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Abstract

This thesis reports the computer simulation of a flapping flexible filament in
a flowing soap film using the Immersed Boundary Method. Our mathematical
formulation includes filament mass and elasticity, gravity, air resistance, and the
two wires that bound the flowing soap film. The incompressible viscous Navier-
Stokes equations , which are used to describe the motion of the soap film and
filament in our formulation, are discretized on a fixed uniform Eulerian lattice
while the filament equations are discretized on a moving Lagrangian array of
points which do not necessarily coincide with the fixed Eulerian mesh points
of the fluid computation. The interaction between the filament and the soap
film is handled by a smoothed approximation to the Dirac delta function. This
delta function approximation is used not only to interpolate the fluid velocity
and to apply force to the fluid (as is commonly done in immersed boundary
computations), but also to handle the mass of the filament, which is represented
in our calculation as delta function layer of fluid mass density supported along
the immersed filament. Because of this nonuniform density, we use a multigrid
(7-grid V-cycle) method for solving the discretized fluid equations. This replaces
the FFT based method that is commonly used in the uniform-density case.
Our main numerical results are: 1)the sustained flapping of the filament only

occurs when filament mass is included in the formulation of the model; within

vi



a certain range of mass, the more mass of the filament the larger amplitude
of the flapping. 2) When the length of filament is short enough (below some
critical length), the filament always approaches its straight (rest) state in which
the filament points downstream; but when the length is larger, the system is
bi-stable, which means that it can settle into either state (rest state or sustained
flapping) depending on the initial conditions. 3) The bi-stability of the film-
filament system depends on the filament bending rigidity; the filament motion
can be switched in either direction, from static to flapping, or from flapping
to static, depending on whether the bending rigidity is decreased or increased

sufficiently.
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Chapter 1

Introduction

Many problems in biofluid dynamics involve interactions between deformable
elastic bodies and incompressible viscous fluids, for instance, blood flow in hu-
man heart, insect flight, swimming motions of eel, sperm and flagella. Unlike
flow past a fixed rigid body or flow through a fixed pipe, where the flow does
not change the shape and location of the boundary, flow involving a flexible
elastic body will affect the position and shape of the immersed boundary by
applying pressure and viscous shear stress to the interface separating the elastic
body and the fluid. At the same time, the immersed body will exert action
on the surrounding fluid through its inertia and elastic response and its surface
immersed in the fluid will move with the fluid local velocity due to the viscosity
of the fluid and the non-penetrable property of the body. Understanding of
such interactions could lead to important applications in bionics. However this
kind of coupling action between an elastic body and ambient fluid is very com-
plicated and not yet well understood even in the passive case of a flag-in-wind.
Readers who are interested in fluid-structure interaction can refer to [1] [2].

As a model of hydrodynamic interaction of deformable bodies with sur-



rounding fluid flows, Zhang [3] recently studied experimentally the dynamics
of flexible filaments in a flowing soap film (See Fig. 2.1 in the next chapter.):
separating at a nozzle attached to the bottom of a soapy water reservoir two
thin nylon wires extend at a angle, then run parallel downwards and finally
converge to a receiving container below. With the stopcock being turned on,
which controls the rate of flow through the nozzle, under the actions of grav-
ity and air resistance, a thin flowing soap film is formed on the two wires and
reaches its terminal velocity soon. A flexible filament (thread) is introduced at
the middle line of the two wires with the top end anchored by using a thin tube
perpendicular to the soap film below the position where the film reaches its
terminal velocity. Such a system (a filament in a thin film) is a two dimensional
version of the flag-in-wind problem. In the past several decades, people com-
monly believed that flapping of a flag in the wind arises by a linear instability
mechanism. However, recent experiments performed at the Courant Institute
Wetlab by Zhang [3] have shown that the flexible filament in the flowing soap
film is, under certain condition, bi-stable. In addition to that, the system itself
(a free boundary problem) is very interesting: we have a one-dimensional im-
mersed flexible moving boundary with one end tethered in a two-dimensional
laminar flow, the boundary has mass and applies elastic forces (stretching, com-
pression and bending) to the film and moves at the local film velocity. Vortices
are shed from the free end of the filament and get carried away by the flow and
are diffused by the film viscosity and air resistance. A vortex street is formed
downstream.

As a result of the experiment, many people are interested in this problem.
Currently Shelley [4] is working on the instability analysis of this system; Fast

[5] is working on the simulation by the overset grid method. Here we report our



numerical simulation of such a system by the Immersed Boundary Method.
The Immersed Boundary Method has turned out to be a very practical and
efficient way to simulate numerically the interaction of an elastic structure and
surrounding fluid in the incompressible flow setting. The immersed boundary
(or body) can be active like human heart and can be passive like a flexible
filament; the boundary can be neutrally buoyant in the ambient fluid or not
neutrally buoyant. The philosophy underlying the Immersed Boundary Method
is that the whole system (fluid + elastic body) is treated as a incompressible
composite continuum and an Eulerian description is used to describe its dy-
namics; in addition, a Lagrangian description is used to depict the motion of
the immersed elastic body; the connections between Eulerian and Lagrangian
variables are realized by the Dirac § function. In general, the incompressible
viscous Navier-Stokes equations with additional forcing term from the immersed
boundary (and variable density resulting from the mass of the immersed body
if it is not neutrally buoyant.) are used to govern the whole system and are
discretized on an fixed Eulerian uniform grid, while the equations of the elastic
structure are discretized on a collection of Lagrangian moving points which do
not necessarily coincide with the fixed Eulerian mesh points. (Note that the
shape and position of the immersed boundary is not known in advance and has
to be determined as a part of the whole problem.) Thus, the Navier-Stokes
solver does not need to know the shape and location of the moving elastic body;
the influence of the latter has been taken into account by spreading its mass, if
any, and force to the nearby fluid. The motion of immersed boundary is updated
by the surrounding fluid velocity via interpolation because of the no-penetration
and no-slip conditions at the boundary. The interaction between the fluid and

the elastic body is mediated by a smoothed approximation to the Dirac ¢ func-



tion, &y, which plays an important role in the Immersed Boundary Method.
This ¢, is used to spread the mass and force of the boundary to the fluid and
to compute the new position of the boundary by interpolating its velocity from
the surrounding fluid velocity field. The function 6, is chosen such that the
conservation of total mass and force, momentum and angular momentum are
guaranteed when the mass and force of the boundary are transferred to fluid
mesh points. The same J;, is used to interpolate the velocity of the structure
from the fluid, and this guarantees that the rate at which the immersed struc-
ture does work on the fluid is the same whether it is expressed in Lagrangian
(structure) variables or in Eulerian (fluid) variables.

Since its birth in 1970’s, the immersed Boundary Method has been applied
successfully to a wide range of problems which involve an incompressible viscous
fluid and an elastic deformable body, particularly in computational biofluid me-
chanics : blood flow in the human heart [6] [7] [8] [9] [10] [11] [12] [13] , the
design of prosthetic cardiac valves [14], aquatic animal locomotion [15] [16] [17],
wave propagation in the cochlea [18] [19], platelet aggregation during blood
clotting [16] [20] , flow of suspensions [21] [22], valveless pumping [23], flow in
a collapsible tube[24], flow and transport in a renal arteriole [25], cell and tis-
sue deformation under shear flow [26] [27] [28]. At present there exist several
versions of the Immersed Boundary Method. The version we use here is differ-
ent from most existing versions [6] [8] [10] [12] [29] [31] in two aspects: 1) the
discretization of the Navier-Stokers equations is different; the fractional step
projection scheme is applied and the skew symmetrical scheme is used for the
non-linear term instead of upwind differencing. 2) The numerical method to
solve the resultant system of linear algebraic equations is different: a multigrid

method (seven-grid V-cycle) is applied to solve the system of linear algebraic

4



equations with non-constant coefficients (therefore the FFT method is no longer
applicable) which result from discretizing Navier-Stokers equations with vari-
able density as a consequence of the mass of the filament. The first example
(unpublished) of such a computation can be found in [32], here we report on
another such example: simulation of a flapping flexible filament in a flowing
soap film.

Our mathematical formulation includes filament mass and elasticity, grav-
ity, air resistance, and the two wires that bound the flowing soap film. The
incompressible viscous Navier-Stokes equations, which are used in our formu-
lation to depict the motion of the whole system (soap film + filament), are
discretized on a fixed uniform Eulerian lattice while the the filament equations
are discretized on a moving Lagrangian array of points which do not neces-
sarily coincide with the fixed Eulerian mesh points of the fluid computation.
The interaction between the filament and the fluid (the soap film) is handled
by a smoothed approximation to the Dirac delta function. This delta function
approximation is used not only to interpolate the fluid velocity and to apply
force to the fluid (as is commonly done in immersed boundary computations),
but also to handle the mass of the filament, which is represented in our calcula-
tion as delta function layer of fluid mass density supported along the immersed
filament. Because of this nonuniform density, we use a multigrid (seven-grid
V-cycle) method for solving the discretized fluid equations. This replaces the
FFT based method that is commonly used in the uniform-density case.

Our main numerical results are: 1)the sustained flapping of the filament only
occurs when filament mass is included in the formulation of the model; within a
certain range of mass, the more mass of the filament the bigger amplitude of the

flapping. 2) When the length of filament is short enough (below some critical



length), the filament always approaches its straight state, but when the length
is between some critical values, the system is bi-stable, which means that it can
settle into either state (rest state or sustained flapping) depending on the initial
conditions. 3) The bi-stability of the film-filament system depends on the fila-
ment bending rigidity; the filament motion can be switched in either direction,
from static to flapping, or from flapping to static, depending on whether the
bending rigidity is decreased or increased sufficiently.

