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ABSTRACT. Remez-type inequalities provide upper bounds for the uniform norms of
polynomials p on given compact sets K , provided that |p(x)| ≤ 1 for every x ∈ K \ E ,
where E is a subset of K of small measure. In this paper we prove sharp Remez-type
inequalities for homogeneous polynomials on star-like surfaces in Rd . In particular, this
covers the case of spherical polynomials (when d = 2 we deduce a result of T. Erdélyi for
univariate trigonometric polynomials).

An important question of constructive function theory is the study of the rate of
change of polynomials. For instance, given a polynomial p and a compact set K one is in-
terested in the size of p outside of K under the assumption that ‖p‖K :=maxx∈K |p(x)|=
1. This problem has been widely studied both for real polynomials (Chebyshev-type in-
equalities) and complex polynomials (Bernstein-Walsh-type inequalities). An equally in-
teresting dual problem consists in estimating the size of the polynomials inside the given
set under the same normalization. In other words, we are interested in lower bounds for
‖p‖K\E provided that ‖p‖K = 1 and E is a subset of K of small Lebesgue measure. This
is the so-called Remez-type problem for polynomials. Such estimates turned out to be
instrumental in proving Markov-Bernstein-type inequalities for derivatives of polynomi-
als and Nikolskii-type inequalities comparing the size of polynomials in different norms.
Hence they are considered a basic tool in approximation theory.

Let P d
n be the space of polynomials of d real variables and total degree ≤ n, µd (·)

stands for the Lebesgue measure in Rd , d ≥ 1, K ⊂Rd is a compact set. Then the Remez
problem outlined above consists in estimating the quantity

(1) R∗n(K ,δ) := sup

(

‖p‖K

‖p‖K\E
: p ∈ P d

n , E ⊂K , µd (E)≤µd (K)δ
d

)

, 0<δ < 1.

Thus R∗n(K ,δ) measures how small is ‖p‖K\E relative to ‖p‖K if E ⊂ K is a subset of
measure≤µd (K)δ

d . The main goal is to estimate R∗n(K ,δ) in terms of n and δ. Clearly,
R∗n(K ,δ) tends to 1 when δ tends to 0 for every fixed n and “fat” compact set K , but
finding the exact rate of this convergence is a nontrivial matter. (Recall, that K is called
fat if the closure of its interior coincides with K .)

2000 Mathematics Subject Classification. 41A17, 31A15.
Key words and phrases. Remez-type inequalities, homogeneous polynomials, star-like surfaces, logarithmic

potential, equilibrium measure, Fekete polynomials.
The research by the first author was conducted while visiting the Center For Constructive Approximation

at Vanderbilt University. Supported by the OTKA grant #T034531. The research of the second author was
supported, in part, by the U.S. National Science Foundation grant DMS-0296026.

1



2 A. KROÓ, E.B. SAFF, AND M. YATTSELEV

The first result related to the above problem was given by Remez [R] who showed
that when d = 1 and K = [0,1] we have

R∗n([0,1],δ) = Tn

�

1+δ

1−δ

�

,

where Tn(x) := 1
2{(x +

p

x2− 1)n + (x −
p

x2− 1)n} is the Chebyshev polynomial of
first kind. This yields that for 0<δ < 1/2

(2)
1

n
log R∗n([0,1],δ)�

p
δ.

Extensions of this result were given for trigonometric polynomials (Erdélyi [E]), com-
plex polynomials (Erdélyi-Li-Saff [ELS]), and multivariate polynomials of total degree
≤ n (Brudnyi-Ganzburg [BG], Kroó-Schmidt [KS], Kroó [K1]).

In this paper we shall study the multivariate Remez problem for homogeneous polyno-
mials. Homogeneous polynomials arise naturally as the approximating tool in problems
related to neural networks and approximation by ridge functions (see e.g. [K2], [LP]).
This leads to the necessity of extending the classical polynomial inequalities to homoge-
neous polynomials, with the Remez inequality being one of the basic ones.

Let H d
n := {

∑

|k|1=n akxk,ak ∈R}, x ∈Rd , be the space of homogeneous polynomials
of d variables and degree n. (Here |k|1 stands for the `1-norm of k ∈ Zd

+. For x ∈Rn we
denote by |x| the `2-norm.) A natural domain for the study of homogeneous polynomials
is a star-like surface. Let r : Sd−1→R+ be a continuous even mapping of the unit sphere
Sd−1 := {x ∈ Rd : |x| = 1} into the positive real axis R+. Then a star-like surface and a
star-like domain corresponding to r are defined, respectively, by

∂ Kr := {u r (u) : u ∈ Sd−1}
Kr := {tx : x ∈ ∂ Kr , t ∈ [0,1]}.

