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a b s t r a c t

We have introduced a modified penalty approach into the flow-structure interaction solver
that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann
method (LBM) to model an incompressible flow and elastic boundaries with finite mass.
The effect of the solid structure is handled by the IBM in which the stress exerted by the
structure on the fluid is spread onto the collocated grid points near the boundary. The fluid
motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of
the thin solid structure is incorporated by connecting this structure through virtual springs
to a ghost structure with the equivalent mass. This treatment ameliorates the numerical
instability issue encountered in this type of problems. Thanks to the superior efficiency
of the IBM and LBM, the overall method is extremely fast for a class of flow-structure inter-
action problems where details of flow patterns need to be resolved. Numerical examples,
including those involving multiple solid bodies, are presented to verify the method and
illustrate its efficiency. As an application of the present method, an elastic filament flapping
in the Kármán gait and the entrainment regions near a cylinder is studied to model fish
swimming in these regions. Significant drag reduction is found for the filament, and the
result is consistent with the metabolic cost measured experimentally for the live fish.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Flow-structure interaction (FSI) problems are ubiquitous in nature. Some examples include flapping flags, fish swimming,
vocal fold vibration, and deformation of red blood cells. Addressing these problems typically requires coupling fluid dynam-
ics and structural mechanics and solving the two components simultaneously. In addition, irregular geometries with large
displacements are usually involved in these problems, making the mesh generation a challenging task. Therefore, capturing
details of the FSI process through a numerical simulation is often computationally demanding.

A class of conventional numerical methods for the FSI is based on the body-fitted grid, and the moving grid is achieved
through the arbitrary Lagrangian–Eulerian method [1]. In such methods, the grid may be distributed to provide adequate
local resolution, but on the other hand, grid re-generation is usually needed every a few time steps to avoid severe mesh
distortion. In contrast, the methods based on the non-body-conformal Cartesian grid such as the immersed boundary
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method (IBM) and the lattice Boltzmann method (LBM) are much simpler in handling the complex and moving geometries
and thus have received much attention in recent years.

The immersed boundary method developed first by Peskin [2] employs a boundary regularization approach. That is, the
traction jump across a surface is distributed as a smooth body force onto the volumetric mesh in the vicinity of the surface,
and the force is added in the Navier–Stokes equation to account for the effect of the surface. This method has been extended
to model flow involving thin structures, bluff bodies, and fluid-fluid interfaces [3–5]. In addition to the diffuse-boundary ap-
proach, several other families of the IBM have been developed in which the sharp-interface representation of the solid sur-
face is retained, e.g., the discrete-forcing approach adopting flow interpolation near the boundary [4] and the approach
incorporating discontinuities in the solution across an immersed interface [6].

An alternative and robust method for fluid-flow simulations is the lattice Boltzmann method (LBM). Instead of discretiz-
ing the momentum equation, the LBM is an approach based on the particle kinetics. The method has achieved great success
in the past decades and has proven to be an efficient solver for fluid flows. Readers are referred to the reviews by Chen and
Doolen [7] and more recently by Aidun and Clausen [8] for the basic theory of this method. In the LBM, a popular scheme for
FSI is based on the ‘‘bounce-back’’ rule to enforce the no-slip and no-penetration conditions at the solid surface. In the area of
FSI, Ladd [9] first introduced bounce-back scheme to impose the fluid-structure coupling. Such a scheme is suitable for the
rigid-body problems where the motion of the solid is determined only by the total force and torque exerting on the body
[10,11]. However, when the boundary is flexible and the motion of the solid depends on the local hydrodynamic force, more
effort is needed to inhibit the fluctuation of force acting on the structure [12,13].

To combine the advantage of the IBM for its simple boundary treatment and that of the LBM method for its fast flow sim-
ulation, hybrid methods coupling these two approaches have been developed recently. Among the various IBMs, Peskin’s dif-
fuse-boundary approach is particularly suitable for this combination, since in this approach all the grid points within the
computational domain are treated with a unified equation. The standard LBM utilizing a uniform Cartesian mesh, was first
combined with the IBM for handling the rigid moving particles by Feng and Michaelides [14,15]. After that, several versions
of IB–LBM have been developed for the flow involving rigid bodies [16–18]. More recently, the IB–LBM has been extended to
the simulation of elastic membranes [19,20] and plates [21,22], including both two and three dimensions.

As the standard LBM employs a uniform Cartesian mesh, the grid point distribution is thus not flexible, and the compu-
tational cost may become high when the Reynolds number is increased. To overcome this drawback, the multi-block LBM
was developed [23,24], in which a fine-resolution Cartesian mesh overlaps with a background, coarse-resolution mesh to
resolve the smaller spatial scales in the flow. Later, Sui et al. [25] combined the IBM with the multi-block LBM to model
the interaction between an incompressible viscous fluid and elastic boundaries. To make efficient use of the grid points,
an IB–LBM on the nonuniform Cartesian mesh was proposed by Wu and Shu [18] for simulating three-dimensional incom-
pressible flows.

One particular issue of combining the IBM and LBM for simulations of FSI is to incorporate the inertia of the solid struc-
ture. Previous works [21,22,26] have not incorporated the mass effect of the structures. Explicitly including the inertial force
in the IBM when calculating the hydrodynamic stress on the solid surface may easily destabilize the simulation. One way is
to spread the mass of the solid into the bulk flow in the IBM method [3,27]. However, this approach does not work well with
the LBM since the LBM assumes only a small variation of the fluid density when simulating incompressible flows. In the pres-
ent work, we adopt the idea used in the penalty IBM proposed by Kim and Peskin [28], which is numerically robust while
retaining the unified numerical description for the entire domain. The major contribution of the present work is to incorpo-
rate the penalty IBM into the multi-block IB–LBM for the FSI simulation of massive structures. The numerical approach is
shown to be particularly efficient for solving the interaction of multiple thin-walled structures. Another contribution is that
we have applied this approach to model the hydrodynamics of fish swimming in the vicinity of a bluff body and found a pos-
sible physical explanation for the observed fish behavior.

The organization of the paper is as follows. Section 2 briefly introduces the governing equations of the fluid and
solid structures. The numerical approach is described in detail in Section 3. Section 4 presents several canonical exam-
ples to validate the accuracy of the present method. Demonstrations of the multi-filament simulation are given in Sec-
tion 5. The study of a filament in the wake of a stationary cylinder is provided in Section 6. Final conclusions are given
in Section 7.

2. Mathematical formulation

In the present LBM, the kinematics of the fluid is governed by the discrete lattice Boltzmann equation of a single relax-
ation time model [7,8,17,29],

giðxþ eiDt; t þ DtÞ � giðx; tÞ ¼ �
1
s

giðx; tÞ � geq
i ðx; tÞ

� �
þ DtGi; ð1Þ

where gi(x, t) is the distribution function for particles with velocity ei at position x and time t, Dt is the size of the time step,
geq

i ðx; tÞ is the equilibrium distribution function, s represents the nondimensional relaxation time, and Gi is the term repre-
senting the body force effect on the distribution function.
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In the two-dimensional nine-speed (D2Q9) model, as shown in Fig. 1, the nine possible particle velocities are given by

e0 ¼ ð0;0Þ;

ei ¼ cos
pði� 1Þ

2
; sin

pði� 1Þ
2

� �
Dx
Dt

; for i ¼ 1 to 4;

ei ¼ cos
pði� 9=2Þ

2
; sin

pði� 9=2Þ
2

� � ffiffiffi
2
p

Dx
Dt

; for i ¼ 5 to 8;

where Dx is the lattice spacing. The values of ei ensure that within one time step, a fluid particle moves to one of the eight
neighboring nodes as shown in Fig. 1, or stays at its current location. In Eq. (1), geq

i and Gi are calculated according to [17,29]

geq
i ¼ xiq 1þ ei � u

c2
s
þ

uu : eiei � c2
s I

� �
c4

s

	 