This numerical result 2) agrees qualitatively very well with that of the ex-
periment even though the Reynolds number of the computations (around 200)
is lower than that of laboratory experiment (around 20,000) by two orders of
magnitude.

Our numerical method used here can be generalized to the three dimen-
sional case to study numerically problems involving interactions of fluids and
immersed boundaries which are not neutrally buoyant, as is usually the case in
aerodynamic problems such as flag-in-wind, insect flight, parachute simulation,
etc.

The rest of the thesis is structured as following: Chapter 2 describes the
physical problem, including the experiment setup, the experiment parameters
and the main findings of the experiment. Chapter 3 presents our model prob-
lem abstracted from the real problem and the mathematical formulation of our
model problem. Chapter 4 addresses the numerical methods used to discretize
the system of partial differential-integral equations given in previous chapter.
The simulation results are given in Chapter 5 and summary and conclusion are

made in Chapter 6. At the end are the references.



Chapter 2

Physical Problem

In this chapter we talk about the experiment setup, the experiment parameters
and main findings of the experiment.

Fig. 2.1 shows the setup of the laboratory experiment. The gravitational
acceleration points from top to bottom. At the top of the setup, we have a
reservoir containing soapy water. A stopcock is attached to the bottom of the
container controlling the rate of the flow. Below, two thin nylon wires separate
at the nozzle, extend downward under tension and then run parallel , and finally
converge to a receiving container 240 cm below the nozzle. If the stopcock is
opened, the soapy water will flow down under the action of gravity and will
soon reach its terminal speed set by the balance of gravity and air resistance.
As it falls, the soapy water forms a layer of thin film spanning the two wires.
Halfway between the two wires a flexible filament (thread) is introduced with
its upper end fixed at a place where the film has already reached its terminal
speed (a distance of 80 cm from the nozzle is used in experiment). It is held
there by a thin tube which is perpendicular to the film plane. The filament

remains within the film plane because of surface tension.
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Figure 2.1: The laboratory experimental setup



Without the filament, the flowing soap film can be approximately treated as
a two-dimensional channel flow which has a simple analytical solution. (Readers
who are interested in the hydrodynamics of soap films can refer to [33] [34] [35]
[36].) After the introduction of the filament, however, because of the complex
interaction between the flexible filament and the flowing soap film, the motion
of the system becomes very complicated and interesting: the flowing film exerts
pressure and viscous force on the filament, and the filament acts back on the
film through its inertia and elastic response and moves passively at the local film
velocity. Vorticity is generated along the filament by the complex interacting
force between the film and the filament and by film viscosity, and some of the
vorticity is washed down along the filament by the flowing film. At the free end
of the filament, vortices are shed and get advected by the flow, diffused by the
film viscosity, and dissipated by air resistance. The sinuous flapping motion of
the filament adds more complexity to the problem.

The experimental parameters are listed in 2.1.

The main experimental findings are: 1) there exists a critical length L.,
below which the filament always returns to its stretched straight state after
a few oscillations no matter how large the external perturbation is. 2) When
the filament length is greater than L., the filament-film system becomes bi-
stable: two distinct stable dynamical states are found—a stretched straight state
(the filament is motionless and aligned with the flow direction) and a sustained
flapping state (the filament executes a sinuous motion). If the filament is in
either of these two states and a small disturbance is applied, the filament will
return to the state it was in before, but a large enough disturbance can switch

it from one state to the other.



film inflow velocity 200 — 300 cm/sec
film dynamic viscosity | 1.2 x 10~ g/(cm - sec)
film density 3x 107* g/cm?
film thickness (3—4)x107*em
filament diameter 0.015 ecm
filament length 2—6cm
filament density 2x 10 g/em
filament rigidity 0.1erg-cm
width of the film 8.5¢cm
length of of the film 120 em

Table 2.1: Parameters of the laboratory experiment

10



Chapter 3

Mathematical Formulation

At the beginning of this chapter a model problem is abstracted from the real
problem in the experiment, based on which our simulation is carried out. The

mathematical formulation of this model problem is presented in the second part.

3.1 Model Problem

As we can see from Table 2.1, the filament diameter (150 pm) is much greater
than the film thickness (3 — 4 um), so the actual physical situation involves a
three-dimensional filament moving in an almost two-dimensional film. See Fig.
3.1.

As we always do in going from the real world problem to a mathematical
problem, we make assumptions. The main hypotheses we made for the filament-
in-film problem are:

1) the filament is a one-dimensional curve without any volume, with mass
uniformly distributed on this one-dimensional curve, which is totally immersed

in the soap film. The curve behaves like a linear elastic material line which

11
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soap film soap film

Figure 3.1: Overview of the film-filament system

can be stretched, compressed, and bent, and which resists these deformation by
elastic forces.

2) the flowing soap film is an incompressible, viscous, Newtonian fluid mem-
brane with no thickness which experiences no stretching or compression. The
flow within the soap film is a two-dimensional plane laminar flow and the surface
tension between the film and the filament is negligible.

3) the magnitude of air resistance is proportional to the film speed and the
proportional factor is a constant in space and in time.

4)The actual mass of the filament is twice as much as that of a filament wet
by soapy water. The extra mass comes from bulges in the film that form around
the filament as a result of surface tension, which increase the effective filament
mass. Note that in the laboratory experiment the film thickness is about 3 um
while the diameter of the filament is about 150 um . See Fig. 3.1 .

5)The filament-film system is not sensitive to the film length provided it is
long enough compared with the filament length and the system is not sensitive
to the outflow condition (the actual flow situation at the bottom of the film)
provided the film bottom is far enough away from the free end of the filament
not to interfere with the filament motion.

With these assumptions, our model problem is shown in Fig. 3.2, and our

12



mathematical formulation of the model problem is in the next section.

3.2 Mathematical Formulation of the Model

Problem

T
/

WA

Figure 3.2: The model problem

We use an Eulerian description of the system (soap film and filament) as
a whole supplemented by a Lagrangian description of the filament. The in-
dependent Eulerian variables are the Cartesian coordinates x=(x,y) (z is the
coordinate in horizontal direction and y is the coordinate in vertical direction.)
and the time ¢, and the independent Lagrangian variables are the curvilinear
material coordinate s and again the time ¢. The dependent Eulerian variables

are the velocity u(x, t), the pressure p(x,t), the density p(x,t), and the Eulerian

13



force density f(x,t). The reason p(x,t) is not constant is that we use p(x,t)
to describe not only the mass density of the film but also the mass density
contributed by the filament, see equation ( 3.5). The dependent Lagrangian
variables are the position of the filament X(s,t), the Lagrangian force density
F(s,t), and the filament velocity U(s,t) . With this notation, the equations of

motion of the film and filament system read as follows:

0
p(x, t)(ﬁ_? +u-Vu) = —Vp+ pAu+f(x,t) — du — p(x,t)gé; (3.1)

V-u=0 (3.2)

aa—)f(s, £) = U(s, 1) (3.3)

f(x, 1) = / F(s,1)0(x — X(s,1))ds (3.4)
p(x,1) = po + / M6(x — X(s,1))ds (3.5)
U(s, ) = / u(x, 1)8(x — X(s,))dx (3.6)

oF a(Estretch + Ebend)

F(s,t) = -0 = - X (3.7)
1 0X
Estretch = 5 stretch /(|E| - 1)2d5 (38)

14



1 0*X(s,t) 5
Ebend = iKbend/ |T| ds (3.9)

These equations (without the viscous and air-resistance terms) can be de-
rived formally from the principle of least action, see [10] for details. Equations
( 3.1) and ( 3.2) are the Navier-Stokes equations for incompressible, viscous,
Newtonian fluids with variable density and multiple forcing terms: force ap-
plied by the immersed filament and the two nylon wires f, air resistance —Au,
and gravity —pgé,. The constant py is the mass per unit area of the soap film.
(Note unusual units: this is a 2-D problem!) The constant g is the gravitational
acceleration, the constant p is the two-dimensional soap film viscosity, and A
is the air resistance coefficient, which is assumed to be constant and can be
found by identifying A|Vy| = pog , where Vj is the measured terminal velocity of
the film as it falls under gravity. The reason we can estimate the air resistance
coefficient in this simple way is that the film terminal velocity profile Vj(z) is
found to be almost flat (rather than a parabola) because of air resistance. The
vector € in equation ( 3.1) denotes the unit vector in the vertical direction (y
direction). The function §(x) is the Dirac ¢ function.

Equation ( 3.3) describes motion of the filament. The filament velocity is
found from that of the film by equation ( 3.6). This is equivalent to saying
that the filament moves at the local film velocity because of the no-slip and
no-penetration boundary conditions.

The Eulerian force density f(x,t) resulting from the immersed filament and
the two wires bounding the film is connected to the Lagrangian force density
F(s,t), which is defined on the filament, through the integral relation ( 3.4).

