ON THE MULTIPLICITY OF SINGULAR VALUES OF HANKEL
OPERATORS WHOSE SYMBOL IS A CAUCHY TRANSFORM ON
A SEGMENT

MAXIM L. YATTSELEV

ABSTRACT. We derive a result on the boundedness of the multiplicity of the singular
values for Hankel operator, whose symbol is of the form

F(z) ::J dA®) +R(z),

z—1

where A is a complex measure with infinitely many points in its support which is con-
tained in the interval (—1, 1), and whose argument has bounded variation there, while R
is a rational function with all its poles inside of the unit disk. For that we use results on
the zero distribution of polynomials satisfying the orthogonality relations of the form

. w,, ()
t q,(1)Q(t)
J ’ 7,()
where Q is the denominator of R, s = deg(Q), g,(z) = z"q,(1/z) is the reciprocal
polynomial of g, and {w,,} is the outer factor of an n-th singular vector of 7.

dA(¢)=0, j=0,...,n—s—1,

1. INTRODUCTION

In the most general setting a Hankel operator is an operator acting on ¢, given in the
canonical basis by a matrix of the form {a;,;}; ;>0 with a; € C. Such a definition ad-
mits numerous realizations which, in turn, imply a wide range of applications of Hankel
operators. In particular, they appeared to be an extremely important class of operators
in approximation theory. The elaboration of the properties of Hankel operators from
the approximation view point initiated with the celebrated AAK-Theory that showed
the link between meromorphic approximation of L* functions and singular numbers of
the corresponding Hankel operators ([1], see also Chapter 4 of [2]). Later, this theory
was generalized to L? functions on the unit circle, 2 < p < oo (see [3], [4], and [5]), and
to more general domains of approximation (see [6]). Moreover, these methods turned
out to be instrumental for investigating the degree of rational approximation of analytic
functions (see [7], [8], and [9]) and helped to describe classes of analytic functions in the
disk (Besov spaces) in terms of the rate of rational approximation (see [10], [11], [12],
and [13]). In another connection, Hankel operators also play a significant role in oper-
ator theory. In particular, G. Pisier [14] (see also Theorem 15.3.1 in [2]) showed that
there are polynomially bounded operators on a Hilbert space that are not similar to a
contraction by using Hankel operators techniques. Further, it was shown that geometric
problems in the theory of stationary Gaussian processes can be reduced to the question
of describing those bounded linear operators on a Hilbert space that are unitary equiv-
alent to Hankel operators. A program of N.K. Nikolski to characterize such bounded
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linear operators in spectral terms (see [15]) was successfully completed in the self-adjoint
case (see [16]). In the course of the proof it was shown that the absolute value of dif-
ference of the multiplicities of symmetric eigenvalues of a Hankel operator (self-adjoint
or not) is bounded by one. Nevertheless the question of the boundedness of the mul-
tiplicities themselves remained open. The modest objective of the present paper is to
prove that the multiplicities of the singular values of Hankel operators whose symbol
is the Cauchy transform of a complex measure with argument of bounded variation is
bounded in terms of that variation. If moreover the measure is sufficiently nonvanishing,
the singular values are asymptotically simple.

This paper is organized as follows. In the next section we introduce some notation
and state the main results. The third section is devoted to known results that are crucial
for the proofs that are given in the last section.

2. STATEMENTS OF THE RESULTS

Denote by Hol(D) the set of analytic functions on a domain D C C. Among these
functions we shall distinguish some special classes, namely, the Hardy spaces. Let L?(T,)
stand for the space of p-summable functionson T, := {|z| =7 : z€ C}, r >0, with the
usual norm

1
I, = 5 | DO IE <00, if pe1o0)
? 27 T
/]l oo, = ess-supgp|h(rE)| < oo, if p=oo.

Hereafter, we shall omit the subindex r for the case of the unit circle, T. The Hardy
space of exponent p, p € [1,00], of the open unit disk, D, and the complement of the

closed unit disk, C \ D, are defined as

H? :={heHol(D): sup,_, [Ih]l,, <oo},

@.1) . )
H? :={h€Hol(C\D): sup,,Ihll,, <oo},

respectively. Sometimes it is necessary to consider only those functions from H? that

vanish at infinity. We shall denote this subspace of H? by H! .