We shall say that r ∈ LipMα, 0<α≤ 2, if for every x1,x2 ∈ Sd−1

|r (x1)− r (x2)| ≤M |x1− x2|
α if 0<α≤ 1

|∇r (x1)−∇r (x2)| ≤M |x1− x2|
α−1 if 1<α≤ 2.

(Naturally, if 1<α≤ 2 the existence of the gradient∇r of r is assumed.)
It is shown in [K1] that for r ∈ LipMα and 0<δ < 1/2 we have

(3)
1

n
log R∗n(Kr ,δ) =O

�

δαd/(2d+2α−2)
�

and this estimate is sharp, in general. Note that if Kr is convex (so that α = 1), then the
upper bound of (3) is the same as in (2). Moreover, in case when α = 2 (C 2-domain) we
get from (3) that

1

n
log R∗n(Kr ,δ) =O

�

δ
d

d+1

�

.

The above estimates provide sharp Remez-type results for polynomials in P d
n .

Now we shall introduce a quantity similar to (1) for homogeneous polynomials on
a star-like domain Kr . Since the norm of homogeneous polynomials is attained on the
boundary ∂ Kr of Kr , the exceptional set E should be a subset of ∂ Kr , and its size will
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be measured by its Lebesgue surface measure sd−1(E) in Rd . Now set for any 0<δ < 1

Rn(Kr ,δ) := sup

(

‖h‖∂ Kr

‖h‖∂ Kr \E
: h ∈H d

n , E ⊂ ∂ Kr , sd−1(E)≤ sd−1(∂ Kr )δ
d−1

)

,

ϕα(δ) :=







δα, 0<α < 1
δ log 1

δ
, α= 1

δ, 1<α≤ 2.

Our main result is the following.

Main Theorem. Let Kr ⊂ Rd (d ≥ 2) be a star-like domain with r ∈ LipMα, 0 < α ≤ 2.
Then with some c1 > 0 independent of n and δ we have

(4)
1

n
log Rn(Kr ,δ)≤ c1ϕα(δ), 0<δ ≤ 1/2.

Moreover, this estimate is sharp in the sense that a similar lower bound holds for certain Kr
as above.

Clearly, whenever Kr is a convex body, then r ∈ LipM 1 with some M depending on
Kr . This leads to

Corollary 1. For any 0-symmetric convex body K in Rd ,

1

n
log Rn(K ,δ)≤ c1δ log

1

δ
, 0<δ ≤ 1/2.

Remark. Note that (4) is better that (3) by roughly a square root factor. For instance,
for α= 1 (i.e. convex surface)

1

n
log Rn(Kr ,δ) =O

�

δ log
1

δ

�

while for α= 2 (smooth surface) we have

1

n
log Rn(Kr ,δ) =O(δ).

This improvement of the rate of the Remez function Rn(Kr ,δ) is related to the special
algebraic structure of homogeneous polynomials.

Consider the space of spherical polynomials P d
n (S

d−1), where Q(K) denotes the re-
striction of functions from Q to the subset K ⊂ Rd . It is known that P d

n (S
d−1) =

H d
n (S

d−1) + H d
n−1(S

d−1), i.e., any p ∈ P d
n equals on Sd−1 the sum of 2 homogeneous

polynomials of degrees n and n − 1 (see [Re], p. 43). Moreover, one of the homoge-
neous polynomials is even and the other one is odd. Thus, if p ∈ P d

n (S
d−1) and |p| > 1

on a subset of Sd−1 of measure at most δd−1, then it is easily seen that the moduli of
the corresponding homogeneous polynomials can exceed 1 on sets of measure at most
2δd−1. Hence the above theorem implies the following Remez-type inequality for spher-
ical polynomials
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Corollary 2. If p ∈ P d
n (S

d−1) and sd−1

¦

x ∈ Sd−1 : |p(x)|> 1
©

≤ δd−1, then

‖p‖Sd−1 ≤ exp{cnδ},

where c > 0 depends only on d .

Note that for d = 2 (univariate trigonometric polynomials) this result was obtained
by T. Erdélyi [E].

The proof of the main result will be based on several lemmas. First we shall need some
auxiliary geometric results which will reduce the problem to the study of 2-dimensional
“diamond-shaped” domains (Lemmas 1—3). Then the problem will be transformed to a
Remez-type problem for weighted univariate polynomials on R. The study of this prob-
lem will require potential-theoretic methods (Lemmas 4—7).

Lemma 1. Let K ⊂ Rd be a compact set with µd (K) = 1, d ≥ 3, 0 < δ < 1. Then for
any E ⊂ K with µd (E) ≤ δd−1 and any x∗ ∈ K there exists a 2-dimensional plane L∗2 pass-
ing through 0 and x∗ such that µ2(E ∩ L∗2)≤ cKδ , where cK > 0 depends only on K .

