are polynomials of respective degrees at most 2n, subject to certain
restrictions. The desired result can be expressed as

(2.4) (2/ϕ)n(qn Swn
) = 1+ o(1), ϕ := z +w,

locally uniformly in D , where Swn
is the Szegő function of wn (see Section 2.2). As a conse-

quence of (2.4), we establish the uniform convergence of multipoint diagonal Padé approximants
to Cauchy transforms of complex-valued measures of the form hd t/w+, where h is a sufficiently
smooth function on F and the Padé approximants interpolate the corresponding Cauchy trans-
form at the zeros of the polynomials vn .

2.1. Symmetry Property. Let F be as above and D be its complement in C. In what follows, we
always assume that the endpoints of F are ±1. Define

(2.5) ϕ(z) := z +w(z), z ∈D ,

where w is given by (2.1). Then ϕ is a non-vanishing univalent holomorphic function in D except
for a simple pole at infinity. It can be easily checked that

(2.6) w+ =−w− and therefore ϕ+ϕ− = 1 on F .

Let e ∈D . Define

r (e ; z) :=
ϕ(z)−ϕ(e)
1−ϕ(e)ϕ(z)

, |e |<∞, and r (∞; z) :=
1

ϕ(z)
, z ∈D .

Clearly, r (e ; ·) is a holomorphic function in D with a simple zero at e and non-vanishing other-
wise. Moreover, it follows from (2.6) that unrestricted boundary values r±(e ; ·) exist everywhere
on F and satisfy

(2.7) r+(e ; t )r−(e ; t ) = 1, t ∈ F .

Let now E := {En}n∈N be a triangular scheme of points in D , i.e., each En consists of 2n not
necessarily distinct nor finite points contained in D . We define the support of E as supp(E ) :=
∩n∈N∪k≥n Ek ⊂ C. Clearly, the support of any weak∗ limit point of the counting measures of
points in En is a subset of supp(E ). Hereafter, the counting measure of a finite set is a probabil-
ity measure that has equal mass at each point counting multiplicities and the weak∗ topology is
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understood with respect to the duality between complex measures and continuous functions with
compact support in C. To each set En , we associate a function rn by the rule

(2.8) rn(z) :=
∏

e∈En

r (e ; z), z ∈D .

Then rn is a holomorphic function in D with 2n zeros there and whose boundary values on F
satisfy r+n r−n = 1. Among all possible schemes E , we are interested only in those that induce the
following symmetry property on F .

Definition (Symmetry w.r.t. E ). Let F be a rectifiable Jordan arc and E be a triangular scheme of
points in D. We say that F is symmetric with respect to E if the associated to E functions rn satisfy
|r±n |=O(1) uniformly on F and rn = o(1) locally uniformly in D.

Note that the boundedness of |r±n | from above implies their boundedness away from zero by
(2.7).

As we shall see, this definition is, in fact, closely related to the classical definition of the sym-
metry of an arc in a field (more generally, of a system of arcs). The latter is based on a number of
potential-theoretic notions all of which can be found in [49].

Definition (Symmetry in a Field). Let F be a rectifiable Jordan arc and let q be a harmonic func-
tion in some neighborhood of F . It is said that F is symmetric in the field q if the following partial
derivatives exist2 and are equal:

(2.9)
∂ (U λ+ q)

∂ n+
=
∂ (U λ+ q)

∂ n−
a.e. on supp(λ),

where λ is the weighted equilibrium distribution in the field q, U λ is the logarithmic potential of λ,
and n± are the one-sided unit normals to F .

The symmetry property turned out to be vital in the investigation of the rates of best approx-
imation of functions with branch points by rational interpolants (multipoint Padé approximants)
[53, 55]. Given a continuum E with connected complement and a function f holomorphic in
a neighborhood of E , analytically continuable except over a compact set F0, cap(F0) = 0, where
cap(·) is the logarithmic capacity, then there exists an extremal (maximal) domain D such that the
condenser (F , E), F := ∂ D ⊃ F0, has minimal condenser capacity among all domains in which f
has single-valued holomorphic continuation. Moreover, if the continuation of f over C\ F0 is not
single-valued then the boundary F of the extremal domain is a union of a system of open analytic
arcs and a set of capacity zero, and it can be characterized as the unique contour containing F0 and
satisfying (2.9) with q = −U νE , where νE − νF is the equilibrium distribution for the minimal en-
ergy problem for signed measures of the form σE−σF , where σE and σF range over all probability
Borel measures on E and F , respectively. The best rate (in the n-th root sense) of approximation to
f on E is achieved by rational interpolants corresponding to a triangular scheme whose points are
asymptotically distributed as νE . The counting measures of the poles of such interpolants weakly
converge to νF and the interpolants themselves converge to f in capacity in D .

Dwelling on the work of Stahl discussed above, Gonchar and Rakhmanov [24] extended the
definition of a symmetric contour to general harmonic fields in order to give a complete formal
proof of the “Magnus conjecture” on the rate of approximation of the exponential function on

2Normal derivatives are understood in the strong sense, namely, if the tangent to F exists at t and ~n±t are the unit
normals from each side of F , then the limits of the Euclidean scalar products 〈∇(U λ + q)(y),~n±t 〉 exist as y approaches t
along ~n±t , respectively.
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the positive semi-axis3. In [24] it is assumed that F and q are such that supp(λ) is a tame set, i.e.,
the intersection of a sufficiently small neighborhood of quasi every point (q.e. means up to a set
of zero capacity) of supp(λ) with the support itself is an analytic arc. It is easy to check that in
this case partial derivatives in (2.9) do exist. It was also observed that in the setting of rational
interpolation to functions as above, one can take interpolation points asymptotically distributed
like any Borel measure ν on E . This will define a unique contour F ⊃ F0 that satisfies (2.9) with
q = −U ν and the interpolants will converge to the approximated function in capacity in C \ F ,
while the counting measures of their poles will weakly converge to ν̂ , where ν̂ is the balayage of ν
onto F .

Since our main interest lies with rational interpolation, we shall be concerned only with arcs
satisfying (2.9), where q = −U ν for some Borel measure ν with compact support. In this case
much milder assumptions on F are sufficient in order to have well-defined partial derivatives (see
the statement of the next theorem). Necessarily, for such fields, the symmetric arcs turn out to be
analytic as apparent from the following theorem.

Theorem 1. Let F be a rectifiable Jordan arc such that for x =±1 and all t ∈ F sufficiently close to x
it holds that |Ft ,x | ≤ const.|x− t |β, β> 1/2, where |Ft ,x | is the arclength of the subsarc of F joining t
and x and const. is an absolute constant. Then the following are equivalent:

(a) there exists a triangular scheme of points E , supp(E ) ⊂ D, such that F is symmetric with
respect to E ;

(b) there exists a positive compactly supported Borel measure ν , supp(ν) ⊂ D, such that F is sym-
metric in the field −U ν ;

(c) F is an analytic Jordan arc, i.e., there exists a univalent function p holomorphic in some
neighborhood of [−1,1] such that F = p([−1,1]).

The above theorem covers only the case where supp(E ) is disjoint from F . The authors do not
know whether non-analytic arcs can be symmetric with respect to a triangular scheme when the
support of the latter does intersect the arc.

We point out that the proof of Theorem 1 is constructive. In other words, for a given analytic
arc F , a suitable scheme E can (in a non-unique manner) be explicitly written in terms of the
function p that analytically parametrizes F . Each such scheme E gives rise to a suitable measure ν
simply by taking the weak∗ limit of the counting measures of points of the sets in E .

2.2. Strong Asymptotics for Non-Vanishing Densities. Let K be a compact set inC and denote
by C (K) the space of continuous functions on K endowed with the usual supremum norm ‖ · ‖K .
For h ∈C (K), setωh to be the modulus of continuity of h, i.e.,

ωh (τ) := max
|t1−t2|≤τ

|h(t1)− h(t2)|, τ ∈ [0,diam(K)],

where diam(K) :=maxt1,t2∈K |t1− t2|. It is said that h is Dini-continuous on K if
∫

[0,diam(K)]

ωh (τ)

τ
dτ <∞.

We denote by DC (K) ⊂ C (K) the set of Dini-continuous functions on K and by DCω(K) the
subset of DC (K) such that ωh ≤ω for every h ∈ DC (K), where ω is the modulus of continuity
of some function in DC (K). In what follows, we shall employ the symbol “∗” to indicate the
nowhere vanishing subset of a functional set (for instance, C ∗(K) stands for the non-vanishing
continuous functions on K).

3This conjecture was formerly known as “1/9 conjecture”, which was shown to be false by H.-U. Opitz and K. Scherer
in [40]. The correct constant was identified by A. P. Magnus in [32], however, his proof was not entirely formal.
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Let h ∈ DC ∗(F ) and log h be an arbitrary but fixed continuous branch of the logarithm of h.
Then it is easily verified (see Section 3.3) that the geometric mean of h, i.e.,

(2.10) Gh := exp

¨
∫

F
log h(t )

i d t

πw+(t )

«

,

is independent of the actual choice of the branch of the logarithm and is non-zero. Moreover, the
Szegő function of h, i.e.,

(2.11) Sh (z) := exp

¨

w(z)

2

∫

F

log h(t )

z − t

i d t

πw+(t )
−

1

2

∫

F
log h(t )

i d t

πw+(t )

«

, z ∈D ,

is also independent of the choice of the branch (as long as the same branch is used in both integrals).
In fact, it is the unique non-vanishing holomorphic function in D that has continuous unrestricted
boundary values on F from each side and satisfies

(2.12) h =Gh S+
h

S−
h

on F and Sh (∞) = 1.

To state our next theorem we need one more notion. Let X be a Banach space and Y be a subset
of X . We say that a family {hn} ⊂ Y is relatively compact in Y if any sequence from this family
contains a norm-convergent subsequence and if all the limit points of {hn} belong to Y .

With the use of the previous notation, we formulate our first result on strong asymptotics of
non-Hermitian orthogonal polynomials.

Theorem 2. Let F be an analytic Jordan arc connecting ±1 that is symmetric with respect to a trian-
gular scheme of points E = {En}n∈N. Further, let {qn}n∈N be a sequence of polynomials satisfying

∫

F
t j qn(t )wn(t )

d t

w+(t )
= 0, j = 0, . . . , n− 1,

with wn = hn/vn , where {hn} is a relatively compact family in DC ∗
ω
(F ) and vn are monic polynomials

with zeros at the finite points of En . Then, for all n large enough, polynomials qn have exact degree n
and therefore can be normalized to be monic. Under such a normalization, we have that

(2.13)
�

qn = [1+ o(1)]/Sn
Rn w = [1+ o(1)]γn Sn

locally uniformly in D ,

where Sn := (2/ϕ)n Swn
, γn := 21−2nGwn

, and Rn was defined in (2.3);

(2.14)
�

qn = (1+ d−n )/S+n +(1+ d+n )/S−n
(Rn w)± = (1+ d±n ) γn S±n

on F ,

where d±n ∈C (F ) and satisfy4

∫

F

|d−n (t )|
p + |d+n (t )|

p

Æ

|1− t 2|
|d t | → 0 as n→∞

for any p ∈ [1,∞). Furthermore, the following limit takes place:

(2.15)
q2

n(t )wn(t )

γn w+(t )
d t

∗→
d t

w+(t )
,

4From classical estimates on singular integrals [17] the functions (Rn w)± are, in fact, continuous functions on F ; this
also can be seen, for instance, from equation (3.5) below. However, (2.14) does not contain explicit information on the
pointwise behavior of (Rn w)± as the smallness of dn is claimed in Lp norm only and pays no particular attention to the
values of dn on a set of zero linear measure of F .
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where d t is the differential along F and “
∗→” stands for the weak∗ convergence of measures.

