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ABSTRACT. We study AAK-type meromorphic approximants to functions of the form

F (z) =
∫ dλ(t )

z − t
+R(z),

where R is a rational function and λ is a complex measure with compact regular support included in
(−1,1), whose argument has bounded variation on the support. The approximation is understood in
Lp -norm of the unit circle, p ≥ 2. We dwell on the fact that the denominators of such approximants
satisfy certain non-Hermitian orthogonal relations with varying weights. They resemble the orthog-
onality relations that arise in the study of multipoint Padé approximants. However, the varying part
of the weight implicitly depends on the orthogonal polynomials themselves, which constitutes the
main novelty and the main difficulty of the undertaken analysis. We obtain that the counting mea-
sures of poles of the approximants converge to the Green equilibrium distribution on the support
of λ relative to the unit disk, that the approximants themselves converge in capacity to F , and that
the poles of R attract at least as many poles of the approximants as their multiplicity and not much
more.

1. INTRODUCTION

This paper is concerned with the asymptotic behavior of certain meromorphic approximants
to functions of the form

(1.1) F (z) =
∫ dλ(t )

z − t
+R(z),

where R is a rational function, holomorphic at infinity, and λ is a complex measure compactly
and regularly supported on (−1,1).

The meromorphic approximants that we consider are optimal, for fixed number of poles in
the unit disk, with respect to an Lp -norm on the unit circle. When studying them, we assume
that supp(λ) and all poles of R lie in the open unit disk, so that F is indeed p-summable on the
unit circle. The asymptotics are then understood when the number of poles grows large. In the
case where p = ∞, this type of approximant was introduced by V. M. Adamyan, D. Z. Arov,
and M. G. Krein in their famous paper [1]. Here we deal with their natural generalization to
Lp , although we restrict ourselves to the range 2 ≤ p ≤ ∞ for technical reasons to be explained
later. The meromorphic approximation problem also has a conformally invariant formulation
on Jordan domains with rectifiable boundary, to which the results of the present paper transpose
with obvious modifications if supp(λ) is contained in a closed hyperbolic geodesic arc rather than
a segment. The interested reader will have no difficulty to carry out this generalization using the
construction of [7, Sec. 5].
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The study of best meromorphic approximants is quite recent. After the development of the
Adamyan-Arov-Krein theory for p = ∞ in [1], the latter was extended to the range 1 ≤ p <
∞ by F. Seyfert and the first author in [10], and independently by V. A. Prokhorov in [30].
However, it is only for p ≥ 2 that the authors of [10] were able to express the error in terms of
(generalized) singular vectors of a Hankel operator and subsequently to obtain integral formulas
for that error when the approximated function is represented as a Cauchy integral. These formulas
make connection with non-Hermitian orthogonality, and form the basis of the present approach.

The AAK theory had considerable impact in rational approximation, for on retaining only
the principal part of a best meromorphic approximant to a function analytic outside the disk and
sufficiently smooth on the circle, one obtains a near-best rational approximant to that function
[15]. This is instrumental in Parfenov’s solution, for simply connected domains, to the Gonchar
conjecture [17] on the degree of rational approximation to holomorphic functions on compact
subsets of their domain of analyticity1, and also for instance in Peller’s converse theorems on
smoothness of functions from their error rates in rational approximation [25, 26]. The same
principle is also at work in the articles [13, 4] that deal with rational approximation to Markov
functions, that is, functions of the form (1.1) where R≡ 0 and λ is positive.

Another connection between meromorphic approximation and rational approximation that
ought to be mentioned occurs when p = 2. In this case, a best meromorphic approximant to
a function analytic outside the unit disk is in fact rational, and turns out to be a special type of
multipoint Padé approximant that interpolates the function with order 2 at the reflections of its
poles across the unit circle [23, 9]. Of course the interpolation points are not known a priori
which accounts for the nonlinearity of the problem. Nevertheless, after the work in [18], this
connexion was used in [11] to establish the convergence rate of best L2 rational approximants to
Markov functions. The forthcoming results will, in particular, generalize these results to a larger
class of functions.

Best meromorphic approximants to Markov functions were studied per se by E. B. Saff, V.
Prokhorov and the first author in [8]. Using results from [4] to make connection with orthog-
onality, these authors prove (and give error rates for) the uniform convergence of such approx-
imants, locally uniformly on C \ I , whenever 1 ≤ p ≤ ∞ provided that λ satisfies the Szegő
condition: log dλ/d t ∈ L1(I ).

The present paper appears to be the first to deal with convergence of best meromorphic ap-
proximants to general functions of the form (1.1) in the case where λ is a complex measure (the
special case when F has two branchpoints and no poles is treated in [10, Sec. 10]).

This paper is organized as follows. Section 2 deals with meromorphic approximants that are
solutions (more generally: critical points) of the meromorphic approximation problem for func-
tions of the form (1.1). We discuss the asymptotics of poles as being the limit zero distribution
of polynomials satisfying certain non-Hermitian orthogonality relations with respect to varying
measures. We apply the results to the convergence in capacity of these approximants, and to the
convergence of some of their poles to the polar singularities of F . All the proofs are presented
in Section 3. Some computational results are adduced in Section 4 and the Appendix contains
necessary material and notation from potential theory that we use throughout the paper.

Finally, we mention that all the results below have their counterpart in diagonal multipoint
Padé approximation, where they allow more irregular λ than can usually be handled via classical
results (see [19]). We do not include this to keep the size of the paper within reasonable bounds,
and refer the interested reader to [34, Ch. III] or [12].

1the proof of this conjecture was later carried over to the multiply connected case by Prokhorov in [29].
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2. MEROMORPHIC APPROXIMATION

Let λ be a complex Borel measure whose support S := supp(λ) ⊂ (−1,1) consists of infinitely
many points. Denote by |λ| the total variation measure. Clearly λ is absolutely continuous with
respect to |λ|, and we shall assume that its Radon-Nikodym derivative (which is of unit modulus
|λ|-a.e.) is of bounded variation. In other words, λ is of the form

(2.1) dλ(t ) = e iϕ(t )d |λ|(t ),
for some real-valued argument function ϕ such that2

(2.2) V (ϕ, S) := sup







N
∑

j=1

|ϕ(x j )−ϕ(x j−1)|







<∞,

where the supremum is taken over all finite sequences x0 < x1 < . . .< xN in S as N ranges over N.
For convenience, we extend the definition of ϕ to the whole of R as follows. Let I := [a, b] be

the convex hull of S. It is easy to see that if we interpolate ϕ linearly in each component of I \ S
and if we set ϕ(x) := limt→a, t∈S ϕ(t ) for x < a and ϕ(x) := limt→b , t∈S ϕ(t ) for x > b (the limits
exist by (2.2)), the variation of ϕ will remain the same. In other words, we may arrange things so
that the extension of ϕ, still denoted by ϕ, satisfies

V (ϕ, S) =V (ϕ,R) =: V (ϕ).

Among all complex Borel measures of type (2.1)-(2.2), we shall consider only a subclass BVT
defined as follows. We say that a complex measure λ, supported on (−1,1), belongs to the class
BVT if

(1) supp(λ) is a regular set;
(2) there exist positive constants c and L such that, for any x ∈ supp(λ) and δ ∈ (0,1), the total

variation of µ satisfies |λ|([x −δ, x +δ])≥ cδL;
(3) λ has an argument of bounded variation.

Denote by Pn the space of algebraic polynomials of degree at most n and byMn the subset
consisting of monic polynomials of degree n whose zeros lie in the open unit disk, D.

Define

(2.3) F (z) :=
∫ dλ(ξ )

z − ξ
+Rs (z),

with λ ∈ BVT and Rs ∈Rs−1,s , where

Rm,n := {pm/qn : pm ∈Pm , qn ∈Mn}

is the set of rational functions of type (m, n) with all their poles in D. Hereafter we shall denote
by Qs the denominator of Rs , assumed to be in irreducible form, which is a monic polynomial
with zeros in D of the form

(2.4) Qs (z) =
∏

η∈S ′
(z −η)m(η),

where S ′ is the set of poles of Rs and m(η) stands for the multiplicity of η ∈ S ′. Thus, F is a
meromorphic function in C\ S with poles at each point of S ′ and therefore holomorphic in C\ eS,
where

eS := S ∪ S ′.

2Note that e iϕ has bounded variation if and only if ϕ can be chosen of bounded variation.
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Note in passing that F does not reduce to a rational function since S consists of infinitely many
points, cf. [7, Sec. 5.1] for a detailed argument.

In this paper we consider the behavior of certain meromorphic (AAK-type) approximants to
a function F of the form (2.3). Of particular importance to us will be the asymptotic behavior
of the poles of the above-mentioned approximants. The latter will be quantified in terms of the
weak∗ convergence, when the number of poles increases indefinitely, of the counting measures
of these poles. By definition, the counting measure of the poles of a meromorphic function is
the discrete probability measure with equal mass at each finite pole, counting multiplicities. The
weak∗ convergence is understood in the usual sense where measures, endowed with the norm of
total variation, are regarded as the dual space to continuous functions with compact support.

We denote by H p , p ∈ [1,∞], the Hardy space of the unit disk consisting of holomorphic
functions f such that

(2.5)
‖ f ‖p

p := sup
0<r<1

1

2π

∫

T
| f (rξ )|p |dξ |<∞ if p ∈ [1,∞),

‖ f ‖∞ := sup
z∈D
| f (z)|<∞ if p =∞.

It is known ([14, Thm. I.5.3]) that a function in H p is uniquely determined by its trace (nontan-
gential limit) on the unit circle, T, and that the Lp -norm of this trace is equal to the H p -norm of
the function, where Lp is the space of p-summable functions on T. This way H p can be regarded
as a closed subspace of Lp . Analogously, we define H̄ p

0 , p ∈ [1,∞], consisting of holomorphic
functions in C \D that vanish at infinity and satisfy (2.5) this time with 1< r <∞.

Now, the meromorphic approximants that we deal with are defined as follows. For p ∈ [1,∞]
and n ∈N, the class of meromorphic functions of degree n in Lp is

(2.6) H p
n :=H p +Rn−1,n =H p B−1

n ,

which is a closed subset of Lp (it is in fact weakly closed if 1< p <∞ and weak∗ closed if p =∞,
see [10, Lemma 5.1.]). In (2.6) we denote by Bn the set of Blaschke products of degree at most n,
consisting of rational functions of the form

b (z) = e i c q(z)
eq(z)

, q ∈Mk , where eq(z) := zk q(1/z̄), k ≤ n.

We shall call eq the reciprocal polynomial of q in Pk . We also say that b is normalized if e i c = 1.
Thus, the members of Bn are rational functions of degree at most n holomorphic in D and having
modulus 1 everywhere on T.

Our best-Lp meromorphic approximation problem can now be stated as follows.

MA(p) : Given p ∈ [1,∞], f ∈ Lp , and n ∈N, find gn ∈H p
n such that

(2.7) ‖ f − gn‖p = inf
g∈H p

n

‖ f − g‖p .

Originally this problem was solved for the case p = ∞ by V. M. Adamyan, D. Z. Arov, and
M. G. Krein in [1] and the solution came through operator theory. The most accessible reference
to this result is perhaps [35]. Later F. Seyfert and the first author [10], and independently V. A.
Prokhorov [30], generalized it to the case 1≤ p ≤∞, but it is only in [10] and when p ∈ [2,∞]
that concrete equations were obtained for the approximants. These form the basis of our approach,
and presently limit its scope to p ≥ 2.