The § function in ( 3.4) is two-dimensional, but integration is done only once

15



with respect to s, so the resultant f(x,t) is singular along the filament like a
one-dimensional ¢ function. However, the integration of f(x,?) over any finite
region produces a finite value, which is equal to the total force over that part of
the filament and /or the two wires happening to lie within the integration region.
The mathematical explanation is the following. Let L represent the filament,
let D be any bounded open subset of 2, and note that L N D denotes the part

of the filament that lies in the integration region D. (See Fig. 3.3.)

Figure 3.3: The integration over part of the filament

Then the total force exerted by the filament in the region D is
/ f(x,t)dx = / / F(s,1)6(x — X(s, 1))dsdx
D DL
- /F(s, t)ds / 5(x — X(s,1))dx
L D
= / F(s,t)ds
LAD
In the first step we make use of equation ( 3.4). Then we change the order
of integration and use the fact that the integration of 6(x — X(s,%)) is 1 or 0
depending on whether X(s,t) lies in D or not. Note that the last expression is

just the force generated by the part of the filament that lies in the integration

region. The result is the same for any integration over any part of the two nylon
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wires.

The variable mass density in our problem comes from equation ( 3.5), which
accounts for both the mass of the film and that of the immersed filament.
Here M is the Lagrangian mass density of the filament (mass per unit length).
! Like the Eulerian force density f(x,t), the Eulerian mass density p(x,t) is
also singular along the filament akin to a one-dimensional ¢ function supported
only along the filament, for the same reason given above in the case of the
Eulerian force. Also integration of p(x,t) performed over any finite region gives
a finite result: the total mass that lies within that region. Note that this
includes a contribution from the filament and a contribution from the film. The
mathematical explanation reads as follows. Here we use the same notation for
the filament and the integration region as in the case of Eulerian force density

f(x,t). See Fig. 3.3.

/p(x, t)dx = /podx+//M6(x—X(s, t))dsdx

D
= /podx+/Mds/5(x—X(s,t))dx
D L D
= / pPodx + / Mds
D LAD
In the first step, we use Eq. (5), and the rest of the reasoning is the same as
in the case of the Eulerian force. Note that the last expression is just the total

mass of the part of the film and the part of the filament that lie in region D.

'In the general case of immersed boundary formulation, M is the density difference of the
fluid and immersed structure. In our case, however, M is the mass density of the immersed
filament. This is because in our problem the filament does not displace the film: it simply

adds mass to the soap film.
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Although the mass density p(x,t) is variable, the fluid is still incompressible
(V -u = 0). This situation, although somewhat unusual, also arises in other
contexts, such as stratified fluids with variable densities as a result of variable
salinity in geophysical problems. In such problems, the mass density p(x,t) is

transported as a fluid marker, that is

Dp(x,t)  0p(x,1)
Dt Ot

+u(x,t) - Vp(x,t) =0

We shall not explicitly use this equation because it is implied by equations ( 3.2)
and ( 3.5). To show this, we proceed as follows: Let {2 be any bounded closed
subset of R2, let ¢(x,t) denote any smooth function in Q which vanishes on 9.

Then we have

Ip(x, 1)
ot

— /M(S)V(S(x ~X(s,1)) - %

- / M(s)Vé(x — X(s, 1)) - u(X(s, t), )ds

ds

In the first step we make use of equation ( 3.5) and the chain rule of dif-
ferentiation, in the second step we use the equation ( 3.6). (The gradient on
d function is taken in the sense of weak derivative.) Multiplying by ¢(x,t) on

both sides and integrating over {2, we get

[ 25D g yax =~ [ w(s)as [ Vo(x ~ X(s.0) - u(X(s, 1) D (x, D
= [ M(s)ds [ 5x— X(s,0)u(X(s,1),) - Vo (x, t)dx
- / M(s)(u- Vo)(X(s, 1), t)ds

In the second step we use integration by parts and the fact that ¢(x, t) vanishes

on 0f). In the third step we use the defining property of the § function.
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On the other hand, by using the equation ( 3.5) we have the following

u(x,t) - Vp(x,t) = u(x,t)- / M(s)V5(x — X(s,1))ds

- / M(s)u(x,t) - Va(x — X(s,1))ds
Multiplying by ¢(x,t) on both sides and integrating over 2, we get

/ é(x, )u(x, t) - Vp(x, )dx = / M(s)ds / d(x, hu(x,t) - Vo(x — X(s,¢))dx

Q

_ / M(s)ds / V- (6(x, tu(x, £))d(x — X(s,t))dx
- — / M(s)(u- V) (X(s,t),t)ds

In the second step we use the integration by parts, and the fact that ¢(x, ?)
vanishes on 0€2. In the third step, we use V - u(x,t) = 0 (equation ( 3.2)) and
again the defining property of the § function.

From the above two results, we immediately have

[ o0, 22D 1) - Wpl, ) = 0

and then, since ¢(x,t) is arbitrary, we have

Dp(x,1) _ p(x, 1)
Dt 0Ot

+u(x,t) - Vp(x,t) =0

in the weak sense, as claimed above.
The Lagrangian force density F(s, t) is obtained by taking the Frechet deriva-

tive? of the elastic potential energy E, which consists of two terms: the energy

2Let E be a mapping, E: Z — R!, where Z is an open subset of a Hilbert space (H, (-,)),
for any £ in Z and any 7 in H such that £ + 7 isin Z, if E(§ + 1) — E(§) can be written as
A(n) + o(||n||) and exists an element in H such that A(n)=(x,n), then we say the Frechet

derivative of E is x , and write it as % = X-
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associated with stretching and compression, Ey.cicn, and the energy associated
with bending, Fyena. Equations ( 3.8) and ( 3.9) define the stretching energy
and bending energy, respectively. The constant K.eep is filament stretching
coefficient which is chosen in computation so that the filament has almost no
stretch, and constant Kj,,4 is the bending rigidity which was measured in the
laboratory experiment. Equation ( 3.7) is essentially the principle of virtual
work. Here we give another derivation as following:

In response to external force applied by the surrounding fluid, strain is re-
sulted in the immersed elastic body, and internal stress is generated to resist the
strain. The stress does work on the strain and the work is stored in the elastic
body as elastic potential energy. Assuming the interacting process of the fluid
and immersed body is adiabatic and noting that the elastic structure carries
no mass (the mass of the immersed structure has already been transferred to
nearby fluid), by the first law of thermodynamics, the work done by the fluid

to the structure is equal to the change of the elastic potential energy, i.e.

NE = [ F;-daXds

F is the force density applied by fluid to structure (so the force applied by
the structure to the fluid is —F), E denotes the total potential energy of the
structure. By definition of Frechet derivative, we have

OF

—F; = —x

Since —F is just the force applied by immersed body to fluid, this proves
equation ( 3.7).

The initial velocity field for soap film without the filament is u(z,0) =

(0,Vo(z)), where Vi(x) is the film terminal velocity profile, which solves the

20



following boundary value problem:

wVee = AV —pog =0
V(a) =V (b) =0

(3.10)

Where a and b are the x-coordinates of the position of the two wires. Equa-

tion ( 3.10) is obtained by setting u = (0, Vy(z)), & = 0, p(x,0) = constant in

the incompressible Navier-Stokers equations. The solution to ( 3.10) is:

V(z) = Cie"* 4+ Cye™* — V)

where

o= 2L = |2
Vou’ Vou

Vb(ergb _ 61‘2(1) _ %(erla _ 61'1b)

9 =

C) =

eriatrb _ gribtraa eriatmb _ gribtraa
See Fig. 3.4 for the solution for two different sets of involved parameters.

The value of X(s,0) is specified as initial condition for the filament and
the boundary condition at the upstream end of the filament is that X(0,?) is
constant, i.e. the target position ® of X(0,¢) is constant. The fluid velocity
profile (0,Vy(z)) is specified at inflow and outflow, and the fluid velocity is

equal to zero on the two side wires. The initial condition for the soap film is

that the velocity field is given as (0, Vp(z)).

3The known position of the set of selected computational Lagrangian grid points, which
are intended to describe the shape and location of the immersed boundary, is called the target

position of the immersed boundary.
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Figure 3.4: The inflow velocity profile; the film terminal velocity is 200cm/sec

on top and 280cm/sec on bottom.
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Chapter 4

Numerical Methods

In this chapter, we first address the discretizations of the above differential-
integral equations in two different ways corresponding to two different situations—
-whether the immersed boundary is neutrally buoyant or not; then we talk
about the method to solve the resultant linear algebraic equations of variable
coefficients—- the multigrid method (seven-grid V-cycle). Finally we compare
the simulation results from two different discretizing methods for the nonlinear

term in Navier-Stokes equations.