; ð2Þ

Gi ¼ 1� 1
2s

� �
xi

ei � u
c2

s
þ ei � u

c4
s

ei

	 

� f; ð3Þ

where xi are the weights given by x0 = 4/9, xi = 1/9 for i = 1 – 4 and xi = 1/36 for i = 5–8, u = (u,v) is the velocity of the fluid,
cs is the speed of sound defined by cs ¼ Dx=

ffiffiffi
3
p

Dt, and f is the body force acting on the fluid. The relaxation time is related to
the kinematic viscosity in the Navier–Stokes equations in terms of

m ¼ ðs� 0:5Þc2
s Dt: ð4Þ

Once the particle density distribution is known, the fluid density, velocity and pressure are then computed from

q ¼
X

i

gi; ð5Þ

u ¼
P

ieigi þ 1
2 fDt

q
; ð6Þ

p ¼ qc2
s : ð7Þ

The geometrically nonlinear motion for the filament is described as [30]

ms
@2X
@t2 �

@

@s
TðsÞ @X

@s

	 

þ Kb

@4X
@s4 ¼ Ff ; ð8Þ

where s is the Lagrangian coordinate along the length, TðsÞ ¼ Ks
@x
@s

�� ��� 1
� �

is the tensile stress, Ks is the stretching coefficient, X
is the position vector of a point on the filament, ms is the linear density of the filament, Kb is the bending rigidity, and Ff is the
hydrodynamic stress exerted by the fluid.

3. A modified penalty immersed boundary method

The immersed boundary method developed by Kim and Peskin [28] is extended here to handle the moving boundary. In
this method, the boundary effect on the fluid is taken into account by spreading the surface force into the bulk fluid and
treating it as a body force, which is done through the following expression,

e1 g1

e2 g2 e5 g5e6 g6

e3 g3

e7 g7 e4 g4 e8 g8

e0 g0

.

Fig. 1. Nine base vectors representing 9 possible velocity directions in the D2Q9 lattice model.
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fðx; tÞ ¼
Z

Fðs; tÞdDðx� Xðs; tÞÞds; ð9Þ

where F(s, t) is the Lagrangian force density on the fluid by the elastic boundary, dD(x � X(s, t)) is Dirac’s delta function. The
regularized body force is the same as f in Eq. (3), and it enters the kinetic equation of the fluid, Eq. (1), through Gi. Since F(s, t)
is the reaction force of Ff in Eq. (8), it can be written as

Fðs; tÞ ¼ �Fdðs; tÞ þ Feðs; tÞ; ð10Þ

where Fd and Fe are the inertial force and elastic force, respectively, and are given by

Fdðs; tÞ ¼ ms
@Uðs; tÞ
@t

; ð11Þ

Feðs; tÞ ¼
@

@s
TðsÞ @X

@s

	 

� Kb

@4X
@s4 : ð12Þ

The velocity of a point on the filament is interpolated from the flow field, and the position of the filament is updated explic-
itly, i.e.,

Uðs; tÞ ¼
Z

uðx; tÞdDðx� Xðs; tÞÞdx; ð13Þ

@Xðs; tÞ
@t

¼ Uðs; tÞ; ð14Þ

where U(s, t) is the velocity of the filament. Note that Eqs. (10)–(14) are equivalent to those used by Zhu and Peskin [27].
The filament is discretized by Nf initially equally spaced nodal points, and the position of the mth node at time level n is

denoted by Xn
m. To compute the tensile force at mth node, a finite-difference scheme is used, i.e.,

@

@s
TðsÞ @X

@s

	 

m

¼
Tmþ1

2
tmþ1

2
� Tm�1

2
tm�1

2

Ds
; ð15Þ

where Ds is the grid spacing and the tension T and tangent vector, t = @X/@s, at the segment center, mþ 1
2, are both computed

using a second-order central difference scheme. Note that Eq. (15) is nearly second-order accurate since the stretching ratio
of the filament is low and the length difference between the consecutive segments is small. The bending force in Eq. (12) is
also computed using a central difference scheme,

@4X
@s4 ¼

Xmþ2 � 4Xmþ1 þ 6Xm � 4Xm�1 þ Xm�2

Ds4 : ð16Þ

The discretizations of these elastic forces are the same as those in Zhu and Peskin [27].
The discretization of the inertial term, Fd(s, t), also known as the D’Alembert force, in Eq. (11) requires more care. One way

to evaluate the temporal derivative in this equation is to apply an explicit finite difference scheme involving the current and
previous time steps. However, it is known that such a scheme is numerically stable only for the extremely light filaments
whose mass is lower than the critical value required for the flow-induced flapping [28]. Another approach is to estimate
the temporal derivative of the velocity on the Cartesian mesh according to the momentum equation, and then interpolate
the derivative onto the nodal points of the filament. However, our numerical results show that this approach also is effective
only for the low-mass filaments.

Virtual springs

Ghost filament
Y (s,t)

Physical filament
X (s,t)

Fig. 2. The physical and ghost filaments are tethered together by virtual springs with a large stiffness Kv.
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In the present simulations, the penalty immersed boundary method in [28] is adopted to calculate the inertial force and
ensure the numerical stability. Specifically, the filament itself is assumed to be massless, but a second filament of linear den-
sity ms is attached to the physical filament through virtual springs of stiffness Kv shown in Fig. 2. The second filament is
termed ‘‘ghost filament’’ here, as it only affects the dynamics of the physical filament but is not seen by the flow solver di-
rectly. The FSI still takes place through the interface between the fluid and the physical filament. Eq. (10) is thus modified to
incorporate the ghost filament,

Fðs; tÞ ¼ Fkðs; tÞ þ Feðs; tÞ; ð17Þ
Fkðs; tÞ ¼ KvðYðs; tÞ � Xðs; tÞÞ; ð18Þ

ms
@2Y
@t2 ¼ �Fk; ð19Þ

where Fk is the spring force, Kv is the stiffness of virtual springs, and Y(s, t) is the position vector of the point on the ghost
filament connecting to point X(s, t) on the physical filament. Essentially, the effect of the inertia of the ghost filament is cush-
ioned through the virtual springs. The second equation in Eq. (19) is discretized as

ms
Ynþ1 � 2Yn þ Yn�1

Dt2 ¼ �Fn
k : ð20Þ

A three-step approach [31] is employed to treat Eqs. (13) and (14), which is described as

U� ¼
Z

unðxÞdDðx� XnÞdx; X� ¼ Xn þ DtU�; ð21Þ

U�� ¼
Z

unðxÞdDðx� X�Þdx; X�� ¼ 3
4

Xn þ 1
4

X� þ 1
4

DtU��; ð22Þ

Un ¼
Z

unðxÞdDðx� X��Þdx; Xnþ1 ¼ 1
3

Xn þ 2
3

X�� þ 2
3

DtUn: ð23Þ

The advantage of this approach is that the computation is more stable when the stretching coefficient Ks is high and the fil-
ament is nearly inextensible.

In the IBM, a smooth approximation [3] of Dirac’s delta function, dh, is used,

dhðxÞ ¼
1

DxDy
/

x
Dx

� 

/

y
Dy

� �
; ð24Þ

/ðrÞ ¼
3� 2jrj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj � 4r2

p� 

=8; jrj < 1;

5� 2jrj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jrj � 4r2

p� 

=8; 1 6 jrj < 2;

0; jrjP 2:

8>>><
>>>:

ð25Þ

For the lattice Boltzmann simulations, Dx = Dy is used.
The stretching coefficient Ks is chosen to be large enough so that the stretching ratio of the structure is less than 5%. Such a

ratio is allowed because an exceedingly large Ks could make the simulation unstable. In our simulations, we adopt Ks/
(qU2L) = O(102), where U is the characteristic velocity and L is the length of the unstretched filament. Similarly, Kv is chosen
to ensure that the simulations are stable while the distance between the physical and ghost filaments does not vary signif-
icantly. Consider the spring–ghost filament a simple harmonic oscillator whose intrinsic frequency k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kv=ms

p
depends on

the spring stiffness as well as the mass of the ghost filament. In our simulation, the dimensionless k is chosen such as (kL/
U)2 = O(103).