This solution of MA(∞) is known to be unique, provided that f belongs to the Douglas algebra
H∞ +C (T), where C (T) denotes the space of continuous functions on T [1]. In particular, the
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solution to MA(∞) is unique when f is of type (2.3) since the latter is analytic in some neighbor-
hood of the unit circle (i.e. in the complement of eS). When p <∞, a solution needs not be unique
even if f is very smooth [10, Sec. 5]. Therefore, when making a statement about a sequence {gn}
of solutions to MA(p), it is understood that a particular solution has been selected for each n and
that the statement holds true regardless the selection.

Given F as in (2.3), we shall be interested in three types of questions:
(a) What is the asymptotic distribution of the poles of best-Lp meromorphic approximants to F as

n tends to∞?
(b) Do some of these poles converge to the polar singularities of F ?
(c) What can be said about the convergence of such approximants to F ?

As it is the case of interest here, we shall restrict our discussion to the situation where the ap-
proximated function is of the form (2.3), and accordingly we write F instead of f . We should note
that MA(2) reduces to rational approximation. Indeed, L2 can be decomposed into the orthogo-
nal sum of H 2 and its orthogonal complement H̄ 2

0 , which consists of analytic functions in C \D
vanishing at∞with norm supr>1 ‖ f (r ·)‖2 (compare (2.5)). Now, since F is the Cauchy transform
of a measure supported in D, it belongs to H̄ 2

0 . Thus for any g = (h+ pn−1/qn) ∈H 2
n with h ∈H 2

and pn−1/qn a rational function in H̄ 2
0 , we get by orthogonality

‖F − g‖2
2 = ‖h‖

2
2+ ‖F − pn−1/qn‖

2
2.

Clearly then, for g to be a best approximant h must be zero. It also turns out in this case that
best approximants interpolate F with order 2 at the reflections of their poles across T and also at
infinity with order 1. Thus, one can regard MA(2) as an interpolation problem of the multipoint
Padé type where the interpolation points are implicitly defined by the solution. Despite this, we
shall not distinguish p = 2 from the other cases but rather keep a unified operator approach.

Let us denote by P+ and P− the analytic and anti-analytic projections acting on Fourier series
as

P+

 

+∞
∑

k=−∞
ak e i kθ

!

=
+∞
∑

k=0

ak e i kθ P−

 

+∞
∑

k=−∞
ak e i kθ

!

=
−1
∑

k=−∞
ak e i kθ.

By a well-known theorem of M. Riesz [14], P+ : Lp → H p and P− : Lp → H̄ p
0 are bounded when

1< p <∞, and when p = 2 they are just the orthogonal projections associated to the orthogonal
decomposition: L2 =H 2⊕ H̄ 2

0 . When f ∈ L1, we simply regard P+( f ) and P−( f ) as Fourier series
of distributions.

For each p ∈ [2,∞], the Hankel operator with symbol F ∈ Lp is given by

AF : H p ′ → H̄ 2
0

u 7→ P−(F u),

where p ′ is conjugate to p modulo 2, i.e. 1/p + 1/p ′ = 1/2.
For n = 0,1,2, . . . , the n-th singular number of the operator AF is defined to be

σn(AF ) := inf
¦

|||AF −Γ|||, Γ : H p ′ → H̄ 2
0 a linear operator of rank ≤ n

©

,

where ||| · ||| stands for the operator norm; when p = 2 we assume in addition that Γ is weak∗

continuous.
Note that if p = ∞ then p ′ = 2, hence AF operates between Hilbert spaces, and since it is

compact3 the σn(AF ) are just the singular values of AF , that is, the square-roots of the eigenvalues
of A∗F AF arranged in nonincreasing order; throughout A∗F indicates the adjoint of AF . When 2 ≤

3This can be deduced from the fact that F ∈C (T), see [27, Thm. I.5.5].
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p < ∞, the usual eigenvector equation gets replaced by a nonlinear equation of Hammerstein
type. More precisely, to each σn(AF ) there exists (at least one) vn ∈H p ′ of unit norm, whose inner
factor4 is a Blaschke product of degree at most n, such that

(2.8)
A∗F AF (vn) = σ

2
n(AF )P+

�

|vn |p
′−2vn

�

if p > 2,

A∗F AF (vn) = P+
�

|AF (vn)|2vn
�

and ‖AF (vn)‖2 = σn(AF ) if p = 2.

Such a vn will be called a n-th singular vector for AF . From the definition it follows that a n-th
singular vector can be factored as

(2.9) vn = bn wn

where bn ∈ Bn and wn is an outer function of unit norm in H p ′ . Actually, upon pairing with vn ,
equation (2.8) implies that vn ∈ Bn if p = 2, so that wn ≡ 1 in this case.

The solutions to MA(p) turn out to be exactly the functions of the form ([10, Thm. 8.2])

(2.10) gn = F −
AF (vn)

vn
=

P+(F vn)

vn
,

where vn is some n-th singular vector for AF . Moreover, we have that ‖F − gn‖p = σn(AF ). Such
a gn is called a best meromorphic Lp -approximant of order n to F .

The notion of a best approximant can be further weakened to the notion of a critical point. By
definition, a function gn is a critical point of order n in MA(p) if and only if it assumes the form

(2.11) gn = F −
AF (vn)

vn
,

where vn is a H p ′ function of unit norm (a Blaschke product if p = 2) whose inner factor lies in
Bn \Bn−1 and which is such that

(2.12)
A∗F AF (vn) = γnP+

�

|vn |p
′−2vn

�

, γn ∈R, if p > 2,

A∗F AF (vn) = P+
�

|AF (vn)|2vn
�

if p = 2.

The difference with (2.8) is that here γn (or ‖AF (vn)‖2 if p = 2) needs not be equal to σn(AF ).
With a slight abuse of language, we will continue to say that vn is a singular vector associated to gn
although γn may no longer be a singular value. Note that, as for best meromorphic approximants,
vn reduces to a Blaschke product when p = 2. Thus vn has an inner-outer factorization of type
(2.9) where bn has exact degree n and wn ≡ 1 if p = 2.

Although their definition is a little technical, critical points are just those gn ∈ H p
n for which

the derivative of ‖F − gn‖p with respect to bn ∈ Bn and h ∈ H p in factorization (2.6) does vanish
[10]. Beyond best approximants, the most important critical points are local best approximant [10,
Prop. 9.3.]. By definition, a local best approximant is some gn ∈ H p

n for which there exists δ > 0
such that

g ∈H p
n and ‖g − gn‖p ≤ δ imply ‖F − gn‖p ≤ ‖F − g‖p .

The reason why we introduce critical points is that all a numerical search can yield in general is
a local best approximant, and we feel it is important that our results should apply to computable
objects.

4Recall that any function h from a Hardy space can be written as the product of an inner and an outer factors. The outer
factor of h is equal to the exponential of the Riesz-Herglotz transform of log |h|, and the inner factor, which is a H∞

function unimodular a.e. on T, consists of a Blaschke product (finite or infinite) and a singular inner factor which is the
exponential of the Riesz-Herglotz transform of a singular measure on the unit circle. More on the inner-outer factorization
of H p functions can be found, for example, in [14].
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When p ∈ [2,∞), best and local best approximants have exactly n poles, counting multiplici-
ties, hence they are a fortiori critical points of order n ([10, Prop. 9.2 and 9.3]); such critical points
are called irreducible. For p =∞ the critical points are just the best meromorphic approximants,
which are unique for each fixed n. So the notion is nothing new, but it may happen that a best
approximant out of H∞n has less than n poles. However, each time the number of poles of gn
increases with n, it jumps to the maximum value n, in particular, there exists a subsequence of
natural numbers, sayN0 =N0(F ), such that for each n ∈N0 the best approximant gn has exactly n
poles in D, i.e. it is irreducible ([10, p. 114]). Since the behavior of the poles of best approximants
from H∞n is entirely characterized by this subsequence, hereafter we say “a sequence of irreducible
critical points of order n” to mean if p =∞ that we pass to a subsequence if needed.

The three theorems stated below constitute the main results of the paper. For the definitions of
capacity, Green equilibrium distribution, and condenser (Green) capacity, the reader may want to
consult the appendix.

Theorem 2.1. Let p ∈ [2,∞], p ′ the conjugate exponent modulo 2, and {gn}n∈N be a sequence of
irreducible critical points of order n of MA(p) for F , where F is given by (2.3)-(2.4) with λ ∈ BVT.
Then the counting measures of the poles of gn converge to µ(S,T), the Green equilibrium distribution
on S relative to D, in the weak∗ sense.

The previous theorem gives one answer to question (a). The next one addresses question (c)
by stating that approximants behave rather nicely toward the approximated function, namely they
converge in capacity5 to F on D\ S, and in the case p = 2 uniformly in C\D. Moreover, n-th root
estimates for the error are provided.

Theorem 2.2. Let F and {gn}n∈N be as in Theorem 2.1. Then

(2.13) |(F − gn)(z)|
1/2n cap
→ exp

¨

U
µ(S,T)

D (z)−
1

cap(S,T)

«

on compact subsets of D \ S, where U
µ(S,T)

D is the Green potential of µ(S,T) relative to D and
cap
→ denotes

convergence in capacity. In addition, in the case of rational and AAK approximation (i.e. when p = 2
and p =∞, respectively) it holds that

(2.14) |(F − gn)(z)|
1/2n cap
→ exp

¨

−
1

cap(S,T)
−U

µ(S,T)

D (1/z̄)
«

on closed subsets of C \ (D∪ S∗). Moreover, for p = 2, it also holds that

(2.15) limsup
n→∞

|(F − gn)(z)|
1/2n ≤ exp

¨

−
1

cap(S,T)
−U

µ(S,T)

D (1/z̄)
«

uniformly in C \D, where S∗ is the reflection across T of S.

As a consequence of the previous theorem, we can prove a result on best rational approximation
function of the type (2.3) in C \ D that is classical in scope (cf. [19, Thm. 1′]), but new if λ
vanishes on a subset of positive capacity of the convex hull of S. In what follows ‖ · ‖K stands for
the supremum norm on a set K .

Corollary 2.3. Let F be given by (2.3)-(2.4) with λ ∈ BVT and E :=C \D. Then

(2.16) lim
n→∞

ρn(F ,E)1/2n = exp

¨

−
1

cap(supp(λ),T)

«

,

5See the appendix for the definition of convergence in capacity.
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where
ρn(F ,E) := inf

r∈Rn,n

‖F − r‖E.

To approach question (b ), we need to introduce some more notation. For any ξ 6= 0 ∈C, we let
Arg(ξ ) ∈ (−π,π] be the principal branch of the argument and for ξ = 0 we set Arg(0) =π. With
this definition, Arg(·) becomes a left continuous function on R. Now, for any interval [a, b]⊂R
we can define the angle in which this interval is seen at ξ ∈C by

Angle(ξ ,[a, b]) := |Arg(a− ξ )−Arg(b − ξ )|.
We define additively this angle for a system of disjoint closed intervals: if {[a j , b j ]}m

j=1 is such a
system, then the angle in which it is seen at ξ is defined by

(2.17) θ(ξ ) :=
m
∑

j=1

Angle(ξ ,[a j , b j ]).

Note that 0 ≤ θ(ξ ) ≤ π and θ(ξ ) = π if and only if ξ ∈ ∪[a j , b j ]. The notation θ(ξ ) does not
reflect the dependency on the system of intervals, but the latter will always be made clear. Further,
for any point z ∈C define the lower and upper characteristics m(z), m(z) ∈Z+ as

m(z) := inf
U

m(z, U ), m(z, U ) := lim
N→∞

max
n≥N

#{Sn ∩U },

and
m(z) := inf

U
m(z, U ), m(z, U ) := lim

N→∞
min
n≥N

#{Sn ∩U },

respectively, where the infimum is taken over all open sets U containing z and Sn is the set of poles
of gn counting multiplicities. Clearly, m(z)≤ m(z), m(z) =∞ if z ∈ S, and m(z) = 0 if z /∈K .

