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Numerical Investigation of the Dynamics of a Flexi-
ble Filament in the Wake of Cylinder
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Abstract. Fluid-structure-interaction problems are ubiquitous, complicated, and
not yet well understood. In this paper we investigate the interaction of a leading
rigid circular cylinder and a trailing compliant filament and analyze the dynamic
responses of the filament in the wake of the cylinder. It is revealed that there exist
two flapping states of the filament depending on the cylinder-filament separation
distance and the relevant critical distance distinguishing the two states is associat-
ed with the Reynolds number and the filament length. It is also found that the drag
coefficient of the cylinder is reduced but that of the filament may be increased or
decreased depending on its length. Compared with a single filament in a uniform
flow, the filament of the same mechanical properties flapping in the wake of the
cylinder has a lower frequency and a greater amplitude.
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1 Introduction

Fluid-structure-interaction (FSI) problems are everywhere in our daily life. Arguably
the FSI problems may be further categorized into two subsets: fluid-rigid-structure-
interaction such as a flying aircraft interacting with the air and fluid-flexible-structure-
interaction such as red blood cells moving in the flowing blood in human arteries.
These two types of the FSI problems have already been extensively studied theoreti-
cally, experimentally and computationally. The readers are referred to the following
papers and references therein: sedimentation of an elliptical particle [1], numerical
simulations on the dynamics of plates falling freely in a fluid under the influence of
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gravity [2]; experimental and computational studies on the dynamics of flexible fil-
aments in a flowing soap film [3, 4], a flapping flexible plate in quiescent fluid [5],
resonance and propulsion performance of a heaving flexible wing [6], capsule defor-
mation [7, 8], and effects of flexibility on the aerodynamic performance of flapping
wings [9].

However, many FSI problems encountered are even more complicated. They may
involve the interaction of a viscous fluid and both rigid and flexible structures. To
name a few such examples: flag flapping in a wind (involving the rigid pole, the flex-
ible flag and the flowing air) and fish swimming in the wake of a bridge pillar or a
navigating ship. The FSI problems involving both rigid and compliant structures in a
viscous flow are less investigated and yet not well understood because of the intrinsic
mathematical and physical complexity of this type of fluid-structure-interaction. Liao
et al. [10] demonstrated how a trout might exploit the vortices to reduce the cost of lo-
comotion in the wake of a stationary object in a water flow. Beal et al. [11] showed that
a streamlined body passively oscillating within a vortical wake could extract sufficient
energy from the eddies to propel itself upstream. Eldredge and Pisani [12] investigat-
ed the passive locomotion of a simple articulated fish-like system in the wake of an
obstacle. Sui et al. [13] first simulated the interaction of a leading rigid cylinder and
a trailing massless flexible filament in a two-dimensional flow as application of a new-
ly developed numerical method for the FSI problems. Jia and Yin [14] identified by
laboratory experiments three response modes of a flexible filament in the wake of a
rigid cylinder in a flowing soap film. Wang et al. [15] found the filament in the wake
of a upperstream cylinder gained a thrust rather than drag in two dimensions. Tian
et al. [16] performed simulations on the interaction of a leading flexible filament and
a trailing rigid cylinder.

Because of the presence of both rigid and deformable bodies in a viscous flow, the
interaction among the bodies and the flow may become different and more complex,
and new phenomena may emerge. Previous experiments with tandem rigid cylinder-
s [17] found that the drag of a trailing object was less than that of a leading one. A
recent experiment on two tandem flapping rubber threads in a two-dimensional vis-
cous flow reported by Ristroph and Zhang [18] revealed just the opposite: the drag
of the downstream flag was greater than that of the upstream flag. A computation-
al study [19] on the similar problem showed that even more complicated scenarios
happened as the Reynolds number was varied. What would happen if a rigid body
and a deformable body are placed in tandem in a viscous flow? Here we consider a
flexible filament interacting with the wake of a upstream rigid cylinder in a viscous
incompressible flow in two dimensions. Numerous simulations are performed with
various dimensionless parameters and our numerical results indicate the existence
of two flapping modes of the filaments associated with the suction zone behind the
cylinder [12] and the drag of the leading cylinder is always reduced but the drag of
the trailing filament may be decreased or increased depending on the dimensionless
filament length.