In addition to elastic filaments, rigid bodies of finite thickness are also incorporated in the present method to study the
interaction between the elastic and rigid bodies. To handle a rigid surface of general shape, we use the following method to
calculate the boundary force on stationary surface [27],

Fðs; tÞ ¼ �KstðXðs; tÞ � Xðs;0ÞÞ; ð26Þ

where Ks is the artificial stiffness coefficient of the body.
The multi-block LBM proposed by Yu et al. [23] is employed in this study to simulate the flow. The computational domain

is divided into several blocks which are connected through the interface between the blocks. The exchange of variables at the
interface is done so that the mass and momentum are conserved and the stress is continuous across the interface. Suppose
that a coarse lattice with spacing Dxc overlaps with a fine lattice with spacing Dxf. In order to keep a consistent viscosity in
both blocks, the relation between the relaxation times, sc (on the coarse-mesh block) and sf (on the fine-mesh block), should
be sf = 1/2 + m(sc � 1/2), where m = Dxc/Dxf. Furthermore, to keep the variables and their derivatives continuous across the
interface between the blocks, the density distribution functions for the coarse and fine blocks are described as
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~gðcÞi ¼ gðeq;f Þ
i þm

sc � 1
sf � 1

~gðf Þi � gðeq;f Þ
i

h i
; ð27Þ

~gðf Þi ¼ gðeq;cÞ
i þ sf � 1

mðsc � 1Þ
~gðcÞi � gðeq;cÞ

i

h i
: ð28Þ

In the present simulations, the immersed solid bodies are covered by the fine mesh only, and the solid surface does not cut
through the mesh interface.

It is important to mention that the present method is limited to flows with low Reynolds numbers. Such low-Re limitation
is generally shared by the immersed-boundary methods that regularize the boundary singularity by smearing the fluid–solid
interface [4]. Finally, the current numerical method is presented for two-dimensional (2D) problems. However, the method
can be easily extended to the three-dimensional (3D) problems involving elastic boundaries as previous IB–LB methods
[22,32]. More specifically, the immersed boundary can be treated in the same way as in [21], the inertial force of the elastic
structure can be calculated using the ghost element as described here, and the LBM simulation can be done in the same way
as in [32].

4. Validation of the numerical method

Four problems with previously established results are used to validate the numerical algorithm described in Section 3: (1)
laminar flow past a stationary cylinder, (2) vortex-induced vibration of a cylinder, (3) a single filament flapping in a uniform
flow, and (4) interaction of two filaments placed side by side. These problems cover stationary and moving boundaries, as
well as rigid and elastic bodies, so the successful validation will provide support for our later studies of the filament–filament
and filament–rigid body interactions.

4.1. Laminar flow past a stationary cylinder

Viscous flow past a stationary cylinder is one of the canonical examples for testing accuracy of a numerical method. As
shown in Fig. 3, this flow is solved here to assess the accuracy of the present modified penalty IB–LBM solver. Simulations are
performed for Re = 20, 40, 60, 80, 100 and 200 on a 40d � 20d domain, where Re is the Reynolds number based on the free-
stream velocity, U, and the diameter of the cylinder, d. The computational domain is discretized by a two-block Cartesian
mesh. One is a uniform grid around the cylinder with the block size of 25d � 6d and the resolution Dx = Dy = 0.02d. The other
is a uniform grid covering the outer region with a coarser resolution, Dx = D y = 0.04d. Table 1 shows the average drag coef-
ficient CD ¼ FD=ð12 qU2dÞ and the Strouhal number St = fd/U, where FD is the mean drag force on the cylinder and f is the vortex
shedding frequency. The results from several sources are listed in the table for comparison. It can be seen that our simula-
tions are in good agreement with the other results.

To study the grid convergence of the present method, we perform a simulation test with the finest grid, Dx = 0.01d, and
use the obtained result as the reference solution. Then we perform several cases with coarser resolutions and calculate the L2

and L1 norms of the numerical error in the fluid velocity. In all cases, we set Ds = 0.6Dx, where Ds is the spacing of the mar-
ker points on the cylindrical surface. The convergence is shown in Fig. 4(a), where the error norms for both the u and v com-
ponents in general exhibit a first-order accuracy. This convergence performance is consistent with the previous penalty IBM
[28]. Therefore, combining the lattice Boltzmann simulation with the present boundary formulation has not compromised
the numerical accuracy of the IBM. In some previous LBM studies using the implicit kernel, as in Ref. [17], nearly second-
order accuracy was shown for flows in the absence of immersed bodies. In the present work, the accuracy is limited by
the thin diffuse-boundary treatment, which is discussed in more detail by Refs. [28,36]. To demonstrate that the effect of
the current boundary treatment, we calculate the error distribution of the u-velocity for the Dx/d = 0.04 mesh, and the result
shows that the error concentrates around the surface of the cylinder (Fig. 4(b)).

(40d, 0)(0 ,0)

(0, 20d ) (40d, 20d)

y U

x

d

(15d ,10d)

Fig. 3. Geometry for flow passing a stationary cylinder.
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4.2. Vortex-induced vibration of a cylinder

The vortex-induced vibration of a cylinder under subcritical Re is chosen to validate the present method for the flow–
structure interaction problems involving rigid bodies. The cylinder immersed in a uniform freestream flow is mounted on
two elastic supports and is free to vibrate in both the streamwise and transverse directions. The cylinder is subject to the
hydrodynamic force and also the spring forces, and its dynamics is described as

m
d2XcðtÞ

dt2 þ kXcðtÞ ¼ FR; ð29Þ

where Xc denotes the displacement of the center of the cylinder, k is the stiffness of the supporting springs, m is the mass of
the cylinder, and FR is the resultant hydrodynamic force. The mesh in the simulation has a resolution of Dx/d = Dy/d = 0.02.
The nondimensional mass and the reduced natural frequency of the spring–cylinder system are M = 4m/(pqd2) = 4.73 and
Fn ¼ d

2pU

ffiffiffi
k
m

q
¼ 3:1875=Re, respectively. Here the relationship between Fn and Re is imposed as done in Ref. [37].

The amplitude of the vibration in the transverse direction, Yc/d, as a function of Re is shown in Fig. 5. The corresponding
natural frequency, defined as U⁄ = 1/Fn = Re/3.1875, is also provided. The result from Mittal and Singh [37] is given for com-
parison. Although there is notable difference between the two results, the overall trends are consistent with each other. The
lower critical Re predicted by the present method is between 19 and 20, and the upper critical Re is between 31 and 32. The
critical Re in Mittal and Singh [37] is about 21.7 for the lower bound and 34 for the upper bound. In addition, the resonant
vibration takes place at a slightly lower Re in our simulation, and the amplitude of the cylinder displacement is 8% higher
than that in Mittal and Singh [37].

To make sure that the present result has converged, we performed two series of simulations, one with coarser resolution
Dx/d = Dy/d = 0.04 and the other with finer resolution Dx/d = Dy/d = 0.01. In addition, a third series were done with a single-
block mesh with Dx/d = Dy/d = 0.02 to make sure that the multi-block LBM is properly handled. These results are also shown
in Fig. 5, from which it can be seen that grid-convergence has been reached and the single-block mesh gives a consistent
result. To explain the difference by approximately 10% between our result and that of Mittal and Singh [37], we point out
that the critical Reynolds number for a stationary cylinder varies between 45.4 and 50 and the critical Strouhal number var-
ies between 0.12 and 0.14 depending on the specific numerical method used in the previous simulations [38,39]. In compar-
ison, the current difference is comparable and is deemed acceptable.