The forthcoming theorem implies that each pole of F attracts at least as many poles of mero-
morphic approximants as its multiplicity and not much more. This is one answer to question
(b ).

Theorem 2.4. Let F and {gn}n∈N be as in Theorem 2.1. Then

(2.18) m(η)≥ m(η), η ∈ S ′,

and

(2.19)
∑

η∈S ′\S

(m(η)−m(η))(π−θ(η))≤V ,

where

(2.20) V :=V (ϕ)+VW +(m+ 2s ′− 1)π+ 2
∑

η∈S ′\S

m(η)θ(η),

s ′ is the number of poles of R on S counting multiplicities,

(2.21) VW := sup
n∈N

V (Arg(wn), S),

and θ(·) is the angle function for a system of m intervals covering S.

We shall prove in due course that indeed VW <+∞.
Before we proceed, we shall derive several integral representations that are necessary for the

proofs of the above-stated theorems. To alleviate notations, it is convenient to formally rewrite
the right-hand side of (2.3) as a single Cauchy integral. For this, we introduce for η= xη+ i yη ∈C
the distribution Φη = χ (x−xη)⊗δ(y−yη), where δ is the Dirac delta at 0 and χ the characteristic
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function of the non-negative semi-axis. For each k ∈ Z+ (the set of nonnegative integers), the par-
tial derivative ∂ k+1

x Φη is an analytic functional (although Φη itself is not), acting on any function
h holomorphic in a neighborhood of η according to the rule

¬

∂ k+1
x Φη, h

¶

= h (k)(η),

where h (k) indicates the k-th derivative. Therefore, if we define ∆(k)
η

to be ∂ k
x Φη/k!, we can for-

mally write
∫ d∆(k)

η
(t )

z − t
=

1

(z −η)k+1
,

and on rewriting Rs (z) as

Rs (z) =
∑

η∈S ′

m(η)−1
∑

k=0

rη,k

(z −η)k+1
, rη,k ∈C,

we get

Rs (z) =
∫ dλ′(ξ )

z − ξ
,

where λ′ is given by

(2.22) λ′ :=
∑

η∈S ′

m(η)−1
∑

k=0

rη,k∆
(k)
η

, supp
�

λ′
�

= S ′.

This way F can be put in the form

F (z) =
∫ d eλ(ξ )

z − ξ
with

(2.23) eλ := λ+λ′, suppeλ= eS = S ∪ S ′,

which makes for a convenient notation.
Now, let {gn} be a sequence of irreducible critical points in MA(p) for some p ∈ [2,∞] (cf.

(2.12)). Then ([10, Prop. 9.1])

(2.24) AF (vn)(ξ ) = γ
1/2
n ξ

�

bn jn w p ′/2
n

�

(ξ ) = γ 1/2
n

�

bn jn w p ′/2
n

�σ
(ξ ), p > 2

AF (vn)(ξ ) = ξ (bn un)(ξ ) =
�

bn un
�σ (ξ ), p = 2,

for a.e. ξ ∈ T, where jn is some inner function, un ∈ H 2, and hσ (z) := z−1h(1/z). Note that
if h ∈ H 2 then hσ ∈ H̄ 2

0 and vice versa. We remark that for the case p = 2 equation (2.24) is an
interpolation condition saying that gn interpolates F with order 2 at the reflection of its poles.
The same can be said when p ∈ (2,∞], provided gn is analytic at the reflection of its poles, but
this is no longer automatic because gn may no longer be rational.

As usual, we denote by vn an associated singular vector to gn . According to (2.6), each gn can
be decomposed as

gn = b−1
n · hn ,
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where hn ∈ H p . Moreover, we can write bn as qn/eqn , where qn ∈ Mn and eqn is the reciprocal
polynomial of qn . Arguing like in [10, Sec. 10] (where Rs is not present), equation (2.24) implies
easily the following orthogonality relations

(2.25)
∫

t k qn(t )
wn(t )

eq2
n(t )

d eλ(t ) = 0, k = 0, . . . , n− 1,

where wn is the outer factor of vn and eλ is given by (2.23). Upon rewriting (2.25) as

∫

Pn−1(t )qn(t )
wn(t )

eq2
n(t )

dλ(t )+
∑

η∈S ′

m(η)−1
∑

k=0

rη,k

k!

 

Pn−1(t )qn(t )
wn(t )

eq2
n(t )

!(k)
�

�

�

�

�

�

t=η

= 0,

for all Pn−1 ∈Pn−1 and taking Pn−1 to be a multiple of Qs , these relations yield for n > s

(2.26)
∫

t k Qs (t )qn(t )
wn(t )

eq2
n(t )

dλ(t ) = 0, k = 0, . . . , n− s − 1,

where Qs was defined in (2.4).
The following theorem is a result on the zero distribution of polynomials satisfying certain

nonlinear orthogonality relations. As apparent from (2.26), it will be the working tool of our
approach to the asymptotic behavior of poles of irreducible critical points, in particular of poles
of best or local best approximants. We continue to denote by I the convex hull of S = supp(λ).

Theorem 2.5. Let {qn}n∈N be a sequence of polynomials of exact degree n with all zeros inD satisfying
the orthogonality relations

(2.27)
∫

t k qn(t )
ωn(t )

eq2
n(t )

d eλ(t ) = 0, k = 0, . . . , n− 1,

where eλ = λ+ λ′ is given by (2.1) and (2.22) with S ⊂ (−1,1) and S ′ ⊂ D, while W = {ωn}∞n=1
is a family of complex measurable functions on the union of S ′ and I , whose moduli are uniformly
bounded above and below by positive constants, and whose arguments are smooth with uniformly
bounded derivatives on I . Suppose further that λ ∈ BVT. Then the counting measures of the zeros of
qn(z) =

∏n
j=1(z − ξ j ,n), namely νn := (1/n)

∑n
j=1δξ j ,n

, converge in the weak∗ sense to µ(S,T).

The above-stated theorem is a generalization of Theorem 5.1 and Corollary 6.2 in [5]. The
main difference here is that we add a distribution of the form (2.22) to the measure (2.27), i.e.
F may have polar singularities inside of the unit disk. As compared to the above reference, we
simplified the proof somewhat by using the two-constant theorem instead of weighted potential
theory. To the author’s knowledge these are the first published results about the zero distribution
of polynomials satisfying nonlinear orthogonality equations like (2.27) that are typical of rational
or meromorphic approximation with free poles. In the Ph.D. thesis of R. Küstner [22], an analog
of [5, Theorem 5.1] is given when the measure λ, instead of belonging to BVT, has an argument
of bounded variation and satisfies the so-called Λ-criterion introduced in [33, Sec. 4.2]:

cap

�¨

t ∈ S : limsup
r→0

Log(1/µ[t − r, t + r ])

Log(1/r )
<+∞

«�

= cap(S).

Paralleling the arguments in [22], all the results in this section could be obtained under this weaker
assumption, but the exposition would be heavier and we leave it to the interested reader to carry
out the details.
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3. PROOFS

The proof of Theorem 2.5 relies on several auxiliary lemmas.

Lemma 3.1. With the previous notation the following statements hold true
(a) Let ν be a positive measure which has infinitely many points in its support and assume the

latter is covered by finitely many disjoint intervals: supp(ν)⊆ ∪m
j=1[a j , b j ]. Let further ψ be

a function of bounded variation on supp(ν). If for some integer l we have
∫

Pl−1(t )e
iψ(t )d ν(t ) = 0, ∀Pl−1 ∈Pl−1,

then
m
∑

j=1

V (ψ,[a j , b j ])≥ (l −m+ 1)π.

(b) Let [a, b]⊂ (−1,1) and ξ ∈D. Define

(3.1) g (ξ , t ) :=Arg(t − ξ )− 2Arg(t − 1/ξ̄ ),

where the term 2Arg(t − 1/ξ̄ ) is omitted if ξ = 0. Then

(3.2) V (g (ξ , ·),[a, b])≤Angle(ξ ,[a, b]).

(c) Let ψ be a real function of bounded variation on an interval [a, b], {an(x)} a sequence of
continuously differentiable real functions with uniformly bounded derivatives on [a, b], and
Q a polynomial. Then there exists a polynomial T 6= 0 and a constantβ ∈ (0,π/32) such that

(3.3)
�

�

�Arg
�

e i(ψ(x)+an (x))Q(x)T (x)
�

�

�

�≤π/2− 2β

for all x ∈ [a, b] such that T (x)Q(x) 6= 0 and all n from some infinite sequence N1 ⊂N.
(d) Assume I ⊂ (0,1) and {qn} is a sequence of polynomials of degree mn whose roots {ξ1,n , . . . ,ξmn ,n}

lie in D and satisfy
mn
∑

j=1

(π−Angle(ξ j ,n , I ))≤C

where the constant C is independent of n. Then, to every ε > 0 there exists an integer l such
that, for all n large enough, there is a polynomial Tl ,n of degree at most l satisfying:

�

�

�

�

�

eqn(x)

|eqn(x)|
−Tl ,n(x)

�

�

�

�

�

< ε, x ∈ I .

In particular, the argument of Tl ,n(x)/eqn(x) lies in the interval (−2ε, 2ε) when n is large
enough.

Proof. (a) This assertion follows from the proof of Lemma 3.2 in [5] if we put dn = l there.
(b ) When ξ /∈ I , the proof of this statement is contained in that of Lemma 5.2 in [5]. In the
remaining cases, one can see by inspection that (3.2) reduces to 0 ≤ π when ξ = b and to π ≤ π
when ξ ∈ [a, b ).
(c)Observe that ϕ(x) =ψ(x)+Arg(Q(x)) is a real function of bounded variation on I . Therefore
by Lemma 3.4 in [5], there exist a polynomial T ∗ 6= 0 and a constant β∗ ∈ (0,π/16) such that

�

�

�Arg
�

e iψ(x)Q(x)T ∗(x)
�

�

�

�=
�

�

�Arg
�

e iϕ(x)T ∗(x)
�

�

�

�≤π/2− 2β∗

for x ∈ I , Q(x)T ∗(x) 6= 0. For later use we also record that, by the very construction of T ∗ in the
cited lemma, its zeros belong to I and are discontinuity points of ϕ.
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Let K be such that |a′n(x)| ≤ K for all n ∈ N and x ∈ I , where the superscript “prime” indi-
cates the derivative. By Jackson’s theorem (cf. e.g. [28]) there is a constant C > 0 and there are
polynomials {Tn,l } of degree at most l such that

�

�

�e−ian (x)−Tn,l (x)
�

�

�≤
C K

l
.

Fix l so large that C K/l ≤ β∗/3. Being bounded of bounded degree, the sequence {Tn,l } has a
subsequence converging uniformly on I to a polynomial Tl of degree at most l . Therefore, for
some subsequence N1 we obtain

�

�

�1− e ian (x)Tl (x)
�

�

�≤
β∗

2
, n ∈N1,

which implies that
�

�

�Arg
�

e ian (x)Tl (x)
�

�

�

�≤
β∗π

4
<β∗, n ∈N1.

