
J. Fluid Mech. (2014), vol. 759, pp. 56–72. c© Cambridge University Press 2014
doi:10.1017/jfm.2014.571

56

Dynamics of fluid flow over a circular
flexible plate

Ru-Nan Hua1, Luoding Zhu2 and Xi-Yun Lu1,†
1Department of Modern Mechanics, University of Science and Technology of China,

Hefei, Anhui 230026, PR China
2Department of Mathematical Sciences, Indiana University – Purdue University Indianapolis,

402 North Blackford Street, Indianapolis, IN 46202, USA

(Received 28 February 2014; revised 23 September 2014; accepted 25 September 2014)

The dynamics of viscous fluid flow over a circular flexible plate are studied
numerically by an immersed boundary–lattice Boltzmann method for the fluid flow
and a finite-element method for the plate motion. When the plate is clamped at its
centre and placed in a uniform flow, it deforms by the flow-induced forces exerted on
its surface. A series of distinct deformation modes of the plate are found in terms of
the azimuthal fold number from axial symmetry to multifold deformation patterns. The
developing process of deformation modes is analysed and both steady and unsteady
states of the fluid–structure system are identified. The drag reduction due to the plate
deformation and the elastic potential energy of the flexible plate are investigated.
Theoretical analysis is performed to elucidate the deformation characteristics. The
results obtained in this study provide physical insight into the understanding of the
mechanisms on the dynamics of the fluid–structure system.
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1. Introduction
Fluid–structure interaction problems are everywhere in our daily life. The problems

may be further categorized into two subsets: fluid–rigid structure interaction and
fluid–flexible structure interaction. There exist some canonical problems for the
former category, such as flow over a cylinder (e.g. Williamson & Govardhan 2004),
a sphere (e.g. Ross & Willmarth 1971) and a thin circular plate (e.g. Shenoy &
Kleinstreuer 2008), which have been well studied. On the other hand, fluid flow over
flexible structures is also commonly observed and some problems have been studied,
such as the flutter of a flag in wind (e.g. Connell & Yue 2007; Huang & Sung 2010;
Kim et al. 2013), the reconfiguration of plants subject to external load (e.g. Vogel
1996; Schouveiler & Boudaoud 2006; Gosselin, de Langre & Machado-Almeida
2010), and the locomotion of swimming and flying animals by flapping wings or fins
(e.g. Kang et al. 2011; Dai, Luo & Doyle 2012; Hua, Zhu & Lu 2013). However,
the fundamental mechanisms underlying a viscous flow over a flexible structure are
not yet very clear and are still topics of active research.
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The deformation of thin flexible structures due to flow-induced loads has received
considerable attention. For instance, Connell & Yue (2007) and Huang & Sung (2010)
studied the dynamics of the flag and its connection to vortical structure. Kang et al.
(2011) and Dai et al. (2012) investigated the effects of structure flexibility on the
locomotion performance of flapping wings. Recently, Schouveiler & Eloy (2013)
performed an experimental study on the deformation of a circular flexible plate due
to flow-induced loads and identified four draping modes. Moreover, the deformation
of circular flexible plate induced by non-flow-induced loads has also been studied.
Examples include draping modes of thin flexible structures induced by gravity (Cerda,
Mahadevan & Pasini 2004), shaping of elastic sheets (Klein, Efrati & Sharon 2007)
and morphogenesis of growing soft tissues (Dervaux & Ben Amar 2008). The
deformation is usually determined by the competition between the internal elasticity
of structure and the external forces exerted on it (Cerda et al. 2004). Actually, the
relevant dynamic mechanisms are still desirable to be studied.

The drag reduction of flow over a flexible structure due to reconfiguration has
been investigated for three-dimensional configurations (Schouveiler & Boudaoud
2006; Gosselin et al. 2010; Schouveiler & Eloy 2013). Some simplified models
for prediction of drag reduction were proposed (e.g. Vogel 1996; Schouveiler &
Boudaoud 2006; Gosselin et al. 2010). In reality the flow-induced loads on the plate
are closely related to vortical structure in the wake of the plate (Li & Lu 2012),
which in turn affects the deformation of the plate. Furthermore, the deformation is
governed by material properties as well, e.g. stretching and bending stiffness. Thus,
it is needed to study the mutually coupled effects of the interaction of fluid flow and
a flexible plate.