The remainder of the paper is organized as follows. Section 2 presents the physical
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Figure 1: Sketch of the problem of a flapping filament in the wake of a circular cylinder in a uniform incoming
flow. The cylinder is fixed and the filament is pinned at the fixed-end marked by a small solid circle.

problem and the relevant mathematical description. Section 3 briefly outlines the nu-
merical methods. Section 4 addresses the simulation results in detail with discussions.
Finally a brief summary concludes the present work.

2 Physical problem and mathematical formulation

We consider a viscous flow past a rigid circular cylinder of diameter D and a flexible
filament of length L which is introduced behind the cylinder with one end pinned and
otherwise unrestricted. As shown in Fig. 1, the extent of space between the filament
fixed-end and the cylinder center is 0.5D + G in the horizontal direction and H in the
vertical direction. This problem is representative of the fluid-structure-interaction that
involves a fixed rigid structure, a movable compliant structure with one end constraint
and a viscous incompressible fluid. The motion of the fluid can be described by the
viscous incompressible Navier-Stokes equations

v 1 o

Vo= 0, (22)

where v is the velocity, p the pressure, p the density of the fluid and y the fluid dy-
namic viscosity.
The boundary conditions are as follows

v=(U,0), 2.3)

on the inlet, top and bottom boundaries, where U represents the free-stream velocity,

v op
Fri 0, Fri 0, (2.4)
on the outlet, and

on the cylinder.



The initial condition is as follows
v=(U,O0), (2.6)

on the flow domain.
The dynamics of the filament can be governed by the following equation

2 4
X 9 [ 0X ] r Ia X
with s as the Lagrangian coordinate along the length, and the body position vector
X (s, t). Here, p; is the structural linear density, T(s) = Eh(|%X| — 1) is the tension, Eh
is the coefficient of stretching and compression, EI is the structural bending rigidity,
and F is the load of fluid.

The boundary conditions for the filament are

22X

X(s=0,t)=(xo0, Yo), 8—52(5 =0,1t)=(0,0), (2.8)

at the fixed end (s = 0), where (xg, y0) = (0.5D + G, H) is its coordinates, and

92X °X
, W(s =L,t)=(0,0), = (s=L, t)=(0,0), (2.9)

T(s=L,t)= 5 (s

at the free end (s = L). The velocity of the filament is

X

U—W.

(2.10)
The initial condition is
0X
X(S/ t= O) - (XO +s, yO)/ g(sl t= O) = (O/ O) (211)

We choose p, U, and D as reference quantities to non-dimensionalize the above
equations. Based on the non-dimensional analysis, there exist several dimension-
less parameters in our problem: the Reynolds number Re = pUD/y, the stretching
coefficient K; = Eh/(pU?D), the bending coefficient K, = EI/(pU?D?), the linear
density ratio M = p;/(pD), the length of the filament L/D, the horizontal gap be-
tween the cylinder and the filament fixed-end G/D, and the vertical distance of the
fixed-end to the centerline H/D. The time ¢, the frequency f and the drag Cp are
non-dimensionalized by D/U, U/D and 1/2pU?D, respectively. In the remainder of
the paper, we use L, G, and H to represent L/D, G/D, and H/D respectively for
simplicity of notation and all variables and their cited values are dimensionless.
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3 Numerical method

The governing equations given above are solved numerically using a modified penalty
immersed boundary method coupled with a lattice Boltzmann method which was
described in detail in [20]. A brief description of the method is only provided here.