Now inequality (3.3) follows by taking T = T ∗Tl , β = β
∗/2, and using that |Arg(ξ1 + ξ2)| ≤

|Arg(ξ1)|+ |Arg(ξ2)| for any ξ1,ξ2 ∈C.
(d ) This is exactly what is proved in Lemma 5.4 of [5]. �

Lemma 3.2. Let qn(z) =
∏n

j=1(z − ξ j ,n) satisfy (2.27) for |ξ j ,n | < 1 for j = 1, . . . , n, where eλ =
λ+ λ′ is given by (2.1), (2.2), and (2.22), with S ⊂ (−1,1) and S ′ ⊂ D, while ωn is a complex-valued
measurable function on S ∪ S ′. Consider a covering of S by finitely many disjoint closed intervals:
S ⊆ Im :=

⋃m
j=1[a j , b j ]. Then6

(3.4)
n
∑

j=1

(π−θ(ξ j ,n))≤V (ϕ)+V (arg(ωn), S)+
∑

η∈S ′
m(η)θ(η)+ (m+ s − 1)π,

where arg(ωn) is any argument function for ωn on S and m(η) is the multiplicity of η.

Proof. If ωn has no argument function of bounded variation on S, there is nothing to prove.
Otherwise, we pick one and extend it to the whole of R without increasing the variation, as
explained in Section 2. In particular, we get

V (arg(ωn), S) =
m
∑

j=1

V (arg(ωn),[a j , b j ]).

As in the case of (2.26), equation (2.27) yields

(3.5)
∫

Pn−s−1(t )Qs (t )qn(t )
ωn(t )

eq2
n(t )

dλ(t ) = 0,

where Pn−s−1 is any polynomial inPn−s−1.
Denote by ψn(t ) an argument function for e iϕ(t )Qs (t )qn(t )ωn(t )/eq

2
n(t ), say

ψn(t ) = ϕ(t )+ arg(ωn(t ))+
∑

η∈S ′
m(η)Arg(t −η)+

n
∑

i=1

�

Arg(t − ξi ,n)− 2Arg(t − 1/ξ̄i ,n)
�

,

6Note that the hypothesis λ ∈ BVT is not required for this lemma to hold.
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where it is understood that Arg(t − 1/ξ̄i ,n) is omitted when ξi ,n = 0. It is easy to see that ψn is of
bounded variation. Then Lemma 3.1(a) with

ψ=ψn , d ν(t ) =

�

�

�

�

�

Qs (t )qn(t )ωn(t )

eq2
n(t )

�

�

�

�

�

d |λ|(t ), and l = n− s

implies that
m
∑

j=1

V (ψn ,[a j , b j ])≥ (n− s −m+ 1)π.

So, we are left to show that
m
∑

j=1

V (ψn ,[a j , b j ])≤V (ϕ)+
m
∑

j=1

V (arg(ωn),[a j , b j ])+
∑

η∈S ′
m(η)θ(η)+

n
∑

i=1

θ(ξi ,n).

By the definition of ψn , we have
m
∑

j=1

V (ψn ,[a j , b j ]) ≤
m
∑

j=1

V (ϕ,[a j , b j ])+
m
∑

j=1

V (arg(ωn),[a j , b j ])

+
m
∑

j=1

∑

η∈S ′
m(η)V (Arg(· −η),[a j , b j ])

+
m
∑

j=1

n
∑

i=1

V (g (ξi ,n , ·),[a j , b j ]),

where g (ξ , t ) was defined in (3.1). The assertion of the lemma now follows from Lemma 3.1(b)
and the fact that, by monotonicity, V (Arg(· − ξ ),[a, b]) =Angle(ξ ,[a, b]). �

Corollary 3.3. Letϕ and arg(ωn) have bounded variation on S, and assume further that V (arg(ωn), S)<
C , where C is independent on n. Then, to each neighborhood U of S, there exists a constant kU ∈ N
such that each qn has at most kU zeros outside of U for n large enough.

Proof. Since U is open, its intersection with (−1,1) is a countable union of intervals. By com-
pactness, a finite number of them will cover S, say ∪m

j=1(a j , b j ). Apply Lemma 3.2 to the closure
of these intervals and observe that any zero of qn which lies outside of U will contribute to the
left-hand side of (3.4) by more than some positive fixed constant which depends only on U . Since
the right-hand side of (3.4) does not depend on n and is finite we can have only finitely many such
zeros. �

Proof of Theorem 2.5. Hereafter we are going to use (3.5) rather than (2.27) and we set qn(z) =
∏n

j=1(z − ξ j ,n).
We start by observing that we may suppose S ⊂ (0,1). Indeed, if this is not the case, take a

negative number w such that −1 < w < a, where [a, b] = I denotes the convex hull of S. Then
Mw (S), the image of S under the Möbius transformation Mw (z) := (z−w)/(1− zw), is a subset of
(0,1). Moreover, the Green equilibrium measure is invariant under Möbius transformations, i.e.,
for any Borel set E ⊂Mw (S) we have that

µMw (S)
G (E) =µS

G(M−w (E))

(M−w is the inverse function of Mw ). This implies that the weak∗ convergence of νn to µ(S,T) is

equivalent to that of νw
n to µMw (S)

G , where νw
n is the counting measure of the images of the zeros of
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qn under Mw . Now, if we let

`n(τ) = qn(M−w (τ))(1+wτ)n ,
Ls (τ) = Qs (M−w (τ))(1+wτ)s ,

pn−s−1(τ) = Pn−s−1(M−w (τ))(1+wτ)n−s−1,
ω∗n(τ) = ωn(M−w (τ)),

then `n is a polynomial of degree n with zeros at Mw (ξ j ,n), j = 1, . . . , n. In addition, since

Mx (1/ξ̄ ) = 1/Mx (ξ ), x ∈ (−1,1), we have that

e`n(τ) = eqn(M−w (τ))(1+wτ)n .

Analogously, Ls is a polynomial of degree s with zeros at Mw (η), η ∈ S ′, and pn−s−1 is an arbitrary
polynomial of degree at most n − s − 1. Let us show that `n satisfies orthogonality relations of
type (3.5) for a new measure, supported this time in (0,1), that still belongs to BVT.

With the above notation equation (3.5) can be rewritten as

0 =
∫

S
Pn−s−1(t )Qs (t )qn(t )

ωn(t )

eq2
n(t )

e iϕ(t )d |λ|(t )

=
∫

Mw (S)
(Pn−s−1Qs qn)(M−w (τ))

ωn(M−w (τ))

eq2
n(M−w (τ))

e iϕ(M−w (τ))d |λ|(M−w (τ))

=
∫

Mw (S)
pn−s−1(τ)Ls (τ)`n(τ)

ω∗n(τ)

e`2
n(τ)

e iϕ∗(τ)d |λ∗|(τ),

where d |λ∗|(τ) = (1 + wτ)d |λ|(M−w (τ)) is a positive measure supported on Mw (S), ϕ
∗(τ) =

ϕ(M−w (τ)) is a function of bounded variation, and {ω∗n} is a sequence of measurable functions
whose moduli are uniformly bounded above and below, and whose arguments are smooth with
uniformly bounded derivatives. Further, since Green functions are conformally invariant,Mw (S)
is regular so clearly λ∗ ∈ BVT. This allows us to assume that S ⊂ (0,1).

First we will suppose that all zeros of the polynomials qn lie outside some fixed neighborhood of
zero.

For each n denote by σn the counting measure of zeros of eqn . By the assumption that we just
made there exists a compact set K such that 0 /∈K and supp(νn)⊂K . Then supp(σn)⊂ K̄−1 for all
n ∈ N, and K̄−1 is also compact. By Helly’s selection theorem (cf. [32, Thm. 0.1.3]) there exists
a subsequence of natural numbers, N1, such that νn

∗→ ν for n ∈ N1, where
∗→ stands for weak∗

convergence. Denote by σ the reflection of ν across the unit circle, i.e. dσ(t ) = d ν ◦ (1/ t̄ ). It is
easy to check that σn

∗→ σ . Observing that the assumptions on ωn imply that the variation of its
argument on I , thus a fortiori on S, is bounded independently of n, it follows from Corollary 3.3
that ν and σ are probability measures such that supp(ν)⊂ S ⊂ (0,1) and supp(σ)⊂ S̄−1 = S−1.

Claim: it is enough to show that the logarithmic potential of ν − σ is a constant q.e. on S.
Indeed, let U ν−σ =D1 q.e. on S, where

U ν−σ =
∫

log
1

|z − t |
d (ν −σ)(t ).

Then, since U σ is harmonic outside of S−1, we have that U ν is bounded quasi everywhere on
S, hence everywhere by lower semi-continuity of potentials. Thus, ν has finite energy and by
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reflection so does σ . Moreover, for quasi every z ∈ S−1, we have

U ν−σ (z) =
∫

log
1

|z − t |
d (ν −σ)(t ) =

∫

log
1

|z − 1/x|
d [(ν −σ) ◦ (1/x)]

=
∫

log

�

�

�

�

�

x/z

x − 1/z

�

�

�

�

�

d (σ − ν)(x) =
∫

log |x/z |d (σ − ν)(x)−U ν−σ (1/z)

=
∫

log |x|d (σ − ν)(x)−D1 =: D2,(3.6)

where we used that ν −σ has total mass zero. Now, denote by bσ the balayage of σ onto S. Then

U bσ (t ) =U σ (t )+ c(σ ;C \ S)

for quasi every t on S. Thus, as (ν − bσ)(C) = 0 and since ν and bσ have finite energy, we get

0 =
∫

D1 d (ν − bσ)(z) =
∫

U ν−σ (z)d (ν − bσ)(z) =
∫

U ν−bσ (z)d (ν − bσ)(z)

=
∫

log
1

|z − t |
d (ν − bσ)(t )d (ν − bσ)(z).

But the energy of a signed measure is equal to zero if and only if the measure is zero ([32, Lemma
I.1.8]), provided that this measure is the difference of two positive measures with finite energy;
thus, ν = bσ . Using (3.6), we can obtain in a similar fashion that σ = bν , where bν is the balayage
of ν onto S−1. Hence, we proved that σ − ν is the equilibrium signed measure for the condenser
(S, S−1) ([32, Thm. VIII.2.6]). Then Proposition A points (b) and (e) of the appendix ensures that
ν =µ(S,T) is the Green equilibrium distribution relative to both D and C\ S−1. Since {νn}n∈N1

was
an arbitrary weak∗ convergent subsequence, the whole sequence {νn}n∈N converges to µS

G in the
weak∗ sense. This proves the claim.

Being left to prove that U ν−σ is a constant q.e. on S, suppose to the contrary that this is not
true. Then there exist nonpolar Borel subsets of S, say E− and E+, and two constants d and τ > 0
such that

U ν−σ (x)≥ d +τ for x ∈ E+ and U ν−σ (x)≤ d − 2τ for x ∈ E−.

In this case we claim that there exists y0 ∈ supp(ν) such that

(3.7) U ν−σ (y0)> d .

Indeed, otherwise we would have that

(3.8) U ν (x)≤U σ (x)+ d , x ∈ supp(ν).

Then the principle of domination ([32, Thm. II.3.2]) would yield that (3.8) is true for all z ∈ C,
but this would contradict the existence of E+.

Since all σn are supported outside of the closed unit disk, the sequence of potentials {U σn}n∈N1

converges to U σ uniformly on compact subsets of D. This implies that for any given sequence of
points {yn} ⊂D such that yn→ y0 as n→∞, n ∈N1, we have

(3.9) lim
n→∞, n∈N1

U σn (yn) =U σ (y0).

On the other hand all νn , n ∈N1, have their support inD. So, by applying the principle of descent
([32, Thm.I.6.8]) for the above sequence {yn}, we obtain

(3.10) liminf
n→∞, n∈N1

U νn (yn)≥U ν (y0).
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Combining (3.7), (3.9), and (3.10) we get

(3.11) liminf
n→∞ n∈N1

U νn−σn (yn)≥U ν−σ (y0)> d .

Since {yn}was an arbitrary sequence inD converging to y0, we deduce from (3.11) that there exists
ρ > 0 such that, for any y ∈ [y0− 2ρ, y0+ 2ρ] and n ∈ N1 large enough, the following inequality
holds

(3.12) U νn−σn (y)≥ d .