Proof. We may assume that x∗ = (1,0, . . . , 0). Any x = (x1, x2, . . . , xd ) ∈ Rd can be
written in cylindrical coordinates as x = (x1,ρ,ϕ), where x1,ρ ∈ R, ϕ ∈ T d−2 :=
[−π/2,π/2]d−2, and (ρ,ϕ) are the spherical coordinates in Rd−1. Clearly, there exists
an a > 0 such that x1,ρ ∈ [−a,a] whenever x ∈K . Then, using that µd (K) = 1, we get

µd (E) =
∫

T d−2

∫ a

−a

∫ a

−a
χE (x1,ρ,ϕ)|ρ|d−2J (ϕ)d x1dρdϕ

≤ δd−1 = δd−1
∫

T d−2

∫ a

−a

∫ a

−a
χK (x1,ρ,ϕ)|ρ|d−2J (ϕ)d x1dρdϕ

where χE and χK are the characteristic functions of E and K , respectively, and ρd−2J (ϕ)
is the Jacobian of the spherical transformation in Rd−1; J (ϕ) ≥ 0, ϕ ∈ T d−2. Therefore,
for some ϕ∗ ∈ T d−2,

∫ a

−a

∫ a

−a
χE (x1,ρ,ϕ∗)|ρ|d−2dρd x1 ≤ δd−1

∫ a

−a

∫ a

−a
χK (x1,ρ,ϕ∗)|ρ|d−2dρd x1

≤ c ′Kδ
d−1.(5)

Fixing this ϕ∗ we get a 2-dimensional plane L∗2 := {x ∈ Rd : x = (tx∗,ρu∗), t ,ρ ∈ R},
where u∗ is a point on Sd−2 with spherical coordinates ϕ∗. It is clear that x∗,0 ∈ L∗2.

Now set γ (t ) :=µ1{ρ : χE (t ,ρ,ϕ∗) = 1}. Then

µ2(E ∩ L∗2) = µ2 {(t ,ρ) : χE (t ,ρ,ϕ∗) = 1}

=
∫ a

−a

∫ a

−a
χE (t ,ρ,ϕ∗)dρd t =

∫ a

−a
γ (t )d t .(6)
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Then by (5), (6) and Hölder’s inequality, we have

c ′Kδ
d−1 ≥

∫ a

−a

∫ a

−a
χE (t ,ρ,ϕ∗)|ρ|d−2dρd t ≥ 2

∫ a

−a

∫ γ (t )/2

0
ρd−2dρd t

≥
∫ a

−a

γ (t )d−1

2d−2(d − 1)
d t ≥

c ′′K
2d−2(d − 1)

�
∫ a

−a
γ (t )d t

�d−1

.

Thus, using (6),

µ2(E ∩ L∗2) =
∫ a

−a
γ (t )d t ≤ cKδ.

�
Let K :=Kr ⊂Rd be a star-like set and denote by

fK (x) := inf{β> 0 : x/β ∈K}=
|x|

r (x/|x|)

the Minkowski functional of K . We shall say that K is regular if fK is continuously dif-
ferentiable on its boundary ∂ K . Note that fK (x) ≤ 1 if and only if x ∈ K , fK (x) = 1
for x ∈ ∂ K , fK (tx) = t fK (x), t > 0, and thus fK (x) = 〈∇ fK (x),x〉 and (∇ fK )(tx) =
∇ fK (x), t > 0, x 6= 0.

Set e j = (δi j )
d
i=1 ∈ R

d , 1 ≤ j ≤ d . (As usual δi j = 0 if i 6= j , and δi i = 1.) Fur-
thermore, if L : Rd → Rd is a regular linear transformation, that is L is a nonsingular
matrix, then ‖L‖ stands for its `2-norm, L(D) := {Lx : x ∈ D}, D ⊂Rd . In addition, for
a star-like set K , put

M (K) := sup{|x| : x ∈K},
m(K) := inf{|x| : x ∈ ∂ K},

M ∗(K) := sup{|∇ fK (x)| : x ∈ Sd−1}.

Lemma 2. Let K ⊂ Rd be a star-like set such that ∇ fK exists and is bounded on Sd−1. For
any y = (y1, . . . , yd ) ∈ ∂ K there exists a regular linear transformation L : Rd → Rd and a
star-like set D such that L(D) = K , Le1 = y, ∇ fD (e1) = e1, and ‖L‖,‖L−1‖ ≤ c0 with some
c0 > 0 depending only on M (K) and M ∗(K).

Proof. Without loss of generality we may assume (using a rotation) that ∇ fK (y) = te1,
t > 0. Note that whenever x ∈Rd we have

(7) 〈∇ fK (x),x〉=Dx fK (x) = fK (x).

