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Motivated by collapse of blood vessels for both healthy and diseased situations under various circum-
stances in human body, we have performed computational studies on an incompressible viscous fluid
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past a rigid channel with part of its upper wall being replaced by a deformable beam. The Navier–Stokes
equations governing the fluid flow are solved by a multi-block lattice Boltzmann method and the
structural equation governing the elastic beam motion by a finite difference method. The mutual cou-
pling of the fluid and solid is realized by the momentum exchange scheme. The present study focuses on
the influences of the dimensionless parameters controlling the fluid–structure system on the collapse
and self-excited oscillation of the beam and fluid dynamics downstream. The major conclusions obtained
in this study are described as follows. The self-excited oscillation can be intrigued by application of an
external pressure on the elastic portion of the channel and the part of the beam having the largest
deformation tends to occur always towards the end portion of the deformable wall. The blood pressure
and wall shear stress undergo significant variations near the portion of the greatest oscillation. The
stretching motion has the most contribution to the total potential elastic energy of the oscillating beam.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Collapse and self-excited oscillation of blood vessels may occur
to both healthy and diseased vessels. Coronary blood vessels may
collapse when the heart contracts. Veins collapse in human legs in
getting the blood pumped against the gravity towards the heart
during physical exercise or physical therapy for deep-vein throm-
bosis (Dai et al., 1999). Harmful collapse and self-excited oscillation
of the artery in arterial stenosis in patients with atherosclerosis
could result in plaque rupture (Ku, 1997).

Our FSI model is motivated by the well known Starling resistor
in which flow is driven through a thin-walled elastic tube moun-
ted on two rigid tubes. The elastic tube is contained in a pressure
chamber and the external pressure can be controlled to model the
support of surrounding soft tissue of the blood vessel. Due to its
rich dynamic behavior, some investigations have been made and
reviewed by researchers (Grotberg and Jensen, 2004; Heil and
Hazel, 2011). Experiments have found a rich variety of interesting
phenomena, such as flow limitation, which is presented as the
phenomenon that increasing the driving pressure of the flow does
not lead to a corresponding increase in the flow rate on the col-
lapsed tube when the upstream transmural pressure is fixed, and a
large number of different types of oscillations (Bertram et al., 1990;
Wang et al., 2009). Most early theoretical analyses of flow in the
Starling resistor were based on lumped-parameter or spatially 1D
models (Cancelli and Pedley, 1985; Jensen, 1990), which involve a
certain number of ad hoc assumptions and can be used to explain
some behavior of collapsible tubes in early experiments. A closely
related 2D physical model was introduced by Pedley (1992) first.
Then 2D models in which the collapsible tube was simplified as a
thin membrane (Luo and Pedley, 1996, 1998; Jensen and Heil,
2003) or an elastic beam (Luo et al., 2008; Liu et al., 2009) were
widely used. Recent progress has been made on 3D models (Hazel
and Heil, 2003; Marzo et al., 2005; Heil and Boyle, 2010). However,
due to its complexity and high computing costs, 2D models are
still being used to understand the rich dynamic behaviors of the
system. It should be pointed out that in most of the existing works
mentioned above, the membrane or beam is massless, i.e. the wall
inertia is neglected. According to the previous research (Luo and
Pedley, 1998; Bertram, 2008), when the dominant inertia resides
in the wall, a typical flutter oscillation will occur, which is different
from the classically observed collapsible-tube oscillation. In the
present study, the elastic portion of the channel wall is modeled as
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a massive beam and both stretching and bending modes of motion
are considered.
Fig. 1. Sketch of the flow-beam model (not to scale).
2. Model problem and mathematical formulation

The model problem we consider is a two-dimensional viscous
flow with density ρ and viscosity μ past a channel of width D. As
shown in Fig. 1, a part of the upper wall of the channel is replaced
by an elastic wall or beam. The remaining part of the channel walls
is rigid. The upstream and downstream rigid portions of the upper
wall have lengths of Lu and Ld, respectively. The initial position of
the beam is a line segment joining point ( D0, ) and point (L, D). The
Lagrangian coordinates for the two endpoints are x 00 = and
x L0 = , respectively. The elastic beam has a length of L and is
subjected to an external pressure pe on its outer boundary. A
steady Poiseuille flow for a Newtonian fluid is considered here and
an average velocity U0 is assumed at the inlet. A constant pressure
pd is specified at the outlet.

The incompressible Navier–Stokes equations are used to
describe the flow dynamics and given as
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where v is the velocity, p is the pressure, ρ is the density of the
fluid and μ is the dynamic viscosity.