Since

U νn−σn (y) =
1

n
log

�

�

�

�

�

1

αn

eqn(y)

qn(y)

�

�

�

�

�

,

where αn :=
∏n

j=1 |ξ j ,n |, inequality (3.12) can be rewritten as

(3.13)

�

�

�

�

�

αn

qn(y)
eqn(y)

�

�

�

�

�

≤ e−nd

for any y ∈ [y0− 2ρ, y0+ 2ρ] and n ∈N1 large enough.
Here we notice for later use that the above reasoning does not really require the polynomials

qn to have exact degree n. Specifically, let {pn} be a sequence of monic polynomials of degree
dn = n+o(n)where o denotes the Landau symbol “little oh”. Moreover, suppose that the counting
measures of their zeros normalized by 1/n rather than 1/dn (so it may no longer be a probability
measure) are supported on a fixed compact set of the complex plane. Call µn these measures and
assume that they converge to ν in the weak∗ topology. In this case (3.10) and (3.11) still hold with
νn replaced byµn , at the cost perhaps of dropping finitely many terms ofN1 and making ρ smaller.
Thus, we obtain that

(3.14)

�

�

�

�

�

αn

pn(y)
eqn(y)

�

�

�

�

�

≤ e−nd

for any y ∈ [y0− 2ρ, y0+ 2ρ] and n ∈N1 large enough.
In another connection, since U ν−σ (x) ≤ d − 2τ on E−, applying the lower envelope theorem

([32, Thm. I.6.9]) gives us

(3.15) liminf
n→∞, n∈N1

U νn−σn (x) =U ν−σ (x)≤ d − 2τ, for q.e. x ∈ E−.

Let Z be a finite system of points from (−1,1), to be specified later. Then by [2, 3] there ex-
ists7 S0 ⊂ S such that S0 is regular, cap(E− ∩ S0) > 0 and dist(Z , S0) > 0, where dist(Z , S0) :=
minz∈Z dist(z, S0). Put for simplicity bn(x) = qn(x)/eqn(x), which is a finite Blaschke product.
Then

U νn−σn (x) =−
1

n
log |αn bn(x)|

and by (3.15), as |αn |< 1, there exist N2 ⊂N1 and x ∈ E− ∩ S0 such that

|bn(x)| ≥ |αn bn(x)| ≥ e−n(d−τ)

for any n ∈N2. Let xn be a point where |bn | reaches its maximum on S0. Then

(3.16) Mn :=max
x∈S0

|bn(x)|= |bn(xn)| ≥ |αn |Mn = |αn bn(xn)| ≥ e−n(d−τ).

7In [5] S0 is not introduced, which makes there for a slightly incorrect argument in Theorem 3.1. An alternative remedy
in that reference would be to apply the lower envelope theorem to T qn rather than qn , as they have the same asymptotic
zero distribution.
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Note that Mn < 1 and therefore d −τ is necessarily positive. For simplicity, we shall denote D\ S0
by D . Since the modulus of a Blaschke product is bounded by 1 in the unit disk and log |bn |
is a subharmonic function, the two-constant theorem ([31, Thm. 4.3.7]) yields the following
pointwise estimate

(3.17) log |bn(z)| ≤ωD (z, S0) log |Mn |

for any z ∈D , whereωD (z, S0) is the harmonic measure on D (cf. [31, Sec. 4.3]). Combining the
last two inequalities we get

(3.18) |bn(z)| ≤ (Mn)
ωD (z,S0) =Mn

�

1

Mn

�1−ωD (z,S0)

≤Mn en(d−τ)(1−ωD (z,S0))

for z ∈D , and obviously also when z ∈ S0, whereωD (·, S0) = 1 for S0 is regular. Moreover, by the
regularity of S0 again, it is known ([31, Thm. 4.3.4]) that for any x ∈ S0

lim
z→x

ωD (z, S0) = 1

uniformly with respect to x ∈ S0. Thus, for any δ > 0 there exists r (δ)< dist(S0,T) such that for
z satisfying dist(z, S0)≤ r (δ) we have

1−ωD (z, S0)≤
δ

d −τ
.

This, together with (3.18), implies that for fixed δ, to be adjusted later, we have

|bn(z)| ≤Mn enδ , |xn − z | ≤ r (δ).

Note that bn is analytic in D, which, in particular, yields for |z − xn |< r (δ)

b ′n(z) =
1

2πi

∫

|ξ−xn |=r (δ)

bn(ξ )

(ξ − z)2
dξ .

Thus, for any z such that |z − xn | ≤ r (δ)/2 we get

|b ′n(z)| ≤
1

2π
·

4Mn enδ

r 2(δ)
· 2πr (δ) =

4Mn enδ

r (δ)
.

Now, for any x such that

(3.19) |x − xn | ≤
r (δ)

8enδ
,

the mean value theorem yields

|bn(x)− bn(xn)| ≤
4Mn enδ

r (δ)
|x − xn |=

Mn

2
.

Thus, for x satisfying (3.19), we have

|bn(x)| ≥ |bn(xn)| − |bn(x)− bn(xn)| ≥Mn −
Mn

2
=

Mn

2
and, by (3.16),

(3.20) |αn bn(x)| ≥
|αn |Mn

2
≥

1

2
e−n(d−τ).
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The estimates (3.14), (3.20), together with the relation (3.5) are the main ingredients in proving the
claim that U ν−σ is constant q.e. on S. To combine them we shall use a specific choice of Pn−s−1 in
(3.5).

First, we pick a polynomial T such that Lemma 3.1-(c) holds with ψ = ϕ, an = Arg(ωn),
Q = Qs , and [a, b] = I for n ∈ N3 ⊂ N2. We denote by k the degree of T . Second, for each
n ∈ N3, we choose Tl ,n as in Lemma 3.1-(d) with ε = δ/9. Note that the use of Lemma 3.1-(d) is
legitimate by Lemma 3.2 and our assumptions on S, ϕ andωn . Since all Tl ,k are bounded on I by
definition and have degree at most l , which does not depend on n, there exists N4 ⊂N3 such that
sequence {Tl ,n}n∈N4

converges uniformly to some polynomial Tl on I . In particular, we have that
deg(Tl )≤ l and the argument of Tl (x)/eqn(x) lies in (−δ/4,δ/4) for n ∈N4 large enough. Denote
by 2α the smallest even integer strictly greater than 2l + k+ s . As soon as n is large enough, since
y0 ∈ supp(ν), there exist β1,n , . . . ,β2α,n , zeros of qn , lying in

Oγ ([y0−ρ, y0+ρ]) :=
�

z ∈C : dist (z,[y0−ρ, y0+ρ])≤ γ
	

,

where γ , 0< γ < ρ, will be specified later. Define

P ∗n(z) =
qn(z)T (z)T

2
l
(z)

∏2α
j=1(z −β j ,n)

.

The polynomial P ∗n has degree n− s − 1 or n− s − 2, depending on the parity of k + s .
Denote by In ⊂ (0,1) the interval defined by (3.19). By comparing (3.13) with (3.20), it is clear

that In and [y0− 2ρ, y0+ 2ρ] are disjoint when n ∈N4 is large enough.
Now, we choose γ = γ (ρ) so small that

�

�

�

�

�

�

2α
∑

j=1

Arg







1

x −β j ,n







�

�

�

�

�

�

=

�

�

�

�

�

�

2α
∑

j=1

Arg
�

x −β j ,n

�

�

�

�

�

�

�

≤ δ/2, x ∈R \ [y0− 2ρ, y0+ 2ρ].

Letting δ be such that δ <β, the choices of T , Tl , and P ∗n together imply
�

�

�

�

�

Arg

 

P ∗n(x)Qs (x)qn(x)
ωn(x)

eq2
n(x)

e iϕ(x)

!�

�

�

�

�

=

�

�

�

�

�

�

Arg






|qn(x)|

2 ·
2α
∏

j=1

1

(x −β j ,n)
·

T 2
l
(x)

eq2
n(x)

·T (x)Qs (x)ωn(x)e
iϕ(x)







�

�

�

�

�

�

≤
δ

2
+
δ

2
+
π

2
− 2β≤π/2−δ,

for x ∈ I \[y0−2ρ, y0+2ρ] except perhaps at points where T or Qs are equal to zero. This means
that for such x

Re

 

|αn |
2(P ∗nQs qn)(x)

ωn(x)

eq2
n(x)

e iϕ(x)

!

≥ sinδ

�

�

�

�

�

α2
n(P

∗
nQs qn)(x)

ωn(x)

eq2
n(x)

e iϕ(x)

�

�

�

�

�

≥ sinδ

�

�

�

�

�

�

�

α2
n(b

2
nQs T T 2

l
ωn)(x)

∏2α
j=1(x −β j ,n)

�

�

�

�

�

�

�

≥ 0.(3.21)
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Moreover, if x ∈ S \ [y0− 2ρ, y0+ 2ρ] satisfies (3.19), then by (3.16) and (3.20) the above quantity
is bounded from below by

|T (x)Qs (x)|
sinδ minx∈[a,b] |Tl (x)|2 infn∈Nminx∈[a,b] |ωn(x)|

4(diam(S)+ 2ρ)2α
e−2nd+2nτ

= c1|T (x)Qs (x)|e
−2nd+2nτ ,

where diam(S) :=maxx,y∈S |x − y| and

c1 :=
sinδ minx∈[a,b] |Tl (x)|2 infn∈Nminx∈[a,b] |ωn(x)|

4(diam(S)+ 2ρ)2α
> 0

by the construction of Tl and the uniform boundedness of {|ωn |} from below. Thus

Re

 

∫

S\[y0−2ρ,y0+2ρ]
|αn |

2P ∗n(t )Qs (t )qn(t )
ωn(t )

eq2
n(t )

e iϕ(t )d |λ|(t )
!

≥ sinδ
∫

S\[y0−2ρ,y0+2ρ]

�

�

�

�

�

α2
n P ∗n(t )Qs (t )qn(t )

ωn(t )

eq2
n(t )

e iϕ(t )

�

�

�

�

�

d |λ|(t )

≥ c1e−2nd+2nτ
∫

S∩In

|T (t )Qs (t )|d |λ|(t )≥ c2e−2nd+n(2τ−Lδ).(3.22)

The last inequality is true by the following argument. First observe that from (3.20) and 3.13) that
In ∩ [y0 − 2ρ, y0 + 2ρ] = ; for all n large enough. Next, recall that xn , the middle point of In ,
belongs to S0, where dist(S0,Z) > 0 and Z is a finite system of points that we now choose to be
the zeros of T Qs in (−1,1) if any. Then T Qs , which is independent of n, is uniformly bounded
below on In and (3.22) follows from this and hypothesis BVT point (2). On the other hand (3.13),
and (3.14) applied with pn = P ∗n/(leading coefficient of T T 2

l
), yield that

(3.23)

�

�

�

�

�

∫

[y0−2ρ,y0+2ρ]
|αn |

2P ∗n(t )Qs (t )qn(t )
ωn(t )

eq2
n(t )

e iϕ(t )d |λ|(t )

�

�

�

�

�

≤ c3e−2nd ,

where we used uniform boundedness of {|ωn |} from above. Choosingδ so small that 2τ−Lδ > 0,
which is possible, the bound in (3.22) becomes bigger than the bound in (3.23) for n large enough.
But this is impossible, since by (3.5) the sum of these two integrals must be zero.

