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a b s t r a c t

The non-slip boundary condition at solid walls cannot be accurately achieved by the conventional immersed

boundary–lattice Boltzmann (IB–LB) coupling schemes due to insufficient interpolation accuracy. To solve

this problem, an iterative force correction procedure for the IB–LB coupling scheme is proposed. Cheng’s

external forcing term in the LB equation is selected to properly incorporate the present and the next time

step effects. The unknown IB force and the corresponding force on fluid at the next time step are calculated

by iterative correction, based on the known immersed boundary speed, flow velocity, and the relationship

between the IB speed and the IB force. Instead of the Dirac delta function, the Lagrange interpolation poly-

nomial is used to obtain the IB speed from nearby fluid velocity. Typical cases, including the flow around a

circular cylinder, shearing flow near a non-slip wall, and circular Couette flow between two inversely rotating

cylinders, are simulated to verify and validate the method. It is shown that the present method guarantees

the non-slip boundary condition and maintain the overall first-order spatial convergence rate of the con-

ventional immersed boundary method (IBM). The accuracy improvement is obvious for both stationary and

moving solid boundaries in both viscous flows and strong shearing flows. To demonstrate application pos-

sibility, a mechanical heart valve flow is also simulated, and better agreements with experimental data are

achieved compared to those by commercial software.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The immersed boundary (IB) method was first proposed by Peskin

in 1970s to simulate blood flows in the human heart [1]. This method

uses a fixed Eulerian mesh to simulate the flow field, and a set of La-

grangian points to represent the boundary immersed in the fluid. The

interaction between the fluid and the immersed boundary is imple-

mented by a discrete Dirac delta function, which spreads the force of

the deformable elastic boundary to the nearby fluid grid nodes and

interpolates the boundary velocity from the local flow velocity to up-

date the boundary position. Since Peskin’s pioneering work, the IB

method has been widely used to study a variety of fluid–structure in-

teraction (FSI) problems, including blood flow in the human heart [2],

flows through prosthetic cardiac valves [3], swimming of bacterial or-

ganisms and aquatic animals [4,5] aggregation of platelets [6], defor-

mation of three-dimensional capsules [7,8], filament flapping [9,10],

and parachute opening dynamics [11].
∗ Corresponding author.

E-mail addresses: ygcheng@whu.edu.cn (Y. Cheng), lzhu@math.iupui.edu (L. Zhu).
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The lattice Boltzmann (LB) method is an alternative simulation

echnique for complex fluid systems [12–14]. Its easy implementa-

ion, intrinsic parallelism, and good suitability for numerous fluid

ow problems have been demonstrated by many works [15–18]. Like

he IB method, the standard LB method works on a regular grid. Due

o this common feature, coupling these two methods for efficient

imulation of FSI problems is possible. Researchers have made many

fforts in improving and applying the IB–LB coupling schemes in re-

ent years. Zhang et al. [6] proposed an IB–LB coupling scheme to

nvestigate aggregation of red blood cells. Cheng and Zhang [19] im-

roved the forcing introducing method and analyzed the mitral valve

ow. Tian et al. [20] presented a modified penalty IB–LB scheme to

imulate the flapping of multiple elastic filaments. Krüger et al. [8]

sed the finite element LB model in the scheme and simulated the de-

ormation of an initially spherical capsule freely suspended in simple

hear flow. Hao and Zhu [21] proposed an implicit IB schemes to sim-

late a 3D viscous flow past deformable sheets and flags. In the above

orks, the boundaries were flexible and the boundary force was eval-

ated from the boundary configuration following the physical law.

n the other hand, several other IB–LB coupling schemes have been

roposed to simulate moving rigid boundaries. They used different

http://dx.doi.org/10.1016/j.compfluid.2015.03.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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pproaches to calculate the IB force that is spread to the fluid nodes

hrough the Dirac delta function. Feng and Michaelides [22] proposed

penalty method that allows the solid particles to be slightly de-

ormed and assumed a linear spring to restore the IB points back to

heir target location. Niu et al. [23] calculated the IB force by the mo-

entum exchange of the particle distributions of LB model at bound-

ry. Dupuis et al. [24] introduced a direct forcing IB method, in which

he IB force was obtained by comparing the computed IB speed with

he desired reference speed without applying the IB force. However,

he non-slip boundary condition cannot be exactly guaranteed by the

bove mentioned methods. Some researchers have made efforts to

emedy this problem. For example, Cheng et al. [25,27] assigns the

ero velocity to the Eulerian points inside of the stationary solid body

t every evolutionary time step. This artifice can enhance the non-

lip boundary condition, but is not convenient in simulating com-

lex moving bodies. Later, Wu and Shu [26] develops an implicit ve-

ocity correction-based IB–LB scheme by using Guo’s external forc-

ng term [28]. Although the scheme can well enhance the non-slip

oundary condition by correcting IB speed, it needs to solve a large

anded matrix ((2Nb)
2

in two dimensions and (3Nb)
2

in three dimen-

ions, where Nb is the number of IB points). The consumed memory

nd computing time increase significantly as N increases, which im-

oses a limitation on the Lagrangian grid density of IB discretization.

n order to improve the accuracy at boundary walls without signifi-

antly increasing computing cost, a new iterative force correction IB–

B coupling scheme is introduced in this paper. It is based on the LB

quation with the external forcing term proposed by Cheng and Li

29]. The external forcing term (see Section 2), which consists of the

resent and the next time step effects, can maintain the second-order

verall spatial accuracy, and does not have to modify the formulae for

omputing macroscopic fluid flow velocity. The computing cost of the

orce correction does not increase significantly because only the fluid

ow nodes within the IB layer (the influence range of boundary force)

re involved in the iteration.