By the Fatou theorem any function from H? or H?, p € [1,00], has nontangential
boundary values almost everywhere on T, which define the trace function. The trace of
any such function belongs to L?(T) for the corresponding index p, uniquely defines the
function, and has the L?(T) norm equal to the supremum in (2.1). Therefore we may
treat Hardy spaces as special classes of integrable functions on T. In particular, we have
that H2, H? C LX(T) and LX(T) = H* & H_.

Throughout the paper the capital letters H and K shall be reserved for the notation
of Hilbert spaces. Further, £ (H;K) will stand for the space of linear operators from H
to K.

Now we are ready to give a formal definition of Hankel operators acting on the
Hardy class H?. Let f € L>(T). The Hankel operator with symbol f, denoted by
A € Y(H?*;H}), is defined by the rule

Hy(h) =),

where 2_ is the antianalytic projection, i.e. the projection of L*(T) onto I—_IO2
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For n € Z ., the n-th singular number of the operator ¢} is defined as
s, (Hr) = inf{||%f —0||: 0:H* - I’-_I'O2 a linear operator of rank < n} ,

where ||| stands for the operator norm between two Hilbert spaces. Clearly {s,(7})},en
is nonincreasing sequence. By s () we shall denote the distance from ¢ to compact

operators, i.e.
()= Tim 5, ().

By the well-known theory of E. Schmidt (Theorem 7.1.1 in [17, Vol. I]), s is a singular
number of a compact operator 0 € £ (H;K) if and only if s? is an eigenvalue of the
operator 0*0, where 0* is the adjoint operator to 0.

Although {s,()} is nonincreasing, it is not necessarily strictly decreasing. Let
() stand for the multiplicity of s, (), i.e. u,(}) is an integer such that there

exist constants k, m € Z for which u,(#;)=m —k —1and
) > s () = oo =5, () = oo = 5, 1) > 5,

The main objective of this paper is to investigate the behavior of the sequence {u ()}
for Hankel operators whose symbol assumes some special form.

The starting point for the investigation of the question above is the celebrated theorem
of VM. Adamyan, D.Z. Arov, and M.G. Krein, also known as the AAK Theorem, ([1], see
also Chapter 4 of [2] and [3]) which establishes a connection between Hankel operators
and problems of approximation by meromorphic functions. The set of meromorphic
Sunctions in L*(T) with at most n poles in D is defined as
H>*:=H”B_',

n

where B, is the set of Blaschke products of degree at most n, i.e. the set of rational functions
of the form
m .
b(z):e”H L m<n, z;€D, ceR.

i=1 l—zz

This way of writing "¢ = h € H™ is just a trick to express that 5 is the ratio of an
analytic function which is bounded in D and a polynomial of degree at most 7, while

llglloo =I7l|o, since |o] = 1 everywhere on T.
The AAK Theorem states that for any f € L°(T) and » € Z_ we have

inf — =5 (S

and this infimum is attained for some function g, € H°. Further, assume that s, (5¢;) >
S-(7;) (in particular, this holds whenever f belongs to the Douglas algebra H* + C(T),

where C(E) stands for the space of continuous functions on a compact set E), then g, is
unique,

2.2) |f = g,l=5,(4;) ae.on T,
and

4 (v,)
23) f-g.= ’;v :

where v, is an arbitrary eigenvector of %f* H; associated to s, (). Any such function

v,,, normalized to have unit norm in H?, is called a singular vector associated to g,. We
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point out that each best approximant g, may have several associated singular vectors, but
there always exists one with inner-outer factorization

(2.4) v,(2)=b,(2)w,(z), z€D,

where b, is a Blaschke product of exact degree 7 and and w, is an outer function. Here,
one should recall the well-known fact [18] that any nonzero function in H? can be
uniquely factored as / = jw, where

1 (&E+2
‘w(z):exp{g £,

log If(ﬁ)lldé’l}

belongs to H? and is called the outer factor of f, while j has modulus 1 a.e. on T and is
called the inner factor of f. The latter may be further decompose as j =4S, where b is a
Blaschke product, while

E+z
dv
ey

is the singular inner factor associated with v, a positive measure on T which is singular
with respect to the Lebesgue measure. For simplicity, we often say that a function is
outer (resp. inner) if it is equal to its outer (resp. inner) factor. Equation (2.4) means,
in particular, that v, has no singular inner factor and that its inner factor is a Blaschke
product of degree 7.