Hence, using that fK (y) = 1 for y ∈ ∂ K ,

(8) 1= 〈∇ fK (y),y〉= t y1,

that is, y1 > 0. Now, define L :Rd →Rd by

(9) Le1 = y, Le j = e j , 2≤ j ≤ d .

Clearly, D := L−1(K) is star-like and we have by (8)

M (K)≥ |y| ≥ y1 =
1

t
=

1

|∇ fK (y)|
≥

1

M ∗(K)
.
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It is a routine exercise to verify that ‖L‖,‖L−1‖ ≤ c0 with a c0 > 0 depending only on
M (K), M ∗(K). Moreover, if D := L−1(K), i.e., L(D) = K , then fD (x) = fK (Lx), and
∇ fD (x) = LT∇ fK (Lx). Hence, by (9), for any 2≤ j ≤ d ,

¬

∇ fD (e1),e j

¶

=
¬

LT∇ fK (Le1),e j

¶

=
¬

∇ fK (y), Le j

¶

=
¬

te1,e j

¶

= 0.

Thus∇ fD (e1) = λe1 where, by (7) and (9),

λ= 〈∇ fD (e1),e1〉= fD (e1) = fK (Le1) = fK (y) = 1.

�
Lemma 3. Let K ⊂R2, K = {(ρcosϕ,ρ sinϕ) : 0≤ ρ≤ r (ϕ), 0≤ ϕ ≤ 2π}, where r > 0,
r ∈ LipMα, 0< α ≤ 2 on [0,2π], r ′(π/2) = 0, when 1< α ≤ 2. Assume that r (π/2) = 1.
Then there exists an a > 0 depending only on M , α, m(K), M (K) such that

Kα :=
¦

(x, y) ∈R2 : y > 0, yα ≤ 1− a|x|α
©

⊂K .

Proof. Let first 0<α≤ 1. Set a := 3(M + 1)r−α0 , where r0 := m(K). Moreover, set

K1 :=
¦

(x, y) ∈R2 : 0≤ y ≤ 1− a|x|α
©

.

Assume that for some (x, y) ∈ ∂ K ∩ K1, (x, y) 6= (0,1). Then x = r (ϕ)cosϕ,
y = r (ϕ) sinϕ, 0≤ ϕ ≤π, ϕ 6=π/2 and 0≤ y ≤ 1− a|x|α. Consequently,

a|x|α ≤ |y − 1|= |r (ϕ) sinϕ− 1| ≤ |r (ϕ)− 1|+ | sinϕ− 1| ≤M
�

�

�

�

π

2
−ϕ
�

�

�

�

α

+
�

�

�

�

π

2
−ϕ
�

�

�

�

≤
π

2
(M + 1)

�

�

�

�

π

2
−ϕ
�

�

�

�

α

≤ (M + 1)
5

2
|cosϕ|α ≤

5

2

(M + 1)

r α0
|x|α,

which is impossible by the choice of a. Hence we have that K ⊃K1 ⊃Kα.
In the case 1 < α ≤ 2 we set a := 9(M Rα−1

0 + 1)r−α0 , where R0 := M (K). Then the
assertion will follow from the estimates

a|x|α ≤ |y − 1| ≤ |yα− 1|= |r α(ϕ) sinαϕ− 1| ≤ |r α(ϕ)− 1|+ | sinαϕ− 1|

≤ αRα−1
0 |r ′(ξ )− r ′(π/2)|

�

�

�

�

π

2
−ϕ
�

�

�

�

+α| sinα−1 ζ cosζ |
�

�

�

�

π

2
−ϕ
�

�

�

�

≤ αM Rα−1
0

�

�

�

�

π

2
−ϕ
�

�

�

�

α

+α
�

�

�

�

π

2
−ϕ
�

�

�

�

2

≤ 8

�

M Rα−1
0 + 1

�

r α0
|x|α,

where ξ ,ζ are some constants between ϕ and π/2.
�

Let ω be a nonincreasing positive continuous function on [0,1], 0 < δ < 1, and let
T ω,δ

n

�

t 2� be the normalized Chebyshev polynomial of degree 2n on Aδ := [−1,−δ]∪
[δ, 1] with the weightω (|t |) , i.e.

�

�

�T ω,δ
n

�

t 2
�

ω(|t |)
�

�

�≤ 1, t ∈Aδ , degT ω,δ
n (·) = n,

and there exist n+ 1 points δ ≤ y0 < · · ·< yn ≤ 1 such that

T ω,δ
n

�

y2
j

�

=
(−1)n− j

ω(|y j |)
, j = 0, n.
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This polynomial exists by the Chebyshev theorem, since {t kω(|t |)}n−1
k=0

forms a T-system
(cf. [KSt]) on [0,1].