4.1 Discretizations of the differential-integral
equations

The above system of differential-integral equations are numerically solved by
the Immersed Boundary Method. As we mentioned in the Chapter 1, the in-
compressible viscous Navier-Stokes equations are discretized on a fixed uniform

Eulerian lattice while the filament equations are discretized on a moving La-
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grangian array of points which do not necessarily coincide with the fixed Eule-
rian mesh points of the fluid computation. The interaction between the filament
and the fluid (the soap film) is handled by a smoothed approximation to the
Dirac delta function. This delta function approximation is used not only to
interpolate the fluid velocity and to apply force to the fluid (as is commonly
done in immersed boundary computations), but also to handle the mass of the
filament, which is represented in our calculation as delta function layer of fluid
mass density supported along the immersed filament. The details are as follows:

Let At be the duration of the time step, let n be the time step index:
X"(s) = X(s,nAt), u™ = u(x,nAt), p" = p(x,nAt), p" = p(x,nAt). Let the
filament be represented by a discrete collection of points: s = mAs, where m
is an integer. The “half-integer” points are given by s = (m + 1/2)As. For any
function ¢(s) , let

(Da)(s) = Lot 05 ()

Then the stretching energy and corresponding stretching force are discretized

as the following:

1 Y X — X
Est'retch = 5 stretch Z(|sz| - 1)2A5 — 5 stretch Z M )QAS
(4.2)
Kstretch Ping Xm+1 - Xm
Foireten) = Xps1 =X —AS) ——————— 0yt — O 4.3
(Pt = 5" 2 (Ko =Xl = 8 P (b —b10) (43)
We discretize the bending energy and the corresponding bending force as
follows:
1 1 R X — 2X,, |2
Ebend — Kbendz |D D X| AS — _Kbend Z [| + Lll ‘ ]AS
2 2 m=2 (AS)

(4.4)
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Kbend el
(As)*

(Frena)i = (Xint1 + X1 — 2X,,) (2000 — Smg1g — Om—1y)  (4.5)

m=2
Where 7y is the total number of grid points of the filament, the dy; is the

Kronecker symbol whose definition is:

1, if m=I,

6ml_
0, if m#L

Of course the sums in equations ( 4.3) and ( 4.5) can be simplified by making
use of the Kronecker delta property, but it is actually better not to make this
simplification but to compute the forces directly from equations ( 4.3) and ( 4.5)
, since this avoids complications at the ends of the filament.

Note that the total Lagrangian force density F(s,t) = Fgpreten(s,t) +

Fpena(s,t). The three integral relations can be discretized as follows:

f*(x) = Y _F"(s)0p(x — X"(s))As (4.6)
p"(x) = po+ Y Mép(x — X"(s))As (4.7)
U™ (s) =) u" (x)d,(x — X"(s))h? (4.8)

X

Here the notation >~ means the sum over all the discrete collection of points
S

of the form s = mAs, where m is integer. The notation >~ means the sum over
X

all the discrete points of the form x = (ih, jh), where i and j are integers, h is

meshwidth. The J, is a smoothed approximation of the two dimensional Dirac

0 function. In our computation, we choose the following d:
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() = h26(;)6() (49)

Where h is the mesh spacing, x = (z,y), and ¢ is chosen as:

114 cos(Zr)), if |r| <2
A B (X CONSUE
0, otherwise
See [8] for details regarding the choice of ¢(r). Note that the support of o,
is a square with width 4h at each point instead of a circle with diameter of 4h.

(See Fig. 4.1).

0.2
0.15
0.1
0.05
o IIIII///':/O,“ “\\\\\\\\\\\ﬂ\‘
4 II”””,""‘"'":“ ‘ \\\}\\‘\‘\&3\@

Figure 4.1: The graph of the two-dimensional smoothed delta function.

With U™*!(s) known, the filament motion equations are discretized as fol-

lows:

X1+ (5) — X1(s)

N = U™ (s) (4.10)
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Let the fluid velocity, pressure and density be defined on the square lattice
of points x = kh, where h is the meshwidth and k = (4, ) is a vector with
integer components. With f(x) and p™(x) defined, we can now handle the dis-

certization of Navier-Stokes equations. First we state the following definitions:

¢(X + héa) B ¢(X B héa)

(Do) (x) = o (4.11)
(Df) () = PEH ) = 06 (4.12)

(D;)(X) _ ¢(X) - gb}(lx - héa) (413)

Where {&;, &} is the standard basis of 2, & = 1 or 2. Thus D° = (D?, DJ) is

the central difference approximation to the gradient operator V, and il DD,
is a 5-point difference approximation to the Laplace operator A. N

There are many numerical methods for the incompressible Navier-Stokers
equations; here we employ two different types of numerical schemes correspond-
ing to whether the immersed structure is neutrally buoyant or not. If the im-
mersed structure is neutrally buoyant, the discretization in [8] is used except for
the nonlinear term, which is discretized here using the central difference scheme
in the form of 1(u-Vu+ V- (uu)), instead of the upwind scheme in the original

form of u - Vu. The discretization is as follows:

n+l _ ..n 1 2
p(HE— 42 (0D uy+ D (wwy))") = —D'p™ 4 Y Df Dy w4+ —Xuf—pge,
B=1
(4.14)
D°.u"! =0 (4.15)
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Where uy, is the £** component of velocity u and similarly for the components
of any vectors. The discrete fast Fourier transform can be used to solve the
system of linear algebraic equations with constant coefficients defined by ( 4.14)
and ( 4.15). Note that p is constant in this case since M = 0 is the case being
considered here. To apply discrete FFT, first writing equation ( 4.14) in the
form:
pAL & At

> DiDgu™! + 7D0p"+1 =v" (4.16)

(I -
p i

where [ is an identity operator, and

vi=u" — %(u D%y, + D - (uyy))" + %(f“ —Au” — pgéy)

Note that the only difference between our case here and the case in [8] is
now shown in the expression of v”, which is known at the beginning of each
time step. Then the discrete FFT is applied on both side of ( 4.15) and ( 4.16);
after some algebraic calculations, expressions of the velocity and pressure in
Fourier space, 1""! and p"*! are formulated. Finally, the inverse discrete FFT

nt1 and p"*1, and the velocity and pressure at time (n + 1)At in

is applied to G
physical space are recovered. See [8] for details.

If the immersed structure is not neutrally buoyant, the FFT is no longer
applicable because p(x,t) is a variable coefficient. One could still consider the
scheme given by equations ( 4.14)-( 4.15), with some iterative method used to
solve the variable-coefficient Stokes system. Instead of this approach, we apply
a projection method [37] [38], which is a fractional step scheme. (Our scheme

differs from the original projection method in the treatment of the nonlinear

term, which is explicit and skew-symmetric.) First an intermediate velocity
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field G(x, t) is introduced which is not divergence free and is the solution to the

following difference equations:

un—|—1 _ un 1 2 s ~ R
N k+§(“-DOuk+D°-(uuk))")=u[;lDEDﬂuZ“Jrf/?—AUZH—p”gez
(4.17)

for k¥ = 1 and 2; where, again u; is the k' component of velocity u and

similarly for the components of any vectors. Note that for incompressible flow,
the convection term u - Vu can be rewritten as 1(u- Vu+ V - (uu)) in which
form we discretize it. (We also used the upwind scheme for the nonlinear term
in its original form u - Vu, and the simulation result is given in contrast with
that from skew-symmetric scheme at the end of this chapter.)

Then with "' known, we update (project) the velocity field with the pres-

sure gradient and make the velocity be divergence free.

un—l—l _ ﬁn—i—l

() = DY (4.18)

DY u"t =0 (4.19)

Note the variable coefficient p™. Equations ( 4.18)-( 4.19) define an orthog-
onal projection in the norm which uses p as a weight function. To solve for
pressure, we divide both sides of equation ( 4.18) by p™ and then apply the cen-
tral difference operator D | and finally use the divergence free condition ( 4.19).
Thus we obtain a system of difference equations for the unknown pressure p™*!
which is decoupled from the unknown velocity field u™*!.

DO . gntl

nhy = B v (4.20)

1
DO . (_Dop

7l
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Because of the use of the central difference operator D°, equation ( 4.20) give
us four separate systems of linear algebraic equations with variable coefficients,
each of which resembles the one generated by a 5-point scheme for Poisson’s
equation. Now comes the question of how to solve numerically the systems of
difference equations ( 4.17) and ( 4.20), both of which contain the non-constant
coefficient p" (so FFT will not work any longer). Instead we use another efficient
technique—the multigrid method [39] [40] [41] to solve these equations. First
equations ( 4.17) are solved for "' | and then with 4"*! in hand, equation
( 4.20) is solved for p™*! . Finally the velocity field u"*! is calculated from

equations ( 4.18). This completes the computations at each time step.

4.2 Solution of the discretized differential-integral
equations

The multigrid method solves a problem on a series of gradually coarsened grids
instead of on a single grid. The basic idea of the multigrid method can be
explained as follows in a simple setting: the two-grid V-cycle. Suppose we have

a linear scalar partial differential equation
Lu=f

and
Lyup, = fi

is a discrete form of Lu = f on a grid with spacing h by any numerical method
(finite difference, finite element, or finite volume). Let uy, and @, be the exact

solution and computed solution to Lyu, = f, respectively. Define the residual

30



as
Th = fn — Lply
Define the error as
Ep = Up — ﬂ'h

It is easy to see that the error satisfies the following equation (residual equation)
Lheh =T

(Since the PDE is linear.) The key idea of multigrid method is that the residual
equation is solved on the coarse grid rather than on the original fine grid. To be
specific, let the fine grid and coarse grid be Q" and Q| respectively. Generally,
the spacing of coarse grid H is twice as wide as that of the fine gird. Then the

two-grid multigrid method goes as follows:

e Solve Lyu, = f, on Q" by iterating v, times with initial guess y; the

computed solution is also denoted by
e Calculate the residual r, = f, — Ly, on Q?
e Restrict the residual rj, from fine grid Q" to coarse grid Q: ry = Ry,

e Find the exact solution to the residual equation Lyey = ry on the coarse

grid Q| denoted by ey (called coarse grid correction)

e Find the correction on fine grid Q" by interpolating ey from Qf to QF:

en =Iey

o Let @y < Uy + e, iterate Lyu, = f, on fine grid Q" again for v, times,
with initial guess 4y ,the corrected computed solution is still denoted by

Up
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e Check for convergence, i.e. check whether the following condition is sat-

isfied:
74| L,

<e€
[ fallz,

, which says the relative residual in L, norm is less than or equal to a

prescribed tolerance e. If it is satisfied, we think Lju, = f; is solved
by the computed approximation #y; if not, go to the first step to start

another V cycle.