The theorem is stated for analytic arcs only because in view of Theorem 1 this will be the case
if the scheme E does not touch F , which is a standard setting in interpolation. In fact, a careful
examination of the proof of Theorem 2 shows that F could simply be a Carleson (Ahlfors-regular)
curve. However, the authors do not have any convincing evidence suggesting that such arcs could
be symmetric with respect to some triangular scheme unless they are analytic.

2.3. Strong Asymptotics for Densities with Some Vanishing. In this section we consider an
extension of Theorem 2 to densities that may vanish. As mentioned in the introduction, such
an extention is important since it provides the first example of strong asymptotics with vanishing
density. The method used in the proof is essentially the same and is presented separately solely for
the clarity of the exposition.

The purpose of the following construction is to introduce a factor having zeros in the density
of the measure and whose vanishing is sufficiently weak so that the proof of Theorem 2 still goes
through with minor modifications.

Denote by Fc ,d the closed subarc of F with endpoints c and d . Since F is compact, there
exists y ∈ (−∞,−1] such that F ∩ (−∞, y) = ;. Choose Fau x to be any smooth Jordan arc,
Fau x ∩ F = {−1}, that links y and −1. Let x ∈ F , define θx to be the branch of arg(· − x) that is
continuous in C \ {(−∞, y] ∪ Fau x ∪ F−1,x} and tends to zero as the variable approaches infinity
along the positive real axis. For definiteness, we set θx (x) to be the limit of θx along Fx,1. Then θx
has continuous traces θ±x on F−1,x oriented from −1 to x and θ+x (t ) = θ

−
x (t )+ 2π, t ∈ F−1,x \ {x}.

Clearly, the functions θ±x and θx|Fx,1
do not depend on the choice of Fau x .

For any α ∈ (0,1/2] and x ∈ F set

(2.16) ħh(α, x; t ) := |2(t − x)|2α
¨

exp{2iαθx (t )} , t ∈ Fx,1,
exp
¦

2iα(θ+x (t )−π)
©

, t ∈ F−1,x \ {x}.

Then ħh(1, x; t ) = 4(t − x)2, t ∈ F , the argument of ħh(α, x; ·) is continuous on F , and ħh(α, x; t ) =
|2(t − x)|2α when F = [−1,1].

Let h be a function on F for which Sh is well-defined. Set c±
h

:= S±
h
/S∓

h
. It is shown in Sec-

tion 3.3 that functions c±
h

are continuous on F and satisfy c±
h
(±1) = 1 whenever h ∈ DC ∗(F ).

Moreover, it is also shown that the functions c±ħh(α,x;·) are continuous on F \ {x} and have moduli

|ϕ∓(t )|2α, t ∈ F \ {x}, where ϕ was defined in (2.5). They possess the one-sided limits along F at
x, denoted by c±ħh(α,x;·)(x

±), and

(2.17)
�

�

�c±ħh(α,x;·)(x
+)− c±ħh(α,x;·)(x

−)
�

�

�= 2sin(απ)
�

�ϕ∓(x)
�

�

2α ,

where we make the convention that

c+ħh(α,x;·)(1
+) := c−ħh(α,x;·)(1

−) and c−ħh(α,x;·)(−1−) := c+ħh(α,x;·)(−1+).

Now, let F0 ⊂ F be a finite set of distinct points. We associate to each x ∈ F0 some αx ∈ (0,1/2)
and define

(2.18) ħh(t ) = ħh(F0; t ) :=
∏

x∈F0\{±1}
ħh(αx , x; t )

∏

x∈F0∩{±1}
ħh(αx/2, x; t ),

t ∈ F . Then the following theorem takes place.

Theorem 3. Assume that
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• F is an analytic Jordan arc connecting±1 that is symmetric with respect to a triangular scheme
of points E = {En}n∈N and let vn be the monic polynomial with zeros at the finite points of
En ;

• the functions rn , associated to E via (2.8), are such that {|rn ◦ϕ−1|}n∈N is a relatively compact
family in DC (Γ), where Γ is the boundary of ϕ(D);
• {hn}n∈N is a relatively compact family in DC ∗

ω
(F );

• F0 ⊂ F is a finite set of distinct points, αx ∈ (0,1/2), x ∈ F0, and ħh, given by (2.18), is such
that

(2.19) limsup
n→∞

�

�

�(cħh hn
rn)
±(x+)− (cħh hn

rn)
±(x−)

�

�

�< 2‖Q‖−1,

x ∈ F0, where 1≤ ‖Q‖ is the norm of the outer Cauchy projection operator on L2(Γ) defined
in (3.12).

If {qn}n∈N is a sequence of polynomials satisfying (2.2) with wn = ħh hn/vn , then the polynomials qn
have exact degree n for all n large enough and therefore can be normalized to be monic. Under such a
normalization, (2.13) and (2.14) hold with dn satisfying

limsup
n→∞

∫

F

|d−n (t )|
2+ |d+n (t )|

2

Æ

|1− t 2|
|d t |<∞.

Let us make several remarks. As in the case of Theorem 2, the requirement of analyticity of
F can be weakened. It is enough to assume F to be piecewise Dini-smooth without cusps. This
condition is sufficient for Section 3.6 to remain valid, which is the main additional ingredient in
the proof of Theorem 3 as compared to the proof of Theorem 2.

As is clear from the definition of Q, the lower bound in the inequality ‖Q‖ ≥ 1 is achieved
when F = [−1,1].

To obtain an explicit upper bound for the numbers αx , x ∈ F0, for which the theorem holds,
rewrite (2.19) in view of (2.17) as

sin(αxπ)
�

�ϕ∓(x)
�

�

2
∑

y∈F0
αy limsup

n→∞
|(chn

rn)
±(x)|< ‖Q‖−1.

Thus, since 2αy < 1, y ∈ F0, (2.19) is satisfied, for example, when

sin(αxπ)< ‖Q‖
−1 min{|ϕ−(x)|L, |ϕ+(x)|L} liminf

n→∞
|(chn

rn)
±(x)|

where L is the number of elements in F0. In particular, if F = [−1,1], the functions hn are positive,
and if the sets En are conjugate-symmetric, then |ϕ±| ≡ |c±

hn
| ≡ |r±n | ≡ 1 and (2.19) simply reduces

to the initial condition 2αx < 1, x ∈ F0.

2.4. Multipoint Padé Approximation. Let µ be a complex Borel measure with compact sup-
port. We define the Cauchy transform of µ as

(2.20) fµ(z) :=
∫ dµ(t )

z − t
, z ∈C \ supp(µ).

Clearly, fµ is a holomorphic function in C \ supp(µ) that vanishes at infinity.
Classically, diagonal (multipoint) Padé approximants to fµ are rational functions of type (n, n)

that interpolate fµ at a prescribed system of 2n + 1 points. However, when the approximated
function is of the from (2.20), it is customary to place at least one interpolation point at infinity.
More precisely, let E = {En} be a triangular scheme of points in C \ supp(µ) and let vn be the
monic polynomial with zeros at the finite points of En .
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Definition (Multipoint Padé Approximant). Given fµ of type (2.20) and a triangular scheme E , the
n-th diagonal Padé approximant to fµ associated with E is the unique rational function Πn = pn/qn
satisfying:

• deg pn ≤ n, deg qn ≤ n, and qn 6≡ 0;
•
�

qn(z) fµ(z)− pn(z)
�

/vn(z) is analytic in C \ supp(µ);

•
�

qn(z) fµ(z)− pn(z)
�

/vn(z) =O
�

1/zn+1� as z→∞.

A multipoint Padé approximant always exists since the conditions for pn and qn amount to
solving a system of 2n + 1 homogeneous linear equations with 2n + 2 unknown coefficients, no
solution of which can be such that qn ≡ 0 (we may thus assume that qn is monic); note that the
required interpolation at infinity is entailed by the last condition and therefore Πn is, in fact, of
type (n− 1, n).

The following theorem is an easy consequence of Theorems 1 and 2.

Theorem 4. Let F be an analytic Jordan arc connecting ±1. Then there always exist triangular
schemes such that F is symmetric with respect to them. Let E be any such scheme and fµ be given by
(2.20) with

(2.21) dµ(t ) = µ̇(t )
i d t

πw+(t )
, µ̇ ∈DC ∗(F ), supp(µ) = F .

Then the sequence of diagonal Padé approximants to fµ associated with E , {Πn}, is such that

(2.22) ( fµ−Πn)w = [2Gµ̇+ o(1)]S2
µ̇

rn locally uniformly in D .

The proof of Theorem 4 combined with Theorem 3 yields the following.

Corollary 5. Let F an analytic arc connecting ±1, that is, symmetric with respect to a triangular
scheme E . Further, let h ∈ DC ∗(F ), F0 ⊂ F be a finite set of distinct points, and ħh(F0; ·) be given by
(2.18) for some choice of the parameters αx < 1/2, x ∈ F0. If functions rn , associated to E , are such
that {|rn ◦ϕ−1|} is relatively compact in DC (Γ), Γ = ∂ ϕ(D), and (2.19) is satisfied with hn = h and
ħh = ħh(F0; ·), then the conclusion of Theorem 4 remains valid for fµ with µ̇= ħh h.

As a final remark of this section, let us mention that it is possible to consider in Theorem 4
the Radon-Nikodym derivative of µ with respect to the equilibrium distribution on F . The later
will be different from µ̇ by a factor g (ϕ)ϕ, where g is a non-vanishing function analytic across Γ.
However, as apparent from (2.22), the adopted decomposition of µ is more convenient.

3. AUXILIARY MATERIAL

In this section we provide the necessary material to proceed with the proofs of the main results.
Section 3.1 describes properties of Γ, the boundary of ϕ(D). In Sections 3.2 and 3.3 we construc-
tively define Szegő functions, show that formula (2.12) indeed takes place, and compute several
examples that we use throughout the proofs. The main source for these sections is the excellent
monograph [17]. Sections 3.4 and 3.5 are concerned with the so-called Smirnov classes on Jordan
curves and their content can be found in much greater detail in [11]. Finally, Section 3.6 carries
onto analytic Jordan domains certain properties of inner-outer factorization of analytic functions
on the unit disk.
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3.1. Joukovski Transformation. Let F be a rectifiable Jordan arc connecting ±1, oriented from
−1 towards 1, and let ϕ be defined by (2.5). Then ϕ has continuous injective extensions ϕ± onto
F that are conformal on F \ {±1}. Denote

Γ :=Γ+ ∪Γ−, Γ± := ϕ±(F ).

By what precedes, Γ± \ {±1} are open Jordan arcs with endpoints ±1 and by (2.6)

(3.1) Γ− = (Γ+)−1 :=
�

z : 1/z ∈ Γ+
	

.

Observe that ϕ is inverse to J (z) := (z+1/z)/2, the usual Joukovski transformation, in D =C\F .
Since J maps z and 1/z into the same point and ϕ±(z) = ±1 if and only if z = ±1, Γ+ ∩ Γ− =
{−1,1} and therefore Γ is a Jordan curve.

Assume, in addition, that for x = ±1 and all t ∈ F sufficiently close to x it holds that |Ft ,x | ≤
const.|x− t |β,β> 1/2, where |Ft ,x | is the arclength of the subsarc of F joining t and x and const.
is some absolute constant. We shall show that this implies rectifiability of Γ. As ϕ± are conformal
on F \ {±1}, it is enough to prove that Γ has finite length around ±1. By (3.1), it is, in fact,
sufficient to consider only Γ+. Let s be a parametrization of F around 1 such that s(0) = 1 and for
all δ ∈ [0,δ0], s(δ0) 6=−1, it holds that

`(δ) := |Fs(δ),1|=
∫

[0,δ]
|s ′(y)|d y ≤ const.|1− s(δ)|β.