The paper is organized as follows. Section 2 briefly describes the

elated existing IB–LB coupling schemes. Section 3 introduces the

ew iterative force correction scheme. In Section 4, the accuracy of

he proposed scheme is verified by typical problems. In Section 5, the

echanical heart valve flow is simulated and compared with experi-

ental data. Section 6 concludes the paper.

. Existing immersed boundary–lattice Boltzmann coupling

chemes

.1. Immersed boundary method

In the IB method, the flow field is described on a fixed Eulerian

esh � f , and the IB is represented by sets of Lagrangian points �b.

he formulation may be expressed as follows:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + υ∇ · [ρ(∇u + (∇u)

T
)] + f, (2)

∂Xl(s,t)

∂t
= U(Xl ,t) =

∫
� f

u(x,t)δ(x − Xl(s,t))dx, (3)

(x,t) =
∫
�b

F(s,t)δ(x − X(s,t))ds, (4)

(s,t) = S f X(s,t), (5)

here x, p, u and f are the Eulerian spatial coordinate, flow pressure,

uid velocity, and external force density, respectively; X , F and U are
l
he Lagrangian IB position, IB force density, and IB moving speed, re-

pectively; S f is the IB force generation operator; δ(r) is the delta

unction which may be written as

h(x,y) = h−2φ
(

x

h

)
φ
(

y

h

)
, (6)

n which h is the mesh spacing, and φ(r) is normally chosen as

(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

8

(
3 − 2|r| +

√
1 + 4|r| − 4|r|2

)
0 ≤ |r| < 1,

1

8

(
5 − 2|r| +

√
−7 + 12|r| − 4|r|2

)
1 ≤ |r| < 2,

0 |r| ≥ 2.

(7)

qs. (1) and (2) are the N–S equations with external force f in Eulerian

orm for the fluid flow in domain � f , while Eqs. (3)–(5) are the dy-

amic equations in Lagrangian form for the boundary �b. Eqs. (3) and

4) describe the interaction between the IB and fluid flow. The for-

er imposes the flow velocity on the boundary to obtain IB velocity

and the latter spreads the Lagrangian IB force to the fluid to obtain

he Eulerian force. Eq. (5) is the constitutive equation that determines

B force based on the boundary configuration, in which function S f

atisfies a generalized Hooke’s law if the boundary is elastic.

.2. Lattice Boltzmann method for fluid flow

.2.1. Basic formulation of the LB model with multi-relaxation-time

ollision

In this work, the LB model with multi-relaxation-time (MRT) colli-

ion operator is used for the fluid flow simulation. The most common

wo-dimensional LB model is the one using a square lattice with nine

iscrete velocity directions (denoted as D2Q9). The MRT-LB model

ith external forcing may be written as

fα(x + eαδt ,t + δt) − fα(x,t) = −M−1Ŝ[mα(x,t) − meq
α (x,t)]

+ δtFα , (8)

here { fα(x,t) : α = 0,1, . . . ,8} are the discrete distribution functions

t position x and time t; {Fα : α = 0,1, . . . ,8} are the external forcing

erm which play a key role in the new IB–LB coupling scheme and will

e discussed elaborately in Section 2.2.2; {mα(x,t) : α = 0,1, . . . ,8}
re the moments of the distribution functions and may be expressed

s m = (ρ ,e,ε, jx,qx, jy,qy,pxx,pxy)
T

. The physical meanings of the above

oments can be found in literature [30]. The relation between m and

istribution function f may be expressed as m = M f , where M is the

ransformation matrix [30]. meq is the equilibrium moments, which

ay be expressed as

eq = ρ
(
1, − 2 + 3u2,1 − 3u2,ux, − ux,uy, − uy,u2

x − u2
y ,uxuy

)T
.

he diagonal collision matrix Ŝ may be given by

ˆ = diag
(
sρ ,se,sε ,sχ ,sq,sχ ,sq,sν ,sν

)
.

he fluid density ρ and flow velocity u are defined as

=
∑
α

fα , ρu =
∑
α

eα fα . (9)

.2.2. Cheng’s approach for introducing external force into the LB model

The external forcing term of the LB model play a significant

ole in accuracy and stability of simulations. Here the approach

roposed by Cheng and Li [29] is adopted and it is the basis of

he new IB–LB coupling scheme (the derivation can be found in



248 C. Zhang et al. / Computers and Fluids 124 (2016) 246–260

f

2

p

t

I

t

w

M

t

t

c

t

F

2

fl

p

n

d

p

t

a

F

ρ

w

f

v

fl

a

u

T

p

l

c

f

t

d

n

p

f

n

g

Section 3). The method can handle time and space dependent body

forces or other source terms and need not to modify the calculation

formula of velocity (Eq. (9)). Both theoretical analysis and numerical

simulation of typical examples have shown that a second-order accu-

racy can be achieved within incompressible limit [29].

Assuming that A is the source term in the continuity equation and

B is the external forcing term in the momentum equations, Cheng’s

forcing term in Eq. (8) may be written as [29]

Fα = 1

2
[gα(x + eαδt ,t + δt) + gα(x,t)], (10)

gα = wα{A + 3B · [(eα − u) + 3(eα · u)eα]}, (11)

where wα is the weighting factor, which takes w0 = 4/9, w1−4 = 1/9

and w5−8 = 1/36 for D2Q9 model. For Eqs. (1) and (2) here, we may

let A = 0 and B = f.