In the present study, the dynamics of fluid flow over a circular flexible plate,
which is a canonical problem of fluid–flexible structure interaction and is also related
to some natural and engineering phenomena described above, are systematically
investigated by means of the numerical simulation of the fluid and plate interaction.
The purpose of this study is to achieve improved understanding of the fundamental
phenomena and the underlying mechanisms. These include, but not limited to, plate
deformation modes, steady and unsteady states of the flow–plate system, vortical
structure, drag reduction and elastic potential energy of the flexible plate.

This paper is organized as follows. The physical problem and mathematical
formulation are presented in § 2. The numerical method and validation are described
in § 3. Detailed results are discussed in § 4 and concluding remarks are addressed
in § 5.

2. Physical problem and mathematical formulation
As shown in figure 1(a), we consider a uniform flow over a thin circular flexible

plate with a diameter D, thickness h, density ρs and Young’s modulus E. The plate
centre is clamped with a core diameter Dc. The surrounding fluid has a density ρ and
dynamic viscosity µ. A uniform flow of velocity U is perpendicular to the initial plate
plane. Here, a local moving curvilinear coordinate system (s1, s2) defined on the plate
surface, as shown in figure 1(b), is used to describe the configuration and motion of
the plate.

The incompressible Navier–Stokes equations are used to describe the fluid flow,

∂v

∂t
+ v · ∇v =− 1

ρ
∇p+ µ

ρ
∇2v + f , (2.1)

∇ · v = 0, (2.2)
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FIGURE 1. (Colour online) (a) Schematic diagram of the flow over a circular flexible
plate and (b) two coordinate systems: a moving curvilinear coordinate system (s1, s2) for
the plate and a fixed Cartesian coordinate system (x, y, z) for the fluid flow.

where v is the velocity, p the pressure and f the body force term. The structural
equation with large displacement is used to govern the motion of the plate (Huang &
Sung 2010)

ρsh
∂2X
∂t2
=

2∑
i,j=1

[
∂

∂si

(
Ehϕij

[
δij −

(
∂X
∂si
· ∂X
∂sj

)−1/2
]
∂X
∂sj
− ∂

∂sj

(
EIγij

∂2X
∂si∂sj

))]
+ Fs,

(2.3)

where X is the position vector of the plate, Fs is the Lagrangian force exerted on the
plate by the fluid, Eh and EI are the stretching and bending stiffness, ϕij and γij are the
in-plane and out-of-plane effect matrices, respectively, and δij is the Kronecker delta
function. Note that the density ρsh in (2.3) actually represents the plate area density
difference and the actual area density should be ρsh+ ρh (Huang & Sung 2010).

The characteristic quantities ρ, U and D are chosen to non-dimensionalize the
above equations. The dimensionless governing parameters are described as follows:
the Reynolds number Re=ρUD/µ, the stretching stiffness S=Eh/ρU2D, the bending
stiffness K = EI/ρU2D3, the mass ratio of the plate and the fluid M = ρsh/ρD and
the clamped core size d=Dc/D.

To solve (2.1)–(2.3), the initial and boundary conditions are given as follows. A
uniform flow (U, 0, 0) is used as an initial condition. A no-slip velocity boundary
condition v = V s is applied on the surface of the plate. A uniform velocity U is set
at the upstream boundary and the side boundaries of the fluid computational domain.
A convective boundary condition ∂v/∂t+U∂v/∂x= 0 is specified at the downstream
boundary.

