
LBM-IB: A Parallel Library to Solve 3D Fluid-Structure Interaction Problems on
Manycore Systems

Prateek Nagar∗, Fengguang Song∗, Luoding Zhu† and Lan Lin‡
∗Department of Computer Science

Indiana University-Purdue University, Indianapolis, Indiana, USA
Email: {pnagar, fgsong}@iupui.edu

†Department of Mathematics
Indiana University-Purdue University, Indianapolis, Indiana, USA

Email: lzhu@math.iupui.edu
‡Department of Computer Science

Ball State University, Muncie, Indiana, USA
Email: llin4@bsu.edu

Abstract—Deformable structures are abundant in various
domains such as biology, medicine, life sciences, and ocean
engineering. Our previous work created a numerical method,
named LBM-IB method [1], to solve the fluid-structure inter-
action (FSI) problems. Our LBM-IB method is particularly
suitable for simulating flexible (or elastic) structures immersed
in a moving viscous fluid. Fluid-structure interaction problems
are well known for their heavy demands on computing re-
sources. Today, it is still challenging to resolve many real-world
FSI problems. In order to solve large-scale fluid-structure
interactions more efficiently, in this paper, we design a parallel
LBM-IB library on shared memory manycore architectures.
We start from a sequential version, which is extended to
two different parallel versions. The paper first introduces the
mathematical background of the LBM-IB method, then uses
the sequential version as a ground to present our implemented
computational kernels and the algorithm. Next, it describes
the two parallel programs: an OpenMP implementation and
a cube-based parallel implementation using Pthreads. The
cube-based implementation builds upon our new cube-centric
algorithm where all the data are stored in cubes and com-
putations are performed on individual cubes in a data-centric
manner. By exploiting better data locality and fine-grain block
parallelism, the cube-based parallel implementation is able to
outperform the OpenMP implementation by up to 53% on
64-core computer systems.

Keywords-High performance computing; computational fluid
dynamics (CFD); fluid-structure interactions (FSI); immersed
boundary methods (IB); manycore systems

I. INTRODUCTION

Computational fluid dynamics (CFD) is a crucial area with

various numerical methods to solve a wide range of impor-

tant scientific, engineering, and life sciences applications.

Among all the different CFD applications, simulation of the

puzzling and intricate fluid-structure interactions (FSI) is an

active field of research, where development of any faster

and more scalable parallel library will enable more accurate

numerical simulations of important real-world FSI problems.

This paper presents a parallel multithreaded library, called

Figure 1. A 3D simulation of fluid and flexible-structure interaction using
the LBM-IB method [1].

LBM-IB, to solve the FSI problems on shared memory

manycore architectures.

The fluid-structure interaction problems are occurring

in many physical and industrial environments as well as

in Mother Nature, for instance, parachutes dropping from

aircrafts, ships cruising in oceans, blood cells flowing past

human vessels, sea creatures swimming in the water, and

so on [2]–[4]. Our scope of research on fluid-structure

interactions focuses on the complicated and detailed inter-

play among viscous fluids, deformable bodies, and the free

moving boundaries separating the fluid and the bodies. Due

to the complexity of the type of problems, analytic solutions

are almost impossible to obtain and hence computational

methods are typically used by researchers.

There are quite a few computational methods for solv-

ing fluid-structure interaction problems: the Arbitrary La-

grangian Eulerian (ALE) method [5], the fictitious domain

method [6], the material point method [7], and the immersed

boundary (IB) method, to name a few. Our paper uses the

immersed boundary method, which was the first method to

address the full interactions of a viscous fluid and flexible
(or elastic) structures. The immersed boundary method is

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.14

51

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.14

51

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.14

51

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.14

51

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.14

51

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.14

51

comprised of three basic elements: 1) solving the motion of

the viscous incompressible fluid, 2) solving the motion of the

flexible structures, and 3) handling interactions of the fluid

and the structure by the Dirac delta function. Note that the

third element is the key strength of the immersed boundary

method, which makes the IB method attractive.

Our previous work [1] developed an immersed boundary

method, which utilizes the 3-D lattice Boltzmann method

(LBM) [8], [9] to model the fluid flow and integrates the

elastic boundary forces with LBM. We refer to our new

immersed boundary method as the LBM-IB method. Figure 1

shows our 3D simulation of a flexible circular plate fastened

in the middle region and immersed in a fluid flow using

this LBM-IB method. In our LBM-IB method, we execute

the following operations in every time step: 1) compute the

elastic forces coming from the immersed structure, 2) spread

the elastic forces from the immersed structure to the fluid, 3)

solve the fluid’s velocity via LBM using the elastic boundary

forces, 4) derive the structure’s velocity based on the velocity

of the nearby fluid, and finally 5) update the location of the

structure (i.e. the structure is moving).

However, to date, there is no parallel software to support

the LBM-IB method. The goal of this paper is to develop

a parallel LBM-IB library for shared memory manycore

architectures. To design general-purpose software for many

different applications, we have implemented the library

from scratch. The LBM-IB library includes an easy-to-use

application programming interface, new data structures to

represent fluid grids and flexible structures, and parallel al-

gorithms tailored for manycore systems. This paper presents

three programs: 1) a sequential version which focuses on

algorithm correctness and efficient data structures, 2) a

parallel OpenMP implementation, and 3) a block-based im-

plementation using Pthreads. Although the paper is focused

on parallel software, the sequential program is used as a

foundation to describe the modified LBM-IB algorithm and

the related computational kernels.