We just completed the case when all the zeros of polynomials qn stay away from the point zero.
Now we shall consider the general situation. Let ε > 0 be such that U := D \ {z : |z | ≤ ε} is a
neighborhood of S. Corollary 3.3 says that there exists a constant kU ∈N such that each qn has at
most kU zeros outside of U , that is zeros which have modulus less than ε. In this case, from any
sequence of natural numbers, we can extract a subsequence, say N0, such that for some number
m ≤ kU , qn has exactly m zeros outside of U for each n ∈ N0. Denote these zeros ξ1,n , . . . ,ξm,n ,
and consider the polynomials

q∗n(z) :=
eqn(z)

∏m
j=1(1− zξ j ,n)

, n ∈N0.

Then the sequence {qn}n∈N0
will satisfy the following weighted orthogonality relation:

∫

Pn−s−1(t )Qs (t )qn(t )
ω∗n(t )

(q∗n(t ))
2

dλ(t ) = 0, Pn−s−1 ∈Pn−s−1,
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where

ω∗n(t ) :=ωn(t )
m
∏

j=1

(1− tξ j ,n)
−2, t ∈ I .

In what follows we are going to stress the modifications needed to adapt the previous proof to
the present case. Let, as before, N1 ⊂ N0 be a subsequence of natural numbers such that νn

∗→ ν,
n ∈N1. Because we only discarded a fixed number of zeros from eqn(z) to obtain q∗n , the counting
measures σ∗n of the zeros of q∗n (normalized by 1/n), again converge weak∗ to σ . Since U σ∗n enjoys
all the relevant properties of U σn , inequalities (3.13) and (3.14) remain valid with eqn replaced by
q∗n .

Further, define bn(x) as qn(x)/q∗n(x). In this case, bn is no longer a Blaschke product, but rather
a Blaschke product multiplied by the polynomial

∏m
j=1(z−ξ j ,n). Then we get instead of (3.17) that

log |bn(z)| ≤ωD (z, S0) log |Mn |+(1−ωD (z, S0))m log2,

and (3.18) can be replaced by

|bn(z)| ≤Mn en(d−τ+m log2/n)(1−ωD (z,S0)) ≤Mn en(d−τ+1)(1−ωD (z,S0)),

for n large enough. This yields an insignificant modification of r (δ) (we should make 1−ωD (z, S0)
less thanδ/(d−τ+1) rather than justδ/(d−τ)). Lemma 3.1(d) can be applied to the polynomials
q∗n rather than eqn without change.

Therefore we are left to show that {ω∗n} is uniformly bounded above and below on I , and that
its arguments are smooth with uniformly bounded derivatives on I with respect to n. The uniform
boundedness of {ω∗n} easily follows from the estimates

�1

2

�2m

≤
m
∏

j=1

�

�

�

�

�

�

1

(1− tξ j ,n)

�

�

�

�

�

�

2

≤
� 1

1− ε

�2m

.

Since none of the ξ j ,n , j = 1, . . . , m can come close to I−1, Arg(1− tξ j ,n) is a smooth function

on I whose derivative Imξ j ,n/(1− tξ j ,n) is uniformly bounded there independently of j and n.
Then the rest of the assumptions on {ω∗n} follows from the representation

arg(ω∗n(t )) = arg(ωn(t ))− 2
m
∑

j=1

Arg(1− tξ j ,n).

This completes the proof of the theorem. �

The forthcoming lemma is needed for the proof of Theorem 2.1. Recall that H , a family of
functions analytic in some fixed domain of the complex plane, is called normal if each sequence of
functions fromH contains a locally uniformly convergent subsequence.

Lemma 3.4. Let p ∈ (2,∞] and {gn}n∈N be a sequence of a sequence of irreducible critical points of
order n of MA(p) for F given by (2.3) and (2.4) with λ satisfying8 (2.1) and (2.2). Further, let vn be an
associated singular vector to gn with inner-outer factorization given by vn = bn ·wn for some Blaschke
product bn and wn an outer function in H p ′ . Then the familiesW := {wn} andWp ′ :=

¦

w p ′/2
n

©

are

normal in D and C\ eS∗ respectively, where eS∗ denotes the reflection of eS across T. Moreover, any limit
point ofW is zero free in D.

8Note that we do not require the hypothesis λ ∈ BVT to hold. It is sufficient for the lemma to hold to have a measure with
an argument of bounded variation and infinitely many points in the support.
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Proof. The main idea of the proof was given in [10, Thm. 10.1]. The necessary modification for
the case of complex measures with argument of bounded variation were given in [7, Prop. 6.3].
Only a simple adjustment is needed in the present case where the approximated function may have
polar singularities inside D. Namely, after the initial choice of a polynomial T in [7, Prop. 6.3,
Eq. 6.12] has been made, one systematically applies the arguments in this proposition with T Q2

instead of T . Another modification that one has to introduce is to define Gn in [10, Thm. 10.1] as

Gn(z) := (bnQw1/2
n )(z̄),

in order to obtain the desired bound in [7, Eq. 6.13]. The interested reader can find the full proof
of this lemma in [34, Lem. 3.11]. �

Note that in the previous lemma the normality ofW in D was clear beforehand by the Cauchy
formula, since ‖wn‖p ′ = 1, but the nonzeroing of every limit point was not.

Proof of Theorem 2.1. Let vn be a singular vector associated to gn with inner-outer factorization
given by vn = bn ·wn for some Blaschke product bn = qn/eqn and some outer function wn ∈ H p ′ ,
‖wn‖p ′ = 1, where wn ≡ 1 when p = 2. The poles of gn are exactly the zeros of qn . Moreover, {qn}
is a sequence of polynomials satisfying weighted non-Hermitian orthogonality relations (2.25).
Thus, the assertion of the theorem will follow from Theorem 2.5 if onlyW = {wn} is uniformly
bounded above and below on I , the convex hull of S, and if it is a family of functions whose
arguments are smooth with uniformly bounded derivatives on I . In the case p = 2 this is trivial
since each wn ≡ 1. In the case p ∈ (2,∞] Lemma 3.4 says that W is a normal family. Thus,
it is uniformly bounded above on I . Moreover, since all limit points of W are zero free in D,
this family is uniformly bounded below on I (in fact on any compact subset of D). Further, the
derivatives again form a normal family and so does the logarithmic derivative w ′n/wn in D. Since
the imaginary part of the latter is equal to d arg(wn)/d t on I , we see that the desired conditions
onW are satisfied. �

Before we prove Theorem 2.2 we shall need one auxiliary lemma.

Lemma 3.5. Let D be a domain in C with non-polar boundary, K ′ be a compact set in D, and {un}
be a sequence of subharmonic functions in D such that

un(z)≤M − εn , z ∈D ,

for some constant M and a sequence {εn} of positive numbers decaying to zero. Further, assume that
there exist a compact set K ′ and positive constants ε′ and δ ′, independent of n, for which holds

un(z)≤M − ε′, z ∈Kn ⊂K ′, cap(Kn)≥ δ
′.

Then for any compact set K ⊂D \K ′ there exists a positive constant ε(K) such that

un(z)≤M − ε(K), z ∈K ,

for all n large enough.

Proof. Let ωn be the harmonic measure for Dn := D \Kn . Then the two-constant theorem [31,
Thm. 4.3.7] yields that

un(z) ≤ (M − ε′)ωn(z,Kn)+ (M − εn)(1−ωn(z,Kn))
≤ M − (ε′− εn)ωn(z,Kn), z ∈Dn .

Thus, we need to show that for any K ⊂D \K ′ there exists a constant δ(K)> 0 such that

ωn(z,Kn)≥ δ(K), z ∈K .
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Assume to the contrary that there exists a sequence of points {zn}n∈N1
⊂K , N1 ⊂N, such that

(3.24) ωn(zn ,Kn)→ 0 as n→∞, n ∈N1.

By [31, Theorem 4.3.4],ωn(·,Kn) is the unique bounded harmonic function in Dn such that

lim
z→ζ

ω(z,Kn) = 1Kn
(ζ )

for any regular ζ ∈ ∂ Dn , where 1Kn
is the characteristic function of ∂ Kn . Then it follows from

(A.8) of the appendix that

(3.25) cap(Kn ,∂ D)U
µ(Kn ,∂ D)

D ≡ωn(·,Kn),

where µ(Kn ,∂ D) is the Green equilibrium measure on Kn relative to D . Since all the measures
µ(Kn ,∂ D) are supported in the compact set K ′, there exists a probability measure µ such that

µ(Kn ,∂ D)
∗→µ as n→∞, n ∈N2 ⊂N1.

Without loss of generality we may suppose that zn → z∗ ∈ K as n →∞, n ∈ N2. Let, as usual,
gD (·, t ) be the Green function for D with pole at t ∈ D . Then, by the uniform equicontinuity of
{gD (·, t )}t∈K ′ on K , we get

U
µ(Kn ,∂ D)

D (zn)→Uµ
D (z

∗) 6= 0 as n→∞, n ∈N2.

Therefore, (3.24) and (3.25) necessarily mean that

(3.26) cap(Kn ,∂ D)→ 0 as n→∞, n ∈N2.

By definition, 1/cap(Kn ,∂ D) is the minimum among Green energies of probability measures sup-
ported on Kn . Thus, the sequence of Green energies of the logarithmic equilibrium measures on
Kn , µKn

, diverges to infinity by (3.26). Moreover, since

{g (·, t )+ log | · −t |}t∈K ′

is a family of harmonic functions in D whose moduli are uniformly bounded above on K ′, the
logarithmic energies of µKn

diverge to infinity. In other words,

cap(Kn)→ 0 as n→∞, n ∈N2,

which is impossible by the initial assumptions. This proves the lemma. �

Proof of Theorem 2.2. To prove the convergence in capacity we first establish an integral represen-
tation for the error (F − gn). As usual we denote by vn = bn wn a singular vector associated to
gn , where bn is a Blaschke product of degree n and wn is an outer function. By (2.11) and Fubini-
Tonelli’s theorem, we have for z ∈D \ eS

rn(z) := (F − gn)(z) =
AF (vn)(z)

vn(z)
=

P−(F vn)(z)

vn(z)

=
1

vn(z)

∫

T

(F vn)(ξ )

z − ξ
dξ

2πi
=

1

vn(z)

∫

T

∫ vn(ξ )

(z − ξ )(ξ − t )
d eλ(t )

dξ

2πi

=
1

vn(z)

∫ vn(t )

z − t
d eλ(t ) =

eqn(z)

qn(z)wn(z)

∫ qn(t )

z − t

wn(t )
eqn(t )

d eλ(t ).(3.27)

In another connection, the orthogonality relations (2.25) yield
∫

eqn(z)− eqn(t )

z − t
qn(t )

wn(t )

eq2
n(t )

d eλ(t ) = 0.
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This, in turn, implies that (3.27) can be rewritten as

(3.28) rn(z) =
eq2

n(z)

qn(z)wn(z)

∫ qn(t )

z − t

wn(t )

eq2
n(t )

d eλ(t ), z ∈D \ eS.

Since the majority of the zeros of qn approach S by Corollary 3.3, we always can choose s of them,
say ξ1,n , . . . ,ξs ,n , in such a manner that the absolute values of

(3.29) ls ,n(z) :=
s
∏

j=1

(z − ξ j ,n) and els ,n(z) := z s ls ,n(1/z̄)

are uniformly bounded above and below on compact subsets of C \ S and in D, respectively, for
all n large enough. Using orthogonality relations (2.25) once again and since Qs vanishes at each
η ∈ S ′ with multiplicity m(η), we can rewrite (3.28) as

(3.30) rn(z) =
eq2

n(z)

(qn q∗nQs wn)(z)

∫ (qn q∗nQs wn)(t )

eq2
n(t )

dλ(t )

z − t
,

where q∗n(z) := qn(z̄)/ls ,n(z̄). Set

(3.31) Bn(z) :=
∫ (|q∗n |

2Qs ls ,n wn)(t )

eq2
n(t )

dλ(t )

z − t
, z ∈C \ S,

so that

rn(z) =
eq2

n(z)Bn(z)

(qn q∗nQs wn)(z)
.