As ϕ+ ◦ s is a parametrization of Γ+ around 1, we get that

|ϕ+(Fs(δ),1)| =
∫

[0,δ]
|
�

ϕ+(s(y))
�′ |d y =

∫

[0,δ]

�

�

�

�

�

ϕ+(s(y))

w+(s(y))

�

�

�

�

�

|s ′(y)|d y

≤ const.
∫

[0,δ]

|s ′(y)|
p

|1− s(y)|
d y

since (ϕ+)′ = ϕ+/w+, |ϕ+| is bounded above on F , and |1+ s(y)| is bounded away from zero on
[0,δ0]. As `′(y) = |s ′(y)| and |1− s(y)| ≥ const.`1/β(y) on [0,δ0], we deduce that

|ϕ+(Fs(δ),1)| ≤ const.
∫

[0,δ]

`′(y)

`1/2β(y)
d y = const.`1−1/2β(δ)<∞

since 1−1/2β> 0. Clearly, an analogous bound holds around −1. Hence, Γ+ and therefore Γ are
rectifiable.

Now, we show that Γ is an analytic Jordan curve whenever F is an analytic Jordan arc. In
other words, we show that in this case there exists a holomorphic univalent function in some
neighborhood of the unit circle that maps T onto Γ. Let U be a neighborhood of T such that J (U )
lies in the domain of p, where p is a holomorphic univalent parametrization of F , F = p([−1,1]).
Define

Φ(z) :=
¨

1/ϕ(p(J (z))), z ∈U+ :=U ∩D,
ϕ(p(J (z))), z ∈U− :=U \D.

Then Φ is a sectionally holomorphic function on U \T. Denote by Φ± the traces of Φ from U±

on T. Then for τ ∈T, we have

Φ−(τ) =
�

1/ϕ+(p(J (τ))), Im(τ)≥ 0
1/ϕ−(p(J (τ))), Im(τ)< 0

=
�

ϕ−(p(J (τ))), Im(τ)≥ 0
ϕ+(p(J (τ))), Im(τ)< 0 =Φ+(τ).
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Thus, Φ is a holomorphic injective function on U that mapsT into Γ, and therefore Γ is an analytic
Jordan curve.

3.2. The Cauchy Integral Operator. Let Γ be an analytic Jordan curve and denote by D+ and
D− the bounded and unbounded components of the complement of Γ, respectively. Further, let
φ be an integrable function on Γ. The Cauchy integral operator on Γ is defined as

(3.2) Cφ(z) :=
1

2πi

∫

Γ

φ(τ)

τ− z
dτ, z 6∈ Γ.

Clearly, Cφ is a sectionally holomorphic function on C \Γ and

Cφ(z) =
¨

φ(t )+Aφ(t , z), z ∈D+,
Aφ(t , z), z ∈D−, t ∈ Γ,

where

Aφ(t , z) :=
1

2πi

∫

Γ

φ(τ)−φ(t )
τ− z

dτ.

It is an easy modification of [17, Sec. 4.1] to see that Aφ(t , z) is a continuous function of z for each
t ∈ Γ when φ ∈ DC (Γ). Therefore, in this case, Cφ|D± have continuous unrestricted boundary
values (Cφ)± such that

(3.3) (Cφ)+− (Cφ)− =φ.

Moreover, Cφ is the unique sectionally holomorphic function in C \ Γ that satisfies (3.3) and
vanishes at∞.

Let now {φn} ⊂DCω(Γ) be a uniformly convergent sequence. Denote by φ the limit function
of {φn} and observe that φ necessarily belongs to DCω(Γ). We want to show that (Cφn)

± con-
verge uniformly on Γ to (Cφ)±, respectively. Since C is additive, we may suppose without loss
of generality that φ≡ 0. Then

|(Cφn)
−(t )| = |Aφn

(t , t )| ≤
∫

Γ

|φn(τ)−φn(t )|
|τ− t |

|dτ|
2π

≤ k1

∫

[0,s0]

ωφn
(s)

s
d s = k1

 

∫

[0,sn]
+
∫

[sn ,s0]

!

ωφn
(s)

s
d s

≤ k1

∫

[0,sn]

ω(s)

s
d s + 2k1(s0− sn)

‖φn‖Γ
sn

,

where s0 := diam(Γ) and k1 is a positive constant that depends only on Γ. Now, by choosing sn
in such a manner that sn and ‖φn‖Γ/sn both converge to zero as n→∞, we obtain that (Cφn)

−

converges to zero uniformly on Γ. The convergence of (Cφn)
+ then follows from (3.3).

Finally, suppose that Γ is such that τ and 1/τ belong to Γ simultaneously. Assume in addition
that φ ∈DC (Γ) is such that φ(τ) =φ(1/τ). Then

Cφ(1/z) =Cφ(0)−Cφ(z), z /∈ Γ,

(Cφ)± ∈C (Γ), and by (3.3)

(3.4) (Cφ)+(τ)+ (Cφ)+(1/τ) =φ(τ)+Cφ(0), τ ∈ Γ.
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Suppose further that±1 ∈ Γ and denote F = J (Γ). Then F is an analytic Jordan arc with endpoints
±1. Let ψ ∈DC (F ) and φ=ψ ◦ J . Clearly, φ ∈DC (Γ) and φ(τ) =φ(1/τ), τ ∈ Γ. Set

R(ζ ) :=
w(ζ )

2πi

∫

F

ψ(t )

t − ζ
d t

w+(t )
, ζ ∈D =C \ F .

As
dJ (τ)

w+(J (τ))
=
�

−dτ/τ, τ ∈ Γ−
dτ/τ, τ ∈ Γ+ ,

where Γ± have the same meaning as in Section 3.1, and since w(ζ ) = (1− z2)/(2z), ζ = J (z),
z ∈D+, we have for t = J (τ) that

R(ζ ) =
1− z2

4πi

∫

Γ

φ(τ)

(τ− z)(1− zτ)
dτ =

1

4πi

∫

Γ

φ(τ)

τ− z
dτ+

z

4πi

∫

Γ

φ(τ)

1− zτ
dτ

=
1

2πi

∫

Γ

φ(τ)

τ− z
dτ−

1

4πi

∫

Γ

φ(τ)

τ
dτ =Cφ(z)−

1

2
Cφ(0),(3.5)

where we used the symmetry of φ, i.e., φ(τ) =φ(1/τ). Then we get from (3.5) and (3.4) that

(3.6) R± ∈C (F ), R+(±1) = R−(±1), and R++R− =ψ on F .

3.3. Szegő Functions. Let F be an analytic oriented Jordan arc connecting −1 and 1 and h ∈
DC ∗(F ). Since |Log(1+ z)| ≤ 2|z |, |z |< 1/2, where Log is the principal branch of the logarithm,
we have that

(3.7) | log h(t1)− log h(t2)|= |Log(h(t1)/h(t2))| ≤ 2
ωh (|t1− t2|)

minF h

whenever 2ωh (|t1 − t2|) ≤ minF h. Thus, log h ∈ DC (F ) for any continuous branch of the log-
arithm of h. Let now Γ be the preimage of F under the Joukovski transformation, J , and let
Γ± = ϕ±(F ). Further, let φ := log h ◦ J . Then, changing variables as in (3.5), we have that

Gh = exp

¨
∫

F
log h(t )

i d t

πw+(t )

«

= exp

¨
∫

Γ

φ(τ)

τ

dτ

2πi

«

= exp{Cφ(0)} 6= 0

and does not depend on the branch of the logarithm we chose. Indeed, different continuous
branches of the logarithm of h give rise to the same φ up to an additive integer multiple of 2πi ,
and sinceC (φ+ c)(0) =Cφ(0)+ c for any constant c , the claim follows. Further, (3.5) yields that

Sh (ζ ) = exp{Cφ(z)−Cφ(0)} , ζ = J (z) ∈D , z ∈D+.

Hence, Sh is a well-defined non-vanishing holomorphic function in D that has value 1 at infinity
and satisfies

(3.8) S+
h
(t )S−

h
(t ) = exp{φ(τ)−Cφ(0)}= h(t )/Gh , t = J (τ) ∈ F ,

by (3.5) and (3.4). Moreover, (3.6) tells us that

(3.9) S±
h
∈C (F ) and S+

h
(±1) = S−

h
(±1).

Now, if h1, h2 ∈DC ∗(F ), then Sh1 h2
= Sh1

Sh2
since there always exists k ∈Z such that

log(h1h2) = log h1+ log h2+ 2πi k on F

for any continuous branches of the logarithms of h1 and h2. We shall refer to this property as to the
multiplicativity property of Szegő functions. It remains only to say that Sh can be characterized
as the unique holomorphic non-vanishing function in D that assumes the value 1 at infinity, has
bounded boundary values on F , and satisfies (3.8). Indeed, this follows from the uniqueness ofCφ
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as the sectionally holomorphic function satisfying (3.3), vanishing at infinity, and having bounded
boundary values.

Employing the characterization described above, we can provide an explicit expression for the
Szegő function of a polynomial. Namely, let En be a set of 2n not necessarily distinct nor finite
points in D , vn be a polynomial with zeros at the finite points of En , and rn be the function
associated to En via (2.8). Then we get from (2.6) and (2.7) that

(3.10) S2
vn
=

1

Gvn

vn

rnϕ
2n

.

Proceeding now with the investigation of the properties of Szegő functions, we show that
{S±

hn
} form relatively compact families in C ∗(F ) whenever {hn} is a relatively compact family

in DC ∗
ω
(F ). Without loss of generality we may assume that {hn} converges uniformly on F to

some non-vanishing function h. Fix an arbitrary branch of the logarithm of h. Clearly, there
exists a choice of the branch of the logarithm of hn for each n such that the sequence {log hn}
converges uniformly to log h. Moreover, it follows from (3.7) that {log hn} ⊂ DCω(F ). Here,
we slightly abuse the notation by using the same symbol ω despite the fact that the modulus of
continuity that majorizes ωlog hn

is different from the one that majorizes ωhn
. As only the exis-

tence of such a majorant is significant to our considerations, this should cause no ambiguity. Thus,
{φn} ⊂ DCω(Γ), φn := log hn ◦ J , and it converges to φ := log h ◦ J . As we saw in the previous
section, it follows that {(Cφn)

±} converge uniformly on Γ to (Cφ)±, respectively. Thus, the
claim follows.