We conduct detailed performance analysis using gprof,

OmpP [10], and PAPI [11]. Although the OpenMP imple-

mentation works well for a small number of cores, we

find the bottlenecks of load imbalance and poor locality

in the program when using more than 8 CPU cores. To

improve its performance, we design a cube-based LBM-

IB algorithm to maximize the degree of parallelism, obtain

load balance, and increase data locality. In the cube-based

algorithm, an input of fluid grid is divided into a set of fine-

grain 3D blocks (also called “cubes”). Each cube is then

stored in a continuous block of memory. During the program

execution, the algorithm first distributes the set of fine-grain

cubes to each thread. Next, each thread applies the LBM-

IB computational kernels to its assigned subset of cubes

iteratively. We also minimize the number of barriers in each

time step to reduce the global synchronization overhead.

The experimental results on a 32-core AMD machine

show that the OpenMP implementation achieves good scal-

ability from 1 to 8 cores with a parallel efficiency of 75%.

Another experiment on a 64-core machine show that the new

cube-based parallel implementation can further improve the

OpenMP program by up to 53%.
This paper has made the following contributions:

• It is for the first time to realize a parallel library to

enable the numerical LBM-IB method on manycore

architectures.

• We propose a new cube-based parallel LBM-IB algo-

rithm to exploit parallelism and locality to obtain higher

performance. The same idea can also be adapted and

applied to other different 3D CFD applications.

• We present detailed performance analysis and provide

an insight into identifying bottlenecks and performing

code optimizations to develop CFD libraries from se-

quential version to different parallel versions on many-

core systems.

The rest of the paper is organized as follows. Next section

introduces the basic idea of our LBM-IB method. Section

III describes the sequential implementation of the LBM-IB

method, computational kernels, and its performance profiles.

Section IV describes the parallel OpenMP implementation,

and Section V describes the cube-based algorithm and

implementation. Section VI shows the experimental results.

Finally, Section VII presents the related work and Section

VIII summarizes the paper.

II. BACKGROUND

A. Immersed Boundary Method
The immersed boundary (IB) method, the first method

created for fluid-structure interaction problems, was orig-

inated by CS Peskin [12], [13] in 1970s for numerical

investigation of flow patterns of blood flow around human

heart valves. It has since become a generic method to

numerically solve problems involving fluid-structure inter-

actions. Compared to other approaches for fluid-structure

interactions, the IB method is more attractive because it

has significantly reduced the complexity of the complicated

interactions between the fluid and the structure by using the

Dirac delta function.
The IB method is both a unique mathematical formulation

and a numerical method (for its mathematical formulation).

In the IB method, fluid-related variables (such as velocity,

mass density, pressure, and elastic force passed from struc-

ture to fluid) are defined on a fixed uniform Eulerian grid.

Structure-related variables (such as position, velocity, and

elastic force to the fluid) are defined on a moving Lagrangian

array of points which do not necessarily coincide with the

fixed uniform Eulerian grid of the fluid.
The Navier-Stokes equations which describes the motion

of fluid are discretized on the fixed Eulerian grid, while

the flexible-structure equations are discretized on the mov-

ing Lagrangian grid. The transfers between the Lagrangian

525252525252

1

2

3

4

5

6

7

8
9

10

11

12

13

14

16

15

17

18

Figure 2. The Lattice Boltzmann D3Q19 model. A particle at the center
can move along 18 different directions.

variables and the corresponding Eulerian variables are per-

formed through the Dirac delta function. The mathematical

formulation of IB method using Dirac delta function has

been rigorously proved to be exact (i.e., no modeling errors

from idealization or simplification).

The IB method essentially consists of three components:

fluid, solid, and the interaction. While the solid and in-

teraction parts are more or less the same within the IB

method, there are different approaches to handle and solve

the fluid motions. In our work, the Navier-Stoke equations

are solved by the lattice Boltzmann method (described in

the next subsection).

B. Lattice Boltzmann Method

The Lattice Boltzmann method (LBM) employs a

mesoscale description to deal with the velocity distribution

function that obeys an approximate Boltzmann equation.

Instead of solving for the macroscopic quantities of velocity

and pressure directly, LBM deals with the single particle

velocity distribution functions g(x, α, t) (x represents the

spatial coordinate, α is the particle velocity, and t is the

time variable) based on the Boltzmann equation.

In our work, we take advantage of the LBM method and

adapt the LBM D3Q19 model to model the fluid motion.

Base on the D3Q19 model, at any spatial node, the fluid

particles may move along 18 different directions (as shown

in Figure 2). The particles are also allowed to stay at the

center. The LBM method is of second-order accuracy in both

time and space. Compared to conventional methods, LBM

is relatively simpler to use, easier to parallelize, and more

convenient to incorporate additional physics to simulate new

flow phenomena, particularly in 3D. These advantages have

been fully utilized by this work.

C. The LBM-IB Coupling for Fluid-Structure Interactions

The two-way full interaction between the fluid and the

immersed structure is handled by a smoothed approximation

of the Dirac delta function. This is mediated by interpolating

the structure velocity from the fluid velocity and spreading

the elastic force from the strucutre to the fluid. This way the

fluid “feels” the existence/influence of the structure because

it receives the elastic force from the structure meanwhile the

structure “feels”the existence/influence of the fluid because

it must move with the fluid (i.e. its velocity is dictated by

the fluid). In other words, the two-way interaction of fluid

and structure is by means of force spreading and velocity

interpolation, both of which build upon the smoothed Dirac

delta function.

Our special LBM-IB coupling method works as follows:

1) compute the elastic force from the configuration of the

immersed structure (i.e. the flexible structure that has been

stretched or bent); 2) spread the elastic force from the

structure to fluid by the Dirac delta function; 3) solve the

fluid equations with the LBM using the elastic force from

structure; 4) compute the velocity of the structure based on

the velocity of the fluid by the Dirac delta function; 5) update

the configuration of the structure; 6) time step = time step

+ 1; go to step 1) until termination time.