First, we show that

(3.32) |Bn |
1/2n cap
→ exp{−1/cap(S,T)}

on compact subsets of C \ S. Denote, as usual, bn = qn/eqn . Then for any compact set K ⊂ C \ S
there exists a constant c(K), independent of n, such that

(3.33) |Bn(z)| ≤ c(K)‖bn‖
2
S , z ∈K ,

by the choice of ls ,n and Lemma 3.4. Let νn be the counting measures of zeros of bn . Then

limsup
n→∞

|bn(t )|
1/n = limsupexp

¦

−U νn
D (t )

©

= exp
¦

− liminf U νn
D (t )

©

= exp
¦

−U
µ(S,T)

D (t )
©

= exp{−1/cap(S,T))} for q.e. t ∈ S(3.34)

by Theorem 2.1, the lower envelope theorem [32, Thm. I.6.9], and (A.8) of the appendix. More-
over, by the principle of descent [32, Thm. I.6.8], we get that

(3.35) limsup
n→∞

|bn(t )|
1/n ≤ exp{−1/cap(S,T)}

uniformly on S. It is immediate from (3.34) and (3.35) that, in fact,

(3.36) lim
n→∞
‖bn‖

1/n
S = exp{−1/cap(S,T)}.

Suppose now that (3.32) is false. Then there would exist a compact set K ′ ⊂C \ S and ε′ > 0 such
that

(3.37) cap
n

z ∈K ′ :
�

�

�|Bn(z)|
1/2n − exp{−1/cap(S,T)}

�

�

�≥ ε′
o

6→ 0.
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Combining (3.37), (3.36), and (3.33) we see that there would exist a sequence of compact sets
Kn ⊂K ′, cap(Kn)≥ δ ′ > 0, such that

(3.38) |Bn(z)|
1/2n ≤ exp{−1/cap(S,T)}− ε′, z ∈Kn ,

for all n large enough. Now, let Γ be a closed Jordan curve that separates S from K ′ and contains S
in the bounded component of its complement. Observe that (1/2n) log |Bn | is a subharmonic func-
tion in C\ S. Then (3.33), (3.36), and (3.38) enable us to apply Lemma 3.5 with M =−1/cap(S,T)
which yields that there exists ε(Γ)> 0 such that

(3.39) |Bn(z)|
1/2n ≤ exp{−1/cap(S,T)− ε(Γ)}

uniformly on Γ and for all n large enough. Define

Jn :=

�

�

�

�

�

∫

Γ
T 2

l (z)T (z)ls ,n(z̄)Bn(z)
d z

2πi

�

�

�

�

�

,

where the polynomials Tl and T are chosen as in Theorem 2.1 (see discussion after (3.20)). Then
if the limit in (3.32) would not hold, we would get (3.39) and subsequently

(3.40) limsup
n→∞

J 1/2n
n ≤ exp{−1/cap(S,T)− ε(Γ)}.

In another connection, the Cauchy integral formula yields that

Jn =

�

�

�

�

�

∫

Γ
T 2

l (z)T (z)ls ,n(z̄)

 

∫ (|q∗n |
2Qs ls ,n wn)(t )

eq2
n(t )

dλ(t )

z − t

!

d z

2πi

�

�

�

�

�

=

�

�

�

�

�

∫

|q2
n(t )|

T 2
l
(t )

eq2
n(t )
(T Qs wn)(t )e

iϕ(t )d |λ|(t )

�

�

�

�

�

.(3.41)

Exactly as in (3.21), we can write

(3.42) Re

 

(T 2
l

T Qs wn)(t )e
iϕ(t )

eq2
n(t )

!

≥ sin(δ)

�

�

�

�

�

(Tl T Qs wn)(t )

eq2
n(t )

�

�

�

�

�

, t ∈ I ,

where I is the convex hull of S andδ > 0 has the same meaning as in Theorem 2.1 (see construction
after (3.18)). Thus, we derive from (3.41) and (3.42) that

(3.43) Jn ≥ sin(δ)
∫

|b 2
n(t )| |(T

2
l T Qs wn)(t )|d |λ|(t ).

Let S0 be a closed subset of S of positive capacity that lies at positive distance from the zeros of
T Qs on I (see Theorem 2.1 for the existence of this set). Further, let xn ∈ S0 be such that

‖bn‖S0
= |bn(xn)|.

It follows from (3.34) and (3.36) that

lim
n→∞
‖bn‖

1/n
S0
= exp{−1/cap(S,T)},

and therefore
‖bn‖S0

≥ exp{−n(ε+ 1/cap(S,T))}
for any ε > 0 and all n large enough. Proceeding as in Theorem 2.1 (see equations (3.19) and
(3.20)), we get that

(3.44) |bn(t )| ≥
1

2
exp{−n(ε+ 1/cap(S,T))}, t ∈ In ,
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where
In :=

¦

x ∈ S0 : |x − xn | ≤ rδ e−nδ
©

and rδ is some function of δ continuous and vanishing at zero. Then by combining (3.43) and
(3.44), we obtain exactly as in (3.22) that there exists a constant c1 independent of n such that

Jn ≥ sin(δ)
∫

In

|b 2
n(t )| |(T

2
l T Qs wn)(t )|d |λ|(t )≥ c1 exp{−2n(ε+ Lδ/2+ 1/cap(S,T))}.

Thus, we have that

(3.45) liminf
n→∞

J 1/2n
n ≥ exp{−ε− Lδ/2− 1/cap(S,T)}.

Now, by choosing ε and δ so small that ε+ Lδ < ε(Γ), we arrive at contradiction between (3.40)
and (3.45). Therefore, the convergence in (3.32) holds.

Second, we show that

(3.46)

�

�

�

�

�

eq2
n(z)ls ,n(z̄)

qn(z)qn(z̄)Qs (z)wn(z)

�

�

�

�

�

1/2n
cap
→ exp

¦

U
µ(S,T)

D (z)
©

on compact subsets ofD\S. Let K ⊂D\S be compact and let U be a bounded conjugate-symmetric
open set containing K and not intersecting S. Define

bn,1(z) :=
∏

ζ ∈U : bn (ζ )=0

z − ζ

1− ζ̄ z
and bn,2(z) := bn(z)/bn,1(z).

Further, let qn,1 and qn,2 be the numerators of bn,1 and bn,2, respectively. Corollary 3.3 yields that
there exists fixed m ∈N such that each bn,1 has at most m zeros. Then

�

�

�bn,2(z)
�

�

�

1/n
→ exp

¦

−U
µ(S,T)

D (z)
©

and

�

�

�

�

�

qn,2(z)

qn,2(z̄)

�

�

�

�

�

1/n

→ 1

uniformly on K by Theorem 2.1. Moreover, it is an immediate consequence of the choice of ls ,n ,
the normality of {wn} in D (Lemma 3.4), the uniform boundedness of the number of zeros of
qn,1(z)qn,1(z̄)Qs (z), and the lemniscate theorem [31, Thm. 5.2.5] that

�

�

�

�

�

�

eq2
n,1(z)ls ,n(z̄)

qn,1(z)qn,1(z̄)Qs (z)wn(z)

�

�

�

�

�

�

1/2n
cap
→ 1, z ∈K .

Thus, we obtain (3.46). It is clear now that (2.13) follows from (3.30), (3.32), and (3.46).
Let us finally fix p = 2 and p = ∞. In this former case wn ≡ 1 for any n ∈ N and in the

latter {wn} is a normal family in C \ eS∗ by Lemma 3.4, and therefore rn(z) is defined everywhere
outside of S ∪ S∗. The limit in (2.14) easily follows from (2.13), (3.30), (3.32), and (3.46) since
|bn(z)| = |bn(1/z̄)|−1 in C. It remains only to show (2.15) for p = 2 (in this case the error is
defined in C \ S). Taking into account (3.36), (3.33), and the above-mentioned symmetry, it is
sufficient to prove that

limsup
n→∞

|bn(z)|
1/n ≤ exp

¦

−U
µ(S,T)

D (z)
©

uniformly in D. The latter follows by Theorem 2.1, the principle of descent, and the following
fact. Let a ∈ (0,1) be such that S ⊂ Da and denote by bn,a the Blaschke product with those zeros
of bn that are contained in Da . Then |bn | ≤ |bn,a | in D and the zeros of bn,a have the same limiting
distribution (µ(S,T)) as the zeros of bn by Corollary 3.3. Thus, |bn,a |1/n converge locally uniformly
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in {z : a < |z |< 1/a} to some function that coincides with exp
¦

−U
µ(S,T)

D (z)
©

on {z : a < |z | ≤ 1}.
This finishes the proof of the theorem. �

Proof of Corollary 2.3. Let {rn} be a sequence of solutions of MA(2) (see (2.7)). Then {rn} is a
sequence of rational functions with poles in D for which (2.15) holds. Thus,

limsup
n→∞

ρn(F ,E)1/2n ≤ limsup
n→∞

‖F − rn‖
1/2n
T ≤ exp

¨

−
1

cap(S,T)

«

since F − rn are analytic on E. On the other hand, AAK theory implies that

liminf
n→∞

ρn(F ,E)1/2n ≥ liminf
n→∞

�

inf
g∈H∞n

‖F − g‖∞

�1/2n

= liminf
n→∞

σn(AF )
1/2n .

It follows from (2.11) and (2.24) that for every gn , best AAK approximant of order n, it holds that

|F − gn |= σn(AF ) a.e. on T.

Therefore, we get from (3.30) that

σn(AF ) =

�

�

�

�

�

�

qn(ξ )

qn(ξ̄ )

ls ,n(ξ̄ )Bn(ξ )

Qs (ξ )wn(ξ )

�

�

�

�

�

�

for a.e. ξ ∈T,

where ls ,n and Bn were defined in (3.29) and (3.31), respectively. Since
�

|qn(z)|
|qn(z̄)|

�1/n
cap
→ 1

on compact subsets of C \ S by Theorem 2.1, we immediately deduce from (3.32) and Lemma 3.4
that

lim
n→∞

σn(AF )
1/2n = exp

¨

−
1

cap(S,T)

«

,

which finishes the proof of the corollary. �

Proof of Theorem 2.4. Inequality (2.18) is trivial for any η ∈ S ′ ∩ S. Suppose now that η ∈ S ′ \ S
and that m(η) < m(η). This would mean that there exists an open set U , U ∩ eS = {η}, such that
m(η, U )< m(η) and therefore would exist a subsequence N1 ⊂N such that

#{Sn ∩U }< m(η), n ∈N1.

It was proved in Theorem 2.2 that {gn} converges in capacity on compact subsets of D \ S to F .
Thus, {gn}n∈N1

is a sequence of meromorphic functions in U with at most m(η) poles there, which
converges in capacity on U to a meromorphic function F |U with exactly one pole of multiplicity
m(η). Then by Gonchar’s lemma [16, Lemma 1] each gn has exactly m(η) poles in U and these
poles converge to η. This finishes the proof of (2.18).