Summarizing the preceding discussion we can see that the AAK Theorem not only
describes the error of best approximation of an L*(T) function by meromorphic ones,
but also provides a way to construct best approximants.

As mentioned before, we are going to consider only symbols of Hankel operators of
some special type, namely Cauchy transform of complex Borel measures. Let v be such
a measure with supp(v) C (—1, 1) that consists of an infinite number of points. We shall
assume that v has an argument of bounded variation, i.e the Radon-Nikodym derivative
with respect to |v| is of bounded variation, where |v| stands for the total variation of v. In
other words, v is of the form

$(z) :exp{—

dv(x) = e!@809)d|v| (x),

for some real-valued argument function arg(v;-) such that

N

V (arg(v;-); supp(v)) := sup Z |arg(v;x;) —arg(v;x;_y)| ¢ <oo,
=1

where the supremum is taken over all finite sets of points x, < x; < ... < xp from
supp(v) as N ranges over N. Note that we may extend arg(v;-) to the whole convex hull
of supp(v), say [c,d], without increasing the variation. This is easy to see if we extend
arg(v;-) linearly in each component of [c,d] \ supp(v). In other words, we may arrange
the extension of arg(v;-) so that

V(arg(v;-);supp(v)) = V(arg(v;-); [, d]).
Let # € C(E). We put

)
arg(u,z)_—dog(l%(z)l) , z€E
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Clearly, arg(#;-) is a multi-valued function which is defined everywhere on E except at
the zeros of #. Thus, we shall specify which branch is used on each particular occasion.
Now, we are ready to state main theorems.

Theorem 2.1. Let F € C(T) be of the form
dA(x)

zZ—X

2.5) F(z) ::J + R(z),

where the measure A has infinitely many points in its support contained in the interval (—1,1)
and an argument of bounded variation, while R = P | Q is a rational function with no poles
on T. Then the sequence of multiplicities of singular values of the Hankel operator ¢,
{1, (A} ez, > 15 uniformly bounded. More precisely, the following upper bound holds for
anyn€Z,:

2
pn(Hy) = —[V(arg(A);[a, b]) + V(arg(Qs )i [a, b]) + m deg(Q) + V]
(2.6) +N, +1,
where [a, b] is the convex hull of supp(A),

(2.7 N, = ;ré%x#{feT: w,(§)=0},
2.8) Vy = suZp V(arg(w,;-); [a,b]),

and w,, is the outer factor of a singular vector v, with exactly n zeros in D associated to g,,,
the best meromorphic approximant to F of order n given by the AAK-Theory.

The finiteness of the constants N, and V,, will be shown during the proof the theo-
rem.

It is worth noting that in the case where F is just a Markov function, i.e., the Cauchy
transform of a positive measure supported on the real line, all the singular values of the
corresponding Hankel operator are simple (see [19]). This phenomenon is due to the
positivity of the measure and cannot be expected to hold in the complex case. Never-
theless, in the case where F is the Cauchy transform of a complex measure supported on
an interval that has a Dini-continuous nonvanishing Radon-Nykodim derivative with re-
spect to the logarithmic equilibrium distribution on this interval, it is possible to deduce
more detailed information on the sequence of outer factors {w,}, which, in turn, can be
used to show that singular values of the corresponding Hankel operator are asymptoti-
cally simple.

Theorem 2.2. Let F € C(T) be of the form (2.5), where the measure A is such that
{(x)dx
(x—a)y(b—x)’

with { being complex-valued Dini-continnous nonvanishing function on [a,b] having an
argument of bounded variation, while R is a rational function with no poles on T or [a, b].