III. THE SEQUENTIAL LBM-IB IMPLEMENTATION

This section introduces how to create the input, the LBM-

IB computational kernels, the sequential implementation and

its performance profile.

A. Input of the Algorithm

The LBM-IB algorithm takes as input a 3D fluid grid and

an immersed structure, which consists of a set of flexible

fibers. As shown in Figure 3, the 3D fluid grid is built

as a structured Nx × Ny × Nz mesh, where each fluid

coordinate (x, y, z) (also known as fluid node) records the

characteristics of the fluid particles near the location of

(x, y, z). On the other hand, Figure 4 shows an example

of a flexible structure of 2D sheet. The 2D sheet structure

is comprised of an array of fibers, each of which consists of

a list of fiber nodes. For a 3D flexible structure, it can be

comprised of a number of 2-D sheets.

When executing CFD simulations, the LBM-IB algorithm

applies a series of steps to each fluid node and each fiber

node to compute new properties of the fluid and the fiber

nodes in every time step. All the time steps in the end

compose a complete CFD simulation. The properties of a

fluid node contain information such as velocity, pressure,

Figure 3. A 3D fluid grid of dimension 4×4×4. Each coordinate (x,y,z)
describes the characteristics of the fluid particles in the location of (x,y,z).

535353535353

Figure 4. A flexible fiber sheet consisting of 8 fibers. Each fiber has 5
fiber nodes.

vorticity, shear stress, and so on. The properties of a fiber

node include information of bending force and stretching

force to model flexible or elastic fibers.

B. Computational Kernels

We have implemented 9 kernels to compute the numerical

simulation results. Here we briefly introduce the execution

patterns of these kernels as follows. (for mathematical for-

mulas, please refer to our previous work [1]).

1) compute bending force in fibers(): visits every fiber

node and computes the bending force of the fiber node,

which depends on the locations of its 8 neighbor fiber

nodes in a 2D surface (i.e., two nodes on the left, two

nodes on the right, two nodes above, and two nodes

below).

2) compute stretching force in fibers(): visits every

fiber node and computes the stretching force based

on the distances between the current fiber node and

its four neighbors on the left, right, top, and bottom,

respectively.

3) compute elastic force in fibers(): The elastic force of

each fiber node is the sum of the node’s bending and

stretching forces.

4) spread force from fibers to fluid(): It first finds the

set of fluid nodes located in the 4×4×4 space (named

influential domain) around a given fiber node, then

the center fiber node’s elastic force will be exerted

onto the surrounding fluid nodes within the influential

domain.

5) compute fluid collision(): It applies the lattice Boltz-

mann method to solve the collision at each fluid grid

node in 19 directions defined by the D3Q19 model.

6) stream fluid velocity distribution(): After computing

the collision on a fluid node, it streams (or copies) the

newly computed velocity distribution of the fluid node

to its 18 immediate neighbors (as shown in Figure 2).

7) update fluid velocity(): It updates the new velocity for

each fluid node given the new velocity distribution

(from kernel 6) and the fiber’s exerted elastic force

(from kernel 4).

8) move fibers(): Similar to spread force (kernel 4), it

first finds the set of fluid nodes in the influential

domain for each fiber node; then computes the fiber

node’s new position based on the velocity of those

surrounding fluid nodes.

9) copy fluid velocity distribution(): There are two

buffers to store the present velocity distribution and

the new velocity distribution, respectively. Before

going from the i-th time step to the (i+1)-th time

step, the function copies data from the buffer of new

distributions to the buffer of present distributions so

that the space of the new distribution buffer can be

reused.

C. The Sequential Algorithm

Algorithm 1 shows the LBM-IB algorithm. It first creates

an immersed structure and a 3-D fluid grid. Next it executes

the 9 computational kernels repeatedly to simulate each time

step. We can category the kernels into three classes: the IB-

related kernels, the LBM-related kernels, and the coupling-

related kernels. In our implementation, the structure is rep-

resented by a number of 2D sheets, each of which consists

of a set of flexible fibers.
As soon as the simulation starts, each fiber starts to

interact with its surrounding fluid particles, and may move,

bend, stretch, or even rotate. At the same time, the velocity

of a fluid particle is changed dynamically by the elastic

forces applied by its surrounding fibers.

Algorithm 1 Sequential LBM-IB Algorithm

immersed struct = create fiber shape();
fluid = create fluid grid();
for timestep ← 0 to N-1 do

/* IB related */
1) compute bending force in fibers(immersed struct);
2) compute stretching force in fibers(immersed struct);
3) compute elastic force in fibers(immersed struct);
4) spread force from fibers to fluid(immersed struct,fluid)
/* LBM related */
5) compute fluid collision(fluid);
6) stream fluid velocity distribution(fluid);
/* FSI-coupling related */
7) update fluid velocity(fluid);
8) move fibers(immersed struct, fluid);
9) copy fluid velocity distribution(fluid);

end for

D. Performance Analysis
Before parallelizing the code, we conduct performance

analysis to identify bottlenecks and hot regions of the

program. The analysis is done on a Linux machine with

two AMD Opteron 16-core Abu Dhabi 2.9GHz CPUs and

memory of 64 GB. The sequential LBM-IB program takes

as input a 3D fluid grid of dimension 124 × 64 × 64 and

an immersed 2D sheet of dimension 20 × 20 with 52 × 52
fiber nodes. The execution time is around 967 seconds to

simulate the fluid-structure interaction for 500 time steps.
Table I lists the nine kernels that are ranked in the order

of execution time. The first column displays the index of

545454545454

Table I
PERFORMANCE ANALYSIS OF THE SEQUENTIAL LBM-IB PROGRAM

WITH gprof. TOTAL EXECUTION TIME = 967 SECONDS.