2.3. Four related existing IB–LB coupling schemes

Four existing IB–LB coupling schemes, the penalty method [22],

direct forcing method [24], momentum exchange method [23], and

velocity correction method [26] will be used to compare with the

present scheme in this paper. The first three are explicit schemes.

Thus, the interpolation error is fixed and the simulated velocity does

not satisfy exactly the non-slip boundary condition at walls. This

leads to penetration of fluid into the solid body. The last velocity cor-

rection method is an implicit scheme, in which the boundary force

is computed implicitly and the non-slip boundary condition is en-

forced at the IB points. However, because a large banded matrix must

be calculated during the solving procedures, the computer memory

consumption and computing time will increase significantly with the

number of IB discrete points increasing. The four schemes will be

briefly discussed in this section.

2.3.1. Penalty method

To model the interaction of the fluid and the rigid body, Feng and

Michaelides [22] used the penalty method to compute the IB force.

This method assumes that a IB point should be at its reference po-

sition Xr
j

although its actual position is Xt
j

because the boundary is

slightly deformed by the fluid. If the reference point and the IB point

are not coincided at the same position, the displacement ξ j = Xt
j
− Xr

j

will generate a restoration force F j that tends to restore the bound-

ary point back to the reference point. This can be modeled by a linear

spring relation:

F j = −κξ j , (12)

where κ is the spring constant, and it can be empirically determined

by users.

2.3.2. Direct forcing method

To eliminate the artificial κ , Dupuis et al. [24] introduced the di-

rect forcing method. It is assumed that Eq. (2) is also valid at the IB

points, therefore Eq. (2) can be rewritten as

∂u

∂t
= ud(x,t + δt) − u(x,t)

δt
= RHS + f(x,t), (13)

where ud is the desired reference velocity (equal to the IB speed),

RHS = −∇ · (uu) − ∇p + υ∇ · [(∇u + (∇u)T )]. With external force

density neglected, Eq. (2) can be rewritten as

u∗(x,t + δt) − u(x,t)

δt
= RHS, (14)

where u∗ is the flow velocity at time t + δt without forcing term. Sub-

tracting Eq. (14) from (13) yields an expression for the fluid flow force

at IB points
(x,t) = ud(x,t + δt) − u∗(x,t + δt)

δt
. (15)

.3.3. Momentum exchange method

Niu et al. [23] proposed a momentum exchange method to com-

ute the IB force. By using the Lagrange interpolation polynomial,

he LB distribution functions of all lattice particle directions at the

B points are calculated. Hence, a new set of distribution functions at

he IB points could be achieved through the bounce-back rules

fβ (Xβ ,t) = fα(Xα ,t) − 2ωαρ
eα · Uβ

c2
s

, (16)

here β denotes the opposite direction of α; Uβ = U + � × (Xβ −
) is the velocity of the boundary with U and � representing the

ranslational and angular velocity of the rigid body, respectively; M is

he mass center of the body; Xβ is its boundary position; ωα are the

oefficients in the equilibrium distribution functions. Consequently,

he IB force density can be calculated via the momentum exchange

(Xβ ,t) =
∑
β

eβ [ fβ (Xβ ,t) − fα(Xα ,t)]. (17)

.3.4. Velocity correction method

For the above three methods, the IB speed cannot be equal to the

uid velocity at the corresponding position due to insufficient inter-

olation accuracy. This means that non-slip boundary condition can-

ot be accurately satisfied at solid walls. In order to overcome this

rawback, Wu and Shu [26] proposed a velocity correction IB–LB cou-

ling scheme. It is based on the LB equation with external forcing

erm proposed by Guo et al. [28]. Guo’s approach may be expressed

s

fα(x + eαδt ,t + δt) − fα(x,t) = −� + δtFα , (18)

α =
(

1 − 1

2τ

)
ωα

(
eα − u

c2
s

+ eα · u

c4
s

· eα

)
· f, (19)

u =
∑
α

ea fa + 1

2
fδt , (20)

here f is the force density at the Eulerian nodes, which is calculated

rom the Lagrangian IB force at IB points; ωα are weighting factors.

For the velocity correction method, Wu defined the intermediate

elocity u∗ = 1
ρ

∑
α ea fa and the velocity correction δu = 1

2ρ fδt . The

uid velocity u that corresponds to the IB position may be expressed

s

= u∗ + δu. (21)

hus, the external force is f = 2ρδu/δt . The value of δu can be com-

uted from a system of linear equations derived from the interpo-

ation and spreading of the discrete form of Eq. (21). Although the

omputing accuracy may be insufficient due to using the Dirac delta

unction in the interpolation (verified in Section 4.4), it is adequate

o ensure that fluid does not penetrate through the solid body. In ad-

ition, the coefficient matrix of the equation system is related to the

umber of IB points N. For two-dimensional and three-dimensional

roblems, the matrix size are (2Nb)
2

and (3Nb)
2
, respectively, there-

ore the memory consumption and computing time will increase sig-

ificantly as Nb increases. This imposes limitations on the Lagrangian

rid resolution of the IB discretization.
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. Iterative force correction IB–LB coupling scheme

In this paper, a new iterative force correction IB–LB coupling

cheme is proposed. It is based on the LB equation with external forc-

ng term proposed by Cheng and Li [29]. Cheng’s approach (Eq. (10))

oes not need to modify the velocity term, and only need to split the

xternal forcing term into two parts: effects of the present step and

he next time step. Substituting Eq. (10) into the LB Eq. (8), we can get

he following expression:

f d
α(x + eαδt ,t + δt) − f d

α(x,t) = � + δt

2
[gd

α(x,t)

+ gd
α(x + eαδt ,t + δt)], (22)

here � = −M−1Ŝ[mα(x,t) − m
eq
α (x,t)], and superscript d denotes

he desired reference values which satisfy the non-slip boundary con-

ition.