The Navier-Stokes equations are approximated by the discrete lattice-Boltzmann
equation with a single relaxation time D2Q9 model, and the multi-block method [21] is
employed to improve the computational efficiency. The fluid-cylinder-filament inter-
action is handled by a modified version of the penalty immersed-boundary method
originally developed by Kim and Peskin [22]. In this method, the no-slip boundary
condition (on the filament and on the cylinder surface) is achieved by including a
body force density f(x, t) into the right hand side of the momentum Eq.(2.1) which is
defined as follows

Flx 1) = /r F(s, H)5(x — X(s, 1))ds, (3.1)

where F(s, t) represents the interaction force between the fluid and the structures (in-
cluding the filament and cylinder), and é6(x — X(s, t)) is Dirac delta function. The
velocity of the filament is interpolated from the flow field onto the Lagrangian points
discretizing the filament, and the positions of those points are updated by explicitly in-
tegrating the velocity in Eq. (2.10). The last two terms on the left hand side of Eq. (2.7)
are calculated explicitly by finite-difference method [4]. To calculate the first term (i.e.
inertial force term) in Eq. (2.7), the penalty method used in [22] is adopted to ensure
the numerical stability. Specifically, the filament itself is assumed to be massless in
the algorithm, but a ghost filament of linear density p; is attached to the physical fila-
ment through a series of virtual spring of specified stiffness. The inertial force term in
Eq.(2.7) is thus replaced by the virtual-spring force. A direct forcing method [13, 23]
is employed to calculate the interacting force between the cylinder and the fluid. The
method and the code used for our current study have been validated carefully in our
previous papers [16,20,24].

4 Results and discussion

In the present simulations, the computational domain for fluid flow is chosen as —10 <
x < 30 and —10 < y < 10 based on our computational examinations. Two level
multi-blocks are employed, with the fine lattice spacing of 0.02 near the region of the
cylinder and filament and the coarse lattice spacing of 0.04 away from these immersed
boundaries.

For most of the simulations discussed in this paper, an elastic homogeneous mas-
sive filament with invariant mechanical properties is considered. The stretching co-
efficient, bending coefficient, and linear density ratio of the filament are constant:
Ks; = 1000, K, = 0.0001, M = 0.3. The Reynolds number of the flow is Re = 100
unless otherwise stated. The choice of the value of K; makes sure that the filament
extension is small. Note that at these values of Re and M an isolated filament without
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Table 1: Effect of cylinder-filament separation distance G on flapping modes at L = 2.0 and H = 0.0 for
two different initial orientations of the filament. = (¢t = 0): filament initially placed with the fixed-end
towards the cylinder; < (t = 0): filament initially placed with the free-end towards the cylinder. Normal
flapping (NF): the filament flaps with the fixed-end towards the cylinder; reverse flapping (RF): the filament
flaps with the the free-end towards the cylinder.

G 15 2.0 26 27 35
= (t=0) RF RF RF NF NF
= (t=0) RF RF RF NF NF

Table 2: Effect of filament length L on the critical gap G, for H = 0.0.

L 1.0 1.5 2.0 2.5
Gc 2.25 242 2.65 2.82

the cylinder in a uniform flow settles down to a period-one limit-cycle oscillation of
constant frequency and amplitude [25]. The relevant resultant quantities such as drag
coefficient of this case will be used for comparison with those of the fluid-cylinder-
filament system. There are seven independent dimensionless parameters in this prob-
lem, we here focus on simulation results for the parameters in the following ranges:
L=05-30,H=00-20and G =15-15.0.

4.1 Two flapping modes

First of all, we set H = 0.0 to isolate the influence of the horizontal cylinder-filament
separation distance G on the motion of the fluid-cylinder-filament system. Extensive
simulations are performed with a series of different values of G. Our simulation re-
sults reveal an interesting phenomenon: if the filament is placed far enough away
from the cylinder, i.e. when G is large enough, the filament flaps in the wake of the
cylinder in a way similar to the case where the cylinder is absent, i.e. filament flapping
in a uniform flow [4]; however, if the filament is placed close enough to the upstream
cylinder, i.e. when G is small enough, the filament reverses its flapping direction — the
free-end moves upperstream passing the fixed-end and moving towards the cylinder,
and finally settles down to a self-sustained flapping state with the free-end upper-
stream and the fixed-end downstream. We call the former situation ‘normal flapping’
(NF) and the latter situation ‘reversed flapping” (RF). To identify the critical horizon-
tal cylinder-filament distance G, for distinguishing the two types of flapping, a series
of simulations with different values of G are performed and the critical value G, is
obtained to be approximately 2.65, as exhibited on the second row of Table 1.