Kernel Kernel Name Percentage of

Index Total Time

5) compute fluid collision 73.2%

7) update fluid velocity 12.6%

9) copy fluid velocity distribution 5.9%

6) stream fluid velocity distribution 5.4%

4) spread force from fibers to fluid 1.4%

8) move fibers 0.7%

1) compute bending force in fibers 0.03%

2) compute stretching force in fibers 0.02%

3) compute elastic force in fibers 0.00%

each kernel, which is the same as that used in Algorithm

1. From the table, we can see that the time spent by the

top four kernels take up 97% of the total execution time.

By inspecting the compute patterns of the 9 kernels (see

Section III-B), we discover that the top four kernels are the

only kernels that have visited every single fluid node and

computed results on every fluid node.

Due to the large 3D fluid space, any kernel that attempts

to visits every fluid node will be both compute intensive

and memory intensive. For instance, the third-ranked kernel

copy fluid velocity distribution simply copies the velocity

distribution from one buffer to another buffer for all the fluid

nodes. However, this simple memory operation has taken

noteworthy 5.9% of the total execution time. The fourth-

ranked kernel stream fluid velocity distribution is similar to

the third-ranked kernel copy fluid velocity distribution and

also takes 5.4% of the total execution time.

Although this paper does not cover how to optimize kernel

code, the performance profiling provides an insight into the

cost of the kernels as well as the need for optimization on

memory efficiency.

IV. THE PARALLEL IMPLEMENTATION USING OPENMP

A. OpenMP Implementation

OpenMP is a portable shared-memory programming

model that can quickly convert a sequential program to

a multi-threaded parallel program with high performance

[14]. To use the OpenMP programming model, we have

inspected every for loop and determined what and where

data dependencies are and inserted OpenMP pragmas into

the sequential code to parallelize it.

As shown in Algorithm 1, the sequential program

mainly consists of two types of kernels: one type vis-

its every fluid node resident in a 3-D space; and the

other type visits every fiber node resident in a 2-D

space. The four most expensive kernels in Table I (e.g.

compute fluid collision and update fluid velocity) belong

Algorithm 2 Fluid-computing kernels with OpenMP

/* Compute for every fluid node */
#pragma omp parallel for default(shared) private (x, y, z,
direction)
for x ← 0 to Nx do

for y ← 0 to Ny do
for z ← 0 to Nz do

for direction ← 0 to 18 do
fluid nodes[x,y,z].distri freq[direction]
← function(properties of fluidnodes[x,y,z]);

end for
end for

end for
end for

to the first type. The remaining five less expensive

kernels (e.g. spread force from fibers to fluid and com-

pute bending force in fibers) belong to the second type.

To present the OpenMP implementation, we use two pseu-

docodes to describe the two types of kernels: one pseu-

docode for fluid-node computing (Algorithm 2), and the

other for fiber-node computing (Algorithm 3).

As shown in Algorithm 2, a specific computational func-

tion is applied to every fluid node to compute either new

distribution function or velocity, or perform streaming. In

our implementation, we use the static scheduling policy to

divide a 3D fluid grid into multiple contiguous segments

of 2D surfaces, where each surface is aligned with the y-z

coordinate and vertical to the x axis. Next, each segment

is assigned to a different thread to achieve parallelism. We

have also tried the dynamic scheduling policy but obtained

the same performance.

Algorithm 3 shows the pseudocode to calculate various

forces between a fiber node and its neighbor fiber nodes

(e.g. bending and stretching forces). The computation goes

through two stages: it first goes along each fiber to compute a

partial force, then it visits the fiber nodes along each column

which is vertical to the fibers.

B. Performance Analysis

To evaluate the performance of the OpenMP program, we

run experiments on the same Linux machine with two AMD

Opteron 16-core 2.9GHz CPUs and a memory of 64GB.

The experiments take the same input as that used by the

sequential implementation and execute 200 time steps on a

varying number of CPU cores from 1 to 32. As shown in

Figure 5, the speed up is good till 8 cores for which the

parallel efficiency is 75%. However, when using 16 and 32

cores, the parallel efficiency drops quickly to 56% and 38%,

respectively. Figure 5 also displays the ideal speedup, which

is equal to the number of CPU cores.

To understand why the performance degrades as the

number of CPU cores increases. We use an OpenMP profiler

called OmpP [10] and the PAPI [11] library to investigate if

there are bottlenecks and where they are. Table II lists the

555555555555

Algorithm 3 Fiber-computing kernels with OpenMP

/* Compute along each fiber */
#pragma omp parallel for default(shared) private (fiber,
node)
for fiber ← 0 to num fibers do

for node ← 0 to num nodes do
fiber nodes[fiber,node].certain force ← function(left
and right neighbors of fiber nodes[fiber,node]);

end for
end for

/* Compute vertically to all fibers */
#pragma omp parallel for default(shared) private (fiber,
node)
for node ← 0 to num nodes do

for fiber ← 0 to num fibers do
fiber nodes[fiber,node].certain force += function′(upper
and lower neighbors of fiber nodes[fiber,node]);

end for
end for

measured L1 data cache miss rate, the L2 data cache miss

rate, and load imbalance with respect to the whole program.

From the table, we can see that the L1 cache miss rate is

good, but the L2 cache miss rate (>25%) is significantly

high. This indicates that the program has a poor locality and

a large memory footprint. Furthermore, the load imbalance

ratio (relative to the whole program) keeps increasing from 8

cores to 32 cores. To eliminate the bottlenecks, we redesign

a new parallel algorithm, called cube-based algorithm, to

increase both data locality and the degree of parallelism.