Denote by Pn(δ) the set of real univariate algebraic polynomials of degree ≤ n such
that

µ1

n

t ∈ [−1,1] :
�

�

�ω(|t |)p
�

t 2
�

�

�

�≥ 1
o

= 2δ.

Then the following lemma holds:

Lemma 4. Let ω, T ω,δ
n ,Pn(δ) be defined as above. Then for any p ∈Pn(δ)

(10) |p(0)| ≤ |T ω,δ
n (0)|.

Proof. Denote by eE := {t ∈ [0,1] : ω(t )|p(t 2)| ≤ 1}, E+ := [0,1] \ eE . Clearly, µ1(E
+) =

δ,µ1( eE) = 1−δ. Letψ be the transformation of [0,1] shifting eE to the right onto [δ, 1]
(or equivalently shifting E+ to the left into (0,δ).) That is,

ψ(x) :=
¨

1−µ1{t ∈ eE : t > x}, x ∈ eE
δ −µ1{t ∈ E+ : t > x}, x ∈ E+.

It is easy to see that ψ is a monotone increasing mapping of eE onto [δ, 1], ψ(x)≥ x,
x ∈ eE , and ψ(y)−ψ(x)≤ y− x for x, y ∈ eE , y > x. Let x0 < · · ·< xn be points in eE such
that y j = ψ(x j ), 0 ≤ j ≤ n. From the properties of ψ we deduce that y j = x j +δ j with
δ j ≥ 0 and δk ≥ δ j whenever k < j .

By Lagrange interpolation formula we have

(11) |p(0)|=

�

�

�

�

�

�

n
∑

j=0

p(x2
j )

n
∏

k=0,k 6= j







−x2
k

x2
j − x2

k







�

�

�

�

�

�

≤
n
∑

j=0

1

ω(|x j |)

n
∏

k=0,k 6= j







x2
k

|x2
j − x2

k |






.

Since xk < x j and δk ≥ δ j whenever k < j , we have for y j = x j +δ j and yk = xk +δk ,

(12)
x2

k

x2
j − x2

k

≤
y2

k

y2
j − y2

k

.

Inequality (12) implies that for k > j we have

(13)
x2

k

x2
k − x2

j

= 1+
x2

j

x2
k − x2

j

≤ 1+
y2

j

y2
k − y2

j

=
y2

k

y2
k − y2

j

.

Hence combining inequalities (11), (12), and (13) we obtain

|p(0)| ≤
n
∑

j=0

1

ω(|y j |)

n
∏

k=0,k 6= j







y2
k

|y2
j − y2

k |






=

n
∑

j=0

(−1)n− j

ω(|y j |)

n
∏

k=0,k 6= j







y2
k

y2
j − y2

k







=
n
∑

j=0

T ω,δ
n (y2

j )
n
∏

k=0,k 6= j







y2
k

y2
j − y2

k






= |T ω,δ

n (0)|.

�
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For the next needed lemma we shall appeal to potential theory.

Lemma 5. Suppose that for some α and δ with α > 0 and 0<δ < 1 there holds

(14)
|Pn(x)|

(1+ |x|α)n/α
≤ 1 for δ ≤ |x| ≤ 1,

where Pn is a polynomial of degree at most n. Then

(15) |Pn(0)| ≤ en gα(δ),

where

(16) gα(δ) :=
1

απ

∫ 1

δ2
log





tα/2+δα

(t −δ2)α/2





d t
Æ

(1− t )(t −δ2)
.

Proof. Put pn(x) := (x/δ)
n Pn(δ/x) = Pn(0)(x/δ)

n + · · · . Then (14) gives

(17) ωn
α
(x)|pn(x)| ≤ 1 for δ ≤ |x| ≤ 1,

where

(18) ωα(x) := e−Qα(x), Qα(x) :=
1

α
log
�

1+
�

�

�

�

x

δ

�

�

�

�

α�

.

We shall verify the following
Claim: There exists a probability measure µα with support Aδ := [−1,−δ]∪ [δ, 1] and
a constant Fα such that

(19) Qα(x) = Fα−Uµα (x) for δ ≤ |x| ≤ 1,

where

Uµα (x) :=
∫

Aδ

log
1

|x − t |
dµα(t )

is the logarithmic potential for µα.
Assuming the validity of (19), we can rewrite (17) as

(20)
1

n
log |pn(x)|+Uµα (x)≤ Fα for δ ≤ |x| ≤ 1.

But the left-hand side of (20) is subharmonic in C \ {x : δ ≤ |x| ≤ 1}, where C denotes
the extended complex plane. Hence (20) holds for all x ∈C. Letting x→∞, we get

1

n
log |Pn(0)| ≤ Fα+ logδ,

and so

(21) |Pn(0)| ≤ en(Fα+logδ).