Finally, we compute the Szegő function of ħh(α, x; ·), α ∈ (0,1], x ∈ F , defined in (2.16). It is a
simple observation that

Għh(1,x;·) = 1 and Sħh(1,x;·)(z) =
2(z − x)

ϕ(z)
, z ∈D ,

by uniqueness of the Szegő function. Let us also recall that Sħh(1,x;·) is a non-vanishing holomor-
phic function in D , including at infinity, with zero winding number on any curve there, and
Sħh(1,x;·)(∞) = 1. Thus, for any α ∈ (0,1], an α-th power of Sħh(1,x;·) exists. In other words, the
function

Sα := Sαħh(1,x;·), Sα(∞) = 1,

is a single-valued holomorphic function in D with continuous traces on each side of F .
Denote by θϕ the branch of the argument of ϕ which is continuous inC\{(−∞, y]∪Fau x ∪F }

and vanishes on positive reals greater than 1, where Fau x was defined in Section 2.3. Then θϕ has
continuous extensions to F that satisfy θ+

ϕ
= −θ−

ϕ
on F , θ+

ϕ
(1) = 0, and θ+

ϕ
(−1) = π. It can be

easily checked that ArgSα = α
�

θx −θϕ
�

, where ArgSα is the continuous branch of the argument
of Sα that vanishes at infinity and θx was defined in Section 2.3. Thus,

S±
α
(t ) =

|2(t − x)|α

|ϕ±(t )|α







exp
n

iα(θx (t )−θ±ϕ (t ))
o

, t ∈ Fx,1,

exp
n

iα(θ±x (t )−θ
±
ϕ
(t ))
o

, t ∈ F−1,x \ {x},

and therefore S+
α

S−
α
= ħh(α, x; ·) on F by (2.6) and since θ−x = θ

+
x − 2π there. Altogether, we have

proved that Sħh(α,x;·) = Sα.
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Now, define cα := S+
α
/S−
α

on F . Then, for x 6=±1, we have

cα(t ) = |ϕ−(t )|2α







exp
n

−iα(θ+
ϕ
(t )−θ−

ϕ
(t ))
o

exp
n

−iα(−θ+x (t )+θ
−
x (t )+θ

+
ϕ
(t )−θ−

ϕ
(t ))
o

= |ϕ−(t )|2α







exp
n

−2iαθ+
ϕ
(t )
o

, t ∈ Fx,1,

exp
n

−2iαθ+
ϕ
(t )+ 2iαπ

o

, t ∈ F−1,x \ {x}
;

for x = 1, we have that

cα(t ) = |ϕ
−(t )|2α exp

n

−2iαθ+
ϕ
(t )+ 2iαπ

o

, t ∈ F ;

and finally, for x =−1, we have that

cα(t ) = |ϕ
−(t )|2α exp

n

−2iαθ+
ϕ
(t )
o

, t ∈ F .

Therefore, if x 6= ±1 then cα and c−1
α

are piecewise continuous functions on F , having jump-
type singularities at x of magnitudes 2 sin(απ)|ϕ−(x)/ϕ+(x)|α and 2sin(απ)|ϕ+(x)/ϕ−(x)|α, re-
spectively, and cα(±1) = 1; if x is ±1 then cα is a continuous function on F , cα(∓1) = 1, and
cα(±1) = exp{±2iαπ}. Thus, (2.17) does indeed hold.

Now, let F0 ⊂ F be a finite set of distinct points. Given αx < 1 for every x ∈ F0, let ħh be
associated to F0 via (2.18). Then

Sħh =
∏

x∈F0\{±1}
Sħh(αx ,x;·)

∏

x∈F0∩{±1}
Sħh(αx/2,x;·)

by the multiplicativity property of Szegő functions. Moreover, c+ħh = S+ħh /S−ħh and c−ħh = S−ħh /S+ħh are
the products of cαx

and 1/cαx
, respectively, over x ∈ F0, and therefore they are piecewise continu-

ous function on F with jump-type singularities at x ∈ F0 \ {±1}.

3.4. Smirnov Classes. Let Γ be an analytic Jordan curve. Denote by D+ and D− the bounded
and unbounded components of C \ Γ. Suppose also that Γ is oriented counter-clockwise, i.e.,
D+ lies on the left when Γ is traversed in positive direction. Assume also that 0 ∈ D+. Set Lp ,
p ∈ [1,∞), to be the space of p-summable functions on Γ with respect to arclength and denote
the corresponding norms by ‖ · ‖p . For each φ ∈ L1, the Cauchy integral operator (3.2) defines a
sectionally holomorphic function in D+ ∪D−. To be more specific we shall denote

C ±φ= (Cφ)|D± .

Then each function C ±φ is holomorphic in the corresponding domain and has non-tangential
boundary values a.e. on Γ, which, as before, we denote by (Cφ)±. For each p ∈ [1,∞), we define
the Smirnov classes E p

+ and E p
− as

E p
+ :=

�

φ ∈ Lp : C −φ≡ 0
	

,

E p
− :=

�

φ ∈ Lp : C +φ≡ (C +φ)(0)
	

.

Clearly, E p
± are closed subspaces of Lp . We note also that the Cauchy formula holds, i.e., ifφ ∈ E p

±,
then

(Cφ)+ =φ and (Cφ)− =−φ+(C +φ)(0) a.e. on Γ
by Sokhotski–Plemelj formula (3.3). In other words, φ admits an analytic extension to D± whose
Lp -means turn out to be uniformly bounded on the level curves of any conformal map from
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D onto D±. Conversely, if h is a holomorphic function in D± whose Lp -means are uniformly
bounded on some sequence of rectifiable Jordan curves in D± whose bounded or unbounded
components of the complement exhaust D+ or D−, respectively, then the trace of h belongs to E p

±
(see [16] and [11] for details).

It will be of further convenience to define the projection operators from Lp to the Smirnov
classes E p

±. To do that, we first define the Cauchy singular operator on Γ, say S , by the rule

(S φ)(t ) :=
1

πi

∫

Γ

φ(τ)

τ− t
dτ, t ∈ Γ,

where the integral is understood in the sense of the principal value. We also set I to stand for the
identity operator on Lp and we put Ė p

−, p ∈ [1,∞), to denote the subspace of E p
− consisting of

functions vanishing at infinity, i.e.,

Ė p
− :=

¦

φ ∈ E p
− : (C +φ)(0) = 0

©

=
�

φ ∈ Lp : C +φ≡ 0
	

.

In the considerations below we always assume that p ∈ (1,∞). Then

(3.11) Lp = E p
+ ⊕ Ė p

−.

We define complementary projections on Lp in the following manner:

(3.12)
P : Lp → E p

+, φ 7→ (1/2)(I +S )φ,
Q : Lp → Ė p

−, φ 7→ (1/2)(I −S )φ.

These operators are bounded and can be used to rewrite the Sokhotski–Plemelj formula as

(3.13) P φ= (Cφ)+ and Qφ=−(Cφ)−, φ ∈ Lp .

Finally, we characterize the weak convergence in E p
+. According to the Riesz representation

theorem, any linear functional ` ∈ (Lp )∗ has a unique representation of the form

(3.14) `φ=
∫

Γ
φ f |dτ|, φ ∈ E p

+, f ∈ Lq ,
1

p
+

1

q
= 1.

It follows now from the Hanh–Banach theorem that

(3.15) (E p
+)
∗ ∼= Lq/(E p

+)
⊥,

where the symbol “∼=” stands for “isometrically isomorphic” and (E p
+)
⊥ is the annihilator of E p

+
under the pairing (3.14). It can be easily checked that

(3.16) (E p
+)
⊥ =

¨

ψ
dτ

|dτ|
: ψ ∈ E q

+

«

.

Since Γ is analytic, multiplication by dτ/|dτ| is an isometric isomorphism of Lq into itself. Thus,
by (3.11) and (3.12) every f ∈ Lq can be uniquely decomposed as

(3.17) f =P






f

dτ

|dτ|







dτ

|dτ|
+Q






f

dτ

|dτ|







dτ

|dτ|
.

Combining (3.15), (3.16), (3.17), and (3.11), we see that for any linear functional ` ∈ (E p
+)
∗ there

uniquely exists ψ ∈ Ė q
− such that

`φ=
∫

Γ
φψdτ, φ ∈ E p

+.
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Since (·−z)−1 ∈ Ė q
− for every z ∈D+, it follows from the Cauchy formula that a bounded sequence

{φn} ⊂ E p
+ weakly converges to zero if and only if {C +φn} converges to zero locally uniformly

in D+.

3.5. Toeplitz and Hankel Operators. In the notation of the previous section, let c ∈ L∞, i.e., c
be a bounded function on Γ with the norm ‖c‖∞, and let p ∈ (1,∞). We define the Toeplitz and
Hankel operators with symbol c by the rules

Tc : E p
+→ E p

+, φ 7→ P (cφ),
Hc : E p

+→ Ė p
−, φ 7→Q(cφ),

respectively. Then Tc andHc are bounded operators andHc is compact whenever c ∈ C (Γ) (see,
for instance, [11, Prop. 6.21]).

Let {φn} ⊂ E p
+ be a bounded sequence that weakly converges to zero and {cn} be a relatively

compact family in L∞. Then for any limit point of {cn}, say c , we have

‖Tcφn −Tcn
φn‖p = ‖P ((c − cn)φn)‖p ≤ ‖P ‖‖c − cn‖∞ ‖φn‖p ,

where ‖P ‖ is the operator norm of P . Therefore, since P and Tc are bounded operators, it
can be readily verified that {Tcn

φn} weakly converges to zero. Moreover, using the compactness
of Hankel operators with continuous symbols, a similar argument shows that {Hcn

φn} strongly
converges to zero in the ‖ · ‖p -norm if {cn} is a relatively compact family in C (Γ).

Let now c be a continuous function on Γ except for a finite set of points, say Γ0. Assume
further that c possesses finite one-sided limits, say c(ζ +) and c(ζ −), at each ζ ∈ Γ0. Then there
exists c ′ ∈C (Γ) such that

‖c − c ′‖∞ =
1

2
max
ζ ∈Γ0

jc (ζ ), jc (ζ ) := |c(ζ
+)− c(ζ −)|.

Thus, if {φn} ⊂ E p
+, ‖φn‖= 1, is weakly convergent to zero, it holds that

limsup
n→∞

‖Hcφn‖p ≤ limsup
n→∞

�

‖Hc−c ′φn‖p + ‖Hc ′φn‖p

�

≤ limsup
n→∞

‖Q((c − c ′)φn)‖p ≤
1

2
‖Q‖max

ζ ∈Γ0

jc (ζ )

sinceHc ′ is a compact operator.

3.6. On Conjugate Functions. Let Γ be an analytic Jordan curve and D+ and D− stand, as be-
fore, for the bounded and unbounded components of the complement of Γ. Denote by f a confor-
mal map of the unit disk, D, onto D+. Further, let {φn} be a sequence of holomorphic functions
in D+ that continuously extend to Γ. Assume also that {|φn |} is a relatively compact family in
DC ∗

ω
(Γ). Define ψn :=φn ◦ f . Then {ψn} is a sequence of bounded holomorphic functions in D

with continuous boundary values on the unit circle, T. Moreover, since f ′ extends continuously
on T by [45, Thm. 3.3.5], it holds that {|ψn |} is a relatively compact family in DC ∗

ω
(T) (as before,

we use the same symbolω since only the existence of the majorant is important).
By the canonical factorization of Hardy functions in D (see [16, Sec. 2.4]), we get ψn =ψ

i
nψ

o
n ,

where |ψi
n | ≡ 1 on T and

ψo
n(z) := exp

¨
∫

T

τ+ z

τ− z
log |ψn(τ)|

|dτ|
2π

«

, z ∈D.
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In other words, ψi
n and ψo

n are the inner and outer factors of ψn , respectively. Since |ψo
n | ≡ |ψn | on

T, {|ψo
n |} is a relatively compact family in DC ∗

ω
(T). Moreover, since |ψo

n | is uniformly bounded
below on T, we have that

ωlog |ψo
n |
(δ)≤ω|ψo

n |
(δ)/min

τ∈T
|ψo

n(τ)| ≤ k1ω(δ)

for all δ small enough, where k1 is a positive constant independent of n. Thus, without loss of
generality we may assume that {log |ψo

n |} ∈ DCω(T). Denote by argψo
n the harmonic conjugate

of log |ψo
n | normalized to be zero at zero. Then by [19, Thm. III.1.3] we have that

ωargψo
n
(δ)≤ k2

 

∫ δ

0

ω(t )

t
d t +δ

∫ 2

δ

ω(t )

t 2
d t

!