In Eq. (22), the next time forcing term gd
α(x + eαδt ,t + δt) is un-

nown. We define an intermediate forcing term g∗
α(x + eαδt ,t + δt),

ubstitute it into Eq. (22), and obtain the expression

f ∗
α(x + eαδt ,t + δt) − f d

α(x,t) = � + δt

2
[gd

α(x,t)

+ g∗
α(x + eαδt ,t + δt)], (23)

here f ∗
α(x + eαδt ,t + δt) is the intermediate distribution functions

t the next time step.

Subtracting Eq. (23) from (22) leads to a new expression

f d
α(x + eαδt ,t + δt) − f ∗

α(x + eαδt ,t + δt)

= δt

2
(gd

α(x + eαδt ,t + δt) − g∗
α(x + eαδt ,t + δt)). (24)

umming the moments of Eq. (24) [31], we can obtain

d(x + eαδt ,t + δt) − u∗(x + eαδt ,t + δt)

= δt

2

(∑
α

eαgd
α(x + eαδt ,t + δt) −

∑
α

eαg∗
α(x + eαδt ,t + δt)

)

= δt

2
(fd(x + eαδt ,t + δt) − f∗(x + eαδt ,t + δt)), (25)

here ud is the desired reference fluid velocity, u∗ is the intermediate

uid velocity, and fd and f∗ are the fluid flow external force.

Eq. (25) may be rewritten as the correction form for fluid flow ex-

ernal force:

d(x + eαδt ,t + δt) = f∗(x + eαδt ,t + δt)

+2
ud(x + eαδt ,t + δt) − u∗(x + eαδt ,t + δt)

δt
. (26)

n order to satisfy the non-slip condition at the boundary, the IB speed

ust equal to the fluid velocity at the corresponding position. Ac-

ording to Eqs. (3) and (4), by assuming that Eq. (26) is also valid at

he IB points, we can obtain

d(Xl ,t) = F∗(Xl ,t) + 2
Ud(Xl ,t) − U∗(Xl ,t)

δt
. (27)

ote that Eq. (27) is the iterative formula for boundary force cor-

ection. Here Ud is the desired reference boundary speed, and U∗ is

he intermediate boundary speed. When U∗ is equal to the reference

peed Ud , Eq. (27) becomes

∗(Xl ,t) = Fd(Xl ,t). (28)

onsidering Eq. (4), we get
∗(x + eαδt ,t + δt) = fd(x + eαδt ,t + δt). (29)

e can regard equation |Ud(Xl ,t) − U∗(Xl ,t)| = 0 as the condition

hich forces the IB force and fluid flow force match their desired val-

es (i.e. Eqs. (28) and (29)).

In the exiting IB–LB coupling schemes, the interaction between

uid and boundary is implemented by the discrete Dirac delta func-

ion, which spreads the IB force to the nearby fluid nodes and inter-

olates IB speed from the local fluid velocity. In this work, the delta

unction is only used in the force spreading process, and it is replaced

y the Lagrange interpolation polynomial in the velocity interpola-

ion process. The interpolation of boundary speed Ul(X,t) can be ex-

ressed as

l(Xl ,t) =
∑

i j

(
imax∏

m=1,m �=i

Xl − xm j

xi j − xm j

)(
jmax∏

n=1,n �= j

Yl − yin

yi j − yin

)
ui j

(x + eαδt ,t + δt), (30)

here imax and jmax are the maximum numbers of the fluid nodes

n the x- and y-directions, respectively. Only the nodes within the IB

ayer (the spreading band of IB force) are involved in calculation, and

he width of IB layer is set as |xi j − xpj| ≤ 2, in which the subscript p

enotes the running indices m or n in Eq. (30).

Fig. 1 is the flow chart for the iterative correction of the IB force,

here superscript s denotes the iteration step with its upper limit N

N ∈ [10 ∼ 20], discussed in Section 4.2). At simulation time step n +
, each iteration cycle (s = 1,2, . . . ,N) consists of the following steps:

(1) Correct the boundary force F(s−1)
l,n+1

by using formula (27). Set

F(0)
l,n+1

= 0 when s = 1, i.e. F(1)
l,n+1

= 2
Ud

l
−U

(0)
l

δt
.

(2) Spread the corrected IB force F(s)
l,n+1

to the fluid external force

f(s)
i j,n+1

by using formula (4).

(3) Calculate the forcing distribution function g(s)
α,n+1

from the fluid

external force f(s)
i j,n+1

by using formula (11). Set u(0)
i j,n+1

= u(N)
i j,n

when s = 1. g(s)
α,n has already been obtained at the time step n.

At n = 0 time step, we may initialize g(s)
α,0

= 0.

(4) Calculate the fluid flow velocity u(s)
i j,n+1

within the IB layer (the

area surrounded by the black dash lines in Fig. 1) by formula

(9).

(5) Interpolate the IB speed U(s)
l

from the local fluid velocity u(s)
i j,n+1

by using formula (30).

(6) Compare the difference of IB speed between the simulated

value U(s)
l

and the reference value U(d)
l

. If

∥∥∥U(s)
l

− U(d)
l

∥∥∥ < ε, or

s reaches the given maximum iteration time N, one may iden-

tify the convergence and just let U(s)
l

= U(d)
l

.