To examine whether the interesting phenomenon is sensitive to the filament initial
orientation, i.e. the relative position of fixed-end and free-end with respect to the
cylinder, all of the above simulations used to estimate G, are repeated with only the
initial filament orientation changed and all of the parameters remained the same, i.e.
filament free-end placed upperstream and the fixed-end downstream. We find that
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Figure 2: Instantaneous suction zone of (a) an isolated cylinder and filament and cylinder system for G =
(b) 2.5 and (c) 3.0, L = 2.0, and H = 0.0.

Table 3: Effect of vertical distance H on the critical gap G, for L = 2.0.

H 0.0 0.1 0.2 0.3 0.4 0.5
Ge 2.65 2.62 2.60 2.55 2.45 None

the switch between the normal and reversed flapping is independent of the filament
initial orientation. See the results on the third row of Table 1.

To investigate the physical mechanism in the reversed flapping mode, the flow be-
havior behind the cylinder is analyzed. Usually, a backflow zone is formed in the re-
gion behind the cylinder. Such a region where the x-component of velocity is negative
is called a suction zone [12], i.e. the region defined by the set { (x, y)|u(x,y) <0, x > 0
and —D/2 < y < D/2} on the x—y plane. In this suction zone the pressure is lower
and fluid particles move against the mainstream. Fig. 2(a) shows the shape and size
of a typical suction zone behind a cylinder without the filament. Note that the suc-
tion zone oscillates up and down with respect to the horizontal line because of vortex
shedding from the cylinder. The presence of the suction zone is behind the interesting
phenomenon of reversed filament flapping identified by our numerical simulations.
Presumably, when the filament is initially placed outside of the suction zone, the nor-
mal flapping happens; when it is placed within the suction zone, the reversed flapping
happens. However, as seen from Figs. 2(b) and 2(c), the introduction of a filament be-
hind the cylinder changes the size of the suction zone: the zone is elongated by the
flapping filament behind. Thus, the critical separation distance G, of the two flapping
modes may be dependent on other dimensionless parameters of the system that affect
the suction zone.

Therefore we further investigate the effect of a couple of important dimensionless
parameters L, H, and Re on the critical cylinder-filament distance G,. Table 2 indicates

Table 4: Effect of Reynolds number Re on the critical gap G, for L = 2.0 and H = 0.0.

Re 100 200 300
Gc 2.65 2.45 2.05
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Table 5: Effect of Reynolds number Re on the mean value of the suction zone length Lgy for an isolated
cylinder in a uniform flow. The suction zone length Lgy is defined as shown in Fig. 2(a).

Re 100 200 300
Isz 18 12 1.0
(a) (c)

O
v
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(b) (d)
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Figure 3: (a, b) Envelopes of the filament and (c, d) instantaneous vorticity contours for L = 1.0, H = 0.0,
and G = (a, c¢) 2.0 (RF) and (b, d) 2.5 (NF).

that G, increases with the filament length. This may be caused by the elongation of
the suction zone due to the presence of the filament. A longer filament may induce a
greater elongation within certain range and thus increase the critical cylinder-filament
separation distance G.. Table 3 shows that the critical value G, decreases as vertical
distance H increases, and when H > 0.5 the filament does not have the RF state. The
results may be explained by the gradual tapering of the suction zone shape down-
stream of the cylinder, as seen in Fig. 2. Table 4 shows that the critical value is a
decreasing function of the Reynolds number Re. To explain this, several simulations
are done to demonstrate the influence of Re on the size of the suction zone. The mean
length of the suction zone Lsy versus Re is given in Table 5. It is shown that as the
Re increases the mean length decreases. Higher Re usually causes higher frequency of
vortex shedding and therefore higher frequency of the suction zone oscillation which
may cause the breakage of the suction zone and result in shrinkage of the suction
zone. Thus higher Re results in shorter mean suction zone length. This may explain
the results in Table 4.