We remark that µα is the weighted equilibrium measure (cf. [ST, Chapter I]) for the
weightωα on the set Aδ . To obtain a formula for Fα, it is convenient to make the change
of variables t = x2. By [ST, Theorem IV.1.10(f)], we have

(22) dµα(x) =
1

2
d eµα(t ) and Fα =

1

2
eFα,
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where eµα is the weighted equilibrium measure for the weight eωα(t ) =
�

ωα

�p
t
��2

on

[δ2, 1], and eFα is the corresponding weighted Robin constant such that

(23) U eµα (x)+ eQα(t ) = eFα for t ∈ supp(eµα),

where

(24) eQα(t ) := log
1

eωα(t )
=

2

α
log



1+

 p
t

δ

!α

 .

From our claim we have supp(eµα) = [δ
2, 1], and hence eFα =−F ([δ2, 1]), where F (K)

is the “F-functional” of Mhaskar and Saff (cf. [ST, Theorem IV.1.5(b)]). This gives

(25) eFα =
1

π

∫ 1

δ2

eQα(t )
d t

Æ

(1− t )(t −δ2)
− log

�

1−δ2

4

�

,

where we have used the facts that cap([δ2, 1]) = (1−δ2)/4, and the unweighted equilib-
rium measure (Robin measure) for the interval [δ2, 1] is

(26) dλδ (t ) :=
1

π

d t
Æ

(1− t )(t −δ2)
, δ2 ≤ t ≤ 1.

Since (26) is a unit measure and, as is well-known, U λδ (s) = − log[(1− δ2)/4] for all
s ∈ [δ2, 1], we obtain from (22), (24) and (25) that

Fα+ logδ =
1

2

�

eFα+ log
�

δ2
��

=
1

2

∫ 1

δ2

�

eQα(t )+ log
�

δ2
�

+ log
1

|t − s |

�

dλδ (t )

=
1

απ

∫ 1

δ2

log





tα/2+δα

|t − s |α/2





d t
Æ

(1− t )(t −δ2)

for every s ∈ [δ2, 1]. Taking s = δ2 we see from (21) that the estimate (15) holds.
It remains to verify the claim concerning (19). For this purpose it is equivalent and

more convenient to establish that supp(eµα) = [δ
2, 1], where as above, eµα is the weighted

equilibrium measure for exp(− eQα(t )) on [δ2, 1]. It is readily verified that

(t −δ2) eQ ′
α
(t ) =

tα/2−δ2 tα/2−1

δα+ tα/2

is increasing on [δ2, 1]. Thus the support of eµα is an interval (cf. [ST, Theorem IV.1.10(c)],
[B, Theorem 9]). Also, since eQ ′

α
(t ) > 0, it follows from [ST, Theorem IV.1.11(ii)], [B,

Theorem 10(ii)] that supp(eµα) = [δ
2, b] for some δ2 < b ≤ 1. To show that b = 1,

assume the contrary. Then

F
�

[δ2,β]
�

= log
�

cap[δ2,β]
�

−
1

π

∫ β

δ2

eQα(t )
d t

Æ

(β− t )(t −δ2)

must attain its maximum for β= b . Consequently,

d

dβ
F ([δ2,β])

�

�

�

�

�

β=b

= 0,
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which after setting y =−1+ 2(t −δ2)/(β−δ2) gives

(27) 1=
1

π

∫ 1

−1
(β−δ2)

 

tα/2−1

δα+ tα/2

!

� y + 1

2

� d y
Æ

1− y2

when β= b . But (27) is impossible since

(β−δ2)

 

tα/2−1

δα+ tα/2

!

� y + 1

2

�

= (t −δ2) eQ ′
α
(t )< 1

for |y|< 1. Thus b = 1 and so supp(eµα) = [δ
2, 1], which completes the proof of (15).

�
Concerning sharpness of Lemma 5 we establish

Lemma 6. For each α > 0 and 0 < δ < 1 there exists a sequence of polynomials {Pδ,α
n },

deg Pδ,α
n = n satisfying

(28)
|Pn(x)|

(1+ |x|α)n/α
≤ 1 for |x| ≥ δ,

such that

(29) lim
n→∞
|Pδ,α

n (0)|
1/n = e g ∗

α
(δ),

where

(30) g ∗
α
(δ) :=

1

απ

∫ 1

0
log

�

1+
δα

tα/2

�

d t
p

t (1− t )
.

Proof. Set

Pδ,α
n (x) :=

xnΦn(δ/x)

‖ωn
α
Φn‖[−1,1]

,

where Φn(x) is the Fekete polynomials associated with weight ωα (cf. [ST, Section III.1])
andωα is defined by (18). Then

pδ,α
n (x) :=

� x

δ

�n
Pδ,α

n

�

δ

x

�

=
Φn(x)

‖ωn
α
Φn‖[−1,1]

.