(7) If the convergence condition

∥∥∥U(s)
l

− U(d)
l

∥∥∥ < ε is not satisfied

and s < N, one should repeat the step (1) to step (7) until the

convergence is reached.

. Numerical verification

.1. Overall spatial convergence order

The MRT-LB model was adopted in the present work for mod-

ling the flow field. It is evident that the MRT-LB model has a

econd-order spatial accuracy. When the LB model is combined

ith the IB model, the discretized Dirac delta function, with the

rst-order accuracy, spreads the boundary force to the nearby fluid

odes. Although the spreading or interpolation is only applied in the
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Fig. 1. Flow chart of iterative correction procedure for f(s)
i j,n+1

at evolution time step n.
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region nearby the boundary, it may affect the global accuracy of solu-

tion in the whole domain.

The double-sided shearing flow, which has been discussed in Ref.

[27], was selected as a typical case for accessing the overall accuracy.

A straight fiber moving longitudinally at a constant speed U = 0.1 is

placed in the middle of a square flow domain, and conducts a trian-

gular flow velocity distribution in the whole domain. The computa-

tional domain was discretized to L × L nodes (L = 40,80,160,320�x),

and the spacing of the adjacent IB points �s = 0.5�x. The two side

boundaries are set as walls while the top and bottom flow boundaries

are set to be periodic. The overall error of velocities was evaluated by

the following Lerror

Lerror =

√∑
Nnode

(uc
i j

− ua
i j
)

2

Nnode

, (31)

where uc
i j

and ua
i j

represent the simulated velocity and exact solution

at the steady state (|Ln+1
error − Ln

error| < 10−7), respectively. Nnode is the

total number of the fluid nodes in the whole domain. The problem

is simulated by the new method with the maximum number of it-

erations N = 10 (discussed in Section 4.2). The results are plotted in

Fig. 2. When the parameter L ≤ 80 and 80 < L ≤ 160 , the slopes of

the line are about 0.86 and 0.92, respectively. However, the overall

accuracy will be first-order if the parameter L > 160.

4.2. Iteration convergence rate and accuracy for viscous flow

It is necessary to find an efficient number of iterations N for cor-

recting the IB force. The flow around a stationary circular cylinder is

simulated to estimate the iteration time and to verify the effective-

ness of the present method. This problem has been extensively stud-

ied and there are many experimental and numerical results available.

For example, the problem has been used to verify whether the non-

slip boundary condition is satisfied by the IB–LB coupling schemes in

Refs. [26,32].
The Reynolds number in this flow may be defined as

e = uinletD

υ
. (32)

nlet velocity uinlet = 0.1, cylinder diameter D = 40, fluid mesh 40D ×
0D, and boundary points Nb = 250 were chosen. As Reynolds num-

er increases to a certain value, the vortices shedding will occur with

requency fq, which is corresponding to Strouhal number:

t = fqD

uinlet

. (33)

or quantitative estimation of iteration effect, an averaged simulation

rror E1 at the IB points is defined as

1 =

√∑Nb

l=1
(U

c

l,r − U
d

l,r)
2

+ (U
c

l,θ − U
d

l,θ )
2

Nb

, (34)

here Ur = Ur/|uinlet| and Uθ = Uθ /|uinlet| are the normalized radial

nd tangential velocity at the cylinder wall, respectively. The super-

cript c and d denote the numerical values and the desired reference

alues. The angle θwas measured counter-clockwise from the back

tagnation point of the cylinder.

The steady flow at Re = 20 is simulated first. Choosing dif-

erent iteration times for force correction in every time step, i.e.

= 0, 5, 10, 20, and 50. We obtain the steady state of this flow

hrough imposing the stopping condition |E1,n+1 − E1,n| < 10−8 of

he IB–LB simulations. Fig. 3 shows the history of average error

1 decreases at different iteration times N. That is to say that

he accuracy at boundary walls can be improved by increasing

he number of iterations of force correction. According to many

ifferent test cases, there is an experience should be shared: for

steady flow, the error is negligible when the number of iter-

tions is greater than 10; however, for an unsteady flow case,
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Fig. 2. Spatial convergence order of the force correction IB–LB coupling scheme.

Fig. 3. The history of average error at different iteration times for Re = 20 flow around a cylinder.
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= 20 is a better choice. It should be noted that all cases in this paper

ollow the experience.

Fig. 4 compares the streamlines by the existing and present meth-

ds. Clearly in Fig. 4(b), the streamlines obtained by the present

ethod show no penetration into the cylinder wall. In fact, the

treamlines inside the cylinder are totally enclosed by the cylinder

all, and the streamlines outside the cylinder (including the trailing

ortex) cling to the cylinder wall (the spaces between the streamlines

nd the cylinder wall are smaller than
√

2�x, which reaches the res-

lution limit). This means that there is no mass exchange between
he fluid inside and outside the cylinder. In contrast, the streamlines

n simulations by the existing methods (except for the velocity cor-

ection method) cross the cylinder wall, and the trailing vortex stays

way from the cylinder wall. Fig. 4(a) is the results by the direct

orcing IB–LB scheme, and other existing IB–LB schemes give simi-

ar results. This is because the non-slip boundary condition is accu-

ately enforced by the present method but not by the existing IB–LB

chemes.