Fig. 3 illustrates the envelope of the flapping filament and the vorticity contours
of the flow for the filament in NF and RF states for L = 1. Two major differences
between the two flapping states are identified as follows. One is the sign of shed
vortices in the wake, and the other is the size of filament flapping envelope. This is
caused by the restriction of the suction zone of the cylinder. The suction zone height
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Figure 4: (a, b) Envelopes of the filament and (c, d) instantaneous vorticity contours for L = 2.0, H = 0.0,
and G = (a, ¢) 2.5 (RF) and (b, d) 3.0 (NF).

is less than the cylinder diameter. But the filament in the normal flapping state has no
such constraints in the vertical direction, its free-end may go as far as it can vertically.
Therefore the filament possesses a wider envelope.

Similarly, Figs. 4 and 5 show the envelopes of the flapping filament and the vortic-
ity contours of the flow for the filament in NF and RF states for L = 2.0 and L = 2.5,
respectively. Compared to the Fig. 3 for L = 1.0, a striking difference exists in the
shape of the envelope of filament in the reversed flapping state: the envelope be-
comes fish-like for L = 2.0 and becomes multiple-section-lotus-root like for L = 2.5.
The spindle-like sub-structure of the envelope is caused by the constraint imposed
by the limited size of the suction zone on the filament flapping motion. The filament
cannot flap beyond the boundary of the suction zone, thus forced to oscillate more
frequently with smaller wave numbers in a narrow space along the vertical direction,
thus forming more spindle-like sub-structures. The envelope of the filament at normal
flapping state simply gets bigger as L increases since a longer filament sweeps across
a bigger area when it flaps.

4.2 Drag coefficients

Previous experimental results on two tandem bodies in a viscous flow revealed that
the drag of a trailing body was reduced in the case of two rigid bodies [17] and the
drag of the leading body was reduced in the case of two compliant bodies [18]. What
would happen in the present case where the leading object is rigid and the trailing
object is compliant?

Now let us look at the drag coefficients of the cylinder, the filament and the w-
hole cylinder-filament system. First we report the influence of the horizontal cylinder-
filament separation distance on the drag coefficients (i.e. H = 0.0). Fig. 6 plots the
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Figure 5: (a, b) Envelopes of the filament and (c, d) instantaneous vorticity contours for L = 2.5, H = 0.0,
and G = (a, ¢) 2.5 (RF) and (b, d) 3.5 (NF).

drag coefficients of the cylinder and the filament as functions of the separation dis-
tance G for L = 1.0 and 2.0. These plots show that the Cp of the cylinder is reduced
by the presence of the filament; however, the Cp of the filament is length dependent:
it is reduced when L = 1.0 and it is increased when L = 2.0. It is noticed that there
always exists a jump in these functions which corresponds to the critical value of the
separation distance G.. When G < G, the drag coefficients of both the cylinder and
the filament are significantly reduced; when G > G, the drag coefficients are bound-
ed above by the drag coefficients of the cylinder (without the filament) and filament
(without the cylinder) except for the L = 2.0 case where the drag coefficient of the
filament is increased when outside of the suction zone (i.e. G > G.). In either case,
the drag coefficients approach the corresponding drag coefficient of the cylinder alone
case or the filament alone case, respectively.

Presumably the drag reduction of the cylinder is caused by the trailing flapping
filament. The filament in flapping state (NF or RF) acts as a flow stopper/divider that
increases the pressure behind the cylinder hence reduces the drag of the cylinder. The
longer the filament, the farther the filament free-end may reach out vertically, thus the
greater the flapping amplitude. As a consequence, the flapping filament presents as a
larger effective object downstream and therefore causes more drag reduction for the
upperstream cylinder. This phenomenon has also been found for the rigid plate split-
ter in the wake of cylinder [26]. This is the reason why the cylinder drag coefficient
decreases with the filament length. When the filament is short, it flaps in the vicinity
of the cylinder and the pressure near the leading end is less compared to the unifor-
m coming flow, thus the drag is reduced. When the filament is longer, the pressure
near the trailing end is greater than the isolated-filament case. Besides, the flapping
amplitude is greater, i.e. the effective projected area is bigger. Therefore the drag of
the filament is increased compared to the uniform coming flow case. These combined
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Figure 6: Drag coefficient Cp of the cylinder (a, c) and the filament (b, d) versus G for L = 1.0 (a, b)
and 2.0 (¢, d). In the legends, “cylinder” and “filament” represent the results for the corresponding isolated
bodies.

may explain the results in Figs. 6(b) and 6(d).