V. THE CUBE-CENTRIC ALGORITHM

This section describes the new cube-based algorithm and

our new implementation using Pthreads.

A. The Algorithm

Being designed to be data centric, the cube-based algo-

rithm first divides an input of 3D fluid grid into a 3D array

of sub-grids (we refer to them as cubes). Each cube consists

��

��

���

���

���

���

���

���

�� �� �� 	� �
� ���

��
��
��

��

��	
����
�������

��
�����

����

��
�����
����������������

Figure 5. Performance of the OpenMP implementation of LBM-IB on
a 32-core system. Speedup is relative to the execution time of one-core
experiment.

Table II
PERFORMANCE METRICS DATA COLLECTED FOR THE OPENMP

IMPLEMENTATION OF LBM-IB.

Cores L1 miss rate L2 miss rate Load imbalance

1 1.76% 26.1% 0%

2 1.75% 26.1% 1.8%

4 1.75% 26.1% 1.4%

8 1.75% 26.2% 5.1%

16 1.74% 27.1% 11%

32 1.76% 27.6% 13%

of k × k × k individual fluid nodes, which are stored in

a contiguous memory block. This implies a much smaller

working set size and a better locality than the original

algorithm. A fluid grid of Nx×Ny ×Nz is now considered

as Nx

k × Ny

k × Nz

k cubes.

Given a number of n threads, the set of Nx

k × Ny

k × Nz

k
cubes will be statically mapped to different threads using a

user-defined data distribution function. The set of n threads

will be laid out in a 3D mesh such that n = P×Q×R, where

P , Q, R are dimensions of the thread mesh. The distribution

function is defined as a function of int cube2thread(cubex,
cubey , cubez), which calculates the mapped thread ID for

a given cube whose coordinate is (cubex, cubey , cubez).

Similarly, int fiber2thread(fiberi) maps fibers to different

threads. The distribution function may define different data

distribution methods such as block distribution, cyclic dis-

tribution, or block cyclic distribution. For instance, Figure 6

shows how to map a 3D fluid grid of 4× 4× 4 nodes (i.e.,

2× 2× 2 cubes of dimension 2) to a 3D mesh of 2× 2× 2
threads using a block distribution method. In the thread grid,

threads T0, T1, T2, T3 are on the first layer and threads T4,

T5, T6, T7 are on the second layer. In the example, after

data distribution, each thread is assigned a single cube of

dimension 2.

During program execution, every thread is only re-

sponsible for computing its own subset of cubes. The

thread will follow the same 9 steps described in Sec-

tion III-B such as compute bending force in fibers(), com-

T0 T1

T3 T2

T4 T5

T7 T6

T0 T1

T2 T3

T4 T5

T6 T7
A 2x2x2 thread grid

Figure 6. Mapping a 4×4×4 fluid grid to a 2×2×2 thread grid. After
distribution, each thread Ti owns a single cube of dimension 2.

565656565656

Algorithm 4 Multithreaded cube-centric LBM-IB algorithm

main() function
fibers[Numfibers] = create fiber shape();
cubes[Nx,Ny ,Nz] = create fluid grid();
for tid ← 0 to num threads-1 do

create thread(Thread entry fn, tid, fibers, cubes)
end for

Thread entry fn(int tid, void* fibers, void* cubes)
for timestep ← 0 to N-1 do

for each fiber i /* 1st loop */ do
if fiber2thread(i) == tid then

1) compute bending force in fibers(fibers[i]);
2) compute stretching force in fibers(fibers[i]);
3) compute elastic force in fibers(fibers[i]);
4) spread force from fibers to fluid(fibers[i]);

end if
end for
for each cube of cubes[I,J,K] /* 2nd loop */ do

if cube2thread(I,J,K) == tid then
5) compute fluid collision(cube);
6) stream fluid velocity distribution(cube);

end if
end for
thread barrier wait();
for each cube of cubes[I,J,K] /* 3rd loop */ do

if cube2thread(I,J,K) == tid then
7) update fluid velocity(cube);

end if
end for
thread barrier wait();
for each fiber i /* 4th loop */ do

if fiber2thread(i) == tid then
8) move fibers(fibers[i]);

end if
end for
for each cube of cubes[I,J,K] /* 5th loop */ do

if cube2thread(I,J,K) == tid then
9) copy fluid velocity distribution(cube);

end if
end for
thread barrier wait();

end for

pute stretching force in fibers(), and so on. However, all

the new computational kernels will take cubes as input and

follow the cube-centric algorithm to compute results.

To enforce mutual exclusions among threads, every thread

has a private lock to protect its subset of cubes. In other

words, a cube will be protected by its owner thread’s private

lock. If a cube can be modified by different threads, all the

threads will try to acquire the cube’s owner lock (which is

unique across all the threads) before reading or writing the

cube.

B. Parallel Implementation with Pthreads

Algorithm 4 displays the pseudocode of the cube-based

LBM-IB algorithm implemented with Pthreads. In the

main() function, a 1D array of fibers and a 3D array of

cubes will be created first. Then the function will launch

a number of threads, each of which executes the thread

function Thread entry fn() in parallel.

When a thread starts, it will follow nine steps in a

coordinated way. For each time step, every thread will go

through five for loop nests, whose functions are described as

follows: (i) the first for loop checks every fiber; if the fiber

belongs to the current thread, it will compute the elastic force

for the fiber. The data distribution function fiber2thread()

guarantees that one fiber is only assigned to one thread. (ii)

the second for loop checks every cube with a coordinate of

[I,J,K]; if the cube belongs to the thread, it will compute the

collision for each fluid node inside that cube, followed by

velocity streaming. (iii) the third for loop checks every cube

and computes new velocities for its assigned subset of cubes.