To further investigate the differences between the present

ethod and the existing methods, the normalized radial velocity
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Fig. 4. Comparison of streamlines for Re = 20 flow around a cylinder. (a) Streamlines

penetrate the cylinder wall by direct forcing IB–LB scheme; (b) No streamlines pene-

trate the cylinder wall by present IB–LB scheme.
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Fig. 5. Comparison of the normalized velocities on cylinder surface at Re = 20. (a) Nor-

malized radial velocity Ur; (b) Normalized tangential velocity Uθ .
r and normalized tangential velocity Uθ at the cylinder wall are

shown in Fig. 5 . The Ur and Uθ simulated by the present method

are much smaller than those by the direct forcing, penalty and mo-

mentum exchange methods, with the average error E1 = 0.00012 for

the former, E1 ∈ [0.0043 ∼ 0.026] for the latter three. The results by

the velocity correction method are also accurate, with E1 = 0.00015.

Fig. 6 shows the amplified curves of Ur and Uθ by the present

method. Fluctuations of velocities, especially Uθ , are obvious within

θ ∈ [50,150] and θ ∈ [200,300]. However, the maximum fluctuation

amplitudes |Ur|max and |Ur|max are only 0.0002 and 0.0008, respec-

tively, in the similar level if they are compared with 0.0003 and

0.0004 by the interpolated bounce-back scheme [32]. The obvious

fluctuation location corresponds to the strong shearing flow regions,

while those near the stagnation points are relative weak. Meanwhile,

fluctuation in Uθ is more intense than that of Ur . In addition, an un-

steady flow with Re = 200 is simulated, and the average error E1 at

cylinder wall averaged over a shedding cycle by different IB–LB meth-
ds are presented here. The present and velocity correction method

ield the smallest errors E1 = 0.00051, and the other three methods

btain a larger error E1 ∈ [0.014 ∼ 0.096]. Note that the flow velocity

ear the solid wall is one of the main factors which affect the accuracy

f the present method, because an interpolation is used in calculating

B velocity from the local fluid velocity.

The Strouhal numbers of circular cylinder flows at Re = 80, 100

nd 200 are also simulated. Table 1 Comparison of the predicted

trouhal number with previous related data for different Reynolds

umbers. The predicted Strouhal numbers agree very well with

he previous experimental and numerical data [33–37], and are al-

ost the same as those in the experiment of Williamson [34].

hese demonstrate the reliability of the proposed IB–LB coupling

cheme.
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Fig. 6. Normalized velocity on cylinder surface simulated by the present method at

Re = 20.

Table 1

Comparison of the predicted Strouhal number with previous related data for different

Reynolds numbers.

Re Present Ref. [34](Exp.) Ref. [35] Ref. [36] Ref. [37] Ref. [33]

80 0.149 0.150 0.150 – 0.153 0.153

100 0.164 0.166 0.160 0.165 0.168 0.166

200 0.196 0.197 – 0.190 – 0.196

Fig. 7. Schematic diagrams of the circular Couette flow between two inversely rotating

cylinders.
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.3. Accuracy for strong shearing flow

The non-physical wall slip may be observed when simulating

trong shearing flows by the existing method [38,27]. We try to

heck whether the phenomenon could be eliminated by the present

ethod through simulating the circular Couette flow between two

nversely rotating cylinders. As shown in Fig. 7 , a special feature of

his case is that the two cylinders (represented by two circular fibers)

otate in opposite directions. Consequently, severe shearing along the

ircular boundaries occurs, which leads to a velocity inversion be-
ween the two cylinders. The analytical solution of the laminar circu-

ar Couette flow may be found in [27].

When let the radii R1 = 40 and R2 = 60, and rotational angu-

ar speeds �1 = −0.1/40 and �2 = 0.15/60 for the inner and outer

ylinders, respectively, the corresponding peripheral speeds will be

θ ,inner = −0.1 and Uθ ,outer = 0.15. These parameters are in the lat-

ice unit. The two cylinders, represented by fibers with Nb = 550

nd Nb = 800 IB points, respectively, were placed at the center of a

omputational domain of Nx × Ny = 400 × 400 nodes. The Dirichlet

oundary conditions of pressure p = 1/3 for the four sides, and the

uid viscosity ν = 1.0 were applied.

Fig. 8 depicts the normalized radial velocity Ur = Ur/|Uθ ,inner| and

ormalized tangential velocity Uθ = Uθ /|Uθ ,inner| at the inner cylin-

er wall. Ur and Uθ fluctuate around the desired values (0.0,1.0), and

he maximum error are |Ur|max = 1.5 × 10−4 and |Uθ |max = 5.7 ×
0−4, respectively. These fluctuations can be obviously observed near

he four diagonal regions where the IB boundary is not perpendicu-

ar or parallel to the fluid mesh lines. However, the error magnitude

s only of the order of 10−7 in other regions. This verifies that the IB

rientation with the fluid mesh has important effect on the accuracy

f the IB–LB schemes.

Fig. 9 shows Ur and Uθ distributions along the inner cylinder wall

imulated by the different IB–LB schemes. The normalized average

rror obtained by the present method (E1 = 0.00031) has the same

rder of magnitude as the one simulated by the velocity correction

ethod (E1 = 0.00039), which are both far smaller than those of

ther three methods (E1 ∈ [0.0037,0.058]).