3. Numerical method and validation
3.1. Numerical method

The governing equations of the fluid–plate problem are solved numerically by an
penalty immersed boundary (IB)–lattice Boltzmann (LB) method for the fluid flow
and a finite-element method for the motion of the flexible plate. The IB method has
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been extensively applied to flow–structure interaction problems (Peskin 1977, 2002;
Mittal & Iaccarino 2005). The body force term f in (2.1) is used as an interaction
force between the fluid and the boundary to enforce the no-slip velocity boundary
condition on the body surface. The Lagrangian interaction force between the fluid
and the boundary can be calculated by the penalty strategy (Goldstein, Handler &
Sirovich 1993; Huang, Shin & Sung 2007; Huang, Chang & Sung 2011)

Fs(s1, s2, t) = α

∫ t

0
[V f (s1, s2, t′)− V s(s1, s2, t′)]dt′

+β[V f (s1, s2, t)− V s(s1, s2, t)], (3.1)

where α and β are parameters which are selected based on the previous studies (Gao
& Lu 2008; Tian et al. 2011a; Hua et al. 2013), V s= ∂X/∂t is the plate velocity and
V f is the fluid velocity at the position of the plate obtained by interpolation

V f (s1, s2, t)=
∫

v(x, t)δ(x− X(s1, s2, t))dx. (3.2)

Then, the Eulerian body force can be calculated as

f (x, t)=−
∫∫

Fs(s1, s2, t)δ(x− X(s1, s2, t))ds1ds2. (3.3)

The interaction forces Fs(s1, s2, t) and f (x, t) obtained by (3.1) and (3.3) are applied
to (2.3) and (2.1), respectively.

The LB equation has been widely used to simulate complex flows as an alternative
to conventional numerical methods for the Navier–Stokes equations (Chen & Doolen
1998; Tian et al. 2011a; Li & Lu 2012; Hua et al. 2013). The LB equation with the
BGK model is

gi(x+ ei1t, t+1t)− gi(x, t)=−1
τ
[gi(x, t)− geq

i (x, t)] +1tFi, (3.4)

where τ is the non-dimensional relaxation time associated with fluid viscosity, 1t is
the time increment and gi(x, t) is the distribution function for particles with velocity
ei at position x and time t. The equilibrium distribution function geq

i and the forcing
term Fi (Guo, Zheng & Shi 2002) are defined as

geq
i =ωiρ

[
1+ ei · v

c2
s

+ vv : (eiei − c2
s I)

2c4
s

]
, (3.5)

Fi =
(

1− 1
2τ

)
ωi

[
ei − v

c2
s

+ ei · v

c4
s

ei

]
· f , (3.6)

where ωi is the weighting factor and cs is the speed of sound. The variables velocity
v and mass density ρ can be obtained by the distribution functions

ρ =
∑

i

gi, (3.7)

ρv =
∑

i

eigi + 1
2

f1t. (3.8)
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Further, a nonlinear finite-element structural solver designed by Doyle (1991, 2001)
is used to solve (2.3) and a detailed description of the finite-element method is also
given by Doyle (2001). We briefly describe the numerical method following a recent
work on dynamic pitching of an elastic rectangular wing (Dai et al. 2012). The three-
node triangular element describes the plate deformations. Each node of the element
has six degrees of freedom, including three displacement components and three angles
of rotation. The plate element used is the discrete Kirchhoff triangular element which
has been regarded as one of the most efficient flexural elements (Batoz, Bathe & Ho
1980). The large-displacement and small-strain deformation in the structural solver is
handled using the corotational scheme. A local coordinate system is envisioned as
moving with each discrete element, and the element behaves linearly as described
by the Kirchhoff–Love theory of plates in this local coordinate system. Consequently,
the geometrical nonlinearities of the original problem are shifted to the coordinate
transformation. The time stepping of the nonlinear system of algebraic equations is
achieved using an iterative strategy to ensure a second-order accuracy.

Based on our careful convergence studies with different computational domains and
lattice spacing, the computational domain for fluid flow is chosen as [−10, 30] ×
[−10, 10]× [−10, 10] in the x, y and z directions. A non-uniform mesh technique (He,
Luo & Dembo 1996) is employed to solve our problem for improving computational
efficiency. The mesh is uniform with a fine spacing 0.025 in the near region of the
plate, i.e. [−2, 4] × [−2, 2] × [−2, 2], and gradually increases to a coarse spacing 0.1
in the far boundary region. The mesh size increases in a geometric progression. Note
that the uniform mesh around the plate is compatible with the IB method (Mittal et al.
2008; Dai et al. 2012) and the interpolation kernel function is used as the standard
IB method (Peskin 2002). The plate is discretized by approximate 3000 triangular
elements. The time step is 1t = 0.0025 for the simulations of fluid flow and plate
deformation.