The parameters v, and v, are given fixed constants depending on the specific
problem. The operator R is the restriction operator from the fine grid to the
coarse grid (transferring data from a fine grid to the next coarse grid). The
operator I is the interpolation operator from the coarse grid to the fine grid
(transferring data from a coarse grid to the next fine grid). The operator Ly is
the coarsening operator, which defines the coarse grid problem (the version of
the original problem on the coarse grid). There are as many coarsening methods
as discretization schemes themselves (discretization of the original problem on
the finest grid). Usually, the coarse grid problem is the discretization of the
original problem on the coarse grid by the same discretizing method used for
discretization on the finest grid. See Fig. 4.2 for the illustration of a two-grid V-
cycle, where e stands for iteration, o stands for finding exact solution. Because
of the pattern in the diagram, this algorithm is commonly called V-cycle.

For multigrid with more than two grids, the algorithm is basically the same
as the two-grid algorithm except that rather than finding the exact solution
of the coarse grid problem Lyey = ry (ry is also denoted by fy) on QF we
iterate on Lyey = fy for vy times, compute the residual, and move on to

an even coarser grid Q% , and the process is repeated till the coarsest grid is
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Figure 4.2: The two grid V-cycle

reached, where exact solution is found. The resolution of the finest grid is
determined by the need for resolution in the problem, and the resolution of
the coarsest grid is such that the problem on that grid can be easily solved
exactly. (One possibility is that the coarsest gird contains only a single interior
point, but this is not used here.) Suppose we have n grids with the spacing
h,2h,4h, -+, Nh, where N = 2""1h, let Q" denote the grid whose spacing is lh,

with | = 2,4,8, -+, 64, we denote the problem on Q* by

Lirewn, = fin

, (The problem on Q" is Lyu, = f,.) where fi, is the right hand side of the

problem on Q. Then the n-grid multigrid V-cycle reads as follows:

Iterate on Lyuy, = f, for v, times with initial guess @y, on Q"; after iteration

the approximated solution is still denoted by 1y,

Compute the residual 7, = f, — L4, on Q"

Restrict the residual 7, from Q" to Q%" fo, = R'r), (note the residual is

now denoted by for)

Iterate on Lopean, = for, on Q2" with initial guess 0 (the zero vector) for v
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times; the approximated solution to the residual equation is denoted by
€2n
Compute the residual on Q%*: roy = for, — Lop€an

Restrict the residual 7y, from Q2% to Q%": f;, = Rilry,

Iterate on Lyses, = fan, on QY with initial guess 0 for v; times; the

approximated solution to the equation is denoted by é4
Compute the residual on Q*: ry, = far, — Lapup

Restrict the residual ryy, from Q% to Q% fg, = R3ry,

Find the exact solution to Lypenn = fnn on the coarsest grid QV?, denote

it by ENh
N
Transfer &y;, back from QM to Q3" by interpolation: Exp = Iﬁ,:éNh

Correct €x,, < €v, +€xn, and iterate on Ly ,en, = fn, for v, times with
2 2 2 2 2 2

initial guess é Nps the new computed solution is still denoted by é N,

[ N J
Transfer ég, back from Q3" to Q% : ey, = Igfésy,

Correct €45, — €4p, + €4p,; iterate on Lapesp, = fap, on Q** with initial guess
h h hi h€4h h

€4y, for vy times; the new computed solution is still denoted by €y,
Transfer é4, back from Q% to Q%' &y, = I Z}?éz&h

rrect o, <— €9 + €9p; iter n Lopesp, = fop, 0N with initial gu
Correct €y, < €95, + €9p; iterate on L on Q2" with initial guess

€9, for vy times, the new computed solution is still denoted by €y
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e Transfer &y, back from Q% to Q" e, = I},éy,

e Correct @iy, < @, + Up; iterate on Lyup = f;, on Q" for v, times with initial

guess uy; the new computed solution is still denoted by

e Check for convergence i.e. check whether the following condition is satis-

fied:
78] L,

<e€
| frllLs

, which says the relative residual in L, norm is less than or equal to a

prescribed tolerance e. If it is satisfied, we think Lju, = f; is solved
by the computed approximation y; if not, go to the first step to start

another V cycle.

The above n-grid V-cycle can also be written in a compact recursive form.
First we need to make some simplification of our notation. We can treat the
residual equation Lpe, = 7, and the original equation Lju, = f, as a single
equation, and use f, to denote the right hand side of the residual equation,
rather than rp,, since it is just another right hand side vector. We call the
exact solution of residual eqution w; instead of ey, since it is just another exact
solution. Rather than using €, to represent the computed approximation to the
residual equation, we call it %, since it is just another computed approximation.

Furthermore, we use the following notation

Uy, <= Vi (i, fn)

to denote a V-cycle beginning on Q" with initial guess %, and ending on Q" with
the computed solution, again denoted by @, (after correction and relaxation on

Q" ). Then the recursive specification of the V-cycle algorithm is as follows:
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Recursive definition of iy, < Vj (i, fr)

1. Tterate v; times on Lyuy = f, on Q" with given initial guess iy,
2. If Q%" is the coarsest grid,
fon < RE"(fn — Lyin)
find the exact solution of Lojusp = fop
Else
fon < RY"(fn — L)
Ugp <— 0
tgp, < Von (Ui, fon)
End If
3. Correct: iy, < Uy + 15 tiop
4. Iterate vp times on Lju, = f, with initial guess 1y,
5. Check for convergence on the finest grid, i.e. check whether the following

condition is satisfied:
7allL,

|| frll Lo

, which says the relative residual in L, norm is less than or equal to a prescribed

<e

tolerance €. If it is satisfied, we think Lju, = f; is solved by the computed
approximation uy; if not, go to the first step to start another V cycle.

In our computation a 7-grid V-cycle is used with the finest grid 256 x 512
and the coarsest grid 4 x 8. See Fig. 4.3 for the illustration of a seven-grid
V-cycle. Again, the e represents iteration, the o represents finding the exact
solution. The left branch (descending from Q" to Q%) is restriction and the
right branch (ascending from Q%" to Q") is interpolation. The labels on the
left hand side give the mesh spacing on each grid level and those on the right

hand side show the mesh points used on each grid.
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h 256x512

2h 128x256
4h 64x128
8h 32x64
16h 16x32
32h 8x16
64h 4x8

Figure 4.3: The 7-grid V-cycle used in our simulation.

The red-black Gauss-Seidel method is used for iteration.! A red point is a
point whose index sum is even and a black point is a point whose index sum
is odd (assuming that the index corresponding to a boundary in z direction
is zero, and the same for y direction). First, all the red points are updated
simultaneously by using the old values on black points, then all the black points
are updated simultaneously by using the newly-computed values on red points.

The full-weighting scheme is applied for residual restriction from a fine grid
to the next coarse grid. For any point on a coarse grid, the full weighting is
actually an average of values at the nearest points on the next fine grid centered
at the corresponding point on the fine grid. Put mathematically, suppose the
fine grid is Q" ,the coarse grid is Q*" here | = 1,2,4,8,...,64, let w}" denote

the value of a function w(x,y) at grid point (iAx, jAy) on grid Q*" similar for

'In the case of the pressure equations the red-black ordering is applied separately to each

of the four subgrids on which the system of equations for the pressure is defined.

37



lh

the notation w;;. The full-weighting scheme means, for any point indexed by

(i,7) on coarse grid Q2"

1 1
oAh Ih Ih Ih Ih Ih
Wi~ = Wiz + g( pi2j—1 T Woy 911 + Wi 19; + Wyity o)
1
Ih
+

Ih lh Ih
_(w2i71,2j71 T Wy 1941 T Woip12j-1 T w2i+1,2j+1)
16

The linear interpolation is employed to transfer data back from a coarse grid
to the next fine grid. Using the same notation as above, the linear interpolation

is defined as follows:

I _ . 2lh
Woi95 = Wy 5
1
Ih _ 2h 2h
Woiy1,95 = 5(“%‘,]' + Wi ;)

1
Ih _ 2k, . 20k
Wi 041 = §(wi,j + wijhq)

1
lh _ 2lh 2lh 2lh 2lh
Woit1,2j4+1 = Z(wij Wity T Wit wz‘+1,j+1)

QR factorization is utilized to find exact solution on the coarsest grid.