Table 1
Comparison of the mean drag coefficient, CD, and Strouhal number, St, with previous data for the flow past a stationary cylinder.

Re CD/St (Present) CD/St [33] CD/St [34] CD/St [35]

20 2.16/– 2.09/– 2.04/– 2.23/–
40 1.62/– 1.58/– 1.54/– 1.66/–
60 1.49/0.138 1.44/0.143 –/– –/–
80 1.44/0.155 1.40/0.158 1.40/0.150 –/–
100 1.43/0.166 1.39/0.169 1.39/0.160 1.42/0.171
200 1.44/0.198 1.39/0.204⁄ -/- 1.42/0.202

⁄ The Re = 200 case in this column was simulated by using the same code from the authors of Ref. [33].

Δ x

Er
ro
r

0.05 0.1
10-4

10-3

10-2

10-1

100

Second order

L 2 norm error of u

L ∞ norm error of v

L 2 norm error of v
L ∞ norm error of u

First order

0
1

2
3

4
5 0

1

2

3

4

0
0.03

|Δu|/U

y/d

x/d

(a) (b)

Fig. 4. (a) Convergence of the present numerical method. (b) Error distribution for the u-velocity.
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4.3. A single filament flapping in a uniform flow

We further consider a lone filament flapping in a uniform flow. The rigidity of the filament, Eb, defined by Kb/(qU2L3), is set
to be on order of 10�4. At this level, the filament vibration is no longer sensitive to Eb [30]. The mass ratio, defined by S = ms/
qL, where ms is the linear density of the filament, q is the fluid density, and L is the length of the filament, is an important
parameter in this problem. Both theoretical and numerical studies [27,40,30] have shown that a low-mass filament in the
uniform flow tends to be more stable than a high-mass filament. In addition, a massless filament is always stable even in
the presence of large perturbations [27]. In our simulation, we have obtained the similar conclusions. For a quantitative com-
parison, we have computed the critical mass ratio Sc, at which the filament exhibits a transition from a stable state to an
unsteady flapping state at Re = 90 based on the filament length. In our simulations, Sc is determined between 0.22 and
0.28, which is in good agreement with the critical value Sc = 0.26 predicted by Connell and Yue [30]. The snapshots of the
flow structures for S = 0.22 and S = 0.28 are shown in Fig. 6, and the flow patterns are consistent with those in Refs. [27,30].

4.4. Interaction between two flapping filaments

The interaction between two identical flapping filaments was studied experimentally [41,42], theoretically [42], and
numerically [43,44]. In our simulation, the mass ratio and Reynolds number are chosen as S = 0.3 and Re = 100, respectively.
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Simulations are performed for D/L = 0.1, 0.4 and 0.6, where L is the length of the filaments and D is the distance between
them. The same mesh as in Section 4.1 is used here. The nondimensional bending rigidity, Eb, is the same as those in Sec-
tion 4.3. A small-amplitude sinusoidal perturbation was introduced to the initial configuration of the filaments, where
the amplitude increases from 0 at the leading edge to 0.1L at the trailing edge.

Fig. 7 shows the instantaneous vorticity field of the flow and also the deformation pattern of the filaments. For the small-
gap case, D/L = 0.1, the two filaments settle down to an in-phase flapping state after several oscillations, and the flapping
state is insensitive to the initial configuration of the two filaments. For example, even if the two filaments have initially
anti-phase deformations, they will still approach the in-phase state after a few flapping cycles. The Strouhal number, defined
by St = fL/U, is 0.29 in this case. When the filament separation distance becomes larger, D/L = 0.4, the filaments settle down to
an anti-phase flapping state after a transient period. The Strouhal number is 0.38 during this state, which is approximately
28% higher than that of the in-phase case. The difference in the flapping frequencies of the two modes obtained here is con-
sistent to the previous numerical and experimental studies [41,43]. In the experiment by Zhang et al. [41], where the Rey-
nolds number is 20000, the difference between the two modes is 35%. In the numerical simulation at Re = 200 by Zhu and
Peskin [43], where the flow is confined in a channel of width 2.4L, this frequency increase is 41%. If the filament separation
distance is further increased to D/L = 0.6, the phase between the filaments becomes irregular. The phenomenon is also ob-
served in the previous work [41–43].

5. interaction of multiple filaments

Several explanations for the formation of fish schools have been proposed from different perspectives, including both the
hydrodynamics-related ones, e.g., energy saving, and also others such as protection, socialization, genetics, and foraging
[45,46]. Being able to model the interaction of multiple flexible bodies will allow us to investigate the schooling behavior
of fish from a hydrodynamic point of view. Note that a filament passively flapping in flow can be very different from a swim-
ming fish, which undulates its body by muscular activation. However, it was found that fish do make use of passive hydro-
dynamics in unsteady flow for energetic advantages [47]. Thus, the current filament model provides an extremely simplified
yet illuminating representation of what could happen when the fish passively respond to the surrounding fluid.

In this section, we will study the characteristic dynamics of three filaments in a side-by-side arrangement and of ten
filaments in a diamond arrangement. When a filament is located in the downstream wake of another filament, it may
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Fig. 7. Interaction between two identical flapping filaments in a side-by-side arrangement. The vorticity field for (a) D/L = 0.1, (b) D/L = 0.4, and (c) D/L = 0.6
at tU/L = 160.
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experience exceedingly large deformations (e.g., a 180� bend). To avoid the situation, the bending rigidity of the filaments,
Eb = Kb/(qU2L3), is set to be on order of 10�3, i.e., one order of magnitude higher than that in the previous section. The Rey-
nolds number and mass ratio in this section are Re = 100 and S = 0.3, respectively.

5.1. Three filaments in side-by-side arrangement

Interaction of the three filaments placed side by side as shown in Fig. 8 is significantly different from that of the two fil-
aments due to the possibility for appearance of more coupling modes [48]. Previous linear stability analysis [48] and exper-
imental study [49] showed that there exist at least three coupling modes when the filaments are separated within the range
of hydrodynamic interaction. These modes are the in-phase mode, the symmetrical mode, and the out-of-phase mode.

Simulations were carried out to model the three filaments beyond the small-amplitude vibration. As shown in Fig. 8, three
filaments of the same length L are placed side by side with spacing D. An initial sinusoidal displacement is set for the fila-
ments with the amplitude growing from 0 at the leading edge to 0.1L at the trailing edge.

The simulated vibration mode and the vorticity field are shown in Fig. 9 for Re = 100 and four separation distances, D/
L = 0.1, 0.2, 0.4, and 4.0. Note that in the present and also the earlier two-filaments configurations, it is physically possible
for the filaments to collide with each other when the filaments are closely separated. Fortunately, the collision did not hap-
pen in the current simulations, which is likely due to the low Reynolds number considered and also due to the current dif-
fuse-boundary treatment.

For the closest separation, D/L = 0.1, the filaments flap in phase in the same way as the two closely separated filaments
described in Section 4.4, and the flapping pattern is independent of the phases of the initial displacements of the filaments
(Fig. 9(a)). At this in-phase mode, the filaments are flapping like one single filament with the increased mass ratio. For a lone
filament in an infinite flow, the flapping amplitude increases as the mass ratio S is raised. Therefore, the three filaments
would have a higher deformation amplitude than the corresponding single filament. To make a quantitative assessment,
we define the flapping amplitude as the root-mean-square value of the lateral displacement of the filament tail,

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

R T
0 ðy� y0Þ

2dt
q

, where y0 is the average y-position of the tail and T is the sampling duration. We use A0 to denote

the flapping amplitude of the corresponding single filament, which is A0/L = 0.13 according to our simulation. Here the flap-
ping amplitude of the filament 1, 2, and 3 is A/A0 = 1.98, 2.05, and 1.92, respectively, where the inner filament has a slightly
higher amplitude than the other two.