3.2. Validation
To validate the numerical method and its implementation, we consider viscous flow
over a rigid circular plate (Shenoy & Kleinstreuer 2008). Figure 2 shows the drag
coefficient CD and the length of the wake LW versus the Reynolds number Re. It
is seen that our calculated results agree well with the previous experimental and
computational data. Further, we consider a viscous flow over a flexible structure,
i.e. a flapping flag in a uniform flow (Huang & Sung 2010). The dimensionless
governing parameters are chosen as Re= 100, M= 1, K = 0.0001 and S= 1000 with
an aspect ratio AR = 1. Figure 3 shows the time history of the transverse (i.e. y
direction) displacement of two points on the trailing edge of the flag. It is seen that
the present results agree well with the previous ones (Huang & Sung 2010).

Moreover, the numerical strategy used here has been validated in our previous
work and applied with success to a wide range of flows, such as viscous flow past
three filaments in side-by-side arrangement (Tian et al. 2011b), dynamics of flow
over flapping plates (Li & Lu 2012) and locomotion of flapping flexible plate (Hua
et al. 2013).

4. Results and discussion
In this section, we present some typical results on the dynamics of fluid flow over

a circular flexible plate. The governing parameters used in this study are as follows:
the bending stiffness K= 10−5–0.1, the stretching stiffness S= 10–1000, the Reynolds
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FIGURE 2. Comparison of the present results and previous data for flow over a rigid
circular plate: (a) drag coefficient CD and (b) length of the wake LW , where NUM and
EXP represent the numerical (Shenoy & Kleinstreuer 2008) and experimental (Ross &
Willmarth 1971) data.
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FIGURE 3. Comparison of the present results and previous data (Huang & Sung 2010) for
a flapping flag in a uniform flow: (a) time-dependent transverse (y direction) displacement
at point A (low corner on the trailing edge) and (b) at point B (mid-point on the trailing
edge).

number Re= 100 and 200, the clamped core size d = 0.1–0.5 and the mass ratio of
the plate and the fluid M= 0.1 and 2. Unless otherwise stated, the mass ratio and the
core size are M = 0.1 and d= 0.1 in the following results.

We here analyse the choice of the parameters. The bending stiffness and stretching
stiffness are two important parameters to govern the plate deformation. The bending
stiffness K = 10−5–0.1 is consistent with the experimental range (Schouveiler &
Eloy 2013). During this range, the deformation modes may occur for K < 0.1
and the behaviour of the plate tends to the rigid case for K > 0.1. The stretching
stiffness S = 10–1000 allows us to investigate extensible and inextensible effect on
the plate deformation with the plate being obviously extensible for S= 10 and nearly
inextensible for S = 1000. The Reynolds number is another important parameter to
govern the fluid flow. We considered two Reynolds numbers Re= 100 and 200 which
lie in a moderate range with a significant viscous effect. The two cases Re = 100
and 200 correspond to steady and unsteady flow states for flow over a rigid circular
plate (Shenoy & Kleinstreuer 2008). The clamped core size d = 0.1 is chosen based
on the experiment (Schouveiler & Eloy 2013). To examine the effect of the core size
on plate deformation, a larger core size is also considered. In addition, the mass ratio
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M = 0.1 matches with M ∼ O(10−2) for the case of a polysiloxane plate in water
tunnel (Schouveiler & Eloy 2013) and M = 2 with M ∼O(1) for the case of a plate
in the wind tunnel (Kim et al. 2013).