The structural equation governing the motion of the elastic
beam is expressed in Lagrangian form
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where s is the Lagrangian coordinate along the beam and X is the
position vector, ρs is the linear density of the beam,

XT s Eh s( ) ( ( / ) 1)= | ∂ ∂ | − is the tension with Eh the stretching rigid-
ity, and EI is the bending rigidity. F is the external force on the
beam, i.e. force applied by the flow and the external pressure. The
clamped condition is used at the two fixed ends,
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The reference quantities D, U0 and ρ are chosen to non-
dimensionalize the above mathematical formulation. Then, the
present problem has five independent dimensionless parameters
which are defined as
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where Re is the Reynolds number, Pe is the external pressure on
the beam, M is the mass ratio, Ks and Kb are the stretching and
bending stiffness, respectively.

In the present study, the density ρ and the dynamic viscosity μ
of the fluid are chosen as1060 kg/m3 and 0.0035 kg/m/s. Moreover,
the size of channel D is 5 mm and the average inlet velocity is
0.2–0.45 m/s to mimic the carotid artery. Thus the Reynolds
number ranges 300–650 approximately. In addition, according to
our numerical examination with different computational domains,
the domain is finally set as L D5u = , L D5= and L D30d = unless
otherwise stated. All of the quantitative results presented in this
paper are in dimensionless form. Moreover, we fix K K/ 10b s

5= − in
this study, which is the same as that used in the literature (Luo
et al., 2008).
3. Numerical method

The fluid flow are solved numerically by the lattice Boltzmann
method (LBM) (Chen and Doolen, 1998) which also handles the
fluid and beam interaction in our problem. The lattice Boltzmann
equation LBE) with the multi-relaxation-time (MRT) model is

x e x x xf t t t f t S f t f t( , ) ( , ) [ ( , ) ( , )], (6)i i i i i
eqΔ+ Δ + − = − −

where S is the collision matrix, tΔ is the time increment, and
xf t( , )i is the distribution function for particles with velocity ei at

position x and time t. The equilibrium distribution function fi
eq is

defined as
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where ωi is the weighting factor, and cs is the speed of sound. The
velocity v and density ρ can be obtained by the distribution
functions

f ,
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Here, we use the finite difference method to discrete the equation
of the elastic beam. The detailed description of the algorithm has
been given (Huang et al., 2007). The interaction of the fluid and the
deformable beam is treated according to Buxton and Clarke (2006).

In addition, the relevant codes used for the present study have
been also validated in our previous works. The numerical method
has been applied with success to a wide range of cases such as
viscous flow over a circular flexible plate (Hua et al., 2014), loco-
motion of a flapping flexible plate in a stationary fluid (Hua et al.,
2013), hydrodynamic interaction of elastic filaments (Tian et al.,
2011a), and viscous flow past three filaments in side-by-side
arrangement (Tian et al., 2011b).
4. Results and discussion

4.1. Oscillation frequency and amplitude of the beam

We first investigate the effects of a variety of parameters on the
oscillation frequency and amplitude of the elastic beam in self-
excited oscillation. The parameters include the external pressure Pe,
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the Reynolds number Re, the stretching stiffness Ks, the mass ratio
M, and the downstream length Ld. The excursion along both the x
and y directions of the material point initially at the mid-point of
the elastic beam is used as the oscillation amplitude of the beam.

Fig. 2(a) shows the oscillation frequency and amplitude of the
beam versus the external pressure Pe. It is seen that both the fre-
quency and amplitude increase with the increase of Pe. When Pe is
relatively small, such as less than 4.0, the amplitude is less than
0.05 and the elastic beam behaves nearly steady. However, when
Pe is greater than about 4.5, the amplitude increases significantly.
This character indicates that the self-excited oscillation of the
flexible beam can be triggered by an external pressure applied on
the beam and the induced degree of oscillation enhances with the
Pe
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Fig. 2. Effects of the external pressure Pe on the oscillation frequency and amplitu
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Fig. 3. The trajectories at points x0¼1.0, 2.0, 3.0,
increase of Pe. Furthermore, Fig. 2(b) shows the amplitude in the
y-direction of the beam under the different external pressure Pe.
The amplitudes increase with the increase of Pe, consistent with
the preceding results. It is interesting to note that the maximum
amplitude (i.e. the lowest point of the beam) always occurs around
the position of x¼4.0 for all the external pressures considered.
This behavior is mainly related to both the external pressure and
the inertia of the fluid flow exerted on the beam.