,

where k2 is an absolute constant and the moduli of continuity of argψo
n are computed on T. This,

in particular, implies that {argψo
n} is a uniformly equicontinuous family of uniformly bounded

functions on T. Hence, by the Ascoli–Arzelà theorem, {argψo
n} is relatively compact in C (T) and

therefore so is {ψo
n}.

Summarizing the above, we arrive at the following. If Γ is an analytic Jordan curve and {φn} is
a sequence of holomorphic functions in D+ with continuous traces on Γ such that {|φn |} forms a
relatively compact family in DC ∗

ω
(Γ), then each φn can be written as

φn =φ
i
nφ

o
n , |φn | ≡ |φ

o
n | on Γ,

and the sequence {φo
n} forms a relatively compact family in C (Γ).

4. PROOFS

In the first part of this section we prove Theorems 2, 3, and 4. A number of places in these
proofs contain references to the material of the previous section. The second part is devoted to the
proof of Theorem 1 and is independent of the rest of the paper.

4.1. Proofs of Theorems 2, 3, and 4.

Proof of Theorem 2. The starting point for the proof of this theorem is the method of singular
integral equation proposed by J. Nuttall in [38].

By the very definition of Rn , (3.6), (2.6), and (2.12), it follows that

(4.1) (Rn w)++(Rn w)− = 2qn wn = 2Gwn
qn

S+wn
S−wn

(ϕ+)n(ϕ−)n
on F .

The last equation can be rewritten as

(4.2)

 

Rn wϕn

Swn

!±

+

 

Rn wϕn

Swn

!∓ 
ϕn

Swn

!±� Swn

ϕn

�∓

= 2Gwn

� qn Swn

ϕn

�∓

on F . Observe that

(4.3) an :=
Rn wϕn

Swn

is a holomorphic function in D and a±n ∈C (F ), a−n (±1) = a+n (±1). Indeed, Swn
is a non-vanishing

and holomorphic in D ,
w(z)ϕn(z) =O(zn+1) as z→∞
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by the very definition of these functions, and

Rn(z) =O(1/zn+1) as z→∞
due to orthogonality relations (2.2). The continuity of the boundary values a±n and equality of a±n
at ±1 follow from (3.6) and (3.9). Let also

(4.4) bn := 2Gwn

qn Swn

ϕn .

It is again immediate that bn is a holomorphic function in D , b±n ∈ C (F ), and b+n (±1) = b−n (±1).
Then using the multiplicativity property of Szegő functions, we can rewrite (4.2) as

(4.5) a±n +(an cn)
∓
(ϕn Svn

)±

(ϕn Svn
)∓
= b∓n on F ,

where

(4.6) c∓n := S∓
hn
/S±

hn
on F .

Clearly, c±n ∈ C (F ), c+n c−n = 1, and c+n (±1) = c−n (±1) = 1. Moreover, {c±n } are relatively compact
families in C (F ) (see Section 3.3, the discussion right after (3.10)). Further, by (2.12), (2.6), and
(3.10) it holds that

(4.7)
(ϕn Svn

)±

(ϕn Svn
)∓
=

1

Gvn

vn

(ϕ2n S2
vn
)∓
= r∓n on F .

Thus, we obtain from (4.5) that

(4.8) b∓n = a±n +(an rn cn)
∓ on F .

Let J be the usual Joukovski transformation. Then Γ := J−1(F ) is an analytic curve (see Section
3.1). Denote by D+ and D− the bounded and unbounded components of the complement of Γ,
respectively (we orient Γ counter-clockwise), and define

f̂ := f ◦ J|D+ , f = an , bn , rn .

Then ân , b̂n , r̂n are holomorphic functions in D+ with continuous traces

(4.9) f̂|Γ± = f ∓ ◦ J , f = an , bn , rn , Γ± := ϕ±(F ).

The continuity of the boundary values immediately implies that these functions are bounded in
D+, and therefore

(4.10) f̂ ∈ E p
+ and f̂ (1/·) ∈ E p

−, f = an , bn , rn ,

for any p ∈ [1,∞) by the characterization of Smirnov classes (Section 3.4). Moreover, the sequence
{ r̂n} converges to zero locally uniformly in D+ and therefore weakly goes to zero in E p

+ (see
Section 3.4) by the very definition of r̂n and the fact that F is symmetric with respect to E . It
follows from (4.8) that

(4.11) b̂n(τ) = ân(1/τ)+ (ân r̂n ĉn)(τ), τ ∈ Γ,

where ĉn|Γ± := c∓n ◦ J . Notice that ĉn are, in fact, continuous functions on Γ and {ĉn} is a relatively
compact family in C (Γ). Fix an arbitrary p ∈ (1,∞) and denote

(4.12) ân, p = ân/‖ân‖p on D+ and dn, p (·) := ân, p (0)− ân, p (1/·) on D−,
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where ‖ ·‖p is the Lp -norm on Γ. Clearly, dn, p ∈ Ė p
−. Applying subsequently the operatorsP and

Q (see (3.12)) to both sides of (4.11), we get in view of (4.10) that

(4.13)

¨

b̂n/‖ân‖p = ân, p (0)+P (ân, p r̂n ĉn)
dn, p =Q(ân, p r̂n ĉn)

.

Equivalently, we can rewrite (4.13) as

(4.14)

¨

b̂n/‖ân‖p = ân, p (0)−Tn(ân, p r̂n)
dn, p =Hn(ân, p r̂n)

,

where Tn andHn are the Toeplitz and Hankel operators with symbol ĉn , respectively (see Section
3.5). By the normalization of {ân, p} and the properties of { r̂n}, the norms ‖ân, p r̂n‖p are uniformly
bounded with n and the sequence {ân, p r̂n} weakly goes to zero. Thus,

‖dn, p‖p → 0 as n→∞

by the compactness properties of Hankel operators with continuous symbols (see discussion in
Section 3.5). In particular, since

‖dn, p (1/·)‖p ≤
‖dn, p‖p

minτ∈Γ |τ|2/p
→ 0 as n→∞

(note that Γ cannot pass through the origin since otherwise it would be unbounded as τ and 1/τ
belong to Γ simultaneously), we have from (4.12) that

(4.15)

¨

|ân(0)|/‖ân‖p → 1
‖1− ân/ân(0)‖p → 0 as n→∞.

Using now properties of Toeplitz operators with L∞ symbols (see Section 3.5), we derive from
(4.14), (4.15), and the Cauchy formula that

¨

b̂n/ân(0) = 1+ o(1)
ân/ân(0) = 1+ o(1)

locally uniformly in D+ or equivalently

(4.16)















2Gwn

ân(0)

qn Swn

ϕn = 1+ o(1)

1

ân(0)

Rn wϕn

Swn

= 1+ o(1)

locally uniformly in D . The first asymptotic formula in (4.16) immediately implies that qn has
exact degree n for all n large enough and therefore can be normalized to be monic. Under such a
normalization, we deduce again from the first formula in (4.16) by considering the point at infinity
and using the normalization Swn

(∞) = 1 that

(4.17) ân(0) = [1+ o(1)]21−nGwn
= [1+ o(1)]2nγn ,

and (2.13) follows.
Now, let

(4.18) dn :=
Rn w

γn Sn
− 1=

an

2nγn
− 1.
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Then d̂n := dn ◦ J|D+ is such that

(4.19) ‖d̂n‖p ≤ ‖1− ân/ân(0)‖p + o(1)‖ân‖p/|ân(0)| → 0 as n→∞

for any p ∈ (1,∞) by (4.17) and (4.15), and therefore also for p = 1 by Hölder’s inequality. So, we
have for any p ∈ [1,∞) that

‖d̂n‖
p
p =

∫

Γ
|d̂n(τ)|

p |dτ|

=
∫

F

�

|d−n (t )|
p |(ϕ+(t ))′|+ |d+n (t )|

p |(ϕ−(t ))′|
�

|d t |

=
∫

F

�

|d−n (t )|
p |ϕ+(t )|+ |d+n (t )|

p |ϕ−(t )|
�

�

�

�

�

�

d t

w+(t )

�

�

�

�

�

→ 0(4.20)

as n→∞. Since |ϕ±| ≥minΓ |τ| and |w+(t )| =
Æ

|1− t 2|, the second part of (2.14) follows from
(4.18) and (4.20). Moreover, since we can rewrite (4.1) as

qn γn S+n S−n = (Rn w)++(Rn w)− = γn
�

((1+ dn)Sn)
++((1+ dn)Sn)

−�

by (4.18), we get the first part of (2.14).
So, it remains only to prove (2.15). By Lavrentiev’s theorem, which is the analog of the Weier-

strass theorem for complex-valued functions on an arc, it is enough to show that

(4.21)
∫

F
t jγ−1

n q2
n(t )wn(t )

d t

w+(t )
→
∫

F
t j d t

w+(t )
, j = 0,1, . . . .

By (4.1), we get

γ−1
n q2

n wn =
1

4γn wn

�
�

(Rn w)+
�2+ 2(Rn w)+(Rn w)−+

�

(Rn w)−
�2�

= γ−2
n





1

2

�

(Rn w)+
�2

S+n S−n
+
(Rn w)+(Rn w)−

S+n S−n
+

1

2

�

(Rn w)−
�2

S+n S−n



 .

Recalling the definitions of an , rn , cn , and dn , we get in view of (4.7) that

γ−1
n q2

n wn = 2−2nγ−2
n

�

(a2
n rn cn)

+/2+ a+n a−n +(a
2
n rn cn)

−/2
�

= 1+
�

d−n + d+n + d−n d+n
�

+
�

((1+ dn)
2 rn cn)

++((1+ dn)
2 rn cn)

−
�

/2.

Thus,
∫

F
t j

q2
n(t )wn(t )

γn w+(t )
d t =

∫

F
t j d t

w+(t )
+ I1,n −πi I2,n ,

where

I1,n :=
∫

F

�

d−n (t )+ d+n (t )+ d−n (t )d
+
n (t )

� t j d t

w+(t )
and

I2,n :=−
1

2πi

∫

F

�

(1+ d+n (t ))
2(r+n c+n )(t )+ (1+ d−n (t ))

2(r−n c−n )(t )
� t j d t

w+(t )
.
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Equations (4.21) shall follow upon showing that I1,n and I2,n converge to zero as n grows large.
Clearly, this holds for I1,n by (4.20) since |ϕ±| are bounded on F . Further, substituting t = J (τ),
τ ∈ Γ, we get as in (3.5) that

∫

F
(1+ d±n (t ))

2(rn cn)
±(t )

t j d t

w+(t )
=−

∫

Γ∓
(1+ d̂n(τ))

2( r̂n ĉn)(τ)J
j (τ)

dτ

τ
,

where we integrate on Γ− from −1 to 1 and on Γ+ from 1 to −1. Thus, by the very definition of
the operators C andP (see (3.2) and (3.12)), it holds that

I2,n =
�

C +((1+ d̂n)
2 r̂n ĉnJ j )

�

(0) =
�

C +P ((1+ d̂n)
2 r̂n ĉnJ j )

�

(0)

=
�

C +T j ,n((1+ d̂n)
2 r̂n)

�

(0),

whereT j ,n is the Toeplitz operator with symbol ĉnJ j . Since ‖1+d̂n‖2
p = 1+o(1) for any p ∈ (1,∞)

by (4.19) and since | r̂n | are uniformly bounded above on Γ while { r̂n} converges to zero locally
uniformly in D+ by the assumptions of the theorem, the sequence {(1+ d̂n)

2 r̂n} weakly goes to
zero in each Lp , p ∈ (1,∞). Furthermore, {ĉnJ j } is a relatively compact family in C (Γ) for every
j = 0,1, . . .. Therefore T j ,n((1+ d̂n)

2 r̂n) converges weakly to zero in any Lp , p ∈ (1,∞), and
subsequently I2,n tend to zero as n grows large (see Section 3.5). This finishes the proof of the
theorem. �

Proof of Theorem 3. The following is a modification of the proof of Theorem 2. Thus, we shall
keep all the notation we used in that proof.