We want to point out that using the simple injection ? for density in trans-
ferring p"(x) from Q" (the finest grid) to Q" (I = 2,4,8,16,32,64) results in a
rather slowly convergent multigrid algorithm; instead, it is much better to use

the following way to define pl}, the density on Q at time n:

Pin(x) = po + D M (x — X"(s))As (4.21)

Here [h means the grid whose meshwidth is [ times h, where h is the mesh-

width of the finest grid. The d;, means the smoothed approximation to the

2Injection means a point on a coarse grid takes the same value as the corresponding point

on the next fine grid.
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Dirac delta function on a grid with spacing [h. The reason is that in the case of
using simple injection, the discretized Navier-Stokers equations on a sufficiently
coarse grids does not “feel” the existence of the filament, thus the coarse grid
correction does not help very much in accelerating convergence. Note that the
smoothed approximation of delta function in equation ( 4.21) has width 4lh,
that is, it gets wider as the grid is coarsened. This ensures that the mass of
filament is well represented on each level grid. Except for this important detail
about the width of the delta function being adjusted to the grid level, our multi-
grid method is standard, see [39] [40] [41] for detail. It is also worthwhile to
note that equation ( 4.20) actually involves four decoupled subsystems of linear
algebraic equations, which will be solved separately by the multigrid method.
The last issue we want to address in this chapter is the duration of time step.
In our computation the following two constraints are respected in choosing the

time step At while the spacing h is given.

h
At < maz{u™(x), v"(x)} (422)

h
At < 8

e 4.23
o 3Kst'retch ( )

The inequality ( 4.22) ensures that within each time step, the fluid at a grid
point will not flow out of a box with width 2h centered at that point. The
inequality ( 4.23) is taken from [30], which was derived from a one-dimensional
model problem for studying the Immersed Boundary Method. This ends the

description of our numerical method.

39



4.3 Upwind vs skew-symmetric for nonlinear
term

Before we start the next chapter (the simulation results), we want to make a
comparison of the simulation results from using upwind scheme for the nonlinear
term u - Vu in the Navier-Stokes equations and using skew-symmetric scheme
for the nonlinear term. We found that the skew-symmetric scheme gives much
better results. Fig. 4.4 and Fig. 4.5 show the simulation results at two differ-
ent times; Fig. 4.6 shows the peak-to-peak amplitude of the filament free end
against time. The inflow velocity is 280 ecm/sec, the filament length is 3 cm.
Note that the vortices are better defined and that the amplitude of the fila-
ment motion is larger with the skew-symmetric scheme. The clear contrast in
these figures shows that, compared to the skew-symmetric scheme the upwind
scheme introduces much more numerical viscosity, which may help stablize the
computation, but results in more non-physical energy dissipation and therefore
less action of the flow. On the contrary, the skew-symmetric scheme has the
desirable property that %||u|[2, = 0, (See [30]) so the kinetic energy of the soap

film is conserved, and as a result, more detailed flow structure is captured.
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Figure 4.4: Computation results using two different discretizations for the non-
linear term: upwind scheme (top panel) and skew-symmetric scheme (bot-
tom panel). The inflow velocity is 280 em/sec,the filament length is 3 cm,

time = 0.1825 sec.
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Figure 4.5: Continued from Fig. 4.4, teme = 0.1875 sec.
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Chapter 5

Simulation Results

The parameters of most of our simulations are shown in Table 5.1.

film inflow velocity 200 — 280 c¢m/sec
film dynamic viscosity 1.2 x 1075 g/(cm - sec)
film density 3x10°% g/em?
filament length 1—-6cm
filament density 4x10* g/em
filament rigidity 0.1erg-cm
gravitational acceleration 980 cm/sec?
air resistance coefficient | 0.00105 — 0.00147 g/(cm? - sec)
width of the film 8.5cm
length of the film 17em

Table 5.1: Parameters of the simulation

The dynamical viscosity u is larger by two orders of magnitude than in the

experiment, which results of course in the Reynolds number in our computation

44



being lower by two orders of magnitude than in the experiment. The mass of
filament stated in Table 5.1 is twice that of the experimental filament (saturated
with soapy water). The extra mass is intended to model the bulges in the film
that form around the filament as a result of surface tension, which increase
the effective filament mass. Note that in the laboratory experiment the film
thickness is about 3 uym while the diameter of the filament is about 150 um.
See Fig. 3.1). We also did computations with different filament mass within
the range [0,0.001] g/cm; the specific value of filament mass density will be
given in context for each of such computations. Where the filament mass is
not specifically stated, it is understood to have the value in Table 5.1 i.e. 4 x
107%. The vertical length of the domain in our computation is shorter than the
experimental soap film, but we do not believe that the length of the film is an
important parameter, provided it is long enough not to interfere with filament
motion. All the other parameters besides the Reynolds number, the filament
mass, and the length of the film are the same as those in the experiment for
most of simulations. We also did computations with different filament bending
rigidity ranging from 0 to 10 erg - cm, but most of our simulations use the
experimental value as given in Table 5.1.

We have done a lot of computations; the main simulation results are reported
here in the following three parts. Part 1 presents the simulation results of a
massless filament, and as a contrast, the simulation results of a filament with
nonzero mass. We found that with a massless filament the system does not
have a sustained flapping state. We did computations with different filament
mass (though we think the effective filament mass density is twice that of the
experimental filament for the reason explained above), and found that, within

a certain range, the more mass the filament has, the bigger flapping amplitude
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the filament has. In Part 2 we report the simulation results concerning the
bi-stable property of the film-filament system. We found numerically that the
whole system has, within a certain parameter range, two distinct dynamically
stable states: the static (rest) state (where the filament is motionless) and
the sustained flapping state (where the filament executes a sinuous motion)
depending on the filament initial condition (with all the other parameters fixed).
We also did computations with different filament lengths and found that a short
enough filament does not have the sustained flapping state and always returns
to its static state. In Part 3, we address the effect of filament bending rigidity on
the motion of the system. We did computations with different bending rigidity
and found that the motion of the filament-film system depends on filament
bending rigidity. In the above bi-stable case, if we set the bending rigidity
to zero, the static state is no longer stable, so bistability is lost and only the
sustained flapping state is seen. If we set the bending rigidity equal to twice
the experimental value, on the other hand, the situation is just the opposite:
the flapping state disappears and only the static state is seen. In addition, if we
change the bending rigidity in the middle of the computation, we can make the
filament change state in either direction, from flapping to static or from static
to flapping, depending on whether the bending rigidity is increased or decreased
sufficiently.

We will address these three parts in detail in the rest of this chapter. First,
we say a few words about visualization of the simulation results. Our simu-
lation results are visualized mainly by using two different techniques: the in-
stantaneous positions of the fluid markers and the contours of vorticity. In the
following figures where these visualizations are used, the left panel of each of

the figures shows the instantaneous positions of fluid markers created in bursts
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along the upper (inflow) boundary; the right panel of each figure shows the cor-
responding vorticity contours. In both (left and right) panels in each figure flow
is from top to bottom (driven by gravity, falling against air resistance) at an
inflow velocity equal to the film terminal velocity profile Vy(x). (See Fig. 3.4.)
The width of the channel is 8.5 cm, the height of the channel is 17 cm.

In all the computations with the massless filaments, the Navier-Stokes equa-
tions are discretized as ( 4.14) and ( 4.15), and the FFT is used to solve the
resulting linear algebraic system. In all the computations with filaments of
nonzero mass, the Navier-Stokes equations are discretized as ( 4.17), ( 4.18),
and ( 4.20), and the multigrid method (seven-grid V-cycle) is applied to solve

the resulting discretized Navier-Stokes equations.

5.1 Massless filament vs filament with nonzero
mass

In this part, first we report the simulation results with a massless filament. We
did computations with different filament lengths (2 cm to 6 cm), different inflow
velocities (200 cm/sec to 280 em/sec), and different initial perturbations (25%
to 40% of the filament length). In each of these simulations, the filament returns
to its rest state (stretched-straight aligned with the flow direction) after a few
oscillations and remains in the rest state. We found that a massless filament
in the flowing film can not exhibit sustained flapping, no matter how large the
initial perturbation is. After a few oscillations, it always returns to its straight
position pointing downstream. Thus the straight state is globally stable. This

indicates that the filament mass plays a key role for the film-filament system to

47



have a bi-stable scenario.

Fig. 5.1 - 5.5 (top panels) show a typical simulation of a massless filament
in a flowing soap film. The inflow velocity V; is 280 cm/sec, the filament length
is 3 cm, the Reynolds number Re = 210. The initial perturbation in filament
position is a sine wave with amplitude equal to 25% of the filament length.
Fig. 5.1 and Fig. 5.4 (top panels) are the instantaneous position of the fluid
markers and vorticity contours at several selected times; Fig. 5.5 (top) shows
the position of the free end of the massless filament against the time. See
Fig. 5.6 to 5.8 for more results with different filament lengths, inflow velocities,
and different initial magnitude of perturbations. As a final example of the
computations with a massless filament, we set the filament bending rigidity to
zero and keep all the other parameters unchanged in the computation whose
result is shown in Fig. 5.8. We find that the filament is still in rest state. See
Fig. 5.9

It appears that the lack of flapping state of a massless filament can be
explained as follows. The filament has its velocity, but it can not have any
momentum (mass times velocity), so it can not obtain work or energy from the
surrounding flowing film, which seems to be necessary for the filament to have
sustained flapping. This was not obvious before doing the simulation, however.
Since the filament can only move by displacing the soap film in which it is
immersed, one might have thought that the mass of the surrounding soap film
would act qualitatively like filament mass and make sustained flapping possible.
According to our simulation results, this is not the case.