The trajectories of several typical points on the elastic beam in
self-excited oscillation are plotted on Fig. 3. The four panels show
the trajectories of four typical points with initial position at
x0¼1.0, 2.0, 3.0, and 4.0, under the influence of different Pe. The
trajectories are all closed curves, indicating that the oscillation of
x

A
0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5
Pe=4.0
Pe=4.5
Pe=5.0
Pe=5.5
Pe=6.0

de with Re¼500, Ks¼100, and M¼1: (a) oscillation frequency and amplitude;

x

y

2 2.1 2.2

0.8

0.9

1

x

y

4 4.1 4.2 4.3 4.4

0.2

0.3

0.4

0.5

and 4.0 on the beam for several values of Pe.



Re

f x,
y

300 400 500 600 700
0.08

0.082

0.084

0

0.1

0.2

f
x
y

M

f x,
y

0 10 20 30 40
0.05

0.06

0.07

0.08

0.09

0.1

0

0.1

0.2

0.3

0.4

0.5

Ks

f x,
y

100 150 200 250
0.07

0.08

0.09

0

0.1

0.2

0.3

Ld
f x,
y

25 30 35 40 45
0.04

0.06

0.08

0.1

0.12

0.05

0.1

0.15

0.2

0.25

Fig. 4. Effects of some parameters on the oscillation frequency and amplitude: (a) the Reynolds number effect for Pe¼5.0, Ks¼100, and M¼1; (b) the stretching stiffness
effect for Re¼500, Pe¼5.0, and M¼10; (c) the mass ratio effect for Re¼500, Ks¼100, and Pe¼4.5; (d) the downstream length influence for Re¼500, Ks¼100, M¼1,
and Pe¼5.0.

C. Tang et al. / Journal of Biomechanics 48 (2015) 1922–1929 1925
the beam is periodic. The greater the external pressure, the greater
the area enclosed by the circumference of the closed trajectory.
The trajectories at x0¼1.0 (upstream portion) are almost perpen-
dicular to the main steam flow; those at x0¼2.0 and 3.0 (middle
portion) are inclined towards the upstream of the flow; those of at
x0¼4.0 (downstream portion) are so inclined and elongated by the
flow to form a right-falling stroke. The oscillation amplitude at
x0¼4.0 is the maximum among the four points.

The influence of the Reynolds number Re on the oscillation
frequency and amplitude is analyzed. With fixed other parameters
the Re ranges from 300 to 650 for the hemodynamics of the car-
otid artery. As shown in Fig. 4(a), the oscillation amplitudes in the
x and y directions increase with Re. The maximum and minimum
values of the oscillation frequency for those Reynolds numbers are
not obvious with their difference less than 5%. Therefore, the
Reynolds number has weak effect on the oscillation frequency for
the range of Re.

Fig. 4(b) shows the effect of the stretching stiffness Ks on the
oscillation frequency and amplitude. With the increase of Ks, the
oscillation frequency increases slightly and the amplitude decreases
almost linearly. Under a fixed external pressure Pe, a greater value of
Ks corresponds to a harder elastic beam which undergoes smaller
deformation, thus leading to less oscillation. This is similar to the
effect of the decreased external Pe; it means that increasing Ks and
decreasing Pe have the similar effect on the oscillation amplitude of
the beam. Our results indicate that veins are easier to collapse and
undergo oscillation because in general veins are more flexible than
the corresponding arteries.

The effect of the mass ratio M is further investigated. Usually, a
greater value ofM indicates that the inertia of the beamwill have a
greater impact in its oscillation. Fig. 4(c) shows that the amplitude
increases and the frequency decreases with the increase of M,
consistent with the previous work of a flapping filament in a vis-
cous flow (Zhu and Peskin, 2002). These results together with
those on the mass ratio suggest that once self-oscillation is excited
under similar circumstances, the degree of oscillation may become
more severe in the arteries than in the veins because in general the
arterial walls are thicker and the blood flow is faster in arteries.

Further we set Lu and L as constant by varying Ld to deal with
the effect of the downstream length Ld. Fig. 4(d) shows the effect of
the downstream length Ld on oscillation frequency and amplitude.
It is seen that with the increase of Ld, the amplitude increases
gradually and tends to constants. But the oscillation frequency
decreases with the increase of Ld. These are caused by the resis-
tance of downstream flow. Our results are essentially consistent
with previous findings (Luo and Pedley, 1996; Wang et al., 2009).

These results obtained here provide both educational and
clinical values to medical personnel who perform sphygmoma-
nometry by an inflatable cuff or active compression on lower
limbs' veins as a physical therapy for prevention of deep-vein
thrombosis. It is important for them to be aware of the fact that
the externally pressed veins may undergo collapse and self-excited
oscillation which can be harmful to the vascular endothelial cells
and smooth muscle cells particularly at the proximal ends of the
veins.