Thus, by construction, Pδ,α
n satisfies (28). It follows from [ST, Corollary III.1.10] that

lim
n→∞

1

n
log

 

|Φn(z)|
‖ωn

α
Φn‖[−1,1]

!

= F ∗
α
−Uµ∗

α (z), ∀z ∈C \ [−1,1],

where µ∗
α

is the weighted equilibrium measure for the weightωα on the interval [−1,1],
and F ∗

α
is the corresponding modified Robin constant. Existence of µ∗

α
and F ∗

α
can be

shown exactly in the same way as it was done in Lemma 5.
Now, since for each n, the function 1

n log |pδ,α
n (z)|+ Uµ∗

α (z) is harmonic at ∞, we
deduce that

lim
n→∞

� 1

n
log |pδ,α

n (z)|+Uµ∗
α (z)

��

�

�

�

z=∞
= F ∗

α
,
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or, equivalently

lim
n→∞

� 1

n
log |Pδ,α

n (0)| − logδ
�

= F ∗
α

.

Then the assertion of the lemma can be derived in a similar fashion as in Lemma 5.

�
Concerning the behavior of the quantities gα(δ) and g ∗

α
(δ) we prove the following.

Lemma 7. Let α and δ be defined as in Lemmas 5 and 6 and let gα(δ) be defined by
(16), g ∗

α
(δ) be defined by (30). Then for 0<δ ≤ 1/2

(31) gα(δ)� ϕα(δ)� g ∗
α
(δ),

where f (δ) � g (δ) means that c2 g (δ) ≤ f (δ) ≤ c1 g (δ), 0 < δ ≤ 1/2 with positive con-
stants c1, c2 depending only on α.

Proof. Fix 0<α≤ 2. By (16) we have that

gα(δ) :=
1

απ

∫ 1

δ2
log





tα/2+δα

(t −δ2)α/2





d t
Æ

(1− t )(t −δ2)
=

1

απ

�
∫ 1/2

δ2
+
∫ 1

1/2

�

.

We shall estimate these last two integrals separately.

I1 :=
∫ 1/2

δ2
log





tα/2+δα

(t −δ2)α/2





d t
Æ

(1− t )(t −δ2)

= δ
∫ 1/2δ2

1
log





1+ uα/2

(u − 1)α/2





d u
Æ

(1−δ2u)(u − 1)

� δ
∫ 1/2δ2

1
log





1+ uα/2

(u − 1)α/2



d
�p

u − 1
�

� δ
p

u − 1 log





1+ uα/2

(u − 1)α/2





�

�

�

�

�

1/2δ2

1

+ δ
∫ 1/2δ2

1

u−1+α/2+ 1

(uα/2+ 1)
p

u − 1
d u

� δα+ϕα(δ)� ϕα(δ).

It is easy to see that for t ∈ [1/2,1]

log





tα/2+δα

(t −δ2)α/2



� δα.

Hence

I2 :=
∫ 1

1/2
log





tα/2+δα

(t −δ2)α/2





d t
Æ

(1− t )(t −δ2)
� δα.

Combining estimates for I1 and I2 we obtain the first part of (31).
The same type of arguments can be applied to derive that g ∗

α
(δ)� ϕα(δ).

�
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We are now ready to give the

Proof of the Main Theorem. Let h ∈ H d
n , E ⊂ ∂ Kr with sd−1(E) ≤ sd−1(∂ Kr )δ

d−1 and
0 < δ ≤ 1/2. We may assume that ‖h‖∂ Kr \E = 1 and sd−1(∂ Kr ) = 1. Now we need a
proper upper bound for ‖h‖∂ Kr

. Set

Eh := {tx : t ∈ [0,1], x ∈ ∂ Kr , |h(x)|> 1}.

Clearly,

(32) µd (Eh )≤ c sd−1(E)≤ cδd−1

with some c > 0 depending only on Kr . Now the proof can be completed in several steps.
Step 1. First using Lemma 1 we can reduce our problem to the 2-dimensional case.

Indeed, if ‖h‖∂ Kr
= |h(x∗)| with some x∗ ∈ ∂ Kr then by Lemma 1 and (32) there exists a

2-dimensional plane L∗2 passing through 0 and x∗ such that µ2(Eh ∩L∗2)≤ cδ with a c > 0

depending only on Kr . Moreover, h
�

�

�L∗2
∈H 2

n , and eK := ∂ Kr ∩ L∗2 is a star-like surface

in R2 containing x∗, which satisfies the LipMα property. Moreover, m( eK) ≥ m(Kr ),
M ( eK) ≤ M (K), M ∗( eK) ≤ M ∗(K), i.e. Lemmas 2 and 3 can be applied to eK with the
corresponding constants being independent of x∗. Hence we may assume that d = 2.