4.1. Deformation modes
Based on a series of simulations for a wide range of parameters considered here, we
have identified six distinct modes of the plate deformation due to the fluid–structure
interaction in terms of the number of azimuthal folds, i.e. axial symmetry (or
zerofold), twofold, threefold, fourfold, fivefold and sixfold patterns, which can be
briefly called 0F, 2F, 3F, 4F, 5F and 6F modes, respectively. Figure 4 shows the six
modes for different values of K. It is seen that the fold number increases from 0F
(axial symmetry) to 6F as K decreases. Moreover, the peripheral size of each fold
in a multifold mode looks almost the same, indicating that the folds appear to be
periodically arranged along the azimuthal direction.

An overview of the six deformation modes on the K–S plane is shown in figure 5
for two typical Reynolds numbers Re = 100 and 200, which correspond to steady
and unsteady states for flow over a rigid circular plate (Shenoy & Kleinstreuer 2008),
respectively. It is identified that the critical value K separating two neighbouring
modes essentially increases as S increases. Comparison of figure 5(a,b) shows that
the classification of modes looks qualitatively similar. Recently, Schouveiler & Eloy
(2013) have experimentally investigated the effect of K on the draping mode and
analytically introduced a Cauchy number CY to distinguish different deformation
modes. Four draping modes, denoted by C, 2F, 3F and 3F∗, are experimentally
identified for CY = 1800–0.003, corresponding to K = 1.7× 10−5–10, where C mode
is a cylindrical shape and 3F∗ mode is a bent threefold cone. In this paper, the C and
2F modes are collectively called the 2F mode. The critical value K separating the
2F and 3F modes is essentially consistent with the experimental data (Schouveiler &
Eloy 2013). Furthermore, our numerical simulations have revealed more deformation
modes, i.e. modes with greater number of folds in the configuration of the deformed
plate. The relevant reason may be associated with the larger clamped core size used
here and the effect of the clamped core size on the fold number will be further
analysed in § 4.4. On the other hand, as a low-Reynolds-number flow is considered,
the considerable viscous force which is tangential to the plate surface is generated.
Similar to the effect of a surface tangential component of gravity (Cerda et al. 2004),
the viscous force can provide a favourable work to form more fold number during
the draping.

To gain better insight into the plate deformation, the developing process of
deformation modes is investigated. As a typical case, figure 6(a) shows the developing
process of deformation for the 4F mode. It is identified that the process can be
qualitatively divided into four typical stages, including: S1 (i.e. stage 1), the plate
changing from a flat shape to an axisymmetric shape with very small deformation;
S2, the plate deforming into a draping shape with more folds; S3, the plate adjusting
the folds; and S4, the plate evaluating to a final state. Thus, the patterns shown in
figure 6(a) correspond to the four stages, i.e. S1 at t= 0.125, S2 at t= 0.25 and 0.5,
S3 at t= 1.5 and 2 and S4 at t= 4, which are marked in figure 6(b).

Since the plate is flexible, it can store elastic potential energy in deformation.
The stretching energy is defined as Es(t) = S/2

∫∫ ∑2
i,j=1 ϕij[(∂X/∂si · ∂X/∂sj)

1/2 −
δij]2ds1ds2, the bending energy as Eb(t) = K/2

∫∫ ∑2
i,j=1 γij∂

2X/∂s2
i · ∂2X/∂s2

j ds1ds2.
The total elastic potential energy is then Ep(t)= Es(t)+ Eb(t). Moreover, the kinetic
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FIGURE 4. Deformation of the plate for six typical modes with Re= 100, S = 100 and
(a) K = 10−5, (b) K = 4 × 10−5, (c) K = 10−4, (d) K = 5 × 10−4, (e) K = 0.01 and ( f )
K = 0.05, corresponding to 6F, 5F, 4F, 3F, 2F and 0F, respectively. The upper pattern is
the three-dimensional view and the lower one is the pattern coloured by the streamwise
(x direction) displacement contours on the y–z plane.

energy of the plate is defined as Ek(t) = M/2
∫ ∫

V2
s (s1, s2, t)ds1ds2. Figure 6(b)

shows the evolution of these energies. The developing process of plate deformation
is accompanied by the energy exchanges. The potential energy Ep has the most
contribution from Es and increases rapidly in S1. Then Es decreases and Eb increases
in S2. Further, Es is almost unchanged and Eb decreases gradually. Finally, both Es
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FIGURE 5. (Colour online) Overview of the six typical deformation mode regions in the
K–S plane for (a) Re= 100 and (b) Re= 200.

and Eb remain nearly constant in S4. Furthermore, the kinetic energy Ek increases
quickly in S1 and decreases quickly in S2, and becomes negligibly small in S3
and S4.