(iv) the fourth for loop checks every fiber and moves the

fiber’s position if the fiber belongs to the thread. (v) in the

fifth for loop, before entering the next time step, the thread

copies velocity distributions from the new-distribution buffer

to the present-distribution buffer for its assigned subset of

cubes.

Note that there are several global barriers in the code.

They are necessary because there exist data dependencies

between the current kernel and the next kernel. For instance,

the first thread barrier wait() is needed, because to compute

velocity for a single fluid node in update fluid velocity() we

will have to read 18 neighbor fluid nodes computed from

the previous stream fluid velocity distribution(). Since the

18 fluid nodes can reside in different threads, a barrier

is inserted to make sure all the input are in place before

executing the next kernel. The rest of the barriers are added

to the code for the similar reason of data dependencies.

VI. EXPERIMENTAL RESULTS

We conducted experiments on a 64-core AMD system

(located at University of Tennessee Knoxville) to evaluate

the performance of the parallel OpenMP LBM-IB implemen-

tation and the parallel cube-based LBM-IB implementation.

A. The Manycore System

Table III shows the manycore computer system named

thog we used to do our experiments. The thog system

consists of four AMD processors, each of which has 16

cores. On each processor, two cores share a unified L2 cache

while eight cores share a unified L3 cache. The whole system

has a total memory of 256 GB.

This manycore system has a deep NUMA memory hier-

archy with eight NUMA (memory) nodes. As shown in the

node distance table IV, the time to access a remote NUMA

memory can be 2.2 times longer than the time to access

a local NUMA memory. This characteristics makes data

locality critical to achieve high performance on manycore

architectures. For all the experiments, we have used “-O3”

to compile and “numactl -interleave=all” to run the code to

obtain the best performance. Also, all the numerical results

575757575757

Table III
THE EXPERIMENTAL 64-CORE COMPUTER SYSTEM

thog system

Processor type AMD Opteron 6380 2.5 GHz

Cores per processor 16

L1 cache 16 KB per core

L2 unified cache 8 x 2 MB, each shared by two cores

L3 unified cache 2 x 12 MB, each shared by eight cores

Number of processors 4

Number of NUMA nodes 8

Cores per NUMA node 8

Memory per NUMA node 32 GB

OS Linux 3.9.0

Compilers gcc 64bit 4.6.3

have been verified to be correct by comparing the new result

to that of the sequential implementation.

Table IV
NODE DISTANCE BETWEEN 8 DIFFERENT NUMA NODES ON thog,

GENERATED BY COMMAND “numactl –hardware”.

node 0 1 2 3 4 5 6 7

0 : 10 16 16 22 16 22 16 22
1 : 16 10 22 16 22 16 22 16
2 : 16 22 10 16 16 22 16 22
3 : 22 16 16 10 22 16 22 16
4 : 16 22 16 22 10 16 16 22
5 : 22 16 22 16 16 10 22 16
6 : 16 22 16 22 16 22 10 16
7 : 22 16 22 16 22 16 16 10

B. Scalability Evaluation

We use weak scalability to evaluate the capability of our

programs to solve potentially larger problems with more

computing resources. For weak scalability experiments, each

CPU core has a fixed amount of computation.

In our experiment, each CPU core owns a fixed number of

fluid nodes. Whenever doubling the number of CPU cores,

we double the total number of fluid nodes. As shown in

figure 7, our experiments are used to simulate how a flexible

sheet may flow and interact with a fluid in a 3D tunnel.

The fiber input size is kept the same, which consists of

104× 104 fiber nodes. The fluid grid size will be increased

when we increase the number of CPU cores. For instance,

the input of the single core experiment takes as input 128×
128 × 128 fluid nodes. The two-core experiment takes as

input 256×128×128 nodes, the four-core experiment takes

as input 512× 128× 128 nodes, the eight-core experiment

takes as input 256× 256× 256 nodes, and so on.

Figure 8 shows the total execution time of the OpenMP

LBM-IB implementation and the cube-based LBM-IB im-

plementation using from one core to 64 cores. In an ideal

case, the curve of execution time were to be a flat line

INFLOW

X

Z
Y

Figure 7. Experiment of a moving elastic sheet in a fluid.

because each core has a constant amount of workload and

should take identical time to compute regardless of the

number of cores. However, the overhead of thread synchro-

nization such as locks and barriers, and hardware limitations

such as memory bandwidth will increase the execution time

gradually as the number of threads increases and as the

shared memory link becomes more saturated.

Based on Figure 8, we can see that from two cores to 4

cores, the execution time of OpenMP LBM-IB increases by

25%; from 4 to 8 cores, the time increases by 36%; from 8 to

32 cores, it increase at a rate of 22% and from 32 to 64 cores,

the time increases a lot by 42%. By contrast, the execution

time of the cube-based LBM-IB grows more slowly than

that of the OpenMP implementation. For instance, from one

core to two cores, the execution time is increased by 3%.

Then from two to 32 cores, the execution time increases

at a constant rate of 13%; and eventually from 32 to 64

cores, the execution time increases by 18%. On 64 cores,

the cube-based algorithm is able to outperform the OpenMP

version by 53%. The major reason is because the cube-

based algorithm is data-centric and has a better data locality

(as well as a smaller working set) which alleviates the

memory bandwidth bottleneck and improves the program

performance.

��

���

����

����

����

����

����

�� �� �� � �!� ��� !��

��
	
��
��
��

��	
����	�������

�	
��
��������
���
��������

Figure 8. Weak scalability of the OpenMP-version LBM-IB implemen-
tation and the cube-based Cube LBM-IB implementation. The input size
increases accordingly with the increment of the number of CPU cores.