If the separation distance is increased to D/L = 0.2, the two outer filaments are in opposite phase, as shown in Fig. 9(b), and
the amplitudes of the three filaments are, in their order, A/A0 = 0.77, 0.43, and 0.76, which are significantly lower than 1. In
particular, the vibration of the inner filament is reduced by more than 50% compared to the corresponding single filament.
For D/L = 0.4, the two outer filaments are also in opposite phase, but filament 2 becomes virtually stationary, as shown in
Fig. 9(c). At this distance, the three-filament system, as well as the flow field, exhibit a symmetrical pattern. The three flap-
ping amplitudes are A/A0 = 0.87, 0.02, and 0.86.

If the separation distance is further increased to D/L = 4.0, the inner filament starts to flap again, and its amplitude is al-
most the same as that of the other two filaments, as shown in Fig. 9(d). In addition, the inner filament is out of phase with the
outer two filaments which, on the other hand, flap in phase with each other. The three flapping amplitudes are all at A/A0 =
1.0. That is, the flapping amplitude is the same as that of the corresponding single filament. Note that the coupling modes
shown in Fig. 9(a,c,d) are identified as the in-phase, symmetrical, and out-of-phase mode, respectively, and these coordi-
nated patterns are consistent with those predicted by linear theory [48] and also those observed in the experiment [49]. De-
tailed quantitative comparison of the present result with the previous studies is not sought because the linear analysis [48]
assumes a potential flow and the Reynolds number in the experiment [49] is O(105) and is beyond the capability of the pres-
ent code.

In addition to the same modes as reported previously, transient modes such as that shown in Fig. 9(b) for D/L = 0.2 and
erratic flapping as reported in Alben [44] for two filaments are also observed in present simulations. These additional modes
are currently under an in-depth investigation.
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Filament 2

Fig. 8. Schematic of three filaments in a side-by-side arrangement.
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5.2. Ten filaments in diamond arrangement

To further show the capability of the present method, we consider an array of identical filaments organized in a staggered
form shown in Fig. 10. A total number of ten filaments are arranged in the so-called ‘‘diamond’’ pattern, which has been ob-
served in fish schools [50]. Previous studies of such a pattern focused on the prescribed fish motion and assumed that all the
fishes undulate with the same amplitude, frequency, wave number, and phase [46]. The study of the completely passive
undulation induced by the flow may provide insight into the question whether some fish in the school may take advantage
of the passive flapping for energy saving. Ristroph and Zhang [51] performed an experimental study of six filaments in tan-
dem arrangement. It was found that the six filaments flap with different amplitudes and the drag also differs for each
filament.

In the present simulation, the filaments shown in Fig. 10 are placed such that a/L = 4.0 and b/L = 2.0. All the filaments have
the same small-amplitude deformation pattern in the beginning of the simulation. The relative flapping amplitude of each
filament is shown in Fig. 10. It can be seen that the downstream filaments have a significantly higher amplitude than the
three leading filaments, whose amplitudes in turn are moderately higher compared to the isolated single filament. Substan-
tial vortex–vortex and vortex–filament interactions can be observed via the flow visualization. An example of such interac-
tions are shown by the instantaneous flow field in Fig. 11. The vortices shed from the upstream filaments merges into the
vortices around the filaments that are located directly downstream, and the vortex merging changes the shedding behavior
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of the downstream filament. In addition, the shed vortices also affect those filaments diagonally behind the upstream fila-
ments by enhancing their vibration amplitude. Due to the vortex interaction, the wake behind the entire school exhibits an
irregular form, and the flapping motion of the last filaments contains higher wavenumber deformations. The overall passive
motions of the filaments appear to be well coordinated. That is, the dominant flapping frequency is the same for all the fil-
aments, and the phase lags among the filaments, though not constants, vary slowly and in a generally consistent manner.
Rich dynamics of the filaments can be observed. For example, some of the filaments may oscillate periodically with a large
amplitude for a few cycles, then they appear to be suppressed for a short while, and then later they resume their large flap-
ping magnitude.

Note that even though the present simulation is only two dimensional, it involves a highly irregular and moving geom-
etry. Using the current IB–LBM method, the multi-filament simulation only takes about 60 hours for a time duration of
t = 2000L/U, or around 500 flapping cycles, on a single Intel Xeon CPU E5520. Therefore, the efficient computation will allow
us to extensively investigate the system behavior in the current problem.

6. A filament in the wake of a stationary cylinder

Fish swimming in the wake of a stationary bluff body may harness the kinetic energy from the vortices generated by the
body [47,52]. Previously, the interaction between a flexible structure and a rigid cylinder has been employed to model the
fish problem and understand the hydrodynamic benefit that the fish may enjoy [53–55]. In the present work, we consider an
elastic filament placed either directly behind the cylinder, or in the shear layer on one side of the cylinder. These two regions
are also referred to as the Kármán gait region and the entrainment region [56,57].

The problem configuration is shown by the schematic in Fig. 12. A filament of length L and linear density ms is placed in
the wake of a stationary cylinder of diameter d. The head of the filament is pinned while the tail is free. The streamwise dis-
tance between the fixed head and the center of the cylinder is G, and the distance between the fixed head and the centerline
of the flow field is h. The computations are performed on the same domain and grid in Section 4.1. The Reynolds number
based on the cylinder diameter is 100. The bending rigidity of the filaments, Eb, is again on order of 10�3 to prevent exceed-
ingly large deformations.

In order to validate the present model, we conduct a laboratory experiment to measure the energetic cost of a live fish. A
rainbow trout (Oncorhynchus mykiss) swims in a sealed, 175 liter flume respirometer (Loligo Systems Inc.) held at 15�C (Delta
Chiller by Aqua Logic Inc., San Diego CA) with a working dimension of 25 cm � 25 cm � 87.5 cm. Two individuals are chosen
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Fig. 11. The instantaneous vorticity field for the ten-filament arrangement.
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to maximize the difference in the lateral dimension, Lw, defined as the average width in the dorsal view, while retaining sim-
ilar dorso-ventral heights. Oxygen consumption is measured as an indication of the metabolic cost of swimming in the
entrainment region and the free stream at a velocity of 3.5L s�1, where L is the total length of the fish. This value is referred
to as the MO2, which is normalized to the weight of the individual animal and has the units mg O2/kg/hr. A 5 cm diameter
cylinder is then placed in the sealed flume and fish are allowed to entrain volitionally. The position of the fish’s head is re-
corded every minute in a six-hour experiment.

6.1. A filament in the Kármán gait region

First, we consider the filament placed directly behind the cylinder. In this region, rainbow trout adopt a distinctive swim-
ming pattern called Kármán gait [57]. During this gait, the fish body amplitude and curvature are much larger than those of
the fish swimming in the free stream, and the undulation frequency matches the vortex shedding frequency of the cylinder
[57]. Previous studies using the model shown in Fig. 12 [58,25] have not incorporated the effect of the filament mass.

Simulations are performed for G/d = 3, h/d = 0. Several filament lengths and mass ratios are considered with L/d = 1.0, 2.5,
4.0, and S = ms/qd = 0.0, 0.1 and 0.2. Note that the mass ratio has been re-defined using the diameter of the cylinder. The re-
sults show that for all the mass ratios, the filament is unstable, and a flapping motion is excited. This is in contrast with the a
lone massless filament placed in uniform flow, where the filament would be stable [27,40]. The typical flapping motion of the
filament is shown in Fig. 13(a). For the parameter regime considered here, the filament vibration is periodic.