Then
(2.10) lim p,(56:)=1.

n—o0

(2.9) dA(x) = , a,8€(0,1/2], x€la,b]lC(-1,1),

The proofs of the theorems rely on two known results that are significant on their
own. For the ease of the reader we present them separately in the next section.
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3. KERNELS OF TOEPLITZ OPERATORS AND MEASURES ORTHOGONAL
TO POLYNOMIALS

This section is devoted to known results on the spectrum of Toeplitz operators and
on the size of the variation of an argument of a measure orthogonal to polynomials up
to some fixed degree.

Before we state these results we need to introduce several additional concepts. Let,
as before, f € L*(T). Recall that the Toeplitz operator with symbol f, T, € £ (H 2), is
defined as

7,(h) = 2,(f D).
It is easy to see that
Ty + Ay =My,

where ./, : H> — [*(T) is the operator of multiplication by f. Recall also that an
operator 0 € £ (H) is called Fredholm if it is invertible modulo compact operators. The
index of a Fredholm operator O is defined by

ind(@) := dimker(0) — dim ker(0™).
The essential spectrum, o,(0), of a bounded operator @ is, by definition,
0(0):={z€C: 02z isnot Fredholm}.

The next notion that we need is the notion of the winding number with respect to the
origin of a continuous function on T. Let # € C(T) and assume that # does not vanish
on T. Further, let arg(#;-) be any continuous branch of the argument of #. Then the
winding number of # with respect to the origin is defined by

wind(#) := % [arg(u;27) — arg(#;0)] .

Clearly wind(#) does not depend on the choice of the branch of the argument of #.

In general, let # be an invertible function in H* + C(T), i.e. 1/u € H* + C(T).
Denote also by # the harmonic extension of # into D. Then it is known (see Theorem
3.3.5 in [2]) that there exists 7, € (0,1) such that |#| is bounded away from zero on the
annulus {z : 7y < |z| < 1} and functions #,(§) := u(r¢{), £ € T, have the same winding
number for any r € (ry,1). Thus, for any invertible function # in H* 4+ C(T) we define
the winding number as

wind(#) :=wind(#,), 7 €(r,,1).

Now we can describe the essential spectrum of a Toeplitz operator (see Theorem 3.3.8 in

[2]).

(Theorem P). Let u € H*® + C(T). Then for any zy ¢ 0.(7,)
(3.1 ind(7, — z,.#) = —wind(# — z;).
Moreover, if u is a continnous function then o ,(7,) = u(T).

We continue this section with the result on a size of the variation of a measure. It was
stated in Lemma 3.1(2) in [20] and shown in the course of the proof of Lemma 3.2 in
[21].



ON THE MULTIPLICITY OF SINGULAR VALUES OF HANKEL OPERATORS 7

(Lemma B). Let v be a measure with an argument of bounded variation, [c,d] be the
convex hull of supp(v), and ¢ be a real-valued function of bounded variation on [c,d].
Suppose further that for some | € N holds

J X e?Ody(x)=0, j=0,...,]—1.

Then
6. V(§+arg(s [0, d]) > I

Recall that any branch of the argument of v can be continued to the whole interval
[c,d] without increasing its variation and therefore V(¢ +arg(v;-); [¢c,d]) is well-defined.

4. PROOFS

For the upcoming proofs we need to define one more concept, namely, the angle in
which an interval is seen at a point. For any £ # 0 € C, we let Arg(§) € (—m, 7] be
the principal branch of the argument and for & = 0 we set Arg(0) = 7. Under such
a definition, Arg(-) becomes a left continuous function on R. Now, for any interval
[4,6] C R we define the angle in which this interval is seen at £ € C by

Angle(&,[a,b]):=|Arg(a — &) — Arg(b — )|
It is easy to see that for any & ¢ D and any [a, 5] C (—1,1) there holds
Angle(&,[a,b]) < /2.