585858585858

VII. RELATED WORK

Since Charles S. Peskin created the immersed boundary

method in 1970s [12], researchers have tried to combine Pe-

skin’s IB method to other methods for more efficient numeri-

cal solutions of the fluid structure interactions. These include

combinations with the level set method [15], the fictitious

domain method [16], the immersed interface method [17],

and the lattice-Boltzmann method. The LBM based IB

method was first developed by Feng et al. [18] for particulate

flows. After that, several other methods of this type have

been developed. One is our LBM-IB method introduced

here; another typical one was proposed by Shu et al. [19]

which is particularly good for rigid-body-fluid interactions.

Although there are many different versions of the im-

mersed boundary (IB) method, there are much less efforts in

parallel implementations for the method. Here we describe

the existing significant immersed boundary software and par-

allel algorithms as follows. IBAMR [20] is an open source

parallel library of the immersed boundary method which

supports adaptive mesh refinement. The IBAMR implements

the versions of the IB method that uses either Fast Fourier

Transforms (FFT) or the projection methods for solving the

fluid motions (i.e. Navier-Stokes equations) [21]. Yelick et

al. developed an IB method combined with a 3D FFT solver

using the Titanium language on distributed memory systems

[22]. Gotz et al. developed the LBM-FFD (fast frictional

dynamics) algorithm for the simulation of particle laden

flows, where a 3D lattice Boltzmann solver is used for

the fluid flow and a rigid body physics engine is used for

the treatment of the objects [23]. Valero-Lara investigated

the type of solid-fluid interaction problem and proposed

several optimization approaches [24] for multicore and GPU

architectures. In this paper, we design and implement a

parallel library to realize the new numerical LBM-IB method

on manycore architectures.

Since the lattice Boltzmann method is a part of our LBM-

IB method, we also describe the work related to LBM.

Williams et al. applied an auto-tuning approach to optimize

the lattice Boltzmann computational kernels on multicore

systems [25]. Their work is actually complementary to our

research for which we can use auto-tuning to optimize our

individual cube-specific kernels. There are also implemen-

tations of the LBM method on GPU-like accelerators. For

instance, Li et al. tested the LBM method on GPUs [26],

Peng et al. implemented the pLBM library on a PlayStation3

cluster [27], and Tölke showed detailed implementation of

the 2D LBM CUDA kernels [28].

The cube-based LBM-IB algorithm is designed to reduce

the working set size of the program, increase data locality

and alleviate the bottleneck on the memory bandwidth

limitation. Its essential idea is similar to block/tile data

layout and software blocking [29], which has been used in

dense matrix, sparse matrix and CFD domains. Dongarra et

al. designed a class of tile algorithms to solve linear algebra

problems on multicore architectures [30], [31]. William et

al. used a technique called sparse cache blocking to op-

timize memory-bound sparse matrix vector multiplications

(SpMV) [32]. Giles et al. applied the tiling technique to

an unstructured mesh CFD code that is particularly used

for turbomachinery design [33]. In this work, we design a

general-purpose cube-based data-centric algorithm to solve

different fluid-structure interaction problems.

VIII. CONCLUSION AND FUTURE WORK

As the number of cores per CPU increases, the shared

resources per core (e.g., last-level cache, memory size,

memory bandwidth, I/O bandwidth) become less and less.

To design new parallel software that can scale on manycore

computer systems, we must increase data locality and the

degree of parallelism, and load balancing to achieve high

performance. The parallel LBM-IB library presented in

this paper targets an important domain of fluid-structure

interaction problems. Our sequential program provides nine

computational kernels and detailed performance analysis.

Although our OpenMP implementation scales well on a

small number of cores, its parallel efficiency drops quickly

on a large number of cores. To improve locality and increase

the memory access efficiency on deep NUMA memory hier-

archies, we conceive a new data-centric cube-based parallel

algorithm to realize the LBM-IB method. The outcome of

this work is a parallel implementation that can deliver up to

53% better performance than the OpenMP implementation

on many cores. While our work was focused on the LBM-IB

method that operates on both 3D fluid grids and 2D fiber

arrays, the same cube-centric techniques and algorithms can

also be applied to other types of mesh- or grid-based parallel

applications.

Our immediate future work along this line is to extend the

cube-based implementation from shared memory manycore

systems to extreme-scale distributed memory manycore sys-

tems. Other future work will include overlapping different

time steps, removing the global synchronizations by using

dynamic task scheduling, and performing auto-tuning and

code optimizations on individual computational kernels.

ACKNOWLEDGMENT

This material is based upon work supported by the Insti-

tute for Mathematical Modeling and Computational Science

(IM2CS) at IUPUI, by NSF China Grant No. 11172219, and

by Purdue Research Foundation.

REFERENCES

[1] L. Zhu, G. He, S. Wang, L. Miller, X. Zhang, Q. You, and
S. Fang, “An immersed boundary method based on the lattice
Boltzmann approach in three dimensions, with application,”
Computers & Mathematics with Applications, vol. 61, no. 12,
pp. 3506–3518, 2011.

595959595959

[2] D. Weihs, “Hydromechanics of fish schooling,” 1973.

[3] M. Koehl, “The interaction of moving water and sessile
organisms,” Sci. Am, vol. 247, no. 6, pp. 124–134, 1982.

[4] J. Price, P. Patitucci, and Y. Fung, “Biomechanics: Mechanical
properties of living tissues,” 1981.

[5] T. J. Hughes, W. K. Liu, and T. K. Zimmermann,
“Lagrangian-Eulerian finite element formulation for incom-
pressible viscous flows,” Computer methods in applied me-
chanics and engineering, vol. 29, no. 3, pp. 329–349, 1981.