The system energy is further analysed by considering the energy in the fluid
domain. The kinetic energy with respect to the free-stream fluid flow is defined as
Ev = 1

2

∫
CV ρ(v · v − U2)dV , where CV represents the control volume including the

vortex wake which is chosen as the computational domain here. Then, the system
energy is defined as E = Et + Ev. It is seen from figure 6(b) that the system energy
E decreases gradually and then remains nearly constant during the plate deformation
process in S3 and S4 as demonstrated in figure 6(a). The system energy loss is
physically related to the viscous dissipation of fluid flow.

4.2. System states and vortical structures
From the preceding description of the developing process of deformation mode, it is
desirable to study the state of the fluid–structure system at the final stage, i.e. steady
or unsteady state, which is also related to the vortex shedding from the plate. Thus,
we here investigate the system state and the vortical structures in the wake of the
plate.

Our simulations of flow over a thin circular rigid disk show that the flow state
is steady for Re = 100 and unsteady for Re = 200, consistent with previous results
(Shenoy & Kleinstreuer 2008). Further, considering flow over a flexible plate, we
have identified that the flow state is always steady at Re = 100 for all cases shown
in figure 5(a), and can be steady or unsteady at Re= 200 depending on the bending
rigidity. Based on our simulations shown in figure 5(b), it is found that the flow
state is unsteady for the 0F and 2F modes, and steady for the 3F, 4F, 5F and 6F
modes at Re = 200. Such mode classification regions for the steady and unsteady
states may be understood in terms of the effective Reynolds number. As shown in
figure 4, the deformation of the plate for 3F, 4F, 5F and 6F modes is larger compared
with the deformation for 0F and 2F modes. Then, the deformed plate becomes more
streamlined and its projected area is reduced, resulting in the decrease of the effective
Reynolds number. Therefore, we can reasonably conclude that the unsteadiness at
Re= 200 does not modify more drastically the mode regions compared with Re= 100,
i.e. unsteady state for the 0F and 2F modes and steady state for the other modes.

To demonstrate the final state of the deformed plate, figure 7 shows the streamwise
(i.e. x direction) displacements of eight points on the edge of plate marked in
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figure 1(b) for two typical cases. As shown in figure 7(a) for K= 10−4, corresponding
to the 4F mode in figure 5(b), it is obvious that the state of plate deformation is
steady. From figure 7(b) for K = 10−2 with the 2F mode, it is reasonably identified
that the plate vibrates periodically, indicating that the state of plate deformation is
unsteady.

The state of plate deformation is associated with the vortex shedding from the plate
due to the fluid–structure interaction. The vortical structures, which are depicted by
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FIGURE 8. Vortical structures visualized by an isosurface of the Q criterion with Q= 0.01
for Re= 200, S= 100 and (a) K = 10−4 and (b) K = 10−2.

the isosurface of the Q criterion (Jeong & Hussain 1995), are shown in figure 8 for
the two cases shown in figure 7. It is seen that the vortical structure in figure 8(a)
demonstrates a steady petal-like pattern with the same number of deformed folds
of the plate. For the unsteady state, there exists regular shedding of double-sided
hairpin-shaped vortex structure in figure 8(b), which is similar to the pattern for
flow over a rigid circular plate. Further, we have identified that the vortex shedding
frequency is consistent with the plate vibration frequency. The Strouhal number
defined as St= fD/U is calculated as 0.105 for the case in figure 7(b), which is close
to the counterpart value 0.113 for flow over a rigid plate (Shenoy & Kleinstreuer
2008). Furthermore, for a circular plate with clamped centre and free outer edge,
the natural frequency can be estimated by fN = 2Kn/(πD2)

√
EI/(ρsh) (Leissa 1969)

and obtained as O(10−1) based on the parameters in figure 7(b). Thus, the plate
vibration frequency is deviated from its natural frequency and is the same as the
vortex shedding frequency. This behaviour is reasonably associated with the forced
system response.