Fig. 5.1 through Fig. 5.5 (bottom panels) display the results of simulation
which has the same parameters as those in Fig. 5.1 - 5.5 (top panels) except

that now the filament has nonzero mass. The bottom panels of Fig. 5.1 - 5.5
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Figure 5.1: The motions of a massless filament (top panel) and a filament with

nonzero mass (bottom panel) in a flowing soap film; time = 0.0469sec.
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Figure 5.2: The motions of a massless filament (top panel) and a filament with
nonzero mass (bottom panel) in a flowing soap film (continued from Fig 5.1);

time = 0.0968sec.
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Figure 5.3: The motions of a massless filament (top panel) and a filament with
nonzero mass (bottom panel) in a flowing soap film (continued from Fig. 5.2);

time = 0.1267sec.
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Figure 5.4: The motions of a massless filament (top panel) and a filament with
nonzero mass (bottom panel) in a flowing soap film (continued from Fig. 5.3);

time = 0.1920sec.
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shows the flapping state at different times of a filament whose mass is twice as
that of the experimental one (for the reason explained above). The flapping fre-
quency is about 50 Hz, which agrees very well with that observed in laboratory
experiment even though the Reynolds number in simulation is much lower. The
total excursion of the free end is about 2.1cm. The flapping is self-sustained
and periodic in time.

Note that the time in the top panel and bottom panel in each figure of Fig.
5.1 - 5.4 is the same, respectively; thus we can see a clear contrast between the
two obviously different scenarios resulting only from the filament mass.

We also did computations with different filament mass; (Even though we
believe the effective filament mass density is about twice of that of experi-
mental filament.) the flapping frequencies and the total excursions of the free
end of the filament with different mass are listed in Table 5.2 (inflow veloc-
ity is 280 c¢m/sec,the filament length is 3 ¢m) and Table 5.3 (inflow velocity is
200 cm/sec, the filament length is 2 ¢em). From Table 5.2 and Table 5.3 we can
see that the total excursion of the filament free end increases with the increase-
ment of filament mass; but the flapping frequency does not show such a simple
relationship. (In the case of 200 ¢m/sec inflow speed and 2 ¢cm filament, how-
ever, the flapping frequency decreases with the increasement of mass.) Fig. 5.10
- 5.11 show the horizontal position of filament free end with the time. It seems
that the more mass the filament has, the more violent the motion of the system

is.
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filament density (g/cm) | frequency (Hz) | amplitude (mm)
2x107* 52.9 9.8
4 %107 50 21
6 x 1074 53.6 24.5
8 x 1074 47 27
1x1073 41 28

Table 5.2: Flapping frequency and amplitude of the filament with different

filament mass; the inflow velocity is 280 cm/sec, the filament length is 3 cm.

filament density (g/cm) | frequency (Hz) | amplitude (mm)
2x107* 0 0
4x10°* 38 15
6 x 10* 36 18.9
8x10°* 33.2 23.1
1x1073 29.9 25.2

Table 5.3: Flapping frequency and amplitude of the filament with different

filament mass; the inflow velocity is 200 cm/sec, filament length is 2 em.
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5.2 Bi-stability of the film-filament system

Fig. 5.12 through Fig. 5.15 exhibit the bi-stable property of the system. In these
cases, the inflow film velocity V; is 200 cm/sec, the filament length is 2 cm. All
the other parameters are the same as those in Table 5.1. The only difference
between the parameters in these two simulations is the initial perturbation: in
the top panels of Fig. 5.12 - 5.15 the initial perturbation is 1% of the filament
length, while in the bottom panels of Fig. 5.12 - 5.15 it is 256% of the filament
length. In the case of a small initial perturbation, the filament returns to its
rest state (straight position aligned with the flow direction) after a period of
adjustment during which the filament oscillates with small amplitude. After
settling down the flexible filament looks like a rigid body, and the resultant flow
field resembles a two-dimensional flow passing a thin plate. (See top panels of
Fig. 5.12 through Fig. 5.15) In the case of large perturbation (See the bottom
panels of Fig. 5.12 through Fig. 5.15), the filament quickly settles into its sus-
tained periodic flapping state after 1 or 2 oscillations. The flapping frequency
is about 37 Hz, the peak-to-peak amplitude is about 1.3 cm. A vortex is shed
from the free end of the filament by each stroke, and these form a “street” of
vortices of alternating sign in the wake of the oscillating filament. Each vortex
is washed away downstream by the flowing film and gets diffused because of
the film viscosity. The vortex develops a mushroom-like structure which re-
sembles those observed in interfacial instabilities (Rayleigh-Taylor instability,
Richtmyer-Meshkov instability and Kelvin-Helmholtz instability). One feature
of Zhang’s experiment [3] that we do not yet capture is the small-scale structure
of the vortex wake. In all of our simulation involving filament flappings, there

is a sinuous line of highly sheared fluid connecting the large-scale shed vortices.
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This is especially evident in the particle traces (left-hand panels of the Figures).
In Zhang’s experiment this line resolves itself into discrete small-scale vortices,
which we do not see. This could be because our mesh is too coarse or because
our Reynolds number is too low for this fine-scale structure to appear. Despite
this, the large-scale structure of the vortex wake is very similar in our simulation
and in Zhang’s experiment.

We also did computations with variable filament length; the results are as
follows. (All the parameters in these computations are the same as above bi-
stable case except for the filament length, which changes from one computation
to another.) The flapping frequencies and the total excursions of the free end of
the filament with different lengths are listed in Table 5.4. The relation between
flapping frequency and the filament length is plotted in the upper figure in
Fig. 5.17, and the lower figure in Fig. 5.17 shows the relation between the total
excursion of the free end of filament and the filament length. Note that in
this case there is a critical length of about 1.6 cm below which the filament
always returns to its static state independent of the magnitude of the initial

perturbation.
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Figure 5.12: Bi-stability of the film-filament system; the only difference between the
computations in top panel and bottom is the initial perturbation: small (top panel),

large (bottom panel). time = 0.05 sec.
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Figure 5.13: Bi-stability of the filament-film system (continued from Fig. 5.12);

time = 0.1 sec.
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Figure 5.14: Bi-stability of the filament-film system (continued from Fig. 5.13);

time = 0.152 sec.
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Figure 5.15: Bi-stability of the filament-film system (continued from Fig. 5.14);

time = 0.2 sec.
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filament length (mm) | frequency (Hz) | amplitude (mm)

16 0 0

17 36.7 10.6
20 374 13.3
25 38.3 17.7
30 36.4 19.7
35 33.7 20.8
40 32.2 21.3
45 31 21.5

Table 5.4: Flapping frequency and total excursion of filament free end

5.3 Effect of filament bending rigidity

In this part we report the simulation results of the effect of filament bending
rigidity on the motion of the film-filament system. First, starting from the
previous simulation parameters of the bi-stable case in Part 2, if we change the
bending rigidity from the laboratory measured value (0.1 erg - cm) to zero, we
find that the static state loses its stability so that even the small amplitude
initial perturbation leads to sustained flapping. (See Fig. 5.18.) In the case of
the large amplitude perturbation, if we double the bending rigidity and keep
all the other parameters the same, we find that the filament returns to its
motionless state following a number of oscilations (See Fig. 5.19). Moreover,
if we change the bending rigidity during the course of a computation, we find
that the two distinct dynamical states can be switched depending on whether

the bending rigidity is increased or decreased sufficiently. See Fig. 5.20 and
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Fig. 5.21. Further computer experiments involving changes in bending rigidity
are shown in Fig. 5.22 and Fig. 5.23. Note that in the case of inflow velocity
280 cm/sec, filament length 3 ¢m, when the bending rigidity is doubled from
the laboratory value, the filament remains in its flapping state as if the bending
rigidity was not changed at all. But when the rigidity is increased to 10 times
as large as the laboratory value, the filament changes its state from flapping to
static.

Note that even though the previous bi-stable scenario disappears when we
change the filament bending rigidity from the value that it had in the above
specific bi-stable case in Part 2, there could still be a bi-stable scenario for the
filament-film system with different filament bending rigidity. We have not yet

done the numerical experiments to determine this.
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Figure 5.18: The position of the free end of the filament as a function of time;
a filament in static state (dashed curve) changes to flapping state (solid curve)

after its bending rigidity is set to zero.
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Figure 5.19: The position of the free end of the filament as a function of time;
a filament in flapping state (dashed curve) changes to rest state (solid curve)

after its bending rigidity is doubled.
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Figure 5.20: The position of the free end of the filament as a function of time:
the inflow velocity is 200 cm/sec, the filament length is 2 ¢m, the “eo” indicates
the time when the filament bending rigidity is doubled. The flapping filament

approaches its static state after its bending rigidity is doubled.
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Figure 5.21: The position of the free end of the filament as a function of time:
the inflow velocity is 200 cm/sec, the filament length is 2 em, the “e” indicates
the time when the filament bending rigidity is decreased to 0.001 erg - cm. The

filament in rest state becomes flapping after its bending rigidity is decreased.
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Figure 5.22: The position of the free end of the filament as a function of time:
the inflow velocity is 280 e¢m/sec, the filament length is 3 ¢m, the “o” indicates
the time when the filament bending rigidity is doubled. This flapping filament,
unlike the one in Fig. 5.20, remains in its flapping state after its bending rigidity

is doubled. The difference are that the filament is longer and the inflow velocity

is higher.
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Figure 5.23: The position of the free end of the filament as a function of time:
the inflow velocity is 280 e¢m/sec, the filament length is 3 ¢m, the “o” indicates
the time when the filament bending rigidity is increased to 1erg - cm. This
value is 5x the bending rigidity used in Fig. 5.22 and 10x the original bending
rigidity. The flapping filament approaches its rest state after its bending rigidity

is increased.
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Chapter 6

Summary and Conclusion

The subject of this thesis is a flexible filament immersed in a flowing soap film.
We have simulated this system by the Immersed Boundary Method, paying
particular attention to its two dynamically stable states: a straight state in
which the filament is at rest parallel to the flow, and a flapping state in which
the filament oscillates from side to side periodically shedding vortices into the
flowing soap film. Though the numerical research is still underway, some main
conclusions have been reached:

1) The sustained flapping of the filament only occurs when filament mass
is included in the formulation of the model; within a certain range of filament
mass, the more mass of the filament the bigger the amplitude of flapping.