[6] R. Glowinski, T. Pan, T. Hesla, D. Joseph, and J. Periaux, “A
fictitious domain approach to the direct numerical simulation
of incompressible viscous flow past moving rigid bodies:
application to particulate flow,” Journal of Computational
Physics, vol. 169, no. 2, pp. 363–426, 2001.

[7] D. Sulsky, S.-J. Zhou, and H. L. Schreyer, “Application
of a particle-in-cell method to solid mechanics,” Computer
Physics Communications, vol. 87, no. 1, pp. 236–252, 1995.

[8] R. Benzi, S. Succi, and M. Vergassola, “The lattice Boltzmann
equation: theory and applications,” Physics Reports, vol. 222,
no. 3, pp. 145–197, 1992.

[9] S. Chen and G. D. Doolen, “Lattice Boltzmann method for
fluid flows,” Annual review of fluid mechanics, vol. 30, no. 1,
pp. 329–364, 1998.

[10] OpenMP Profiler, “http://www.ompp-tool.com.”

[11] PAPI Project, “http://icl.utk.edu/papi.”

[12] C. S. Peskin, “Flow patterns around heart valves: a numerical
method,” Journal of computational physics, vol. 10, no. 2, pp.
252–271, 1972.

[13] ——, “The immersed boundary method,” Acta numerica,
vol. 11, pp. 479–517, 2002.

[14] OpenMP, “http://openmp.org.”

[15] G.-H. Cottet and E. Maitre, “A level set method for fluid-
structure interactions with immersed surfaces,” Mathematical
models and methods in applied sciences, vol. 16, no. 3, pp.
415–438, 2006.

[16] L. Shi, T.-W. Pan, and R. Glowinski, “Three-dimensional
numerical simulation of red blood cell motion in poiseuille
flows,” International Journal for Numerical Methods in Flu-
ids, vol. 76, no. 7, pp. 397–415, 2014.

[17] M.-C. Lai, “A hybrid immersed boundary and immersed inter-
face method for two-phase electrohydrodynamic simulations,”
Abstract of SIAM Annual Meeting 2014, 2014.

[18] Z.-G. Feng and E. E. Michaelides, “The immersed boundary-
lattice Boltzmann method for solving fluid–particles interac-
tion problems,” Journal of Computational Physics, vol. 195,
no. 2, pp. 602–628, 2004.

[19] J. Wu and C. Shu, “An improved immersed boundary-lattice
Boltzmann method for simulating three-dimensional incom-
pressible flows,” Journal of Computational Physics, vol. 229,
no. 13, pp. 5022–5042, 2010.

[20] IBAMR, “https://github.com/IBAMR/IBAMR.”

[21] B. E. Griffith, R. D. Hornung, D. M. McQueen, and C. S.
Peskin, “Parallel and adaptive simulation of cardiac fluid dy-
namics,” Advanced computational infrastructures for parallel
and distributed adaptive applications, p. 105, 2010.

[22] E. Givelberg and K. Yelick, “Distributed immersed boundary
simulation in Titanium,” SIAM Journal on Scientific Comput-
ing, vol. 28, no. 4, pp. 1361–1378, 2006.

[23] J. Götz, K. Iglberger, C. Feichtinger, S. Donath, and U. Rüde,
“Coupling multibody dynamics and computational fluid dy-
namics on 8192 processor cores,” Parallel Computing, vol. 36,
no. 2, pp. 142–151, 2010.

[24] P. Valero-Lara, “Accelerating solid–fluid interaction based
on the immersed boundary method on multicore and GPU
architectures,” The Journal of Supercomputing, vol. 70, no. 2,
pp. 799–815, 2014.

[25] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick, “Lat-
tice Boltzmann simulation optimization on leading multicore
platforms,” in IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), 2008., April 2008, pp. 1–14.

[26] W. Li, X. Wei, and A. Kaufman, “Implementing lattice
Boltzmann computation on graphics hardware,” The Visual
Computer, vol. 19, no. 7-8, pp. 444–456, 2003.

[27] L. Peng, K.-i. Nomura, T. Oyakawa, R. K. Kalia, A. Nakano,
and P. Vashishta, “Parallel lattice Boltzmann flow simula-
tion on emerging multi-core platforms,” in Euro-Par 2008–
Parallel Processing. Springer, 2008, pp. 763–777.

[28] J. Tölke, “Implementation of a lattice Boltzmann kernel
using the compute unified device architecture developed by
NVIDIA,” Computing and Visualization in Science, vol. 13,
no. 1, pp. 29–39, 2010.

[29] N. Park, B. Hong, and V. K. Prasanna, “Tiling, block data
layout, and memory hierarchy performance,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 14, no. 7, pp.
640–654, 2003.

[30] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class
of parallel tiled linear algebra algorithms for multicore ar-
chitectures,” Parallel Computing, vol. 35, no. 1, pp. 38–53,
2009.

[31] ——, “Parallel tiled QR factorization for multicore architec-
tures,” Concurrency and Computation: Practice and Experi-
ence, vol. 20, no. 13, pp. 1573–1590, 2008.

[32] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and
J. Demmel, “Optimization of sparse matrix–vector multipli-
cation on emerging multicore platforms,” Parallel Computing,
vol. 35, no. 3, pp. 178–194, 2009.

[33] M. B. Giles, G. R. Mudalige, C. Bertolli, P. H. Kelly,
E. Laszlo, and I. Reguly, “An analytical study of loop tiling
for a large-scale unstructured mesh application,” in High
Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:. IEEE, 2012, pp. 477–482.

606060606060