Proof of Theorem 2.1. Fix an arbitrary n € Z . Without loss of generality we may assume
that s, () > s,(7). Denote by g, the best meromorphic approximant to F on T
out of H° (recall that g, is unique by the compactness of 7). Then, the by circularity
property (2.2), the function

u, = 5,(A) T (F = g,)

is unimodular almost everywhere on the unit circle. It is known (Theorem 4.1.7 in [2])
that in this case

dimker(7, )=2n+ @, (7).
It is also known (Theorem 3.1.4 in [2]) that either ker(7,) = {0} or ker(7*) = {0} for
any nonzero function from L*(T). Thus,
(4.1) ind(7, ) =dimker(7, )=2n+ u, (7).
Therefore, upon showing that #, is a continuous and nonvanishing function on T, we
will obtain from (4.1) and (3.1) that
(4.2) U, (H)=—2n—wind(n,)).
Indeed, in this case zero does not belong to 0,(T,, ) = #(T) and we may apply Theorem

P. To show continuity of #, recall from (2.3) that by the AAK Theorem there exists a
singular vector v, € H? with the inner-outer factorization

4.3) v, =b,w,,

where b, is a Blaschke product of exact degree 7 and w, is an outer function, such that
Hp(v

(4.4) n, = r(©).
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Moreover, it is known (see e.g. Sections 8 and 9 in [3]) that % (v,) has the following
representation

AN _
43) (00 = 272 (b, (3), zee\B,

z

where j is some inner function.
In another connection, by the definition of Hankel operators and (2.5) we have that

1
Hw)e) = P.(F0,)e >=% j By
_ RE,(©)
N 2ﬂ1fJ z— —x <)d5 ﬂqur z—¢ - *
_ ) _
4.6) - Jz_xcu )o@ “€C\P.

where R = P/Q. Note that the second 1ntegral in (4.6) is, in fact, a rational function with
denominator Q by the Cauchy integral formula. Combining (4.5) and (4.6) we get that

0,(X) —— 1 JP@)@,Z@ dg’) )
T

1-&z Q&)
Observe that the right-hand side of (4.7) is well-defined for z € ), where
4.8) Q:=C\ <{z eC: Q/2)=0}| JizeC: 1/z¢ supp(A)}) .

In other words, equation (4.7) provides an analytic continuation of the product j,5,w,
outside of the unit disk. In particular, this means that j, is a finite Blaschke product and
the number of zeros of w, on T is finite. Let {C; ,} be the set of zeros of w, on T. Then

() +

1—xz 271

(47) (]n bn wn)(z) = Sn(%F)_l (J

w, can be written as
4.9) w,(2)=wl(2)P,(2), P,(2):=]](z=¢.,),

where @ is an analytic and zero-free function in some neighborhood of D. Then (4.4)

with the help of (4.3), (4.5), and (4.9) yields

s (A6 'nbn‘w# 3
o) = I Dt )1__[<— : >

o mee T
4.10 - — , £eT.
19 fo v L\ 7 ) e

Equation (4.10) shows that #, is a continuous nonvanishing function on T which, in
turn, validates equation (4.2).

Denote by Q,, the numerator of the Blaschke product j, . Then we obtain from (4.10)
that

(4.11) wind(#,) = —1—deg(P,) — deg(Q,) — 21,



ON THE MULTIPLICITY OF SINGULAR VALUES OF HANKEL OPERATORS 9

# is zero-free and analytic in some neighborhood of D. Combining (4.11) and

since w!
(4.2) we get that
(#.12) Y () = deg(Q,) +deg(P,) +1 < deg(Q,) + Ny + 1,

where N,, was defined in (2.7). Thus, to prove (2.6) it remains to show that

2
(#.13) kb, :=deg(Q,) < - (V(arg(4;-); [, b]) + V(arg(Q;); [4, £]) + m deg(Q) + V7))

and that the constants N,,, and V,,, are finite. Recall that V., was defined in (2.8).