2) When the length of filament is short enough (below some critical length),
the filament always approaches its straight state; but when the length is larger
the system is bi-stable, which means that it can settle into either a straight
state or a flapping state depending on the initial conditions. (There may be an
upper critical length above which only the flapping state is stable, but we have

not investigated this .)
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3) The bi-stability of the film-filament system depends on the filament bend-
ing rigidity; the filament motion can be switched in either direction, from static
to flapping, or from flapping to static, depending on whether the bending rigid-
ity is decreased or increased sufficiently.

In choosing parameters for these computer simulations, we have closely fol-
lowed the experimental data of [3], with one important exception: the Reynolds
number of the computation is about 200, whereas the Reynolds number of the
experiment is about 20,000.The fact that we get good agreement with experi-
ment, not only qualitatively but even with regard to such quantitative measures
as the flapping frequency (about 50 HZ in both the experiment and in the sim-
ulation in the case of 280 cm/sec inflow), suggests that the Reynolds number
is not an important parameter for the bi-stability of the filament-film system.
(Perhaps the Reynolds number has to be sufficiently high for the flapping to
occur, but Re = 200 seems to be high enough.) This raises the question what
other non-dimensionless parameters might be important. Two examples have

been proposed by Shelley [4], which can be defined in our case as the follows:

ML
S| =
' pol?
_ Kbend/L
Sy = —hendl
L?po Vs

A good project for future work would be to study systematically the influence
of these non-dimensional parameters (and also the Reynolds number) on the
behavior of the filament-film system.

Other future works would be: 1) numerically study the interaction between

two flexible filaments in the flowing soap film. (It was studied in laboratory
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experiment by Zhang [3].) 2) use the formal second order Immersed Boundary
Method [29] [31] to simulate the film-filament system. This would help to lift

the Reynolds number in our simulation of such a system.

74



Bibliography

[1] M.P. Paidoussis, Fluid-Structure Interaction Vol. I (Academic San Diego,
1998).

[2] D.G. Crighton, New aspects of fluid-structure interaction theory,

[3] J. Zhang, S. Childress, A. Libchaber, and M. Shelley, Flexible filaments in a
flowing soap film as a model for one-dimensional flags in a two-dimensional

wind, Nature 408,835 (2000).

[4] M. Shelley, S. Childress,and J. Zhang, Inertia dynamics of filaments, in

preparation.

[5] P. Fast and W.D. Henshaw, Time-accurate computation of viscous flow
around deforming bodies using overset grids, ATAA paper 2001-2604, 15th

ATAA Computational Fluid Dynamics Conference, accepted.

[6] C.S. Peskin,Flow patterns around heart valves: a numerical method, J.

Comput. Phys. 25,220(1977).

[7] C.S. Peskin and D.M. McQueen, A general method for the computer simu-
lation of biological systems interacting with fluids,Sympos. Soc. Exp. Biol.

49,265 (1995).

()



8]

[10]

[11]

[12]

[13]

[14]

[15]

C.S. Peskin and D.M. McQueen, Fluid dynamics of the heart and its valves,
in Case Studies in Mathematical Modeling: Ecology, Phystology, and Cell
Biology, edited by H.G. Othmer, F.R. Adler, M.A. Lewis, and J.C. Dallon
(Prentice-Hall, Englewood Cliffs, NJ, 1996), p.309.

D.M. McQueen and C.S. Peskin, A three-dimensional computer model of
the human heart for studying cardiac fluid dynamics, Computer Graphics

34,56 (2000).

C.S. Peskin and D.M. McQueen, Computational biofluid dynamics, Con-
temp. Math. 141, 161 (1993).

D.M. McQueen, C.S. Peskin, and L. Zhu, The immersed boundary method
for incompressible fluid-structure interaction, accepted by the First M.I.T.

Conference on Computational Fluid and Solid Mechanics, June 2001.

C.S. Peskin and B.F. Printz, Improved volume conservation in the compu-
tation of flows with immersed elastic boundaries, J. Comput. Phys. 105,33
(1993).

D.M. McQueen and C.S. Peskin, Shared memory parallel vector implemen-
tation of the immersed boundary method for the computation of the blood

flow in the beating mammalian heart, J. Supercomput. 11,213 (1997).

D.M. McQueen, C.S. Peskin, and E.L. Yellin, Fluid dynamics of the mitral
valve: physiological aspects of a mathematical model, Am. J. of Physiol.,

242, 1095 (1982).

L.J. Fauci, Interaction of oscillating filaments—A computational study,J.

Comput. Phys.,86, 294 (1990).

76



[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

L.J. Fauci and A.L. Fogelson, Truncated Newton methods and the modeling

of complex elastic structures, Comm. Pure Appl. Math.,46,787(1993).

L.J. Fauci and C.S. Peskin, A computational model of aquatic animal lo-

comotion,J. Comput. Phys. 77,85 (1988).

R.P. Beyer, A computational model of the cochlea using the immersed

boundary method, J. Comput. Phys. 98,145 (1992).

E. Givelberg, Modeling elastic shells immersed in fluid, PhD thesis,
Courant Institute of Mathematical Sciences, New York University, Septem-

ber 1997 (unpublished).

A.L. Fogelson, A mathematical model and numerical method for studying
platelet adhesion and aggregation during blood clotting, J. Comput. Phys.
56,111 (1984).

A.L. Fogelson and C.S. Peskin, A fast numerical method for solving three-
dimensional Stokes equations in the presence of suspended particles,J.

Comput. Phys.79, 50 (1988).

D. Sulsky and J.U. Brackbill, A numerical method for suspension flow,.J.
Comput. Phys. 96, 339 (1991).

E. Jung and C.S. Peskin, 2-D simulation of valveless pumping using the

immersed boundary method, STAM J. Sci. Comput., to appear (2001).

M.E. Rosar, A three-dimensional computer model for fluid flow through a
collapsible tube, PhD thesis, Courant Institute of Mathematical Sciences,
New York University, 1994 (unpublished).

7



[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

K.M. Arthurs, L.C. Moore, C.S. Peskin, E.B. Pitman, and H.E. Layton,
Modeling arteriolar flow and mass transport using the immersed boundary

method, J. Comput. Phys. 147,402 (1998).

D.C. Bottino, Modeling viscoelastic networks and cell deformation in
the context of the immersed boundary method, J. Comput. Phys.,147,86
(1998).

C.D. Eggleton and A.S. Popel, Large deformation of red blood cell ghosts
in a simple shear flow, Phys. Fluids,10 ,1834 (1998).

J.M. Stockie and S.I. Green, Simulating the motion of flexible pulp fibres
using the immersed boundary method, J. Comput. Phys. 147,147 (1998).

M.C. Lai and C.S. Peskin, An immersed boundary method with formal
second order accuracy and reduced numerical viscosity, J. Comput. Phys.

160,705 (2000).

M.C. Lai, Simulations of the flow past an array of circular cylinders as a
test of the immersed boundary method, PhD thesis, Courant Institute,Sept.
1998.

D.M. McQueen and C.S. Peskin, Heart simulation by an immersed bound-
ary method with formal second order accuracy and reduced numerical vis-

cosity, ICTAM 2000 Proceedings, Kluwer, in press.

A.L. Fogelson and J. Zhu, Implementation of a variable-density immersed

boundary method, unpublished, http://www.math.utah.edu/fogelson.

Y. Couder, J.M. Chomaz, and M. Rabaud, On the hydrodynamics of soap
films, Physica D, 37,384 (1989).

78



[34] M. Gharib and P. Derango, A liquid film (soap film) tunnel to study two-
dimensional laminar and turbulent shear flows, Physica D, bf 37,406 (1989).

[35] H. Kellay, X-I. Wu, and W.I. Goldburg, Experiments with turbulent soap
films, Physical Review Letters, 74(20), 3975 (1995).

[36] M.A. Rutgers, X-I. Wu, R. Bhagavatula, A.A. Peterson, and W.I. Gold-
burg, Two-dimensional velocity profiles and laminar boundary layers in

flowing soap films, Phys. Fluids 8 (11), 2847 (1996).

[37] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math.

Comp.,22,745 (1968).

[38] A. J. Chorin, On the convergence of discrete approximations to the Navier-

Stokes equations, Math. Comp.,23,341 (1969).

[39] W.L. Briggs, V.E. Henson, and S.F. McCormick, A multigrid tutorial, 2nd
edition, STAM, 2000.

[40] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical
Recipes in Fortran: the art of scientific computing, 2nd edition, Cambridge

University Press, p.862, 1992.

[41] A. Brandt, Multigrid Techniques: 1984 Guide with Application to Fluid
Dynamics, GMD-Studien Nr. 85, Gesellschaft fur Mathematik und Daten-

verarbeitung, St. Augustin, Bonn, 1984.

79