Further, let us turn to the influence of vertical distance H on the drag coefficient
Cp. Fig. 7 shows the Cp versus the H for three typical horizontal distance G for L = 1.0
and 2.0. These plots show that the Cp of the cylinder is always reduced for all cases,
but the Cp of the filament is reduced only for L = 1.0 and it is increased for L = 2.0
except for very small H in the G = 2.5 case. As a consequence, the total Cp of the
whole system is reduced only for L = 1.0 and it is increased for L = 2.0 except for
small H and G. For both values of L, the function of Cp versus H is more complex
when G = 2.5 and becomes relatively simpler for greater values of G. Figures 7(a),
7(b), 7(d) and 7(e) show that smaller values of G and H have more significant influence
on the Cp of system; it means that the cylinder-filament-interaction is much more
complicated when they are placed close to each other. This is probably due to the
complex interaction of the flapping filament and the suction zone boundary.

From the preceding analysis, the Cp of the system depends on the filament length
L. To reveal in detail how this parameter may influence the Cp, a series of simulations
with varying L with H = 0.0 and G = 5.0 are performed. Fig. 8 plots the Cp of the
cylinder and the Cp of the filament versus the filament length L. It is seen that the
Cp of the cylinder is a monotonously decreasing function of L while the Cp of the
filament is a monotonously increasing function of the L. This is to say that the drag
coefficient of the cylinder is always reduced because of the presence of the filament
and the greater the filament length L, the greater the reduction in Cp. For the drag co-
efficient of the filament, the outcomes depend on the filament length: small L induces
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Figure 7: Drag coefficient Cp of the cylinder (a, d), the filament (b, €) and the sum of both (c, f) versus
H for L = 1.0 (a-c) and 2.0 (d-f).

drag reduction but large L induces drag increment.

4.3 Flapping frequency and amplitude of the filament

At the base values of all the parameters given at the beginning of this section, the
dimensionless flapping frequency of the filament in a uniform flow is approximately
0.33; the vortex shedding frequency of the cylinder without the filament is approxi-
mately 0.166. When the two objects are placed in tandem in the same uniform flow,
the frequency of the filament flapping becomes equal to the vortex shedding frequency
of the cylinder because the filament is passive and compliant, and it simply oscillates
with the wake of the cylinder. Fig. 9 shows the influence of vertical distance H on the
frequency of the system for three typical values of G. It is seen that introduction of
the trailing filament into the system causes the system frequency (i.e. vortex shedding
and filament flapping) to decrease. The decrease is more pronounced for small values
of G and H. Little change in the frequency is seen when the filament is horizontally or
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Figure 8: Drag coefficient Cp of the cylinder (a) and the filament (b) versus L for H = 0.0.
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Figure 9: Frequency f of vortex shedding of the cylinder or the flapping of the filament versus H for for
L = (a) 1.0 and (b) 2.0.

vertically placed far away from the cylinder.