The velocity profiles of y- component along the center horizontal

ine y = 200 are plotted in Fig. 10. The results by the present method,

specially inside the inner cylinder (between pb and pc) are far closer

o the theoretical solutions than those by other methods. In order to

ompare the differences between the numerical and theoretical solu-

ions intuitively, the relative error Er is defined as

r =
∣∣ua

θ
− uc

θ

∣∣
|uθ (40)| , (35)

n which, the superscript a and c denote the theoretical and the nu-

erical values, respectively. As depicted in Fig. 11, at IB points pa,

pb, pc, and pd , the velocity correction method results in the largest

r = 0.07, and the present method yields the smallest Er = 1.1 ×
0−6. Between points pa and pb (or pc and pd), Er values are rela-

ive large, with the maximum Er ∈ [0.17,0.21] for the four conven-

ional methods and the maximum Er = 0.13 for the present method.

nside the inner cylinder (between points pb and pc), the maximum

r ∈ [0.05,0.12] for the four methods and the maximum Er = 0.04 for

he present method. Therefore, the present method has better accu-

acy in treating the non-slip boundary of strong shear flow compared

o other IB–LB coupling schemes.

.4. Accuracy for high viscous flow

Boundary slip and incorrect velocity profiles in shearing flow have

een discussed in Refs. [38,27] and shown in the last case. As the kine-

atic viscosity increases, the non-physical slip and profile deviation

ecome more severe. The viscosity sensitivity of the present method

as verified by the double-sided shearing flow.

As mentioned at Section 4.1, the computational domain was dis-

retized to Nx × Ny = 100 × 100 nodes, and the fiber was repre-

ented by N = 250 uniformly distributed IB points. The two side
b
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Fig. 8. Normalized velocity at inner cylinder wall simulated by the present method.

Fig. 9. Comparison of the normalized velocity at inner cylinder wall with ν = 1.0. (a) Normalized radial velocity Ur (b) Normalized tangential velocity Uθ .
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Fig. 10. Comparison of the y-component of velocity along the center horizontal line

y = 200.
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oundaries are set as walls while the top and bottom flow boundaries

re set to be periodic.

Theoretically, the flow nodes coincide with the moving fiber (de-

oted as “F nodes”) should have the same velocity as the IB speed,

amely u(x,y) = (0,0.1), and the velocity profiles should be straight

ines and independent of viscosity of the fluid. We define the average

rror E2 as

2 =
∑NX

i=0

∣∣ua
i,y

− uc
i,y

∣∣
Nb

, (36)

here the superscript a and c denote the theoretical and the numer-

cal value, respectively.

The test case is simulated by the existing and present methods

onsidering kinematic viscosity ν = 0.5, 1.0, 2.0 and 5.0. The flow ve-

ocity components uy(x) along the center horizontal line y = 50 are

epicted in Fig. 12. Due to the insufficient interpolation accuracy of

he Dirac delta function, all the velocities at “F nodes” simulated by

he existing methods, including the velocity correction method are

ot equal to ud(x,y) = (0,0.1). Particularly when ν = 2.0 and 5.0, sig-

ificant non-physical profile deviations can be observed. The veloc-

ty slips and profile deviations cause the simulation results untrust-
Fig. 11. Comparison of the relative error along the center horizontal line y = 200.
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orthy. The present method will not introduce similar velocity slip

t “F nodes” unless the Dirac delta function is used in interpolating

B speed (the line of present (delta) in Fig. 13 ). Note that only the

resent method can ensure the velocity at “F nodes” is equal to the

heoretical value.

According to Ref. [38], the relaxation parameter τ could not be

reater than 2 (i.e. ν ≤ 0.5) by the existing IB–LB coupling schemes.

ig. 14 illustrates that the average errors simulated by all the five

ethods with different viscosities (horizontal axis is logarithmic for

og2, and the vertical axis is linear). When ν is less than 0.5, the aver-

ge error is in the range of [2.24 × 10−4” − −”7.7 × 10−4] regardless

f which IB–LB coupling schemes are adopted. However, when the

iscosity is greater than 0.5, the error obtained by the penalty method

ncreases rapidly and a severe deviation from the theoretical solution

s observed. While the errors by the momentum exchange and direct

orcing methods have the similar order of magnitude, they are obvi-

usly smaller than the one obtained by the penalty method. The error

y the present method or velocity correction method is the smallest

mong the all methods.

. Simulation of two-dimensional mechanical heart valve flow

To demonstrate the ability of the proposed method, a typical 2D

echanical heart valve flow [39] is simulated and the numerical re-

ults are compared with both experimental data and those simulated

y commercial software Fluent and Flow 3D.

.1. Geometry and physical parameters

The 2D geometry (Fig. 15) consists of an inflow tract (inlet = left

entricle), a sinus of aortic valve, an outflow tract (outlet = aorta),

nd a rigid valve leaflet. The dimensions of the geometry are

1 = 4 cm, l2 = 4 cm, r1 = 2 cm, r2 = 0.75 cm, h = 2 cm and θinitial =
.384 rad = 22°. The blood density ρblood = 1090 kg/m3, and the

ynamic viscosity μ = 4 m Pa s = 4 × 10−3 kg/(ms). As the inlet

oundary condition (Fig. 16), a pulsatile velocity in x-direction was

iven by a function of time [39,40]:

For 0 < t < t0 and t0 + 0.37Tp < t < Tp,

inlet = umean + 0.5uamplsin

{
2π [(t − t0)/Tp + 0.26]

1.26

}
. (37)

For t0 < t < t0 + 0.37Tp,

inlet = umean + uamplsin

[
2π(t − t0)/Tp

0.74

]
. (38)

he parameters in the above two formulas are the initial time t0 =
.4 s, the period Tp = 2.45 s, the mean velocity umean = 0.04 m/s, and

he velocity amplitude uampl = 0.11 m/s. Velocity component v in the

-direction at the inlet is set as υy,inlet = 0 m/s. The outlet is set as

n outflow boundary condition (the unknown distributions functions

re replaced by those located at the neighbor nodes). Other bound-

ries are set as walls.