4.3. Drag reduction and elastic potential energy
For fluid flow over a flexible plate, the drag reduction related to the plate deformation
and the elastic potential energy of the flexible plate are two important concerns for
many relevant problems (e.g. Schouveiler & Boudaoud 2006; Gosselin et al. 2010;
Hua et al. 2013). We address these two issues here for our specific problem.
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and (a) Re= 100 and (b) Re= 200. The dashed line represents the CD of rigid plate for
the same Reynolds number. The symbols represent the different deformation modes shown
in figure 5.
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FIGURE 10. Potential energy versus the bending stiffness K for S= 100 and (a) Re= 100
and (b) Re= 200.

Figure 9 shows the drag coefficient CD versus K with S = 100 for Re = 100
and 200. Note that CD represents the mean value of drag for unsteady cases. It is
noted that the CD of the flexible plate is always less than that of the rigid plate
and the CD decreases as K decreases (i.e. more flexible). As shown in figure 5,
the plate deformation patterns are dependent on different values of K. Thus, the
mechanism of drag reduction is reasonably related to the projected area reduction and
shape streamlining of the deformed plate (Vogel 1996). Further, the curve of drag
coefficient with respect to K is piecewise smooth. The non-smoothness occurs at the
switch of deformation modes.

Figure 10 shows the profiles of the mean potential energies defined in § 4.1. It
is obtained that Eb is greater than Es and has the greatest contribution to the total
potential energy Ep. The energy Es does not change much for K< 10−2, then reaches
a maximum at K = 0.02, and finally decreases with K. The energy Eb increases with
K until it reaches a peak at K = 2× 10−3, and then decreases as K increases further.

Furthermore, compared with the profiles in figure 10(a,b), it is identified that the
potential energies for Re=100 are essentially larger than the counterparts for Re=200.
This behaviour may be related to the fact that larger drag or larger flow load at lower
Reynolds number, as shown in figure 9, results in greater deformation. Therefore,
more potential energy is generated and stored in the deformed plate.
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FIGURE 11. Effect of the core size on the deformation pattern for Re = 100, M = 0.1,
S= 100, K = 10−4 and (a) d= 0.1, (b) d= 0.2, (c) d= 0.3 and (d) d= 0.5.

4.4. Effects of clamped core size and mass ratio
All of the above results are obtained from simulations using different bending stiffness
K, stretching stiffness S and Reynolds number Re but fixed core size (d = 0.1) and
mass ratio (M = 0.1). To examine the effects of d and M on the deformation modes,
we further perform some simulations using different values of d and M.

Figure 11 shows the plate deformation patterns for several clamped core sizes. It is
interesting to note that the fold number increases with the core size. Relevant studies
on deformation of the thin elastic sheets have been performed experimentally (Cerda,
Ravi-Chandar & Mahadevan 2002) and theoretically (Cerda & Mahadevan 2003). They
proposed a formula to estimate the deformed winkling wavelength of an elastic sheet
under a uniaxial tensile strain, i.e. λ= 2

√
π(EI/T)1/4L1/2, where T is the tension along

the sheet and L is length scale of the sheet. Further, Cerda et al. (2004) analysed
the gravity-induced draping of a circular tablecloth with a diameter D on a circular
table and estimated the fold number as n∼D/λ. In a typical case, they theoretically
predicted n≈ 15 for the tablecloth draping, which is qualitatively aligned with n= 10
in their observations. In the present study, the bending stiffness is EI =KρU2D3, the
length scale is L=D−Dc, and the tension is given by T ∼ 1/

√
ReSρU2D2/L. Then,

the fold number can be expressed as n ∼ D/λ ∼ 1/(2
√

π)S1/4Re−1/8K−1/4(1 − d)−3/4.
This expression reasonably predicts the characteristics versus the relevant parameters;
it suggests that the fold number n increases as the increase of d and S and also
increases as the decrease of K and Re, consistent with the results shown in figures 5
and 11.