The filament flapping amplitude A, is defined as the root mean square value of
the vertical excursion of the filament free-end. Figure 10 plots A,,;s against the hori-
zontal separation distance G for H = 0.0. The left panel corresponds to L = 1.0 and
the right panel corresponds to L = 2.0. It is seen that when G < G, corresponding
to RF state, the flapping amplitude is smaller than the filament-alone case because
the filament vertical excursion is restricted to the suction zone; but when G > G,
corresponding to NF state, it flaps outside of the suction zone and the free-end has no
restrictions along the vertical direction except for the fixed-end. Thus the flapping am-

(a) (b)
0.6 ' 0.8 W
0.4 o9
<§ —o—— H=0.0 <§ 0.4 ——o—— H=0.0
o2l & el filament 02 ) e filament

00‘2'4681‘01‘21‘416 00246(8510121416
Figure 10: Root-mean-square value of the filament tail vertical position A5 versus G for L = (a) 1.0 and
(b) 2.0.
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Figure 11: Root-mean-square value of the filament tail vertical position A5 versus H for L = (a) 1.0 and
(b) 2.0.

plitude is significantly increased compared to the filament-alone case. The increment
is caused by the oscillating wake behind the cylinder which facilitates the filament
flapping motion. Therefore the filament flaps more violently with larger amplitude.
The significant increase in A;,;s by the wake is persistent with respect to separation
distance and only slightly becomes smaller as G increases; the amplitude remains sig-
nificantly greater than the filament-alone case even when the filament is placed far
away from the cylinder (as far as G = 15.0). This suggests filament flapping in the
wake of an object is quite different from flapping in a uniform flow. Fig. 10 also shows
that a longer filament has larger flapping amplitude in the wake of the cylinder.

To examine how the vertical separation distance H would influence the flapping
amplitude, Fig. 11 shows the A, against H for three typical values of G for L = 1.0
and 2.0. It is seen that if G > G, the amplitude is significantly increased, but quickly
and monotonously approaches the filament-alone case as H increases; if G < G, the
situation is more complicated because of filament-suction-zone-boundary interaction.
This is probably caused by the fact that the filament is at RF state for smaller values of
H and at NF state for greater values of H.

5 Concluding remarks

Numerical simulations are performed to understand the interaction of a upperstream
rigid stationary cylinder and a downstream flexible flapping filament. Our simula-
tions have identified two stable self-sustained flapping states of the filament: a nor-
mal flapping (NF) state where the filament flaps with the fixed-end upperstream and
free-end downstream and a reversed flapping (RF) state where the filament flaps with
the free-end upperstream and the fixed-end downstream. The reversed flapping is
caused by the existence of the suction zone behind the cylinder and the critical hori-
zontal cylinder-filament separation distance G, depends on the Reynolds number and
filament length. Our numerical results have found that the drag coefficient of the
cylinder is always reduced by the presence of the downstream filament, but the drag
coefficient of the filament is dependent on the filament length; it is reduced for suf-
ficiently short filament in either flapping state and it may be decreased or increased
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dependent on the values of G and H for sufficiently long filament. For large value of
G, the drag coefficient of the cylinder is a monotonously decreasing function of the
filament length while the drag coefficient of the filament is a monotonously increasing
function of filament length L. Our computational studies have also shown that com-
pared to the filament-alone case the filament’s flapping frequency is decreased and its
flapping amplitude is increased unless both G and H are very small.

The previous laboratory experiments showed that the drag of the trailing object is
reduced in the case of two tandem rigid objects in a viscous flow, the drag of the lead-
ing object is reduced in the case of two tandem flexible objects. For the present case,
the leading rigid cylinder experiences drag reduction, and the filament may experi-
ence drag increase or decrease dependent on the filament length. This indicates the
inherit complexity of the fluid-structure-interaction. Furthermore, previous computa-
tional studies have shown that a massless filament does not possess a self-sustained
flapping state in a uniform flow (i.e. no mass no flapping). However, in our case the
filament is placed in the wake of a cylinder, and we find that a massless filament still
has a self-sustained flapping state. This is because the trailing filament may simply
oscillate with the oscillating wake behind the cylinder.

There are seven dimensionless parameters in our cylinder-filament-flow system:
the Reynolds number Re, the filament mass density M, the filament bending modulus
Ky and stretching coefficient K, the filament length L, the cylinder-filament horizontal
and vertical separation distances G and H. For most of the simulations presented in
this paper, the parameters Re, M, K;, and K; are fixed. The Reynolds number has been
varied to study the transition between the two flapping modes. Further, we will study
the influence of these parameters on this system in the future.
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