Table 2 compares the averaged drag coefficient, CD, the root-mean-square values of the lift coefficient of the cylinder,
CL,rms, the drag ratio and amplitude of the filament, CD,f/CD,f0 and A/d, and the Strouhal number St = f d/U, where f is the flap-
ping frequency of the filament. Here CD,f and CD,f0 are, respectively, the drag coefficient of the filament and the drag coeffi-
cient of the corresponding single filament in the absence of the cylinder. Both coefficients are defined as the drag force
normalized by 1

2 qU2d. In the present configurations, the filament flapping is induced by the vortices shed from the cylinder.
Thus, the flapping frequency is identical to the frequency of the vortex shedding. Comparing the tabulated results for differ-
ent mass ratios, we notice that for all three filament lengths, the mass ratio has little effect on the drag and lift of the cylinder,
and the flapping frequency of the filament is not significantly affected either. However, the mass ratio has a significant effect
on the flapping amplitude and drag of the filament. As S is raised from 0 to 0.2, A/d may increase up to 12% (e.g., for L/d = 1.0).
Meanwhile, the drag ratio also becomes higher. Except for L/d = 4.0 and S = 0.1 and 0.2, the drag ratio is significantly below
unity, indicating that the filament enjoys a drag reduction by staying behind the cylinder. For the two exceptional cases, we
plot the flow field in Fig. 14. In these cases, the filament has a large bending deformation at its upstream portion, and its tail
moves against the flow with a fast speed as the filament curls up. This inertial effect is more pronounced for S = 0.2, in which
case, the drag on the filament is nearly 36% higher compared to the drag on the isolated filament.

Comparing the filaments with the same mass ratio but different lengths, we notice that filament length has only a slight
effect on the forces of the cylinder, and the flapping frequency decreases within 8% as L/d increases from 1.0 to 2.5 and then
to 4.0. On the other hand, the drag ratios and flapping amplitude are significantly higher for longer filaments. Therefore, we
can conclude that within the parameter regime considered here, the flexible bodies with a lower mass ratio and a shorter
length may benefit more from the interaction with the wake of the cylinder.

The effects of the mass ratio and length on the filament motion can also be seen from the trajectory of the free end of the
filament (Fig. 13(b)). At L/d = 1.0, the filament flaps at a lower mode similar to that in Alben [59], where the tail end of fil-
ament follows an arc. At L/d = 2.5, the tail end traces out a ‘‘Fig. 8’’ path, a phenomenon also described in Shi and Phan-Thien
[58], Sui et al. [25]. At L/d = 4.0, the trajectory combines the characteristics of those for L/d = 1.0 and L/d = 2.5, exhibiting an
arched ‘‘Fig. 8’’.
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6.2. A filament in the entrainment region

We now consider the situation where the filament is located in the entrainment region on either side of the cylinder. In
this case, we set G/d = 0.5, and h/d = 0.92. Other parameters are the same as those in Section 6.1. The simulations are per-
formed for L/d = 2.5 and S = ms/qd = 0.0, 0.01, 0.1 and 0.2.

For the vanishing mass ratio, S = 0.0, the filament is nearly motionless. The vorticity contours of this case are shown in
Fig. 15(a), where the vortex sheet on one side of the cylinder is clearly distorted due to presence of the filament. Note that
the flow past a lone cylinder at this Reynolds number is not stable and vortex shedding would take place. The massless fil-
ament by itself is stable in an infinite flow. Thus, the filament in the present case apparently has stabilized the flow around
the cylinder.

Due to the entrainment effect, the filament shape is slightly curved, and its tail bends into the wake of the cylinder, form-
ing a small angle of attack. A similar phenomenon was observed in the real fish experiment by Liao [56], where the fish main-
tains its body and tail position but only moves pectoral fins for station keeping.

The temporal behavior of drag and lift coefficients for the cylinder with massless filament are presented in Fig. 15(b).
Since the flow is not established in the beginning of the simulation and also there is an initial perturbation to the

Table 2
Comparison of the flow characteristics for the filament in the Kármán gait region with G/d = 3.

A single cylinder S CD CL,rms CD;f =CD;f0
A/d St

– 1.44 0.25 – – 0.166

L/d = 1.0 S = 0.0 1.43 0.27 0.38 0.69 0.161
S = 0.1 1.42 0.26 0.47 0.73 0.161
S = 0.2 1.42 0.26 0.58 0.77 0.153

L/d = 2.5 S = 0.0 1.40 0.28 0.60 1.11 0.156
S = 0.1 1.40 0.27 0.73 1.14 0.155
S = 0.2 1.39 0.26 0.87 1.18 0.153

L/d = 4.0 S = 0.0 1.39 0.29 0.79 1.34 0.153
S = 0.1 1.39 0.30 1.02 1.42 0.153
S = 0.2 1.39 0.31 1.36 1.46 0.152
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Fig. 14. The instantaneous vorticity field for the filament of in the Kármán gait region with S = 0.1 (a) and S = 0.2 (b).
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configuration of the filament, the drag and lift oscillate during the transient stage. However, these forces quickly settle down
to constant values. At the steady state, we obtained CD = 1.2, which is smaller than the average drag of a single cylinder at
Re = 100, CD = 1.4. There is also a small lift force due to the flow asymmetry, pointing toward the filament side of the cylinder
with CL = 0.03.

To further investigate the stabilizing mechanism of the filament, we plot the profiles of the streamwise velocity, u, in the
cylinder wake and compare them with the flow past a single cylinder. The results are shown in Fig. 16, where the profiles are
shown at x = 0.5d and x = 3.0d from the cylinder center for the present case and also for a lone cylinder at Re = 40 and 100. It
can be seen that the presence of the filament has changed the two shear layers around the cylinder and made the mean
velocity profile in the shear layers closer to that for the lone cylinder case at Re = 40 than for the lone cylinder at
Re = 100. This effect is true for both the near field (x = 0.5d) and the far field (x = 3.0d). Therefore, compared to the single cyl-
inder, the effective Reynolds number of the shear layers is reduced and velocity profiles are more smeared when the filament
is present. As a result, the flow around the cylinder is stabilized by the filament. To investigate the effect of h/d, we have
performed a series of simulation with h/d varying from 0.8 to 1.5. The result shows that for h/d between 0.85 and 1.2, the
massless filament suppresses the vortex shedding from the cylinder, and the filament itself is either stationary or has slight
oscillations. Beyond this range, the filament is unable to stabilize the flow. Specifically, further reducing h/d would cause the
filament to flap in the wake of the cylinder, and increasing h/d above 1.2 would lead to a weak interaction between the two
objects.

When the mass ratio is increased, the flow becomes unsteady, and the filament starts to flap periodically. In addition, the
flapping amplitude is higher for larger mass ratios. An instantaneous vorticity field for S = 0.2 is shown in Fig. 17(a). The vor-
tices are shed alternately from the filament and from the other side of the cylinder. The negative vortex pinched off from the
filament and the positive vortex from the cylinder form a sequence of vortex pairs in the wake. The flapping profiles of the
filament are shown in Fig. 17(b). It can be seen that the filament of higher mass ratios in the entrainment region flaps asym-
metrically. Note that at the current Reynolds number, all the corresponding single filaments, including S = 0.2, are stable in
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the incident flow. One reason for the onset of such flapping motion is that the shear layer instability of the cylinder may
overcome the stability effect of the filament. Another reason is that the filament in the shear layer of the cylinder is subject
to a flow with higher velocity compared to the filament in an otherwise uniform flow and thus is more likely to become
unstable.