Due to the oscillation of the elastic beam in the self-excited
oscillation described above, the flow rate at the outlet is therefore
time-dependent. Fig. 5(a) and (b) shows the time-dependent outlet
flow rate Q for different values of Pe and M, respectively, where the
rate Q is non-dimensionalized by the inlet one. It is obtained that a
larger oscillation amplitude leads to a larger change in the flow rate
at the outlet during one period of self-excited oscillation. The fre-
quency of the flow rate change at the outlet is consistent with the
frequency of the beam oscillation. These results imply that the self-
excited oscillation of vessels may be harmful; it may hinder the in-
time collection of oxygen-poor blood from veins into lungs and/or
restrict the nutrient/oxygen supplied to the tissues downstream the
arteries.
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4.2. Pressure and wall shear stress along the beam

The oscillation frequency and amplitude of the beam have been
investigated in the preceding section. We further study the shape of
the oscillating beam and the pressure distribution along the beam
during self-excited oscillation. As a typical case, Fig. 6(a) shows the
y-coordinate of the lowest point during the self-excited oscillation
and Fig. 6(b) demonstrates the shapes of the beam described on the
x–y plane. The evolution of the beam shape is described for five
instants marked in Fig. 6(a). In addition, it is identified that the
oscillation of the beam is more intense under a larger Pe, indicating
a larger amplitude during one period for any point on the beam.

Further, the corresponding pressure and wall shear stress
(WSS) along the beam are shown in Fig. 6(c) and (d), respectively.
The pressure remains nearly a constant on the upstream portion of
the beam where the deformation is relatively small. The pressure
drops significantly between x¼3.0 and 4.0 before the lowest point
of the beam. The pressure then increases slightly and remains
t
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pressure and WSS along the beam for the five instants. The dashed lines in (c) and (d)
nearly a constant again on the remaining portion of the beam. The
WSS gradually increases along the beam until x¼3.0. After that the
WSS undergoes a drastic spatial variation. It is elevated sig-
nificantly reaching a peak, and then is lowered significantly
reaching its minimum until near x¼4.5 when it is slightly raised.
Note that the drastic changes in the pressure and WSS take place
on almost the same portion of the beam where the deformation is
relatively large near the lowest point. Also among the several
instants, the instant of the greatest deformation of the beam
corresponds to the instant with the greatest peak in the WSS and
greatest pressure difference between upstream and downstream
portion of the beam. This rapid variation in the WSS and pressure
can be damaging to endothelial cells lining the vascular intima and
the smooth muscle cells consisting of the vascular media which
can lead to the initialization of vascular diseases such as athero-
sclerosis and intimal hyperplasia (Ku, 1997). If the self-oscillation
occurs on a vessel segment close to an atherosclerosis plaque,
these significant spatial variations in the pressure and WSS can
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cause the rupture of the plaque and thus lead to heart attacks or
strokes.

To demonstrate the flexibility effect of the beam, the beam
shape and position at the middle instant of the five instants (i.e.
the third instant) in Fig. 6(b) is used as the shape of a rigid beam.
Then a simulation is also performed using the same dimensionless
parameters as for the elastic beam. The pressure and WSS along
the rigid beam are plotted in Fig. 6(c) and (d) as the dashed lines.
Although the shape and position of the rigid beam are the same as
those of the third instant, the corresponding pressure and WSS are
different from the corresponding deformable beam. The curves of
the pressure and WSS in the rigid case are all located between the
corresponding two curves of the second and third instants of
deformable case. Note that the flow states are unsteady in both the
rigid and deformable cases.

Further, the energy exchange of the beam is investigated during
self-excited oscillation. The total energy Et of the beam contains
the kinetic energy Ek and the elastic potential energy including the
stretching energy Eps and the bending energy Epb. Fig. 7(a) shows
the time history of energy in the beam. It is identified that the
stretching energy of the beam is much greater than the kinetic
energy and the bending energy. The majority of the total energy
comes from the contribution of the stretching motion of the beam.
The results indicate that it is reasonable to model heathy blood
vessels as membranes only as used in the literatures (Pedley, 1992;
Luo and Pedley, 1996), which significantly simplifies the numerical
method and expedites the computation. However, the elastic
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Fig. 8. The instantaneous vorticity contours for the five instants marked
properties of diseased vessel, e.g. vessel with intimal hyperplasia,
may be quite different, and both membrane and bending modes
may be equally important.