Set ĉ|Γ± := c∓ħh ◦ J , where c±ħh were defined after (2.18). Repeating the steps leading to (4.11), we
get that

(4.22) b̂n(τ) = ân(1/τ)+ (ân r̂n ĉn ĉ)(τ), τ ∈ Γ.

As before, b̂n and r̂n are holomorphic functions in D+ with continuous traces on Γ, { r̂n} converges
to zero locally uniformly in D+, and the boundary values of | r̂n | are uniformly bounded above
on Γ. Further, {ĉn} is a relatively compact family in C (Γ) and ân are holomorphic functions
in D+. However, the traces of ân are continuous only on Γ \ Γ0, Γ0 = J−1(F0). Moreover, at
each ζ ∈ Γ0, each ân has an algebraic singularity of order −αx > −1/2, x = J (ζ ). Thus, by the
characterization of Smirnov classes (Section 3.4), we have that an ∈ E2

+. Finally, the function ĉ is
piecewise continuous on Γ, i.e., ĉ is continuous on Γ \Γ0 with jump-type discontinuities at each
ζ ∈ Γ0.

Given (4.22), we obtain as in (4.13) that

(4.23)

¨

b̂n/‖ân‖2 = ân,2(0)+P (ân,2 r̂n ĉn ĉ)
dn,2 =Q(ân,2 r̂n ĉn ĉ)

.

By assumptions on E , it holds that {| r̂n |} is a relatively compact family in DC ∗
ω
(Γ). Thus, as

explained in Section 3.6, we have that r̂n = r̂ i
n r̂ o

n , where { r̂ o
n } is a normal family in D+ with

continuous boundary values on Γ that form a relatively compact family in C (Γ). Moreover, | r̂n |=
| r̂ o

n | on Γ and since neither of the limit points of { r̂ o
n } can vanish in D+ by the outer character of

r̂ o
n , it follows from the assumptions on rn that { r̂ i

n} converges to zero locally uniformly in D+ and
| r̂ i

n | ≡ 1 on Γ.
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Now, we can write (4.23) as

(4.24)

¨

b̂n/‖ân‖2 = ân,2(0)−Tn(ân,2 r̂n)
dn,2 =Hn(ân,2 r̂ i

n)
,

where Tn is the Toeplitz operator with symbol ĉn ĉ andHn is the Hankel operator with symbol
ĉn r̂ o

n ĉ . Then we get from the discussion at the end of Section 3.5 that

limsup‖dn,2‖2 ≤
1

2
‖Q‖max

ζ ∈Γ0

limsup
n→∞

�

�

�(ĉn r̂ o
n ĉ)(ζ +)− (ĉn r̂ o

n ĉ)(ζ −)
�

�

�

since {ĉn r̂ o
n } is a relatively compact family in C (Γ), ‖ân,2 r̂ i

n‖2 = 1, and {ân,2 r̂ i
n} weakly converges

to zero in E2
+. Then it immediately follows from the very definition of ĉn , ĉ , r̂n , and (2.19) that

limsup
n→∞

‖dn,2(1/·)‖2 < 1

and since dn,2(1/·) = (ân(0)− ân(·))/‖ân‖2, we derive that

(4.25) limsup
n→∞

‖ân‖2/|ân(0)|<∞.

As Tn andHn are bounded operators acting on weakly convergent sequences, we get from (4.24)
and (4.25) that

(4.26)

¨

b̂n/ân(0) = 1+ o(1)
ân/ân(0) = 1+ o(1)

locally uniformly in D+. As in the proof of Theorem 2, (4.26) implies (4.16) and (4.17) and there-
fore (2.13) follows under the present assumptions.

Define dn as in (4.18). Then it still holds that

d̂n = dn ◦ J|D+ = [1+ o(1)]
ân

ân(0)
− 1

and hence limsupn→∞ ‖d̂n‖2 <∞ by (4.25). Thus, as in (4.20), we get

limsup
n→∞

∫

F

�

|d−n (t )|
2|ϕ+(t )|+ |d+n (t )|

2|ϕ−(t )|
�

�

�

�

�

�

d t

w+(t )

�

�

�

�

�

<∞.

The rest of the conclusions of the theorem now follow as in the proof of Theorem 2 from the
above estimate. �

Proof of Theorem 4. The existence of schemes that make F symmetric with respect to them was
shown in Theorem 1. It is also well-known and follows easily from the defining properties of Padé
approximants, that the denominators of Πn satisfy non-Hermitian orthogonality relations of the
form

∫

t j qn(t )
dµ(t )

vn(t )
= 0, j = 0, . . . , n− 1,

and the error of approximation is given by

( fµ−Πn)(z) =
vn(z)

q2
n(z)

∫ q2
n(t )

vn(t )

dµ(t )

z − t
, z ∈C \ supp(µ).
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Given (2.21), we see that the asymptotic behavior of qn is governed by (2.13). Thus, using the
orthogonality of qn , it is not difficult to see that we can write

fµ−Πn =
vn Rn

qn
in D =C \ supp(µ),

where Rn is the function of the second kind associated to qn via (2.3). Hence, equations (2.13)
imply that

fµ−Πn = (1+ o(1))
γn vn S2

n

w
=

2Gµ̇+ o(1)

w

S2
µ̇

vn

Gvn
ϕ2n S2

vn

=
2Gµ̇+ o(1)

w
S2
µ̇

rn

locally uniformly in D , where we used (3.10). �

4.2. Proof of Theorem 1. Before we proceed with the main part of the proof, we claim that our
assumptions on F yield the existence of the partial derivatives ∂ U λ−ν/∂ n± almost everywhere on
F , where λ is the weighted equilibrium distribution on F in the field −U ν and ν is a compactly
supported probability Borel measure in D =C \ F .

Let ψ be the conformal map of D into the unit disk, D, such that ψ(∞) = 0 and ψ′(∞) > 0.
Put

(4.27) b (e ; z) :=
ψ(z)−ψ(e)

1−ψ(e)ψ(z)
, e , z ∈D .

Then b (e ; ·) is a holomorphic function in D with a simple zero at e and unimodular boundary
values on F . Hence, the Green function for D with pole at e ∈ D [49, Sec. II.4] is given by
− log |b (e ; ·)| and the Green potential of a Borel measure ν , supp(ν)⊂ D , not necessarily compact,
is given by

(4.28) U ν
D (z) :=−

∫

log |b (t ; z)|d ν(t ), z ∈D .

Furthermore, since D is simply connected and therefore regular with respect to the Dirichlet
problem, U ν

D extends continuously to F and is identically zero there.
Assume now that ν has compact support. Then it is an easy consequence of the characteriza-

tion of the weighted equilibrium distribution [49, Thm. I.3.3] and the representation of Green
potentials via logarithmic potentials [49, Thm. II.5.1] that λ as above is, in fact, the balayage [49,
Sec. II.4] of ν onto F , supp(λ) = F , and

(4.29) (U λ−U ν )(z) =−U ν
D (z)−

∫

log |b (∞; t )|d ν(t ), z ∈C.

Thus, the existence of ∂ U λ−ν/∂ n± specializes to the existence of ∂ U ν
D/∂ n±.

Let now J be the Joukovski transformation and Γ := J−1(F ). It was explained in Section 3.1
that Γ is a Jordan curve. Denote by D+ and D− the bounded and unbounded components of the
complement of Γ, respectively. Then

φ :=ψ ◦ J , φ : D+→D, φ(0) = 0, and φ′(0)> 0,



CONVERGENT INTERPOLATION TO CAUCHY INTEGRALS OVER ANALYTIC ARCS 25

is a conformal map. Set

(4.30) u(z) :=−(U ν
D ◦ J )(z) =

∫

log

�

�

�

�

�

�

φ(z)−φ(τ)

1−φ(z)φ(τ)

�

�

�

�

�

�

d ν+(τ), z ∈D+,

where d ν+ := d (ν ◦ J|D+). As J is conformal on Γ \ {±1}, the existence of ∂ u/∂ n a.e. on Γ, where
∂ /∂ n is a partial derivative with respect to the inner normal on Γ, will imply the existence of
∂ U ν

D/∂ n± a.e. on F . As

∂ u

∂ n
(τ) := lim

δ→0




~nτ ,∇u(τ+δnτ)
�

= 2 lim
δ→0

Re

�

nτ
∂ u

∂ z
(τ+δnτ)

�

,

where 〈·, ·〉 is the usual scalar product in R2, ~nτ is the inner normal vector at τ, nτ is the unimod-
ular complex number corresponding to ~nτ , and (∂ /∂ z) := ((∂ /∂ x)− i(∂ /∂ y))/2, it is needed to
show that the function ∂ u/∂ z, holomorphic in D+ \ supp(ν+), has non-tangential limits a.e. on
Γ. It can be readily verified that

(4.31)
∂ u

∂ z
(z) =

φ′(z)

2

∫ 1− |φ(τ)|2

(1−φ(τ)φ(z))(φ(z)−φ(τ))
d ν+(τ), z ∈D+.

Moreover, by construction, we have thatφ′ ∈ E1
+ (see Section 3.4 for the definition of the Smirnov

class E1
+). Recall (see Section 3.1) also that the assumed condition on the behavior of F near the

endpoints implies the rectifiability of Γ. Hence, any function in E1
+ has non-tangential limits a.e.

on Γ by [16, Thm. 10.3]. As φ extends continuously on Γ by Carathéodory’s theorem [45, Sec.
2.1], the desired claim on existence of the boundary values of ∂ u/∂ z and respectively normal
derivatives ∂ U λ−ν/∂ n± follows.
(a)⇒(b): Let F be symmetric with respect to a triangular scheme of points E = {En}. Denote by
νn the counting measures of points in En and let ν be a weak∗ limit point of {νn}. In other words,
there exists a subsequence N1 ⊂ N such that νn

∗→ ν , N1 3 n →∞. If ν has bounded support, we
shall show that F is symmetric in the field −U ν . By (2.9) and (4.29), this is equivalent to proving
that

(4.32)
∂ U ν

D

∂ n+
=
∂ U ν

D

∂ n−
a .e. on F .

If ν has unbounded support, we claim that there exists a compactly supported Borel measure
ν∗ such that U ν∗

D = U ν
D in some open neighborhood of F . Thus, the equality in (4.32) will be

sufficient to show that F is symmetric in the field −U ν∗ . To construct ν∗, set κ(z) = 1/(z − a),
a /∈ supp(ν)∪ F . Clearly, U ν

D = U νκ
κ(D) ◦κ, where d νκ = d (ν ◦κ−1) has compact support. Let L be

a Jordan curve in κ(D) encompassing supp(νκ). Then the balayage of νκ on L, say ν∗
κ
, is such that

U νκ
κ(D) =U

ν∗
κ

κ(D) outside of L [49, Thm. II.4.1]. Thus, the claim follows for d (ν∗) := d (ν∗
κ
◦κ).

In order to prove that the equality in (4.32) indeed holds, we derive different from (4.28) integral
representation for the Green potential of the above measure ν. It follows from (4.28) that

U νn
D (z) =−

1

2n
log |bn(z)|, bn(z) :=

∏

e∈En

b (e ; z), z ∈D , n ∈N1.