The quantitative flow characteristics for different mass and length ratios are shown in Table 3. The drag coefficients of the
cylinder and filament are both scaled by those of the isolated bodies. For the massless filament, the cylinder experiences a
drag reduction of 15% compared to the lone cylinder, and the amount of reduction becomes slightly smaller when the mass
ratio of the filament is higher. Increasing the filament length from L/d = 1.5 to L/d = 4.0 has little effect on the drag coefficient
of the cylinder. In all the cases, the filament also enjoys a significant drag reduction compared to the corresponding isolated
filament. For the massless filament, this reduction is 9% for L/d = 1.5 and increases to 24% for L/d = 4.0. At higher mass ratios,
this drag benefit drops to less than 7% for all three filament lengths. The Strouhal number is not obviously affected by the
mass ratio, but it varies by a small amount when the filament length is changed. Note that the Strouhal numbers shown here
are close to those shown in Table 2, both are in turn close to the vortex shedding frequency of the corresponding isolated
cylinder. Therefore, in both of the Kármán gait and entrainment regions, the flapping motion of the filament is dominated
by the vortex shedding frequency of the cylinder.

Table 3
Comparison of flow characteristics for flow past a stationary cylinder with a filament in the entrainment region with G/d = 0.5 and h/d = 0.92. Here CD0 is the
drag coefficient of the corresponding isolated cylinder.

L/d S CD/CD0 CD,f/CD,f0 Am/d St

1.5 0.0 0.86 0.91 0.00 –
0.1 0.87 0.92 0.00 –
0.2 0.87 0.94 0.16 0.145

2.5 0.0 0.85 0.81 0.00 -
0.1 0.88 0.85 0.15 0.155
0.2 0.89 0.93 0.36 0.157

4.0 0.0 0.86 0.76 0.16 0.128
0.1 0.88 0.86 0.52 0.136
0.2 0.89 0.96 0.70 0.131

Fig. 18. (a) Plot of the head location for the small fish with Lw = 0.8 cm and L = 17.7 cm entraining behind a 5 cm diameter cylinder at 3.5L s�1 for every
minute for 6 h. The fish entrains next to the cylinder for the majority of the experiment, occasionally exploring the Kármán vortex street and lateral sides of
the flume downstream of the cylinder. The small fish uses 47% oxygen when entraining compared to swimming in the free stream. (b) The large fish
(Lw = 1.7 cm and L = 21.7 cm) also entrains for the majority of the experiment, but compared to the small fish consumes a higher percentage of oxygen (62%)
relative to the cost of the freestream swimming.
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To summarize the numerical results of this section, we have found that the presence of the filament in the entrainment
region tends to stabilize the flow around the cylinder, while on the other hand, the presence of the cylinder tends to desta-
bilize the entraining filament. Furthermore, the entraining filaments with a lower mass ratio and a longer length would ben-
efit more in drag reduction.

The complementary fish experiment is done as described in the beginning of this Section. Fig. 18 shows the head location
of the fish collected for every minute for 6 h. It is immediately seen that the location markers are clustered in the entrain-
ment region of the cylinder for fish of both sizes. We report the metabolic cost for entraining as a percentage of the metabolic
cost for swimming in the free stream, normalized to the body mass. Remarkably, the small fish with Lw = 0.8 cm and L/d = 3.5
uses 47% oxygen when entraining compared to swimming in the free stream. The large fish Lw = 1.7 cm and L/d = 4.3 has less
energy saving, but still uses up to 62% oxygen compared to the freestream swimming. Clearly, the fish benefits by spending
time in the entrainment region. To draw a connection of the present numerical model with the hydrodynamics of real fish,
we note that the density of the fish is close to that of water, and the mass ratio is approximately equal to the ratio between
the average fish thickness and the length. Such a ratio is difficult to obtain accurately due to the three dimensionality and
nonuniform distribution of the body mass. Since Lw is the average thickness of the body and is about 5% of the body length for
the small fish and 8% for the large fish, we estimate that the mass ratios of both fish are within the range considered in the
numerical model. Interestingly, the entraining fish does not undulate its body and maintains a steady position with its tail
bent toward the wake of the cylinder, as reported in Liao [56], which is much like the massless filament presented here. The
skewed body may act as a lift-producing foil to generate a lift force which prevents the fish from being drawn into suction
region [56]. According to the numerical model, the entraining fish would experience a drag reduction compared to the free-
stream swimming. This prediction is consistent to the measurement of the fish energy consumption.

It should be pointed out the present filament model serves a crude representation of the fish hydrodynamics. There are
several major differences between the model and the real fish swimming. For example, the body mass and material prop-
erties of fish are nonuniform, and the flow in nature is three dimensional. In addition, the Reynolds number in the experi-
ment is on order of 104, which is much higher than that in the present simulation. Despite these important differences, the
results presented here are consistent to the fish experiment and thus may serve as a physical explanation for the observed
swimming behavior.

7. Conclusion

A numerical approach combining the immersed-boundary method and the multi-block lattice Boltzmann method is
developed to simulate the interaction between multiple elastic structures and a viscous incompressible flow. More specif-
ically, the surface force of the immersed bodies on the fluid is spread into the bulk region as a body force, and the fluid kine-
matics is simulated by solving the lattice Boltzmann equation. In addition, a penalty method is incorporated to handle the
inertial force of the solid structures. Since grid regeneration is not required and directly solving the Navier–Stokes equation
is avoided, the approach is extremely efficient for modeling the details of the coupled flow–structure interaction. Four
benchmark computations are carried out to validate the present method: laminar flow past a stationary cylinder, vortex-in-
duced vibration of a cylinder, a single filament flapping in a uniform flow, and interaction of two flapping filaments. The effi-
ciency of the approach is demonstrated by simulations of multiple filaments passively flapping together in a uniform flow.

As an application, the filament in the wake of a cylinder is studied to model the Kármán gaiting and entraining behavior of
fish near a bluff object. In the Kármán gait region directly behind the cylinder, the filaments with low mass ratios and short
lengths enjoy more drag reduction compared to the filaments with high mass ratios and long lengths. In the entrainment
region, i.e., the shear layer next to the cylinder, the filament may provide a stabilizing effect on the flow and maintain a stea-
dy position itself when the mass ratio is low. The entraining filaments also experience a significant drag reduction. However,
unlike the Kármán gaiting filaments, the entraining filaments with a longer length receive more benefit. A complementary
laboratory experiment is performed where the entraining behavior of the trout fish near a stationary cylinder is studied and
the metabolic cost of the swimming is recorded. It is found that the fish benefit from entraining by significantly reducing
oxygen consumption compared to the freesteam swimming. Furthermore, the fish tend to maintain a steady body position
in the entrainment region. The numerical results are in general consistent with the experimental observation and may thus
offer a physical insight to the biological behavior of the fish.

Acknowledgements

This work was supported by the National Science Foundation (No. CBET-0954381), the National Natural Science Founda-
tion of China (No. 10832010), and the Innovation Project of the Chinese Academy of Sciences (No. KJCX2-YW-L05). Tian
would like to acknowledge a fellowship support from the China Scholarship Council during his stay at Vanderbilt University.

References

[1] C.W. Hirt, A.A. Amsden, J.L. Cook, An arbitrary Lagrangian–Eulerian computing method for all flow speeds, J. Comput. Phys. 14 (1974) 227–253.
[2] C.S. Peskin, Flow patterns around heart valves: a digital computer method for solving the equations of motion, Ph.D. Thesis, Yeshiva University, 1972.
[3] C.S. Peskin, The immersed boundary method, Acta Numerica 11 (2002) 479–517.

7282 F.-B. Tian et al. / Journal of Computational Physics 230 (2011) 7266–7283



Author's personal copy

[4] R. Mittal, G. Iaccarino, Immersed boundary method, Annu. Rev. Fluid Mech. 37 (2005) 239–261.
[5] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys. 100 (1992) 25–37.
[6] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31

(1994) 1019–1044.
[7] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30 (1998) 329–364.
[8] C.K. Aidun, J.R. Clausen, Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech. 42 (2010) 439–472.
[9] A.J.C. Ladd, Numerical simulation of particulate suspensions via a discretized Boltzmann equation. Part 1: theoretical foundation, J. Fluid Mech. 271

(1994) 285–309.
[10] M. Krafczyk, J. Tölke, E. Rank, M. Schulz, Two-dimensional simulation of fluid-structure interaction using lattice-Boltzmann methods, Comput. Struct.