The valve leaflet is simulated by the present method, and the

orque per unit length is

= I · θ , (39)

here θ is the opening angle of the leaflet which is indicated in Fig.

5. I is the moment of inertia per unit length which can be calculated

s

= 1

3
ml

2
, (40)
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Fig. 12. Velocity profiles along the center horizontal line y = 50 by different methods for different viscosities (a) ν = 0.5; (b) ν = 1.0; (c) ν = 2.0; (d) ν = 5.0.

Fig. 13. Comparison of interpolation effect between Dirac delta function and Lagrange

interpolation polynomial.
Fig. 14. Average velocity error against viscosity for different methods.

5

i

w

where m = ρleaflet · l · t is the mass of the leaflet per unit length,

ρleaflet = 1100 kg/m3 is the density of the leaflet, t = 1 mm is the

thickness of the leaflet, and l = 22 mm is the length of the leaflet.

Thus, the moment of inertia is I = 3.9 × 10−6 kg m2.
.2. Dependence on cycles and mesh resolution

The flow velocity of the first cycle was initialized with zero

n the whole fluid domain, and the next cycles were initialized

ith the results of the last cycle at t = 2.45 s. Therefore, the
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Fig. 15. Geometry of the two-dimensional aortic valve model.

Fig. 16. Velocity boundary condition at the inlet as a function of time t.

Fig. 17. Evolution of the opening angle of valve for the first four cycles.
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Fig. 18. Comparison of evolution of the opening angle of the valve for different mesh

densities.
ycle-dependence of results should be analyzed. Fig. 17 is the evo-

ution of opening angle of valve for the first four cycles. The curve of

he first cycle is obvious different from the late cycles, and the curve

f the third cycle overlaps with that of the fourth cycle.
In addition, sensitivity of our results to the Eulerian grid resolu-

ion is also investigated by considering three test simulations at dif-

erent resolutions �x = 2.0 × 10−4, 1.67 × 10−4 and 1.25 × 10−4 (Fig.

8). No significant differences are observed between the test cases as

ong as the resolution is finer than �x = 1.67 × 10−4. Thus, the re-

ults in the third cycle, simulated by resolution �x = 1.67 × 10−4, are

nalyzed in the subsequent sections.

.3. Numerical results and discussion

Fig. 19 demonstrates the simulated velocity vectors at five dif-

erent times during one cycle, which are compared to the corre-

ponding experimental PIV pictures. At the beginning (Fig. 19(a)

= 0 s), two vortices are formed: A large vortex located at the si-

us cavity and a smaller secondary vortex near the bottom wall

ownstream of the leaflet can be found. During the first accel-

ration stage of the aortic flow, the valve leaflet is pushed to-

ards the aortic sinus, and the vortices become smaller and the

econdary vortex is even disappeared (Fig. 19(b) t = 0.37 s). At

= 0.88 s, the inlet pulsatile velocity reaches its maximum value,

he opening angle of the leaflet nearly reaches the full opening

Fig. 20), and the large vortex is reduced to a small vortex in the
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Fig. 19. Velocity vectors for: (a) t = 0.0 s; (b) t = 0.37 s; (c) t = 0.88 s; (d) t = 1.32 s; (e) t = 2.11 s.

t

3

t

T

θ
a

sinus cavity (Fig. 19(c)). At t = 1.32 s, the vortex is almost filling the

whole sinus cavity (Fig. 19(d)). Thus, during the closure of the valve,

the vortex in the sinus grows. During the further closure of the valve,

a second small vortex rotating clockwise has developed at the down-

stream side of the large vortex.

Comparisons of valve leaflet opening angles are shown Fig. 20. The

results simulated by the present method are closer to the experimen-
al data than those by commercial software Fluent [40,41] and Flow-

D, in terms of the maximum opening angle and its timing, although

he numerical leaflet angles are higher than the experimental values.

o be specific, the simulated results shows a maximum opening angle

max = 87.8° at t = 0.91 s, while the experimental maximum opening

ngle is lower, i.e. θmax = 85.5° at t = 0.95 s.
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Fig. 20. Comparison of the simulated results with the experimental data.
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. Conclusion

To improve simulation accuracy and efficiency at wall boundaries,

new iterative force correction IB–LB coupling scheme is proposed.

t is based on the LB equation with the external forcing term pro-

osed by Cheng and Li [29]. The unknown IB force and force on

he fluid at the next time step is corrected iteratively, based on the

nown IB speed and flow velocity, together with the relations be-

ween the speed and the force. Although an implicit method, the

omputer memory and computational cost will not significantly in-

rease because it is only related to the influence range of boundary

orce but not related to the number of IB points. Four typical test cases

re simulated to verify and validate the method. It is shown that the

resent scheme maintain a first-order spatial accuracy and can sim-

late flows around stationary and moving solid bodies with accurate

on-slip boundary condition. The errors are smaller than those of the

xisting IB–LB schemes. The present method is also validated by sim-

lating the mechanical heart valve flow. The good agreement with

xperimental data and better results than other numerical methods

emonstrate that our current method has great potential for practical

pplications.

However, it should be pointed out that although the non-slip

oundary condition is satisfied with good accuracy at walls, an inter-

olation procedure is inevitable and the interpolation precision can

e affected by the velocity distribution in the immersed boundary

ayer and the orientation of the Eulerian mesh to the Lagrangian grid.

n this sense, very fine mesh near the boundary is necessary for sim-

lation of flows at high Reynolds numbers.
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