Moreover, Fig. 7(b) shows the power of the external force act-
ing on the beam. The external forces include the external pressure
Pe and the force applied by fluid. For clear comparison, the total
energy is also platted. From the instant when the deformation and
energy of the beam are both minimal, the energy of the beam
increases and reach the maximum. During this process, P is always
positive; it means that the external forces do positive work on the
beam to increase its total energy. After that P becomes negative; it
means that the external forces do negative work on the beam to
decrease the total energy of the beam. At the same time, the
deformation of the beam lessens and reaches the minimum again.
Thus a period is complete and the next one begins.

4.3. Flow field and its evolution

To understand the flexibility effect on the flow structures,
Figs. 8 and 9 show the instantaneous vorticity contours and
streamlines for five instants which are marked in Fig. 6(a). In order
to demonstrate the flexibility effect of the beam, the beam shape
at the third instant is used as the shape of a corresponding rigid
beam. The instantaneous vorticity contours and streamlines for
the rigid case are also visualized in Fig. 10, in contrast with the
third figure in Figs. 8 and 9. It is identified that in the deformable
case, the region of shed vortices is closer to the downstream end of
t
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the bulged wall, and large temporal variations in the pressure and
WSS occur.

Similarly, another typical case for the dimensionless para-
meters Re¼300, Pe¼4.5, Ks¼100, and M¼20 is also investigated.
The flow is steady in the rigid case, but is unsteady in the corre-
sponding deformable case. The downstream flow behind the
deformable beam is less violent and the vortex shedding is less
intensive. Together these figures illustrate the obvious difference
in the flow field and vortex shedding between the rigid and
deformable boundaries.

Further, numerical investigation has been extensively used in
modeling and simulation of blood flow in human blood vessels
(Ku, 1997). However, almost all of the vessel models assume that
the vessel walls are rigid, while the physiological vessel walls are
deformable. To the best of our knowledge, there are not enough
error analysis in the literature on the computed values of quan-
tities such as the WSS and pressure compared to the actual phy-
siological values (Perktold et al., 1994). Our results presented here,
both qualitatively and quantitatively gauge on the errors caused by
the rigid vessel wall assumption.
5. Summary

We have performed computational studies on a viscous
incompressible flow past a 2D channel with part of its upper rigid
wall being replaced by an elastic beam subject to external pressure
on the outer surface. The flow is governed by the Navier–Stokes
equations and numerically solved by the multi-block lattice
Boltzmann method. The motion of the deformable beam is gov-
erned by the structural equation and solved by the finite difference
method. The two-way mutual interaction of the fluid and the solid
is handled by the momentum exchange method. After the method
Fig. 9. The instantaneous streamlines for the five instants marked in

Fig. 10. The vorticity contours and streaml
and the code are rigorously verified and validated by existing
results in the literature, a series of simulations are carried out on
the effects of the parameters of the problem on the dynamics of
this fluid-beam system including frequency, amplitude, and shape/
trajectory of the self-excited oscillation of the elastic beam, pres-
sure and WSS distributions on the inner surface of the beam. In
addition, the qualitative and quantitative differences between
rigid and elastic beams are illustrated by flow visualization in
terms of vorticity contours and streamlines and by the pressure
and WSS distributions. The flux at the outlet and the elastic
potential energy of the beam are also investigated.

The results of our computational studies are summarized as
follows. The self-excited oscillation of the deformable beam may
be triggered by the externally applied pressure, and greater pres-
sure results in stronger oscillation or greater amplitude. The
lowest point of the beam during oscillation, i.e. the point of the
beam with the greatest excursion along the y-axis, resides in
towards the end portion of the beam. The stretching motion of the
beam contributes most to the elastic potential energy of the beam.
The bending mode of the beam is negligible in the oscillation
fluid-beam system. As the stretching coefficient becomes greater
or the beam is gradually stiffened, the oscillation amplitude
decreases and the frequency increases. The greater the flow Rey-
nolds number, the greater the oscillation amplitude, but the Rey-
nolds number has very little effect on the frequency. The greater
the mass ratio of the beam and fluid, the greater the oscillation
amplitude, but the less the frequency. The pressure and WSS dis-
tributions along the beam undergo significant spatial variations
near the same location where the beam reaches its lowest posi-
tion. The obvious differences are observed for viscous flow past
rigid and elastic beams in terms of vortex structures downstream
and streamlines of the flow field, pressure and WSS distributions.
Fig. 6(a) for the case with Ks¼100, M¼1, Re¼500, and Pe¼5.0.

ines for the case with rigid boundary.
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