Further, to examine the performance of the theoretical analysis and the effect of
the core size d on the fold number n, we can directly express n=C(1− d)−3/4 with
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FIGURE 12. Comparison of the fold number obtained by the numerical simulation and
theoretical prediction.

C= 1/(2
√

π)S1/4Re−1/8K−1/4 and obtain C= 5.02 in terms of the parameters Re= 100,
S= 100 and K= 10−4 used in figure 11. Then, figure 12 shows the comparison of fold
number obtained by the present numerical simulation and theoretical prediction. The
reliable agreement also supports the theoretical analysis (Cerda & Mahadevan 2003;
Cerda et al. 2004) and is helpful in understanding the physical mechanisms on the
plate deformation modes.

To investigate the effect of the mass ratio on the deformation mode, we have
performed some simulations with different mass ratios and found that greater mass
ratio does not alter the final deformation pattern but only delays the developing
process of deformation into its final state. For example, figure 13 shows the developing
process of the plate deformation for M = 2 with the same other parameters as
in figure 6(a). It is identified that the plate deformation reaches its final state at
approximately t= 30 for M = 2, while it does so at t= 4 for M = 0.1.

We have also examined the unsteady modes (i.e. 0F and 2F) at Re= 200 for M= 2.
As a typical case, we analyse the evolution of deformation mode for M= 2 with the
same other parameters as in figure 7(b). It is reasonably obtained that the state of plate
deformation is unsteady, which is consistent with the time-dependent deformation for
M= 0.1 in figure 7(b). The plate vibration frequency or the vortex shedding frequency
is approximately 0.1 for M = 2 which also matches with 0.105 for M = 0.1.

Further, we have investigated the effect of the mass ratio on the steady and unsteady
modes at Re = 200. Based on the classification of deformation modes in the K–S
plane in figure 5(b), we have also simulated a series of cases for M = 2 at S= 100.
It is identified that the value separating the steady and unsteady regions for M= 2 is
consistent with that for M= 0.1, i.e. the unsteady state for 0F and 2F modes and the
steady state for other modes. This behaviour is also consistent with the experimental
finding that the mass ratio has negligible effect on the flapping dynamics of an
inverted flag, i.e. a free leading edge and a fixed trailing edge of a flexible plate
(Kim et al. 2013).

5. Concluding remarks
The dynamics of fluid flow over a circular flexible plate have been studied

numerically. Various fundamental mechanisms dictating the relevant behaviours,
including plate deformation modes, steady and unsteady states of the system, vortical
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FIGURE 13. Developing process of the deformation patterns for M = 2 with other
parameters being the same as those used in figure 6. The instants of the four patterns
correspond to t= 0.5, 3, 15 and 30, respectively.

structures, drag reduction and elastic potential energy of the deformed plate, were
examined systematically and are summarized briefly as follows.

Based on a series of simulations for a wide range of parameters considered
here, we have found a variety of distinct modes of plate deformation with the
azimuthal fold number from axial symmetry to multifold patterns. The diagram of
the deformation modes is obtained on the K–S plane. The critical value K separating
two neighbouring modes essentially increases as S increases. The developing process
of plate deformation modes is analysed and found to be qualitatively divided into four
typical stages. Moreover, there exist steady and unsteady states of the fluid–structure
system. The vortical structures are demonstrated which are closely related to the
motion and deformation of the plate.

Further, the drag reduction related to the plate deformation and the elastic potential
energy of the flexible plate are investigated. The mechanism of drag reduction is
associated with the projected area reduction and shape streamlining of the deformed
plate. The elastic potential energy of the flexible plate is analysed. The bending
energy is greater than the stretching energy and contributes most to the total elastic
potential energy. Moreover, the effects of the clamped core size and mass ratio on the
deformation modes are studied. The mass ratio only changes the developing process
of the plate deformation and has no effect on its final state. It is found that the
fold number increases with the core size. Finally, theoretical analysis is performed
and is helpful in understanding the physical mechanisms on the dynamics of the
fluid–structure system.
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