Step 2. Now we shall use Lemmas 2 and 3 to reduce the problem to “diamond-shaped”
domains. For Kr ⊂R2 we have in polar coordinates

Kr = {(ρ,ϕ) : 0≤ ρ≤ r ∗(ϕ), 0≤ ϕ ≤ 2π}

where r ∗(ϕ) := r (cosϕ, sinϕ), and r ∗ ∈ Lip
eMα on [0,2π] with some eM > 0 depending

only on Kr . We may assume that x∗ = (1,0). In addition, in view of Lemma 2 we may
also assume without loss of generality that ∂ Kr possesses a vertical tangent line at x∗

if 1 < α ≤ 2. Otherwise, by Lemma 2 there exists a regular linear transformation L :
R2 → R2 such that Lx∗ = x∗, D = L−1(Kr ), x∗ ∈ ∂ D , and ∇ fD (x

∗) = x∗. Hence h can
be replaced by h∗(x) = h(Lx) ∈ H 2

n , and Kr by the star-like domain D corresponding
to some r ∗ ∈ LipM2

α, M2 > 0 depending only on Kr . Then by Lemma 3 there exists an
a > 0 such that

(33) Kα := {(x, y) ∈R2 : |x|α+ a|y|α ≤ 1} ⊂Kr .

Since a depends only on Kr we may set a = 1. Recalling that µ2(Eh ) ≤ cδ we obtain
from (33) that

µ1

n

ϕ ∈ [0,2π] :
�

�

�h
�

r ∗
α
(ϕ)cosϕ, r ∗

α
(ϕ) sinϕ

�

�

�

�> 1
o

≤µ1 {ϕ ∈ [0,2π] : |h (r ∗(ϕ)cosϕ, r ∗(ϕ) sinϕ)|> 1} ≤
2µ2(Eh )

m2(Kr )
≤ c1δ,(34)

where r ∗
α
(ϕ) := (|cosϕ|α+ | sinϕ|α)−1/α, m(Kr ) := inf{|x| : x ∈ ∂ Kr }.

Step 3. Finally, we transform the problem to weighted univariate polynomials. We
may assume that n is even since otherwise h(x, y) can be multiplied by x. So let n = 2m.
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Clearly, given that h(x, y) =
∑2m

j=0 a j x j y2m− j we have

h
�

r ∗
α
(ϕ)cosϕ, r ∗

α
(ϕ) sinϕ

�

= (r ∗
α
(ϕ))2m

2m
∑

j=0

a j cos j ϕ sin2m− j ϕ

= (1+ | tanϕ|α)−2m/α
2m
∑

j=0

a j tan2m− j ϕ =
p2m(t )

(1+ |t |α)2m/α
(35)

where t := tanϕ, p2m(t ) :=
∑2m

j=0 a j t 2m− j . By (34)

(36) µ1

(

t ∈ [−1,1] :
|p2m(t )|

(1+ |t |α)2m/α
> 1

)

≤ 2c1δ.

In addition, |p2m(0)| = |h(1,0)| = |h(x∗)|. Thus we arrive at the extremal problem of
finding the maximal value of |p2m(0)| under condition (36). Evidently, it can be assumed
that p2m is even, i.e., p2m(t ) = qm(t

2). Finally, using Lemmas 4, 5 and 7 we obtain

|h(x∗)|= |p2m(0)| ≤ e c mϕα(δ),

which gives the upper bound of the theorem.
In order to verify the sharpness of the above upper bound we proceed as follows.

By Lemmas 6 and 7 there exists a sequence of univariate polynomials Pδ,α
n of degree n

satisfying (28) such that

lim
n→∞

1

n
log |Pδ,α

n (0)| ≥ cϕα(δ).

Reversing transformation (35)we obtain homogeneous polynomials hδ,α
n ∈H 2

n such that
by (28)

µ1{(x, y) ∈R2 : |x|α+ |y|α = 1, |hδ,α
n (x, y)|> 1} ≤ cδ,

and
1

n
log |hδ,α

n (1,0)| ≥ c1ϕα(δ).

Then the lower bound of the theorem holds for the star-like surface

K := {(x1, . . . , xd ) ∈R
d : |x1|

α+ |x2|
α = 1, |x j | ≤ 1, 3≤ j ≤ d}.

�
Remark. While Lemma 6 yields the sharpness of Lemma 5 and hence the main theorem,
it does not provide an explicit expression for the extremal polynomials. Nevertheless, in
the special case when α 6= 1 extremal polynomials can be given explicitly; namely, in the
case when 0<α < 1 we can take

Pδ,α
2n (x) := (1+δ

α− x2)n ,

and, for 1<α≤ 2,

Pδ,α
2n (x) := Tn

�

2x2− 9−δ2

9−δ2

�

,

where Tn(x) := cos n arccos x is the Chebyshev polynomial.
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