Further, since F is symmetric with respect to E , {log |rn/bn |} is a sequence of harmonic functions
in D whose boundary values are uniformly bounded above and away from zero. Hence, we get
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from the maximum principle for harmonic functions that

(4.33)
1

2n

�

log |rn(z)| − log |bn(z)|
�

→ 0 uniformly in C.

Moreover, removing o(n) factors simultaneously from rn and bn will not alter this conclusion.
Indeed, new difference will remain harmonic and its boundary values on F will still uniformly
go to zero since |b±(t ; ·)| ≡ 1 and |r±(t ; ·)| ≤ const. for all t ∈ supp(E ), where const. depends
only on supp(E ). On the other hand, since νn weakly converge to ν , it is possible to write each
νn as a sum of two measures, say νn,1 and νn,2, such that |νn,2| = o(n) and the supports of νn,1 are
asymptotically contained in any open set around supp(ν). Let rn,1 and bn,1 correspond to νn,1 as rn
and bn correspond to νn . Then we obtain from the weak∗ convergence of νn,1 to ν and the remark
after (4.33) that

U ν
D = lim
N13n→∞

U νn,1

D = lim
N13n→∞

−
1

2n
log |rn,1|,

locally uniformly in D \ supp(ν). So, writing (1/2n) log |rn,1| as an integral of log |r (·; z)| against
νn,1, we derive from the weak∗ convergence of measures that

(4.34) U ν
D (z) =−

∫

log |r (t ; z)|d ν(t ), z ∈D \ supp(ν).

We proceed by reformulating (4.32) in terms of the boundary values of the complex-valued
function H := ∂ U ν

D/∂ z. Since U ν
D is harmonic in D\supp(ν), H is holomorphic there on account

of the Cauchy–Riemann equations [1, Sec. 4.6.1]. Moreover, it follows from (4.34) that

(4.35) H (z) =−
ϕ′(z)

2

∫ 1−ϕ2(τ)

(1−ϕ(τ)ϕ(z))(ϕ(z)−ϕ(τ))
d ν(τ),

z ∈ D \ supp(ν). Observe further that H extends analytically across each side of F \ {±1}. (Note
that ϕ′ = ϕ/w and therefore it extends analytically across each side of F \ {±1} as ϕ and w obvi-
ously do.)

Let now t ∈ Fτ , where Fτ ⊂ F \ {±1} is the set of points at which F possesses tangents. Denote

by ~τt and ~n±t the unit tangent vector and the one-sided unit normal vectors to F at t . Further, put
τt and n±t to be the corresponding unimodular complex numbers, n+t = iτt . Then

〈∇U ν
D (z),

~n±t 〉= 2Re
�

n±t H (z)
�

, z ∈D .

As H extends holomorphically across F \ {±1}, the above equality also holds at z = t . In other
words, we have that

(4.36)
∂ U ν

D

∂ n±
(t ) = 2Re

�

n±t H±(t )
�

= 2n±t H±(t ), t ∈ Fτ .

The last equality in (4.36) is valid because U ν
D ≡ 0 on F and therefore

0=
∂ U ν

D

∂ τ
(t ) =∓2Im

�

n±t H±(t )
�

, t ∈ Fτ .

As n+t =−n−t , (4.32) will follow from (4.36) if we show that

(4.37) H+ =−H− on Fτ .

The latter is well-understood in the theory of symmetric contours [24, pg. 335] and can be seen
as follows.
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Observe that (ϕ±)′ = (ϕ′)± on F \ {±1} since ϕ extends holomorphically across each side of
F \ {±1}. Therefore, we have by (2.6) that

(ϕ−)′ =
ϕ−

w−
=
−1

(ϕ+)2
ϕ+

w+
=−
(ϕ+)′

(ϕ+)2
on F \ {±1}.

Then by (4.35) we have for the unrestricted boundary values of H on each side of F that

H+(t ) = −
(ϕ+)′(t )

2

∫ 1−ϕ2(τ)

(1−ϕ(τ)ϕ+(t ))(ϕ+(t )−ϕ(τ))
d ν(τ)

= −
(ϕ+)′(t )

2(ϕ+)2(t )

∫ 1−ϕ2(τ)

(ϕ−(t )−ϕ(τ))(1−ϕ(τ)ϕ−(t ))
d ν(τ) =−H−(t ),

which finishes this part of the proof.

(b)⇒(c): Let F be symmetric in the field −U ν , where ν is a positive Borel measure compactly sup-
ported in D . We show that there exists a univalent function p holomorphic in some neighborhood
of [−1,1] such that F = p([−1,1]).

Let Γ, D+, and D− be as before and denote by Ω the domain in C such that J (Ω) =C\ supp(ν).
Set

u(z) =∓U ν
D (J (z)), z ∈Ω∩D±.

Then u is identically zero on Γ, harmonic and negative in D+, and harmonic and positive in D−.
Moreover, u|D+ has integral representation (4.30) and, as explained after (4.31), it has well-defined
non-tangential boundary values, say (∂ u/∂ z)+, that are integrable on Γ. Since u(1/z) = −u(z)
and D− = {1/z : z ∈D+}, the trace (∂ u/∂ z)− also exists and belongs to L1.

In another connection, it is easy to verify that

(4.38) (∂ u/∂ z)(z) =∓H (J (z))J ′(z), z ∈Ω∩D±, H := ∂ U ν
D/∂ z,

is a sectionally holomorphic function. Let ϕ be given by (2.5). Then Γ is the boundary of ϕ(D)
and, as before, we set Γ± = ϕ±(F ). Since (2.9) is equivalent to (4.37) as explained in the previous
part of the proof, we obtain for a.e. τ ∈ Γ− that

(∂ u/∂ z)+ (τ) =−H+(J (τ))J ′(τ) =H−(J (τ))J ′(τ) = (∂ u/∂ z)− (τ).

Analogously, we can show that (∂ u/∂ z)+ coincides with (∂ u/∂ z)− a.e. on Γ+ and therefore a.e.
on Γ. It follows now from an application of the Cauchy formula that ∂ u/∂ z is analytic across Γ,
i.e., ∂ u/∂ z is a holomorphic function in the whole Ω.

Recall that u is identically zero on Γ and does not vanish anywhere else in C. Hence, the level
lines Γε := {z : u(z) = ε} are single Jordan curves for all ε sufficiently close to zero. Let L be
such a level line in D+ and ΩL be the annular domain bounded by L and L−1 := {z : 1/z ∈ L}.
Observed that by Sard’s theorem on regular values of smooth functions we always can assume that
L is smooth. Since u is constant on L, the tangential derivative of u there is zero and we get as in
(4.36) that

(4.39)
∂ u

∂ n
(τ) = 〈∇u(τ),~nτ〉= 2nτ

∂ u

∂ z
(τ), τ ∈ L,

where ∂ /∂ n is the derivative in the direction of the inner normal with respect to ΩL, ~nτ , and nτ
is the corresponding unimodular complex number. As −u is the Green potential of a probability
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measure ν+ (see (4.30)), L is smooth, and dτ = i nτd s on L, it follows from (4.39) and Gauss’
theorem [49, Thm. II.1.1] that

(4.40) 2πi = 2πiν+(D+) = i
∫

L

∂ u

∂ n
d s = 2

∫

L

∂ u

∂ z
(τ)dτ.

Furthermore, established for L, the chain of equalities above holds, in fact, for any Jordan curve
contained in ΩL and homologous to L since ∂ u/∂ z is analytic on ΩL, where we always take the
outer normal with respect to the inner domain of that Jordan curve. Thus, a function

(4.41) Ψ(z) := exp

¨

2
∫ z

1

∂ u

∂ z
(τ)dτ

«

, z ∈ΩL,

is well-defined and holomorphic in ΩL, where the integral is taken over any path joining 1 and z
and lying entirely in ΩL.

Now, observe that the maximum principle for harmonic functions yields that ∂ u/∂ n is non-
negative on each Γε contained in ΩL. Set γε(τ) to be the subarc of Γε obtained by traversing it into
the counter-clockwise direction from xε to τ, where {xε} := Γε ∩ (0,∞). Then

∫

γε(τ)
(∂ u/∂ n)d s

is a positive strictly increasing function of τ with the range [0,2π] as τ winds once on Γε in the
positive direction starting from 1 by (4.40) and the remark right after. Hence, choosing the initial
path of integration to be γ (τ) := [1, xε]∪ γε(τ), we derive as in (4.40) that

log |Ψ(τ)| = Re

 

2
∫

γ (τ)

∂ u

∂ z
(ζ )dζ

!

=Re

 

2
∫ xε

1

∂ u

∂ z
(ζ )dζ + i

∫

γε(τ)

∂ u

∂ n
d s

!

= 2Re

�
∫ xε

1

∂ u

∂ z
(ζ )dζ

�

=: logρε,

and

Arg(Ψ(τ)) = Im

 

2
∫

γ (τ)

∂ u

∂ z
(ζ )dζ

!

= 2Im

�
∫ xε

1

∂ u

∂ z
(ζ )dζ

�

+
∫

γε(τ)

∂ u

∂ n
d s ,

τ ∈ Γε, where Arg(Ψ) is the principal value of the argument of Ψ. Hence, Ψ is univalent on each
Γε ⊂ ΩL and Ψ(Γε) = Tρε (in particular, Ψ(Γ) = T and Ψ(±1) = ±1). As each level line Γε lies
either entirely inside of ΩL or entirely outside, Ψ is a univalent function in the whole domain ΩL.
It also holds that

(4.42) Ψ(1/z) = 1/Ψ(z), z ∈ΩL,

as follows from a change of variables in (4.41) and since

(∂ u/∂ z)(1/z) =±H (J (1/z))J ′(1/z) =∓z2H (J (z))J ′(z) = z2(∂ u/∂ z)(z),

z ∈ΩL ∩D±, by (4.38).
Set f := J ◦Ψ ◦ϕ. Since ϕ is univalent and holomorphic in J (ΩL) \ F , ϕ(J (ΩL) \ F ) = ΩL ∩D−,

and Ψ is injective and holomorphic in ΩL, f is also univalent and holomorphic in J (ΩL) \ F . As
ϕ±(F ) = Γ± and Ψ(Γ±) = T±, it holds that f + and f − both map F onto [−1,1]. It is also true
that

f −(t ) = J (Ψ(ϕ−(t ))) = J (Ψ(1/ϕ+(t ))) = J (1/Ψ(ϕ+(t )))
= J (Ψ(ϕ+(t ))) = f +(t ), t ∈ F ,

by (2.6) and (4.42). Hence, f is a holomorphic and univalent function in some J (ΩL) that maps F
onto [−1,1] and therefore the desired analytic parametrization of F is given by p = f −1.
(c)⇒(a): Let F be an analytic Jordan arc and p be its holomorphic univalent parametrization.
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Denote, as usual, by Γ the preimage of F under the Joukovski transformation J . It was shown in
Section 3.1 that there exists a function Ψ, holomorphic in some neighborhood of Γ, say Ω, such
that Ψ(Γ) =T and

(4.43) Ψ(1/z) = 1/Ψ(z), z, 1/z ∈Ω.

In fact, Φ=Ψ−1 was constructed in Section 3.1. Let ρ ∈ (0,1) be such that

Cρ(0),C1/ρ(0)⊂Ψ(Ω), Cx (z0) := {z ∈C : |z − z0|= x}, x > 0.

Denote Γρ :=Φ(Cρ(0)) and Γ1/ρ :=Φ(C1/ρ(0)). It immediately follows from (4.43) that

(4.44) Γ1/ρ =Γ
−1
ρ
= {τ ∈C : 1/τ ∈ Γρ}.

Denote by Ωρ the annular domain bounded by Γρ and Γ1/ρ and define

u(z) := log |Ψ(z)|, z ∈Ω.