79 (2001) 2031–2037.
[11] P. Lallemand, L.S. Luo, Lattice Boltzmann method for moving boundaries, J. Comput. Phys. 184 (2003) 406–421.
[12] D. Qi, C.K. Aidun, A new method for analysis of the fluid interaction with a deformable membrane, J. Stat. Phys. 90 (1998) 145–158.
[13] A. Alexeev, R. Verberg, A.C. Balazs, Modeling the motion of microcapsules on compliant polymeric surfaces, Macromolecules 38 (2005) 10244–10260.
[14] Z.G. Feng, E.E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J. Comput. Phys. 195

(2004) 602–628.
[15] Z.G. Feng, E.E. Michaelides, Proteus: a direct forcing method in the simulations of particulate flows, J. Comput. Phys. 202 (2005) 20–51.
[16] C. Shu, N. Liu, Y.T. Chew, A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular

cylinder, J. Comput. Phys. 226 (2007) 1607–1622.
[17] J. Wu, C. Shu, Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, J. Comput. Phys. 228 (2009) 1963–

1979.
[18] J. Wu, C. Shu, An improved immersed boundary–lattice Boltzmann method for simulating three-dimensional incompressible flows, J. Comput. Phys.

229 (2010) 5022–5042.
[19] D.V. Le, J. White, J. Peraire, K.M. Lim, B.C. Khoo, An implicit immersed boundary method for three-dimensional fluid-membrane interactions, J. Comput.

Phys. 228 (2009) 8427–8445.
[20] T. Krüger, F. Varnik, D. Raabe, Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary

lattice Boltzmann finite element method, Comput. Math. Appl. 61 (2011) 3485–3505.
[21] J. Hao, L. Zhu, A lattice Boltzmann based implicit immersed boundary method for fluid-structure interaction, Comput. Math. Appl. 59 (2010) 185–193.
[22] L. Zhu, G. He, S. Wang, L. Miller, X. Zhang, Q. You, S. Fang, An immersed boundary method by the lattice Boltzmann approach in three dimensions with

application, Comput. Math. Appl. 61 (2011) 3506–3518.
[23] D. Yu, R. Mei, W. Shyy, A multi-block lattice Boltzmann method for viscous fluid flows, Int. J. Numer. Meth. Fluids 39 (2002) 99–120.
[24] Y. Peng, C. Shu, Y.T. Chew, X.D. Niu, X.Y. Lu, Application of multi-block approach in the immersed boundary-lattice Boltzmann method for viscous fluid

flows, J. Comput. Phys. 218 (2006) 460–478.
[25] Y. Sui, Y.T. Chew, P. Roy, H.T. Low, A hybrid immersed-boundary and multi-block lattice Boltzmann method for simulating fluid and moving-

boundaries interactions, Int. J. Numer. Meth. Fluids 53 (2007) 1727–1754.
[26] J. Zhang, P.C. Johnson, A.S. Popel, An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to

microscopic blood flows, Phys. Biol. 4 (2007) 285–295.
[27] L. Zhu, C.S. Peskin, Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method, J. Comput. Phys. 179 (2002)

452–468.
[28] Y. Kim, C.S. Peskin, Penalty immersed boundary method for an elastic boundary with mass, Phys. Fluids 19 (2007) 053103.
[29] Z.L. Guo, C.G. Zheng, B.C. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E 65 (2002) 046308.
[30] B.S.H. Connell, D.K.P. Yue, Flapping dynamics of a flag in a uniform stream, J. Fluid Mech. 581 (2007) 33–67.
[31] Q.W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, ICASE Report No.97-65,

1997, pp. 325–432.
[32] Y. Sui, Y.T. Chew, P. Roy, H. Low, A hybrid method to study flow-induced deformation of three-dimensional capsules, J. Comput. Phys. 227 (2008)

6351–6371.
[33] T. Gao, Y.H. Tseng, X.Y. Lu, An improved hybrid cartesian/immersed boundary method for fluid-solid flows, Int. J. Numer. Meth. Fluids 55 (2007) 1189–

1211.
[34] A.L.F. Lima E Silva, A. Silveira-Neto, J.J.R. Damasceno, Numerical simulation of two-dimensional flows over a circular cylinder using the immersed

boundary method, J. Comput. Phys. 189 (2003) 351–370.
[35] S. Xu, Z.J. Wang, An immersed interface method for simulating the interaction of a fluid with moving boundaries, J. Comput. Phys. 216 (2006) 454–493.
[36] B.E. Griffith, C.S. Peskin, On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems,

J. Comput. Phys. 208 (2005) 75–105.
[37] S. Mittal, S. Singh, Vortex-induced vibrations at subcritical Re, J. Fluid Mech. 534 (2005) 185–194.
[38] M. Morzynski, F. Thiele, Numerical stability analysis of a flow about a cylinder, Z. Angew. Math. Mech. 71 (1991) T424–T428.
[39] B. Kumar, S. Mittal, Prediction of the critical Reynolds number for flow past a circular cylinder, Comput. Meth. Appl. Mech. Eng. 195 (2006) 6046–6058.
[40] M. Shelley, N. Vandenberghe, J. Zhang, Heavy flags undergo spontaneous oscillations in flowing water, Phys. Rev. Lett. 94 (2005) 094302.
[41] J. Zhang, S. Childress, A. Libchaber, M. Shelley, Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional

wind, Nature 408 (2000) 835–839.
[42] L.B. Jia, F. Li, X.Z. Yin, X.Y. Yin, Coupling modes between two flapping filaments, J. Fluid Mech. 581 (2007) 199–220.
[43] L. Zhu, C.S. Peskin, Interaction of two flapping filaments in a flowing soap film, Phys. Fluids 15 (2003) 1954–1960.
[44] S. Alben, Wake-mediated synchronization and drafting in coupled flags, J. Fluid Mech. 641 (2009) 489–496.
[45] C.M. Breder, On the survival value of fish schools, Zoologica 52 (1967) 25–40.
[46] D. Weihs, Hydromechanics of fish schooling, Nature 241 (1973) 290–291.
[47] J.C. Liao, D.N. Beal, G.V. Lauder, M.S. Triantafyllou, Fish exploiting vortices decrease muscle activity, Science 302 (2003) 1566–1569.
[48] S. Michelin, S.G. Llewellyn Smith, Linear stability analysis of coupled parallel flexible plates in an axial flow, J. Fluids Struct. 25 (2009) 1136–1157.
[49] L. Schouveiler, C. Eloy, Coupled flutter of parallel plates, Phys. Fluids 21 (2009) 081703.
[50] M.H.S. Keenleyside, Some aspects in the schooling behavior in fish, Behaviours 8 (1955) 183–248.
[51] L. Ristroph, J. Zhang, Anomalous hydrodynamic drafting of interacting flapping flags, Phys. Rev. Lett. 101 (2008) 194502.
[52] J.C. Liao, A review of fish swimming mechanics and behaviour in altered flows, Phil. Trans. R. Soc. B 362 (2007) 1973–1993.
[53] D.N. Beal, F.S. Hover, M.S. Triantafyllou, J.C. Liao, G.V. Lauder, Passive propulsion in vortex wakes, J. Fluid Mech. 549 (2006) 385–402.
[54] J.D. Eldredge, D. Pisani, Passive locomotion of a simple articulated fish-like system in the wake of an obstacle, J. Fluid Mech. 607 (2008) 279–288.
[55] L.B. Jia, X.Z. Yin, Response modes of a flexible filament in the wake of a cylinder in a flowing soap film, Phys. Fluids 21 (2009) 101704.
[56] J.C. Liao, The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow, J. Exp. Biol. 209

(2006) 4077–4090.
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