Now, for any η ∈ S ′ \S the upper characteristic m(η) is finite by Corollary 3.3. Therefore there
exist domains Dη, Dη ∩ eS = {η}, such that m(η) = m(η, Dη), η ∈ S ′ \ S. Further, let θ(·) be the
angle function defined in (2.17) for a system of m intervals covering S and let Sn = {ξ1,n , . . . ,ξn,n}.
Then by Lemma 3.2 we have

(3.47)
n
∑

j=1

(π−θ(ξ j ,n))≤V (ϕ)+VW +(m+ s − 1)π+
∑

ζ ∈S ′
m(ζ )θ(ζ ),
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where VW was defined in (2.21). The finiteness of VW was obtained in the proof of Theorem 2.1.
Then for n large enough (3.47) yields

∑

η∈S ′\S







∑

ξ j ,n∈Dη

(π−θ(ξ j ,n))−m(η)(π−θ(η))






≤V ,

where V was defined in (2.20). Thus,

∑

η∈S ′\S

�

#{Sn ∩Dη}−m(η)
�

(π−θ(η)) ≤
∑

η∈S ′\S

#{Sn ∩Dη}
�

max
ξ∈Dη

θ(ξ )−θ(η)
�

+V(3.48)

for all n large enough. However, since {maxn≥N #{Sn ∩Dη}}N∈N is a decreasing sequence of in-
tegers, m(η) = m(η, Dη) = #{Sn ∩Dη} for infinitely many n ∈ N. Therefore, we get from (3.48)
that

(3.49)
∑

η∈S ′\S

(m(η)−m(η)) (π−θ(η))≤V +
∑

η∈S ′\S

m(η)
�

max
ξ∈Dη

θ(ξ )−θ(η)
�

.

Observe now that the left-hand side and the first summand on the right-hand side of (3.49) are
simply constants. Moreover, the second summand on the right-hand side of (3.49) can be made
arbitrarily small by taking smaller neighborhoods Dη. Thus, (2.19) follows. �

4. NUMERICAL EXPERIMENTS

The Hankel operator AF with symbol F ∈ H∞ +C (T) is of finite rank if and only if F is a
rational function [24, Thm. 3.11]. In practice one can only compute with finite rank operators,
due to the necessity of ordering the singular values, so a preliminary rational approximation to F
is needed when the latter is not rational. One way to handle this problem is to truncate the Fourier
series of F at some high order N . This provides us with a rational function FN that approximates F
in the Wiener norm which, in particular, dominates any Lp norm on the unit circle, p ∈ [1,∞]. It
was proved in [21] that the best approximation operator from H∞n (mapping F to gn according to
(2.10)) is continuous in the Wiener norm provided (n+1)-st singular value of the Hankel operator
is simple. It was shown in [6, Cor. 2] that the last assertion is satisfied for Hankel operators with
symbols in some open dense subset of H∞+C (T), and the same technique can be used to prove
that it is also the case for the particular subclass (2.3). Thus, even though the simplicity of singular
values cannot be asserted beforehand, it is generically true. When it prevails, one can approximates
FN instead of F and get a close approximation to gn when N is large enough. This amounts to
perform the singular value decomposition of AFN

(see [35, Ch. 16]). When 2≤ p <∞ there is no
difficulty with continuity issues, but the computation of gn has to rely on a numerical search. To
numerically construct rational approximants when p = 2, we used the above truncation technique
together with the Hyperion software described in [20].

In the numerical experiments below we approximate function F given by the formula

F (z) = 7
∫

[−6/7,−1/8]

e i t d t

z − t
−
∫

[2/5,1/2]

3+ i

t − 2i

d t

z − t
+(2− 4i)

∫

[2/3,7/8]

ln(t )d t

z − t

+
2

(z + 3/7− 4i/7)2
+

6

(z − 5/9− 3i/4)3
+

24

(z + 1/5+ 6i/7)4
.
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FIGURE 1. AAK (left) and rational (right) approximants to F of degree 8
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FIGURE 2. AAK (left) and rational (right) approximants to F of degree 13

On the figures the solid lines stand for the support of the measure, diamonds depict the polar
singularities of F , and circles denote the poles of the corresponding approximants. Note that the
poles of F seem to attract the singularities first.

APPENDIX

Below we give a brief account of logarithmic potential theory that was used extensively through-
out the paper. We refer the reader to the monographs [31, 32] for a complete treatment.

The logarithmic potential and the logarithmic energy of a finite positive measure µ, compactly
supported in C, are defined by

(A.1) Uµ(z) :=
∫

log
1

|z − t |
dµ(t ), z ∈C,



MEROMORPHIC APPROXIMANTS TO CAUCHY TRANSFORMS 29

and

(A.2) I [µ] :=
∫

Uµ(z)dµ(z) =
∫ ∫

log
1

|z − t |
dµ(t )dµ(z),

respectively. The function Uµ is superharmonic with values in (−∞,+∞], which is not identi-
cally +∞. It is bounded below on supp(µ) so that I [µ] ∈ (−∞,+∞].

Let now E ⊂C be compact and Λ(E) denote the set of all probability measures supported on E .
If the logarithmic energy of every measure in Λ(E) is infinite, we say that E is polar. Otherwise,
there exists a unique µE ∈ Λ(E) that minimizes the logarithmic energy over all measures in Λ(E).
This measure is called the equilibrium distribution on E . The logarithmic capacity, or simply the
capacity, of E is defined as

cap(E) = exp{−I [µE]}.
By definition, the capacity of an arbitrary subset of C is the supremum of the capacities of its
compact subsets. We agree that the capacity of a polar set is zero. We say that a sequence of
functions {hn} converges in capacity to a function h on a compact set K if for any ε > 0 it holds
that

lim
n→∞

cap
�

{z ∈K : |hn(z)− h(z)| ≥ ε}
�

= 0.

Another important concept is the regularity of a compact set. We restrict to the case when E
has connected complement. Let gC\E (·, t ) be the Green function of C \ E with pole at t ∈ C \ E ,
i.e. the unique function such that

(i) gC\E (z, t ) is a positive harmonic function in
�

C \ E
�

\{t}, which is bounded outside each
neighborhood of t ;

(ii) gC\E (z, t )−
�

log |z |, t =∞,
− log |z − t |, t 6=∞, is bounded near t ;

(iii) lim
z→ξ , z∈D

gC\E (z, t ) = 0 for quasi every ξ ∈ E .

Points of continuity of gC\E (·, t ) on ∂e E , the outer boundary of E , are called regular, other points
on ∂e E are called irregular; the latter form a polar set. If every point of ∂e E is regular, we say that
the whole set E is regular.

Throughout we use the concept of balayage of a measure ([32, Sec. II.4]). Let D be a domain
(connected open set) with compact boundary ∂ D whose complement has positive capacity, and
µ be a finite Borel measure with compact support in D . Then there exists a unique Borel measure
bµ supported on ∂ D , with total mass is equal to that of µ: ‖µ‖ = ‖bµ‖, whose potential U bµ is
bounded on ∂ D and satisfies for some constant c(µ; D)

(A.3) U bµ(z) =Uµ(z)+ c(µ; D) for q.e. z ∈C \D .

Necessarily then, we have that c(µ; D) = 0 if D is bounded and c(µ; D) =
∫

gD (t ,∞)dµ(t ) other-
wise. Equality in (A.3) holds for all z ∈C\D and also at all regular points of ∂ D . The measure bµ
is called the balayage of µ onto ∂ D . It has the property that

(A.4) U bµ(z)≤Uµ(z)+ c(µ; D) for every z ∈C,

and also that

(A.5)
∫

h dµ=
∫

h d bµ

for any function h which is harmonic in D and continuous in D (including at infinity if D is un-
bounded). From its defining properties bµ has finite energy, therefore it cannot charge polar sets.
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Consequently, on solving the generalized Dirichlet problem [31, Thm. 4.1.5] for an arbitrary pos-
itive continuous function on ∂ D , it follows from (A.5) that the balayage of a probability measure
is a probability measure.

The minimal energy problem can also be formulated for signed measures [32, Thm. VIII.1.4].
In particular for E1, E2 two disjoint compact sets of positive capacity, there exists a unique measure
µ∗ =µ∗1−µ

∗
2, with µ∗1 ∈Λ(E1) and µ∗2 ∈Λ(E2), that minimizes the energy integral

(A.6) I [µ1−µ2] =
∫

log
1

|z − t |
d (µ1−µ2)(t )d (µ1−µ2)(z), µ j ∈Λ(E j ), j = 1,2.

It can be proved ([32, Lemma 1.8]) that I [µ∗] is positive and finite. The value cap(E1, E2) =
1/I [µ∗] is called the condenser capacity of the pair (E1, E2). Further, it holds that µ1 = bµ2 and
µ2 = bµ1, where bµ1 (resp. bµ2) indicates the balayage ofµ1 (resp. µ2) onto ∂ (C\E2) (resp. ∂ (C\E1));
this property in fact characterizes µ∗, see [32, Thm. VIII.2.6].

In analogy to the logarithmic case, one can define the Green potential and the Green energy
of a positive measure µ supported in a domain D with compact non-polar boundary. The only
difference is now that, in (A.1)-(A.2), the logarithmic kernel log(1/|z−t |) gets replaced by gD (z, t ),
the Green function for D with pole at t ∈ D . The Green potential relative to the domain D of a
finite positive measure µ compactly supported in D is given by

Uµ
D (z) =

∫

gD (z, t )dµ(t ).

It can be re-expressed in terms of the logarithmic potentials of µ and of its balayage bµ onto ∂ D
by the formula [32, Thm. II.4.7 and Thm. II.5.1]

(A.7) U bµ−µ(z) = c(µ; D)−Uµ
D (z), z ∈D ,

where c(µ; D)was defined after equation (A.3). Moreover, (A.7) continues to hold at every regular
point of ∂ D ; in particular, it holds q.e. on ∂ D .

Exactly as in the logarithmic case, if E is a compact nonpolar subset of D , there exists a unique
measure µ(E ,∂ D) ∈ Λ(E) that minimizes the Green energy among all measures in Λ(E). This
measure is called the Green equilibrium distribution on E relative to D . By (A.7) we have that

U
µ(E ,∂ D)

D (z) =Uµ(E ,∂ D)(z)−UÚµ(E ,∂ D)(z)+ c(µ(E ,∂ D); D), z ∈D , and q.e. z ∈ ∂ D ,

where Ùµ(E ,∂ D) is the balayage ofµ(E ,∂ D) onto ∂ D . In addition, the Green equilibrium distribution
satisfies

(A.8) U
µ(E ,∂ D)

D (z) =
1

cap(E ,∂ D)
, for q.e. z ∈ E ,

where cap(E ,∂ D) is Green (condenser) capacity of E relative to D which is the reciprocal of the
minimal Green energy among all measures inΛ(E). Moreover, equality in (A.8) holds at all regular
points of E .

For the reader’s convenience, we formulate below a proposition that was of particular use to us.
It has to do with the specific geometry of the disk, and we could not find an appropriate reference
for it in the literature. The proof of this proposition can be found in [34, Prop. A.1].

Proposition A Let E ⊂ D be a compact set of positive capacity not containing 0 with connected
complement, and E∗ stand for its reflection across the unit circle, i.e. E∗ := {z ∈ C : 1/z̄ ∈ E}.
Further, let µ ∈ Λ(E) and σ ∈ Λ(E∗) solve the signed energy problem for the condenser (E , E∗). Then,
we have that
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(a) σ is reflected from µ across the unit circle, i.e. σ(B) =µ(B∗) for any Borel set B, and likewise
µ is reflected from σ ;

(b) µ is the Green equilibrium distribution on E relative toC\E∗ and σ is the Green equilibrium
distribution on E∗ relative to C \ E;

(c) eµ= eσ , where eλ denotes the balayage of the measure λ on T. Moreover, the balayage of eµ onto
E is µ and the balayage of eµ onto E∗ is σ ;

(d) eµ is the Green equilibrium distribution on T relative to both C \ E and C \ E∗;
(e) µ is the Green equilibrium distribution on E relative to D and σ is the Green equilibrium

distribution on E∗ relative to C \D.
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