Then u is a harmonic function in some neighborhood of Ωρ such that u ≡ 0 on Γ, u ≡ logρ on
Γρ, and u ≡− logρ on Γ1/ρ. Furthermore, it follows right away from the definition of u that

(4.45)
∂ u

∂ z
(z) =

1

2

Ψ′(z)

Ψ(z)
, z ∈Ω.

Let now nτ stand for the unimodular complex number corresponding to the inner normal of Ωρ
at τ ∈ ∂ Ωρ. Since inner normals of ∂ Ψ(Ωρ) are represented by ξ /|ξ |, ξ ∈ Cρ(0), and −ξ /|ξ |,
ξ ∈C1/ρ(0), we have by conformality at ξ that

(4.46) ±
Ψ(τ)

|Ψ(τ)|
=
Ψ′(τ)

|Ψ′(τ)|
nτ , τ ∈ Γρ±1 .

As u is harmonic in a neighborhood of Ωρ, we deduce from (4.45) and (4.46) that

(4.47)
∂ u

∂ n
(τ) = 〈∇u(τ),~nτ〉= 2Re

�

∂ u

∂ z
(τ)nτ

�

=±ρ∓1|Ψ′(τ)|, τ ∈ Γρ±1 ,

where ~nτ is the unit vector corresponding to the complex number nτ . Observe that

Ψ′(1/z)

z2
=
Ψ′(z)

Ψ2(z)
, z, 1/z ∈Ω,

by (4.43). Hence, it follows from (4.44) and (4.47) that

∂ u

∂ n
(1/τ) = −ρ|Ψ′(1/τ)|=−ρ

�

�

�

�

�

τ2

Ψ2(τ)
Ψ′(τ)

�

�

�

�

�

=−ρ−1|τ|2|Ψ′(τ)|

= −|τ|2
∂ u

∂ n
(τ), τ ∈ Γρ.(4.48)

Now, we shall show that (4.48) implies the representation formula

(4.49) u(z) =
∫

Γρ

log
�

�

�

�

z −τ
1− zτ

�

�

�

�

|Ψ′(τ)|
d s

2πρ
, z ∈Ωρ,

where d s , as before, is the arclength differential. Before we do so, let us gather several facts that are
easy consequences of the following version of the Green’s formula. Let O be a bounded open set
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with smooth boundary ∂ O, and let a and b be two harmonic functions in some neighborhood of
O. Then

(4.50)
∫

∂ O
a
∂ b

∂ n
d s =

∫

∂ O
b
∂ a

∂ n
d s ,

where ∂ /∂ n denotes differentiation in the direction of the inner normal of O. In what follows, all
the partial derivatives are taken with respect to the inner normals of the corresponding domains.

Let L be a smooth Jordan curve and ΩL be the bounded component of its complement. If a is
a harmonic function on some neighborhood of ΩL then (4.50) immediately implies that

(4.51)
∫

L

∂ a

∂ n
d s = 0.

Further, denote by vz the function − log |z − ·|. Then

(4.52)
∫

L

∂ vz

∂ n
d s =

¨

2π, z ∈ΩL,
0, z /∈ΩL.

Indeed, (4.52) follows from (4.50) applied with a ≡ 1 and b = vz , by putting O =ΩL in the second
instance and O = ΩL \D z in the first, where is D z is any closed disk around z contained in ΩL.
Thus, (4.50) and (4.52) yield that

∫

∂ Ωρ

v0

∂ u

∂ n
d s =

∫

∂ Ωρ

u
∂ v0

∂ n
d s = logρ

 

∫

Γρ

∂ v0

∂ n
d s −

∫

Γ1/ρ

∂ v0

∂ n
d s

!

= −4π logρ.(4.53)

Moreover, we deduce from (4.48) that

(4.54)
∫

Γ1/ρ

v0

∂ u

∂ n
d s =

∫

Γρ

v0(1/τ)
∂ u

∂ n
(1/τ)

d s

|τ|2
=
∫

Γρ

v0

∂ u

∂ n
d s .

So, we obtain from (4.53) and (4.54) that

(4.55)
∫

Γρ

v0

∂ u

∂ n
d s =

1

2

∫

∂ Ωρ

v0

∂ u

∂ n
d s =−2π logρ.

Finally, let O beΩρ with the closed disk of radius x around z ∈Ωρ removed, a = u, and b = vz .
Then

∫

∂ O
u
∂ vz

∂ n
d s = logρ

∫

Γρ

∂ vz

∂ n
d s − logρ

∫

Γ1/ρ

∂ vz

∂ n
d s −

1

x

∫

Cx (z)
ud s

= −2π logρ− 2πu(z)(4.56)

by (4.52) and the mean-value property of harmonic functions. On the other hand, we get that
∫

∂ O
vz

∂ u

∂ n
d s =

∫

Γρ

vz

∂ u

∂ n
d s +

∫

Γ1/ρ

vz

∂ u

∂ n
d s − log x

∫

Cx (z)

∂ u

∂ n
d s

=
∫

Γρ

(vz (τ)− vz (1/τ))
∂ u

∂ n
d s =

∫

Γρ

log
�

�

�

�

1− zτ

z −τ

�

�

�

�

∂ u

∂ n
d s

+
∫

Γρ

v0

∂ u

∂ n
d s =

∫

Γρ

log
�

�

�

�

1− zτ

z −τ

�

�

�

�

∂ u

∂ n
d s − 2π logρ,(4.57)
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where we used (4.51), (4.48), and (4.55). Thus, combining (4.56) and (4.57) with (4.50) and (4.47),
we get (4.49).

Now, we shall construct a triangular scheme such that F is symmetric with respect to it. Obvi-
ously, this is equivalent to showing that there exists a sequence of sets {Ên}, Ên = {e j ,n}2n

j=1 ⊂ D+,
where D+ is the interior of Γ, such that | r̂n |=O(1) on Γ and | r̂n |= o(1) locally uniformly in D+,
where

r̂n(z) =
∏

e∈Ên

z − e

1− e z
.

Set % := const.|Ψ′|,
∫

Γρ
%d s = 1. Further, for each n ∈N, let {Γ j ,n

ρ
}2n

j=1 be a partition of Γρ into 2n

simple arcs that are pairwise disjoint except for possible common endpoints and satisfy
∫

Γ j ,n
ρ

%d s =
1

2n
, j = 1, . . . , 2n.

Clearly, it holds that

(4.58) diam(Γ j ,n
ρ
)≤
∫

Γ j ,n
ρ

d s ≤
const.

n
, j = 1, . . . , 2n,

since infΓρ %> 0, where const. is an absolute constant. It also holds that

(4.59) 0=
∫

Γρ

kz (τ)%d s , kz (τ) := log
�

�

�

�

z −τ
1− zτ

�

�

�

�

,

for any z ∈ Γ by (4.49). Moreover, for each z ∈ Γ and τ1,τ2 ∈ Γρ we have that

(4.60) |kz (τ1)− kz (τ2)|=

�

�

�

�

�

log

�

�

�

�

�

1+
(τ2−τ1)(1− z2)

(z −τ2)(1− zτ1)

�

�

�

�

�

�

�

�

�

�

≤O(|τ2−τ1|),

where the last bound does not depend on z.
Now, let e j ,n be an arbitrary point belonging to Γ j ,n

ρ
, j = 1, . . . , 2n, n ∈N. Then it follows from

(4.58) and (4.60) that for any z ∈ Γ and τ ∈ Γ j ,n
ρ

, j = 1, . . . , 2n, we get

(4.61) |kz (τ)− kz (e j ,n)| ≤O(diam(Γ j ,n
ρ
))≤

const.

n
,

where const. is, again, a constant independent of z, j , and n. Therefore, we see that the functions

un(z) :=
1

2n

2n
∑

j=1

kz (e j ,n) =
2n
∑

j=1

∫

Γ j ,n
ρ

kz (e j ,n)%d s

are such that

‖un‖Γ =













∑

∫

Γ j ,n
ρ

�

kz (τ)− kz (e j ,n)
�

%d s













z∈Γ

≤
∑

∫

Γ j ,n
ρ

const.

n
%d s =

const.

n

by (4.59) and (4.61). Finally, observe that | r̂n | = exp{2nun} = O(1) on Γ. This finishes the proof
of the theorem since Ên ⊂ Γρ ⊂ D+ and therefore | r̂n | = o(1) locally uniformly in D+ by the
maximum principle and a normal family argument. �
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5. EXAMPLES

Denote by Fα, α ∈R, the following set

Fα :=
¨

iα+ x

1+ iαx
: x ∈ [−1,1]

«

, F −1
α

:= {z : 1/z ∈ Fα} .

Clearly, Fα is an analytic arc joining −1 and 1 and therefore is symmetric with respect to some
triangular scheme by Theorem 1. However, it can be easily computed that |r±(e ; t )| ≡ 1, t ∈ Fα,
if e ∈ F −1

α
\ {±1}. Hence, if E = {En}, En = {e j ,n}2n

j=1, is such that e j ,n ∈ F −1
α
\ {±1} for all n ∈ N

and j ∈ {1, . . . , 2n}, then F is symmetric with respect to E . Further, it can be easily checked that
for any e /∈ Fα, it holds that

|r+(e ; t )r+(e∗; t )| ≡ |r−(e ; t )r−(e∗; t )| ≡ 1, t ∈ Fα,

where

e∗ :=
2iα+(1−α2)ē

(1−α2)+ 2iαē
.

Thus, if E = {En} is such that each En contains e and e∗ simultaneously, then F is symmetric with
respect to E . Finally, observe also that for α= 0 we get that F0 = [−1,1] and e∗ = ē .

Below, we plot zeros of polynomials orthogonal on F−1/2 with respect to the weights wn(t ) =
e t t−n(t +4i/3)−n . In other words, these are the poles of the multipoint Padé approximants to fµ,
dµ(t ) = i e t d t/w+(t )|F−1/2

, that corresponds to the interpolation scheme with half of the points at
0 and another half at −4i/3. The denominators of such approximants are constructed by solving
orthogonality relations (2.2). Thus, finding the denominator of the approximants of degree n
amounts to solving system of linear equations whose coefficients are obtained from the moments
of the measures t−n(t+4i/3)−n dµ(t ). The computations were carried with MAPLE 9.5 software
using 24 digits precision.

!! !"#$ !"#% !"#& !"#' " "#' "#& "#% "#$ !
!"#(

!"#&

!"#)

!"#'

!"#!

"

FIGURE 1. Zeros of q8 (disks) and q24 (diamonds).

In the following example the contour F is generated by e1 := (i −3)/4, e2 := (87+6i)/104, and
e3 :=−i/10, in the sense that

�

�(r (e1; t )r (e2; t )r (e3; t ))±
�

�≡ 1,

and is computed numerically. Thus, F is symmetric with respect to any triangular scheme such
that E3m consists of e1, e2, and e3 appearing m times each, and E3m+1 (E3m+2) is obtained by adding
to E3m an (two) arbitrary point (points) from D . Based on the derived discretizations of F , the
moments of the measures [(t − e1)(t − e2)(t − e3)]

−2m h(t )d t , n = 3m, are computed for n = 24
and n = 66, where h(t ) = t if Im(t ) ≥ 0 and h(t ) = t̄ otherwise, and the coefficients of the
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corresponding orthogonal polynomials are found by solving the respective linear systems. The
computations were carried with MAPLE 9.5 software using 52 digits precision.

!! !"#$ !"#% !"#& !"#' " "#' "#& "#% "#$ !

!"#&

!"#(

!"#'

!"#!

"

"#!

"#'

"#(

FIGURE 2. Zeros of q24 (disks) and q66 (diamonds).
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