It is known (Lemma 3.4 in [20], Proposition 6.3 in [22], and Theorem 10.1 in [3])
that the sequence {w,,},,c; forms a normal family in €2, where Q2 was defined in (4.8).
Moreover, the zero function is not a limit point of this family, since ||w,,||, = 1 for each
m € Z, . This proves the finiteness of N,

Now, recall that j,, can be represented as j, = Qn/én, where we set 5(z) = z* p(1/z),
k = deg(p), for any polynomial p. Similarly we can write b, = ¢q,/q,, where g, is a
monic polynomial with all zeros in I and of exact degree n. Let z, € D be such that
(4,Q,,)(z5) =0. Then we deduce from (4.7) that

v,(x) L [ P&)v,(&) d&
f Tz, A+ L—l-szo PG

1—x2z, 27i
By taking linear combinations of equation (4.14) with different roots of g, and Q, we
obtain that

(4.14)

PO gy L L[ PEPERE) &

L,Q,) 2l g,€)Q,6) Q)
for any polynomial p of degree at most n+k, — 1. It can be readily verified that equation
(4.15) and the Cauchy integral theorem imply the following orthogonality relations

(4.15)

]
(4.16) f Md/l(x)zo, J=0,...,n+k, —deg(Q)—1.
3,(x)Q,(x)
By using the inner-outer factorization (4.3) we can rewrite (4.16) in the form
(4.17) J x/qn(x)Mdi(x) =0, j=0,...,n+k,—deg(Q)—1.
7,(x)Q,(x)

Then the bound (3.2) of Lemma B together with orthogonality relations (4.17) yields

(4.18) (n+k,—deg(Q))x <V | arg M;- +arg(A;-);[a, 0] |,
q,(x)Q,(x)

where [a, b] is the convex hull of the measure A. It follows from the normality of the
family {w,,} mz, 0§ that the sequence {V(w,,; [a, b])}m€Z+ is uniformly bounded, i.e.

V., is finite. Therefore by (4.18) and the sublinearity of V(-;[4, £]) we obtain
(n+k,)m < V(arg(A-);[a,b])+ V(arg(Q;-); [4, £]) + m deg(Q) + Vyy,

(4.19) +V <arg <ZQ—",> ;[a,b]) +V <arg (Qn;) ;[n,b]) .

n
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n
j=1

(4.20) v <arg <;’q”;-> [a, b]> < iAngle(é’M, [4,b]).

n j=1

Write ¢,(z) = (z—=¢; ). It was shown in Lemma 5.2 in [21] that

By writing the polynomial Q, in the form Q,(z) = Hf”zl(z =17, ,) We obtain from the

monotonicity of Angle(:, [4, £]) that

A
.M@N

V (arg (@i-) sl 1) V (arg(- = 1/7;,,).[a, b])

1

-
Il

. ) ko
Angle(1/7; ,,[a,b]) < —,

4.21
@.21) > :
]

I
Mar-

since 7); , €D forall j =1,...,k,. Combining (4.19), (4.20), and (4.21) we get that

i k,
2 (7= Angle(E,,, [, b)) + == < Vi(arg(h-);[a,5])+ V(arg(Qs )[4, £])
j=1
(4.22) +mdeg(Q)+V,,.
The last inequality proves (4.13) and therefore the assertion of the theorem. O

Proof of Theorem 2.2. Let F be given by equation (2.5) and A be a subsequence of natural
numbers defined by the rule

A={neN:s, [(H;)>s,(7)},

where s () stands, as before, for the n-th singular value of the Hankel operator with
symbol F. It is obvious that we may apply the preceding theorem for a measure of the
form (2.9). Namely, it can be deduced from equations (4.9) and (4.12) that

(4.23) w, () <deg(Q,)+#{E €T: w,({)=0}+1, n€A,

where j, = Q,/Q, and w, were defined in (4.3)-(4.5), with v, being a singular vector
with exactly 7 poles associated to the best meromorphic approximant to F of order 7.
It is shown in Theorem 1 in [23] that in the case where the measure A is of the form
(2.9), the sequence {7, w,} is not only a normal family in 2, where Q was defined in (4.8),
but also is locally uniformly convergent to the function
c
w(z)= )

(1—az)(1-bz)

where c¢ is some positive constant. This, in particular, means that

lim#{{ €T: w,({)=0}=0

n—o0o

and for 7 large enough j, = 1. Combining equation (4.23) with these two observations
we get (2.10). This proves the theorem. O
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